The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/191813

Please be advised that this information was generated on 2019-10-19 and may be subject to change.
Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment

M. Aaboud et al.*
(ATLAS Collaboration)

(Received 14 February 2018; published 22 May 2018)

A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode \(ZH \to \ell^+\ell^-c\bar{c}\) is studied. A data set with an integrated luminosity of 36.1 fb\(^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 13\) TeV recorded by the ATLAS experiment at the LHC is used. The \(H \to c\bar{c}\) signature is identified using charm-tagging algorithms. The observed (expected) upper limit on \(\sigma(pp \to ZH) \times \mathcal{B}(H \to c\bar{c})\) is 2.7 (3.9\(\pm1\)) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.

DOI: 10.1103/PhysRevLett.120.211802

In July 2012, the ATLAS and CMS collaborations announced the discovery of a new particle with a mass of approximately 125 GeV [1,2] in searches for the standard model (SM) Higgs boson at the Large Hadron Collider (LHC) [3]. Subsequent measurements indicate that this particle is consistent with the SM Higgs boson [4–10]. Direct evidence for the Yukawa coupling of the Higgs boson to the top [11] and bottom [12,13] quarks was recently obtained. Measurements of the Yukawa coupling of the Higgs boson to quarks in generations other than the third are difficult at hadron colliders, due to small branching fractions, large backgrounds, and challenges in jet flavor identification [14,15]. This Letter presents a direct search by the ATLAS experiment for the decay of the Higgs boson to a pair of charm (c) quarks. This search targets the production of the Higgs boson in association with a Z boson decaying to charged leptons: \(Z(\ell^+\ell^-)H(c\bar{c})\), where \(\ell = e, \mu\).

The SM branching fraction for a Higgs boson with a mass of 125 GeV to decay to a pair of charm quarks is predicted to be 2.9% [16]. The inclusive cross section for \(\sigma(pp \to ZH) \times \mathcal{B}(H \to c\bar{c})\) is 26 fb at \(\sqrt{s} = 13\) TeV [17]. Rare exclusive decays of the Higgs boson to a light vector meson or quarkonium state and a photon can also probe the couplings of the second-generation quarks to the Higgs boson [18–21]. Previously, the ATLAS Collaboration presented the second search for the decay of the Higgs boson to charge leptons with a branching fraction limit of \(1.5 \times 10^{-3}\) at the 95% confidence level (C.L.), which approximately corresponds to a limit of 540 times the SM branching fraction prediction [14,20]. Bounds on the Higgs boson branching fractions to unobserved final states and fits to global rates constrain \(\mathcal{B}(H \to c\bar{c}) < 20\%\) at the 95% C.L., assuming SM production cross sections [22]. These limits can still accommodate large modifications to the Higgs boson coupling to charm quarks from new physics [22]. In this Letter, a new approach is introduced to investigate the coupling of the Higgs boson to charm quarks.

The search is performed using \(pp\) collision data recorded in 2015 and 2016 with the ATLAS detector [23] at \(\sqrt{s} = 13\) TeV. The ATLAS detector at the LHC covers nearly the entire solid angle around the collision point [24]. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroidal magnets. An additional pixel layer was installed for the \(\sqrt{s} = 13\) TeV running period [25]. After the application of beam, detector, and data-quality requirements, the integrated luminosity corresponds to 36.1 \(\pm 0.8\) fb\(^{-1}\), measured following Ref. [26]. Events are required to contain exactly two same-flavor leptons with an invariant mass consistent with that of the Z boson, and at least two jets of which one or two are identified as charm jets (c jets). In this Letter, lepton refers to only electrons or muons. The analysis procedure is validated by measuring the yield of \(ZW\) and \(ZZ\) production, where the sample is enriched in \(W \to cs, cd\) and \(Z \to c\bar{c}\) decays. Further details can be found in Ref. [12].

Monte Carlo (MC) simulated samples were produced for signal and background processes using the full ATLAS detector simulation [27] using GEANT4 [28]. Table I provides details of the event generators used for each signal and background sample. Signal events were produced at next-to-leading order (NLO) for the \(q\bar{q} \to ZH\) process and at leading order (LO) for the \(gg \to ZH\) process with POWHEG-BOX v2 [32]. The dominant \(Z +\) jets background and the resonant diboson \(ZW\) and \(ZZ\) processes were generated using SHERPA 2.2.1 [54]. The \(\tilde{t}\tilde{t}\) background was...
TABLE I. The configurations used for event generation of the signal and background processes. If two parton distribution functions (PDFs) are shown, the first is for the matrix element calculation and the second for the parton shower, otherwise the same is used for both. Alternative event generators and configurations, used to estimate systematic uncertainties, are in parentheses. Tune refers to the underlying-event tuned parameters of the parton shower event generator. MG5_AMC refers to MadGraph5_AMC@NLO 2.2.2 [29]; PYTHIA 8 refers to version 8.212 [30]. Heavy-flavor hadron decays modeled by EvtGen 1.2.0 [31] are used for all samples except those generated using SHERPA. The order of the calculation of the cross sections used to normalize the predictions is indicated. The $q\bar{q} \rightarrow ZH$ cross section is estimated by subtracting the $gg \rightarrow ZH$ cross section from the $pp \rightarrow ZH$ cross section. The asterisk (*) in the last column denotes that the indicated order is for the $pp \rightarrow ZH$ cross section. NNLO denotes next-to-next-to-leading order; NLL denotes next-to-leading log and NNLL denotes next-to-next-to-leading log.

<table>
<thead>
<tr>
<th>Process</th>
<th>Event Generator (alternative)</th>
<th>Parton Shower (alternative)</th>
<th>PDF (alternative)</th>
<th>Tune</th>
<th>Cross section</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q\bar{q} \rightarrow ZH$</td>
<td>POWHEG-BOX v2 [32] +GoSAm [35] +MiNLO [45,46]</td>
<td>PYTHIA 8 (HERWIG 7 [47])</td>
<td>PDF4LHC15NLO [33] /CTEQ6L1 [36,37]</td>
<td>AZNLO [34]</td>
<td>NNLO (QCD)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NLO (EW) [38-44]</td>
</tr>
<tr>
<td>$gg \rightarrow ZH$</td>
<td>POWHEG-BOX v2</td>
<td>PYTHIA 8 (HERWIG 7)</td>
<td>PDF4LHC15NLO /CTEQ6L1</td>
<td>AZNLO</td>
<td>NLO + NNLL (QCD) [17,49-51]</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>POWHEG-BOX v2</td>
<td>PYTHIA 8 (HERWIG 7)</td>
<td>NNPDF3.0NLO /NNPDF2.3LO</td>
<td>A14</td>
<td>NLO</td>
</tr>
<tr>
<td>ZW, ZZ</td>
<td>SHERPA 2.2.1 [54] (POWHEG-BOX)</td>
<td>SHERPA (PYTHIA 8)</td>
<td>NNPDF3.0NNLO</td>
<td>SHERPA</td>
<td>SHERPA</td>
</tr>
<tr>
<td>$Z + \text{jets}$</td>
<td>SHERPA 2.2.1 (MG5_AMC)</td>
<td>SHERPA (PYTHIA 8)</td>
<td>NNPDF3.0NNLO /NNPDF2.3LO</td>
<td>(A14)</td>
<td>NNLO [55]</td>
</tr>
</tbody>
</table>

Events are required to contain at least two reconstructed jets. If a muon is found within a jet, its momentum is added to the selected jet. An overlap removal procedure resolves cases in which the same physical object is reconstructed multiple times, e.g. an electron also reconstructed as a jet.

<table>
<thead>
<tr>
<th>p_T threshold</th>
<th>η threshold</th>
<th>Efficiency WP</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 GeV</td>
<td>< 2.5</td>
<td>41%</td>
</tr>
<tr>
<td>26 GeV</td>
<td>< 2.5</td>
<td>30%</td>
</tr>
<tr>
<td>27 GeV</td>
<td>< 2.5</td>
<td>20%</td>
</tr>
<tr>
<td>24 GeV</td>
<td>< 2.5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Events are required to contain at least two jets. If a muon is found within a jet, its momentum is added to the selected jet. An overlap removal procedure resolves cases in which the same physical object is reconstructed multiple times, e.g. an electron also reconstructed as a jet.

![ATLAS Simulation](image-url) FIG. 1. The c-jet-tagging efficiency (colored scale) as a function of the b jet and l jet rejection as obtained from simulated $t\bar{t}$ events. The cross, labeled as working point, WP, denotes the selection criterion used in this analysis. The solid and dotted black lines indicate the contours in rejection space for the fixed c-tagging efficiency used in the analysis and two alternatives.
Jets in simulated events are labeled according to the presence of a heavy-flavor hadron with $p_T > 5$ GeV within $\Delta R = 0.3$ from the jet axis. If a b hadron is found the jet is labeled as a b jet. If no b hadron is found, but a c hadron is present, then the jet is labeled as a c jet. Otherwise the jet is labeled as a light-flavor jet (l jet).

Flavor-tagging algorithms exploit the different lifetimes of b, c, and light-flavor hadrons. A c-tagging algorithm is used to identify c jets. Charm jets are particularly challenging to tag because c hadrons have shorter lifetimes and decay to fewer charged particles than b hadrons. Boosted decision trees are trained to obtain two multivariate discriminants: to separate c jets from l jets and c jets from b jets. The same variables used for b tagging [67,68] are used. Figure 1 shows the selection criteria applied in the two-dimensional multivariate discriminant space, to obtain an efficiency of 41% for c jets and rejection factors of 4.0 and 20 for b jets and l jets. The efficiencies are calibrated to data using b quarks from $t \rightarrow Wb$ and c quarks from $W \rightarrow cs$, cd with methods identical to the b-tagging algorithms [67]. Statistical uncertainties in the simulation are reduced, by weighting events according to the tagging efficiencies of their jets, parametrized as a function of jet flavor, p_T, η and the angular separation between jets, rather than imposing a direct requirement on the c-tagging discriminants.

Data are analyzed in four categories with different expected signal purities. The dijet invariant mass, m_{cc}, constructed using the two highest-p_T jets, is the discriminating variable in each category. Categories are defined using the transverse momentum of the reconstructed Z boson, p_T^Z (75 GeV $\leq p_T^Z < 150$ GeV and $p_T^Z \geq 150$ GeV) and the number of c tags amongst the leading jets (either one or two). The p_T^Z requirements exploit the harder p_T^Z distribution in ZH compared to $Z +$ jets production. Background events are rejected by requiring the angular separation between the two jets constituting the dijet system, ΔR_{cc}, to be less than 2.2, 1.5, or 1.3 for events satisfying $75 \leq p_T^Z < 150$ GeV, $150 \leq p_T^Z < 200$ GeV, or $p_T^Z \geq 200$ GeV. The signal acceptance ranges from 0.5% to 3.4% depending on the category. A joint binned maximum-profile-likelihood fit to m_{cc} in the categories is used to extract the signal yield and the $Z +$ jets background normalization. The fit uses 15 bins in each category within the range of 50 GeV $< m_{cc} < 200$ GeV, with a bin width of 10 GeV. The parameter of interest, μ, common to all categories, is the signal strength, defined as the ratio of the measured signal yield to the SM prediction.

Systematic uncertainties affecting the signal and background predictions include theoretical uncertainties in the signal and background modeling and experimental uncertainties. Table II shows their relative impact on the fitted value of μ. Uncertainties in the m_{cc} shape of the backgrounds are assessed by comparisons between nominal and alternative event generators as indicated in Table I.

Systematic uncertainties are incorporated within the statistical model through nuisance parameters that modify the shape and/or normalization of the distributions. Statistical uncertainties in the simulation samples are accounted for. The $Z +$ jets background is normalized from the data through the inclusion of an unconstrained normalization parameter for each category. The fitted

<table>
<thead>
<tr>
<th>Sample</th>
<th>Yield, 50 GeV $< m_{cc} < 200$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 c tag</td>
</tr>
<tr>
<td>$75 \leq p_T^Z < 150$ GeV</td>
<td>$p_T^Z \geq 150$ GeV</td>
</tr>
<tr>
<td>$Z +$ jets</td>
<td>69400 ± 500</td>
</tr>
<tr>
<td>ZW</td>
<td>750 ± 130</td>
</tr>
<tr>
<td>ZZ</td>
<td>490 ± 70</td>
</tr>
<tr>
<td>$\bar{t}t$</td>
<td>2020 ± 280</td>
</tr>
<tr>
<td>$ZH(b\bar{b})$</td>
<td>32 ± 2</td>
</tr>
<tr>
<td>$ZH(c\bar{c})$ (SM)</td>
<td>−143 ± 170 (2.4)</td>
</tr>
<tr>
<td>Total</td>
<td>72500 ± 320</td>
</tr>
<tr>
<td>Data</td>
<td>72504</td>
</tr>
</tbody>
</table>
The analysis procedure is validated by measuring the yield of ZV production, where V denotes a W or Z boson, with the same event selection. The fraction of the ZZ yield from $Z \rightarrow c\bar{c}$ decays is $\sim 55\%$ (20\%) in the 2 c tag (1 c tag) category, while the fraction of the ZW yield from $W \rightarrow c\bar{s}$, $c\bar{d}$ is $\sim 65\%$ for both the 2 and 1 c tag categories. Contributions of Higgs boson decays to $c\bar{c}$ and $b\bar{b}$ are treated as background and constrained to the SM predictions within its theoretical uncertainties. The diboson signal strength is measured to be $\mu_{ZV} = 0.9 \pm 0.1$, with an observed (expected) significance of 1.4 (2.2) standard deviations.

The best-fit value for the $ZH(c\bar{c})$ signal strength is $\mu_{ZH} = -69 \pm 101$. By assuming a signal with the kinematics of the SM Higgs boson, model-dependent corrections are made to extrapolate to the inclusive phase space. Hence, an upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c})$ is computed using a modified frequentist CL$_s$ method [69,70] with the profile likelihood ratio as the test statistic. The observed (expected) upper limit is found to be 2.7 (3.9$^{+2.1}_{-1.1}$) pb at the 95\% C.L. This corresponds to an observed (expected) upper limit on μ at the 95\% C.L. of 110 (150$^{+80}_{-40}$). The uncertainties in the expected limits correspond to the $\pm 1\sigma$ interval of background-only pseudoexperiments. With the current sensitivity, the result depends weakly on the assumption of the SM rate for $H \rightarrow b\bar{b}$. The observed limit remains within 5\% of the nominal value when the assumed value for normalization of the $ZH(b\bar{b})$ background is varied from zero to twice the SM prediction.

A search for the decay of the Higgs boson to charm quarks has been performed using 36.1 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV at the LHC. No significant excess of $ZH(c\bar{c})$ production is observed over the SM background expectation. The observed upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c})$ is 2.7 pb at the 95\% C.L. The corresponding expected upper limit is 3.9$^{+2.1}_{-1.1}$ pb. This is the most stringent limit to date in direct searches for the inclusive decay of the Higgs boson to charm quarks.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG,
received support from BCKDF, the Canada Council, and the Ontario Innovation Trust, Canada; EPLANET, ERC, and FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [71].
the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Angular distance is measured in units of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

[46] G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, HW_γ/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, J. High Energy Phys. 10 (2013) 083.

[60] ATLAS Collaboration, Properties of jets and inputs to jet reconstruction and calibration with the ATLAS detector.

(ATLAS Collaboration)

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, New York, USA
3 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4 Department of Physics, Ankara University, Ankara, Turkey
4a Istanbul Aydin University, Istanbul, Turkey
4b Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7 Department of Physics, University of Arizona, Tucson, Arizona, USA
8 Department of Physics, The University of Texas at Austin, Austin, Texas, USA
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin, Texas, USA
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 Department of Physics, Bogazici University, Istanbul, Turkey
20b Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
21 Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
22 Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
22a INFN Sezione di Bologna, Bologna, Italy
22b Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Institut für Physikalisches Institut, University of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston, Massachusetts, USA
25 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
26 Universidad Federal do Rio de Janeiro COPPE/EE/IF, Río de Janeiro, Brazil
26a Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
26b Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
27 Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
27a Physics Department, Brookhaven National Laboratory, Upton, New York, USA
28 Transilvania University of Brasov, Brasov, Romania
28b Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
67 Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
70 Graduate School of Science, Kobe University, Kobe, Japan
71 Faculty of Science, Kyoto University, Kyoto, Japan
72 Kyoto University of Education, Kyoto, Japan
73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
74 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
75 Physics Department, Lancaster University, Lancaster, United Kingdom
76 a INFN Sezione di Lecce, Lecce, Italy
76 b Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
78 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
79 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
80 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
81 Department of Physics and Astronomy, University College London, London, United Kingdom
82 Louisiana Tech University, Ruston, Louisiana, USA
83 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
84 Fysiska institutionen, Lunds universitet, Lund, Sweden
85 Departamento de Física Teórica C-15, Universidad Autónoma de Madrid, Madrid, Spain
86 Institut für Physik, Universität Mainz, Mainz, Germany
87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
88 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
89 Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
90 Department of Physics, McGill University, Montreal, Québec, Canada
91 School of Physics, University of Melbourne, Victoria, Australia
92 Department of Physics and Astronomy, The University of Michigan, Ann Arbor, Michigan, USA
93 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
94 a INFN Sezione di Milano, Milano, Italy
94 b Dipartimento di Fisica, Università di Milano, Milano, Italy
95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of Belarus
97 Group of Particle Physics, University of Montreal, Montreal, Québec, Canada
98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
100 National Research Nuclear University MEPhI, Moscow, Russia
101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
102 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
103 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
104 Nagasaki Institute of Applied Science, Nagasaki, Japan
105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
106 INFN Sezione di Napoli, Napoli, Italy
107 Dipartimento di Fisica, Università di Napoli, Napoli, Italy
108 Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
109 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
110 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
111 Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
112 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
113 Department of Physics, New York University, New York, New York, USA
114 The Ohio State University, Columbus, Ohio, USA
115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
116 Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
117 Palacký University, RCPTM, Olomouc, Czech Republic
118 Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
120 Graduate School of Science, Osaka University, Osaka, Japan
121 Department of Physics, University of Oslo, Oslo, Norway
122 Department of Physics, Oxford University, Oxford, United Kingdom
162a INFN-TIFPA, Trento, Italy
162 University of Trento, Trento, Italy
163a TRIUMF, Vancouver, British Columbia, Canada
164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
165 Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
166 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
167a INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
167b ICTP, Trieste, Italy
167c Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
169 Department of Physics, University of Illinois, Urbana, Illinois, USA
170 Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Spain
171 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
172 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
173 Department of Physics, University of Warwick, Coventry, United Kingdom
174 Waseda University, Tokyo, Japan
175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
176 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
177 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
178 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
179 Department of Physics, Yale University, New Haven, Connecticut, USA
180 Yerevan Physics Institute, Yerevan, Armenia
181 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
182 Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

a Deceased.
b Also at Faculty of Physics, King’s College London, London, United Kingdom.
c Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
d Also at Novosibirsk State University, Novosibirsk, Russia.
e Also at TRIUMF, Vancouver, British Columbia, Canada.
f Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.
g Also at Physics Department, An-Najah National University, Nablus, Palestine.
h Also at Department of Physics, California State University, Fresno, CA, USA.
i Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
j Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
k Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
l Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
m Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
n Also at Universita di Napoli Parthenope, Napoli, Italy.
o Also at Institute of Particle Physics (IPP), Canada.
p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
q Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
r Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
s Also at Borough of Manhattan Community College, City University of New York, New York City, NY, USA.
t Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
u Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
v Also at Louisiana Tech University, Ruston, LA, USA.
w Also at Institutucional de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
x Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
y Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
z Also at Graduate School of Science, Osaka University, Osaka, Japan.
aa Also at Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany.
bb Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
cc Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
dd Also at CERN, Geneva, Switzerland.
ee Also at Georgian Technical University (GTU), Tbilisi, Georgia.
ff Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.