Search for High-Mass Resonances Decaying to $\tau \nu$ in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

M. Aaboud et al.*
(ATLAS Collaboration)

(Received 22 January 2018; published 20 April 2018)

A search for high-mass resonances decaying to $\tau \nu$ using proton-proton collisions at $\sqrt{s} = 13$ TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible $\tau \nu$ production cross section. Heavy W' bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal $G(221)$ model are excluded at the 95% credibility level.

DOI: 10.1103/PhysRevLett.120.161802

Heavy charged gauge bosons (W') appear frequently in theories of physics beyond the standard model (SM). They are often assumed to obey lepton universality, such as in the sequential standard model (SSM) [1], which predicts a W'_{SSM} boson with couplings identical to those of the SM W boson. However, this assumption is not required. In particular, models in which the W' boson couples preferentially to third-generation fermions may be linked to the high mass of the top quark [2–5] or to recent indications of lepton flavor universality violation in B meson decays [6,7]. An example is the nonuniversal $G(221)$ model (NU) [4,5], which exhibits a $SU(2)_l \times SU(2)_h \times U(1)$ gauge symmetry, where $SU(2)_l$ couples to light fermions (first two generations), $SU(2)_h$ couples to heavy fermions (third generation), and ϕ_{NU} is the mixing angle between them. The model predicts W'_{NU} and Z'_{NU} bosons which are approximately degenerate in mass and couple only to left-handed fermions. At leading order and neglecting sign, the W'_{NU} couplings to heavy (light) fermions are scaled by $\cot \phi_{NU}$ ($\tan \phi_{NU}$) relative to those of W'_{SSM}. Thus $\cot \phi_{NU} > 1$ corresponds to enhanced couplings to tau leptons while $\cot \phi_{NU} = 1$ yields W'_{NU} couplings identical to those of W'_{SSM}. For Z'_{NU}, the coupling to heavy (light) fermions is given by $g \cot \phi_{NU}$ ($g \tan \phi_{NU}$), where g is the SM weak coupling constant. At high values of $\cot \phi_{NU}$, the branching fraction of W'_{NU} to a tau lepton (τ) and a neutrino (ν) approaches 26%.

In this Letter, a search for high-mass resonances (0.5–5 TeV) decaying to $\tau \nu$ using proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV produced by the Large Hadron Collider (LHC) is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. Only τ decays with hadrons in the final state are considered; these account for 65% of the total τ branching fraction. A counting experiment is performed from events that pass a high transverse-mass threshold, optimized separately for each of the signal mass hypotheses.

A direct search for high-mass resonances decaying to $\tau \nu$ has been performed by the CMS Collaboration using 19.7 fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 8$ TeV [8]. The search excludes W'_{SSM} with a mass below 2.7 TeV at the 95% credibility level and W'_{NU} with a mass below 2.7–2.0 TeV for $\cot \phi_{NU}$ in the range 1.0–5.5. The most stringent limit on W'_{SSM} from searches in the $e\nu$ and $\mu\nu$ final states is 5.1 TeV from ATLAS [9] using 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 13$ TeV.

The ATLAS experiment is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry [10,11]. It consists of an inner detector for charged-particle tracking in the pseudorapidity region $|\eta| < 2.5$, electromagnetic and hadronic calorimeters that provide energy measurements up to $|\eta| = 4.9$, and a muon spectrometer that covers $|\eta| < 2.7$. A two-level trigger system is used to select events [12].

Hadrronic τ decays are composed of a neutrino and a set of visible decay products ($\tau_{had-vis}$), typically one or three charged pions and up to two neutral pions. The reconstruction of the visible decay products [13] is seeded by jets reconstructed from topological clusters of energy depositions [14] in the calorimeter. The $\tau_{had-vis}$ candidates must have a transverse momentum $p_T > 50$ GeV, $|\eta| < 2.4$.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
(excluding $1.37 < |\eta| < 1.52$), one or three associated tracks, and an electric charge of ± 1. Only the candidate with the highest p_T in each event is selected. Hadronic τ decays are identified using boosted decision trees that exploit calorimetric shower shape and tracking information [15,16]. Loose criteria are used, which offer adequate rejection against quark- and gluon-initiated jets. Very loose criteria, with about one quarter of the rejection power, are used to create control regions. An additional dedicated veto is used to reduce the number of electrons misidentified as $\tau_{\text{had-vis}}$. The total efficiency for $\tau_{\text{had-vis}}$ is $\sim 60\%$ at $p_T = 100$ GeV and decreases to $\sim 30\%$ at $p_T = 2$ TeV, where the large boost and collimation of the decay products causes inefficiencies in the track reconstruction and association.

Events containing electron or muon candidates are rejected. Electron candidates [17–19] must have $p_T > 20$ GeV, $|\eta| < 2.47$ (excluding $1.37 < |\eta| < 1.52$) and must pass a loose likelihood-based identification selection. Muon candidates [20] are required to have $p_T > 20$ GeV, $|\eta| < 2.5$ and to pass a very loose muon identification requirement. The missing transverse momentum, with magnitude E_T^{miss}, is calculated as the negative vectorial sum of the p_T of all reconstructed and calibrated $\tau_{\text{had-vis}}$ candidates and jets [21–23]. A correction that accounts for momentum not associated with these reconstructed objects is calculated using inner-detector tracks that originate from the hard-scattering vertex [23]. The correction contributes no more than 5% on average in signal events.

Events are selected by triggers that require E_T^{miss} above thresholds of 70, 90, or 110 GeV depending on the data-taking period. To minimize uncertainties in the trigger efficiency, the offline reconstructed E_T^{miss} is required to be at least 150 GeV. At this threshold the trigger efficiency is 80% and increases to more than 98% above 250 GeV. This behavior is determined by the E_T^{miss} resolution of the trigger, which is lower than in the offline reconstruction. The events must satisfy criteria designed to reduce backgrounds from cosmic rays, single-beam-induced events and calorimeter noise [24] and they must contain a loose $\tau_{\text{had-vis}}$ candidate. To further suppress single-beam-induced background, the $\tau_{\text{had-vis}}$ must have at least one associated track with $p_T > 10$ GeV. The multijet background is further suppressed by requiring that the E_T^{miss} trigger efficiency and the E_T^{miss} are balanced: $0.7 < p_T/|E_T^{\text{miss}}| < 1.3$. The azimuthal angle between the $\tau_{\text{had-vis}}$ and the missing transverse momentum, $\Delta \phi$, is required to be larger than 2.4. Finally, thresholds ranging from 0.25 to 1.8 TeV in steps of 0.05 TeV are placed on the transverse mass, m_T, where $m_T^2 \equiv 2p_T(E_T^{\text{miss}})(1 - \cos \Delta \phi)$.

The background is divided into events where the selected $\tau_{\text{had-vis}}$ originates from a quark- or gluon-initiated jet (jet background) and those where it does not (nonjet background). The jet background originates primarily from $W/Z +$ jets and multijet production and is estimated using a data-driven technique. The nonjet background is estimated using simulation and originates primarily from $W/Z/\gamma^*$ production with additional minor contributions from $W/Z/\gamma^*$, $t\bar{t}$, single top-quark, and diboson (WW, WZ and ZZ) production (collectively called others).

The event generators and other software packages used to produce the simulated samples are summarized in Table I. The $W/Z/\gamma^*$ sample is artificially enhanced in high-mass events to improve statistical coverage in the scanned mass range. Particle interactions with the ATLAS detector are simulated with GEANT 4 [25,26] and contributions from additional pp interactions (pileup) are simulated using PYTHIA 8.186 and the MSTW2008LO parton distribution function (PDF) set [27]. Finally, the simulated events are processed through the same reconstruction software as the data. Corrections are applied to account for mismodeling of the momentum scales and resolutions of reconstructed objects, the $\tau_{\text{had-vis}}$ reconstruction and identification efficiency, the electron to $\tau_{\text{had-vis}}$ misidentification rate, and the E_T^{miss} trigger efficiency.

The simulated samples are normalized using the integrated luminosity of the collected data set and their theoretical cross sections. The $W/Z/\gamma^*$ cross sections are calculated as a function of the boson mass at next-to-next-to-leading order (NNLO) [49] using the CT14NNLO PDF set, including electroweak corrections to produce the simulated samples are summarized in Table I. The $W/Z/\gamma^*$ sample is artificially enhanced in high-mass events to improve statistical coverage in the scanned mass range. Particle interactions with the ATLAS detector are simulated with GEANT 4 [25,26] and contributions from additional pp interactions (pileup) are simulated using PYTHIA 8.186 and the MSTW2008LO parton distribution function (PDF) set [27]. Finally, the simulated events are processed through the same reconstruction software as the data. Corrections are applied to account for mismodeling of the momentum scales and resolutions of reconstructed objects, the $\tau_{\text{had-vis}}$ reconstruction and identification efficiency, the electron to $\tau_{\text{had-vis}}$ misidentification rate, and the E_T^{miss} trigger efficiency.

The simulated samples are normalized using the integrated luminosity of the collected data set and their theoretical cross sections. The $W/Z/\gamma^*$ cross sections are calculated as a function of the boson mass at next-to-next-to-leading order (NNLO) [49] using the CT14NNLO PDF set, including electroweak corrections to next-to-leading order (NLO) [50] using the MRST2004QED PDF set [51]. Uncertainties are taken from Ref. [52] and include variations of the PDF sets, scale, α_s, beam energy, and electroweak corrections. The variations amount to a $\sim 5\%$ total uncertainty in the $W/Z/\gamma^*$ cross section at low mass, increasing to 34% at 2 TeV. The $t\bar{t}$ and single top-quark production cross sections are

Table I. The event generators and other software packages used to generate the matrix-element process and model nonperturbative effects in the simulated event samples. The top-quark mass is set to 172.5 GeV.

<table>
<thead>
<tr>
<th>Process</th>
<th>Matrix element</th>
<th>Nonperturbative</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W/Z/\gamma^*$</td>
<td>POWHEG-BOX 2, CT10, PHOTOS++ 3.52</td>
<td>PYTHIA 8.186, AZNLO, CTEQ6L1,EvtGen 1.2.0</td>
<td>[28–36]</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>POWHEG-BOX 2, CT10</td>
<td>PYTHIA 6.428, P2012, CTEQ6L1,EvtGen 1.2.0</td>
<td>[37–39]</td>
</tr>
<tr>
<td>Single top</td>
<td>POWHEG-BOX 1, CT1064, MadSpin</td>
<td>PYTHIA 6.428, P2012, CTEQ6L1,EvtGen 1.2.0</td>
<td>[40–43]</td>
</tr>
<tr>
<td>Diboson</td>
<td>SHERPA 2.1.1, CT10</td>
<td>SHERPA 2.1.1</td>
<td>[44–48]</td>
</tr>
</tbody>
</table>

161802-2
calculated to at least NLO with an uncertainty of 3%–6% [53–56]. The diboson cross sections are calculated to NLO with an uncertainty of 10% [44,57].

The simulated samples are affected by uncertainties associated with the generation of the events, the detector simulation, and the determination of the integrated luminosity. Uncertainties related to the modeling of the hard scatter, radiation, and fragmentation are at most 2% of the total background estimate. Uncertainties in the detector scatter, radiation, and fragmentation are at most 2% of the total estimated factor, N_{CR1}/N_{CR3}, is parametrized in \(\tau_{\text{had-vis}} \) and track multiplicity and is in the range 0.4–0.7 (0.15–0.3) for 1-track (3-track) \(\tau_{\text{had-vis}} \). Systematic uncertainties are assigned to account for any residual correlation between the transfer factor and the \(E_T^{\text{miss}} \) and \(p_T^{\tau}/E_T^{\text{miss}} \) selection criteria, which would arise if the jet composition was different in CR1 and CR3. They are evaluated by repeating the jet estimate with the following modified control region definitions: (a) altered very loose \(\tau_{\text{had-vis}} \) identification criteria, (b) modified \(E_T^{\text{miss}} \) and \(p_T^{\tau}/E_T^{\text{miss}} \) selection, and (c) CR2 and CR3 replaced by alternative control regions rich in \(W(\tau \mu \tau) \) jets events.

The corresponding variations define the dominant uncertainty in the jet background contribution, which ranges from 20% at \(m_T = 0.2 \text{ TeV} \) to \(\pm 200\% \) at \(m_T = 2 \text{ TeV} \), where the jet background is subdominant. The uncertainty due to the subtraction of nonjet contamination in the control regions is negligible.

To reduce the impact of statistical fluctuations in the jet background estimate, a function \(f(m_T) = m_T^{a+b \log m_T} \), where \(a \) and \(b \) are free parameters, is fitted to the estimate in the range 400 < \(m_T < 800 \) GeV and is used to evaluate the jet background in the range \(m_T > 500 \) GeV. The impact of altering the fit range leads to an uncertainty that increases with \(m_T \), reaching 50% at \(m_T = 2 \text{ TeV} \). The statistical uncertainty from the control regions is propagated using pseudoexperiments and also reaches 50% at \(m_T = 2 \text{ TeV} \).

Figure 1 shows the observed \(m_T \) distribution of the data after event selection, including the estimated SM background contributions and predictions for \(W_{\text{SSM}} \) and \(W_{\text{NU}} \) (cot \(\phi_{\text{NU}} = 5.5 \)) bosons with masses of 3 TeV. The number of observed events is consistent with the expected SM background. Therefore, upper limits are set on the production of a high-mass resonance decaying to \(\tau \nu \). The statistical analysis uses a likelihood function constructed as the Poisson probability describing the total number of observed events given the signal-plus-background expectation. Systematic uncertainties in the expected number of events are incorporated into the likelihood via nuisance parameters constrained by Gaussian prior probability density distributions. Correlations between signal and background are taken into account. A signal-strength parameter, with a uniform prior probability density distribution, multiplies the expected signal. The dominant relative uncertainties in the expected signal and background contributions are shown in Fig. 2 as a function of the \(m_T \) threshold.

Limits are set at the 95% credibility level (C.L.) using the Bayesian Analysis Toolkit [60]. Figure 3 shows the
specific limits can be derived by evaluating \(m_T \) background contributions as a function of the threshold, where \(\sigma (m_T | \text{TeV}) \) is the visible cross section, as a function of the threshold. The reconstruction efficiency depends on \(m_T \), \(\varepsilon (m_T | \text{GeV}) \) = 0.633 - 0.313m_T + 0.0688m_T^2 - 0.00575m_T^3, ranging from 60% at 0.2 TeV to 7% at 5 TeV, and must be appropriately integrated out given the \(m_T \) distribution of the model. The relative uncertainty in the parametrized efficiency due to the choice of signal model is \(\sim 10% \). With these inputs the visible cross sections for \(W'_{\text{SSM}} \) and \(W'_{\text{NU}} \) bosons could be reproduced within 10% using only generator-level information. Data and details to facilitate reinterpretations can be found at Ref. [61].

Limits are also set on benchmark models by selecting the most sensitive \(m_T \) threshold for each \(W' \) mass hypothesis (\(\sim 0.6m_{W'} \) up to a maximum of 1.45 TeV). The chosen threshold is found to have little dependence on the \(W' \) width. Figure 4(a) shows the 95% C.L. upper limit on the cross section times branching fraction as a function of \(m_{W'} \) for each \(W' \) mass. Figure 4(b) shows the excluded region in the parameter space of the nonuniversal \(G(221) \) model. Heavy \(W'_{\text{SSM}} \) bosons with a mass lower than 3.7 TeV are excluded, with an expected exclusion limit of 3.8 TeV. The \(W'_{\text{NU}} \) limits are typically weaker than the \(W'_{\text{SSM}} \) limits as the increased \(W' \) width yields lower acceptances, while the enhancement in the decay rate cancels with the suppression in the production via first- and second-generation quarks. Limits from the ATLAS ee, \(\mu \mu \), and \(\tau \tau \) searches [58,62] are

\[
\sigma(pp \rightarrow \tau \nu + X)_{\mu \mu} \approx 1.7 \times m_T \text{ threshold}
\]

FIG. 2. Dominant relative uncertainties in the expected signal and background contributions as a function of the \(m_T \) threshold. For each threshold a \(W'_{\text{SSM}} \) boson with a mass of approximately 1.7 times the threshold is chosen. \textit{Theory} includes uncertainties in the cross sections used to normalize the simulated samples and uncertainties associated with the modeling provided by the event generators. \textit{Other} is the impact of all other uncertainties added in quadrature.

FIG. 3. The 95% C.L. upper limit on the visible \(\tau \nu \) production cross section as a function of the \(m_T \) threshold.
and extends the sensitivity over a large fraction of the lepton flavor violation in extended gauge groups, such as those seeking to explain should be considered when placing limits on nonuniversal bosons with masses less than 2.2 TeV. The channel where the additional lines represent the total theoretical uncertainty. (b) Excluded region for the model parameters.

In summary, a search for $W' \rightarrow \tau \nu$ in 36.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the LHC is presented. The channel where the τ decays hadronically is analyzed and no significant excess over the SM expectation is found. Upper limits are set on the visible mass of W'_{SM} bosons with masses less than 3.7 TeV are excluded at 95% C.L., while nonuniversal $G(221)$ W'_{NU} bosons with masses less than 2.2–3.8 TeV are excluded depending on the model parameters.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [66].

[56] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with \(W^- \) or \(H^+ \), Phys. Rev. D 82, 054018 (2010).

[58] ATLAS Collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb\(^{-1}\) of \(pp \) collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, J. High Energy Phys. 01 (2018) 055.

[61] ATLAS Collaboration, HepData entry for this article, https://www.hepdata.net/record/80812.

[63] Q.-H. Cao, Z. Li, J.-H. Yu, and C.-P. Yuan, Discovery and identification of \(W^0 \) and \(Z^0 \) in \(SU(2) \times SU(2) \times U(1)_X \) models at the LHC, Phys. Rev. D 86, 095010 (2012).

5LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6High Energy Physics Division, Argonne National Laboratory, Argonne Illinois, USA
7Department of Physics, University of Arizona, Tucson Arizona, USA
8Department of Physics, The University of Texas at Arlington, Arlington Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, The University of Texas at Austin, Austin Texas, USA
12Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14Institute of Physics, University of Belgrade, Belgrade, Serbia
15Department for Physics and Technology, University of Bergen, Bergen, Norway
16Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley California, USA
17Department of Physics, Humboldt University, Berlin, Germany
18Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20Department of Physics, Bogazici University, Istanbul, Turkey
21Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
22Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
23Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
24Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
25INFN Sezione di Bologna, Bologna, Italy
26Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
27Physikalisches Institut, University of Bonn, Bonn, Germany
28Department of Physics, Boston University, Boston Massachusetts, USA
29Department of Physics, Brandeis University, Waltham Massachusetts, USA
30Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
31Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
32Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
33Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
34Physics Department, Brookhaven National Laboratory, Upton New York, USA
35Transilvania University of Brasov, Brasov, Romania
36Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
37Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
38National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
39University Politehnica Bucharest, Bucharest, Romania
40West University in Timisoara, Timisoara, Romania
41Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
42Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
43Department of Physics, Carleton University, Ottawa Ontario, Canada
44CERN, Geneva, Switzerland
45Enrico Fermi Institute, University of Chicago, Chicago Illinois, USA
46Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
47Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
48Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
49Department of Physics, Nanjing University, Jiangsu, China
50Physics Department, Tsinghua University, Beijing, China
51University of Chinese Academy of Science (UCAS), Beijing, China
52Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China
53School of Physics, Shandong University, Shandong, China
54School of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, China
55Tsung-Dao Lee Institute, Shanghai, China
56Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
57Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
58INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
59Dipartimento di Fisica, Università della Calabria, Rende, Italy
60AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
<table>
<thead>
<tr>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland</td>
</tr>
<tr>
<td>Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland</td>
</tr>
<tr>
<td>Physics Department, Southern Methodist University, Dallas Texas, USA</td>
</tr>
<tr>
<td>Physics Department, University of Texas at Dallas, Richardson Texas, USA</td>
</tr>
<tr>
<td>DESY, Hamburg and Zeuthen, Germany</td>
</tr>
<tr>
<td>Institute for Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany</td>
</tr>
<tr>
<td>Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany</td>
</tr>
<tr>
<td>Department of Physics, Duke University, Durham North Carolina, USA</td>
</tr>
<tr>
<td>SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom</td>
</tr>
<tr>
<td>INFN e Laboratori Nazionali di Frascati, Frascati, Italy</td>
</tr>
<tr>
<td>Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany</td>
</tr>
<tr>
<td>Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland</td>
</tr>
<tr>
<td>INFN Sezione di Genova, Genova, Italy</td>
</tr>
<tr>
<td>Dipartimento di Fisica, Università di Genova, Genova, Italy</td>
</tr>
<tr>
<td>E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia</td>
</tr>
<tr>
<td>High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia</td>
</tr>
<tr>
<td>II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany</td>
</tr>
<tr>
<td>Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France</td>
</tr>
<tr>
<td>II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany</td>
</tr>
<tr>
<td>Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge Massachusetts, USA</td>
</tr>
<tr>
<td>Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany</td>
</tr>
<tr>
<td>Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany</td>
</tr>
<tr>
<td>Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan</td>
</tr>
<tr>
<td>Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China</td>
</tr>
<tr>
<td>Department of Physics, The University of Hong Kong, Hong Kong, China</td>
</tr>
<tr>
<td>Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China</td>
</tr>
<tr>
<td>Department of Physics, National Tsing Hua University, Hsinchu, Taiwan</td>
</tr>
<tr>
<td>Department of Physics, Indiana University, Bloomington Indiana, USA</td>
</tr>
<tr>
<td>Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria</td>
</tr>
<tr>
<td>University of Iowa, Iowa City Iowa, USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Iowa State University, Ames Iowa, USA</td>
</tr>
<tr>
<td>Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia</td>
</tr>
<tr>
<td>KEK, High Energy Accelerator Research Organization, Tsukuba, Japan</td>
</tr>
<tr>
<td>Graduate School of Science, Kobe University, Kobe, Japan</td>
</tr>
<tr>
<td>Faculty of Science, Kyoto University, Kyoto, Japan</td>
</tr>
<tr>
<td>Kyoto University of Education, Kyoto, Japan</td>
</tr>
<tr>
<td>Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan</td>
</tr>
<tr>
<td>Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina</td>
</tr>
<tr>
<td>Physics Department, Lancaster University, Lancaster, United Kingdom</td>
</tr>
<tr>
<td>INFN Sezione di Lecce, Lecce, Italy</td>
</tr>
<tr>
<td>Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy</td>
</tr>
<tr>
<td>Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom</td>
</tr>
<tr>
<td>Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia</td>
</tr>
<tr>
<td>School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom</td>
</tr>
<tr>
<td>Department of Physics, Royal Holloway University of London, Surrey, United Kingdom</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University College London, London, United Kingdom</td>
</tr>
<tr>
<td>Louisiana Tech University, Ruston Louisiana, USA</td>
</tr>
<tr>
<td>Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France</td>
</tr>
<tr>
<td>Fysiska institutionen, Lunds universitet, Lund, Sweden</td>
</tr>
<tr>
<td>Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain</td>
</tr>
<tr>
<td>Institut für Physik, Universität Mainz, Mainz, Germany</td>
</tr>
<tr>
<td>School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom</td>
</tr>
<tr>
<td>CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France</td>
</tr>
<tr>
<td>Department of Physics, University of Massachusetts, Amherst Massachusetts, USA</td>
</tr>
<tr>
<td>Department of Physics, McGill University, Montreal Québec, Canada</td>
</tr>
<tr>
<td>School of Physics, University of Melbourne, Victoria, Australia</td>
</tr>
<tr>
<td>Department of Physics, The University of Michigan, Ann Arbor Michigan, USA</td>
</tr>
</tbody>
</table>
93 Department of Physics and Astronomy, Michigan State University, East Lansing Michigan, USA
94a INFN Sezione di Milano, Milano, Italy
94b Dipartimento di Fisica, Università di Milano, Milano, Italy
95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of Belarus
97 Group of Particle Physics, University of Montreal, Montreal Québec, Canada
98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
100 National Research Nuclear University MEPhI, Moscow, Russia
101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
102 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
103 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
104 Nagasaki Institute of Applied Science, Nagasaki, Japan
105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
106a INFN Sezione di Napoli, Napoli, Italy
106b Dipartimento di Fisica, Università di Napoli, Napoli, Italy
107 Department of Physics and Astronomy, University of New Mexico, Albuquerque New Mexico, USA
108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
110 Department of Physics, Northern Illinois University, DeKalb Illinois, USA
111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
112 Department of Physics, New York University, New York New York, USA
113 Ohio State University, Columbus Ohio, USA
114 Faculty of Science, Okayama University, Okayama, Japan
115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma, USA
116 Department of Physics, Oklahoma State University, Stillwater Oklahoma, USA
117 Palacký University, RCPTM, Olomouc, Czech Republic
118 Center for High Energy Physics, University of Oregon, Eugene Oregon, USA
119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
120 Graduate School of Science, Osaka University, Osaka, Japan
121 Department of Physics, University of Oslo, Oslo, Norway
122 Department of Physics, Oxford University, Oxford, United Kingdom
123a INFN Sezione di Favia, Italy
123b Dipartimento di Fisica, Università di Pavia, Pavia, Italy
124 Department of Physics, University of Pennsylvania, Philadelphia Pennsylvania, USA
125 National Research Centre “Kurchatov Institute” B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
126a INFN Sezione di Pisa, Pisa, Italy
126b Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh Pennsylvania, USA
128a Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal
128b Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
128c Departamento de Física, Universidade de Coimbra, Coimbra, Portugal
128d Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
128e Departamento de Física, Universidade do Minho, Braga, Portugal
128f Departamento de Física Teorica y del Cosmos, Universidad de Granada, Granada, Spain
128g Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
130 Czech Technical University in Prague, Praha, Czech Republic
131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
134a INFN Sezione di Roma, Roma, Italy
134b Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
135a INFN Sezione di Roma Tor Vergata, Roma, Italy
135b Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
136a INFN Sezione di Roma Tre, Roma, Italy
136b Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
137a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco
137b Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco</td>
<td>Morocco</td>
</tr>
<tr>
<td>Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco</td>
<td>Morocco</td>
</tr>
<tr>
<td>Faculté des sciences, Université Mohammed V, Rabat, Morocco</td>
<td>Morocco</td>
</tr>
<tr>
<td>DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France</td>
<td>France</td>
</tr>
<tr>
<td>Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz California, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics, University of Washington, Seattle Washington, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Department of Physics, Shinshu University, Nagano, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Department Physik, Universität Siegen, Siegen, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Department of Physics, Simon Fraser University, Burnaby British Columbia, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>SLAC National Accelerator Laboratory, Stanford California, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Department of Physics, University of Cape Town, Cape Town, South Africa</td>
<td>South Africa</td>
</tr>
<tr>
<td>Department of Physics, University of Johannesburg, Johannesburg, South Africa</td>
<td>South Africa</td>
</tr>
<tr>
<td>School of Physics, University of the Witwatersrand, Johannesburg, South Africa</td>
<td>South Africa</td>
</tr>
<tr>
<td>Department of Physics, Stockholm University, Sweden</td>
<td>Sweden</td>
</tr>
<tr>
<td>The Oskar Klein Centre, Stockholm, Sweden</td>
<td>Sweden</td>
</tr>
<tr>
<td>Physics Department, Royal Institute of Technology, Stockholm, Sweden</td>
<td>Sweden</td>
</tr>
<tr>
<td>Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook New York, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>School of Physics, University of Sydney, Sydney, Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>Institute of Physics, Academia Sinica, Taipei, Taiwan</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel</td>
<td>Israel</td>
</tr>
<tr>
<td>Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel</td>
<td>Israel</td>
</tr>
<tr>
<td>Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece</td>
<td>Greece</td>
</tr>
<tr>
<td>International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Department of Physics, Tokyo Institute of Technology, Tokyo, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Tomsk State University, Tomsk, Russia</td>
<td>Russia</td>
</tr>
<tr>
<td>Department of Physics, University of Toronto, Toronto Ontario, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>INFN-TIFPA, Trento, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>University of Trento, Trento, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>TRIUMF, Vancouver British Columbia, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, York University, Toronto Ontario, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Tufts University, Medford Massachusetts, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of California Irvine, Irvine California, USA</td>
<td>USA</td>
</tr>
<tr>
<td>INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>ICTP, Trieste, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden</td>
<td>Sweden</td>
</tr>
<tr>
<td>Department of Physics, University of Illinois, Urbana Illinois, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain</td>
<td>Spain</td>
</tr>
<tr>
<td>Department of Physics, University of British Columbia, Vancouver British Columbia, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Victoria, Victoria British Columbia, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Department of Physics, University of Warwick, Coventry, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Waseda University, Tokyo, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel</td>
<td>Israel</td>
</tr>
<tr>
<td>Department of Physics, University of Wisconsin, Madison Wisconsin, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Department of Physics, Yale University, New Haven Connecticut, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Yerevan Physics Institute, Yerevan, Armenia</td>
<td>Armenia</td>
</tr>
<tr>
<td>Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France</td>
<td>France</td>
</tr>
<tr>
<td>Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan</td>
<td>Taiwan</td>
</tr>
</tbody>
</table>
3Deceased.
4Also at Department of Physics, King’s College London, London, United Kingdom.
5Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
6Also at Novosibirsk State University, Novosibirsk, Russia.
7Also at TRIUMF, Vancouver BC, Canada.
8Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.
9Also at Physics Department, An-Najah National University, Nablus, Palestine.
10Also at Department of Physics, California State University, Fresno CA, USA.
11Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
12Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
13Also at Departamento de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain.
14Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
15Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
16Also at Universita di Napoli Parthenope, Napoli, Italy.
17Also at Institute of Particle Physics (IPP), Canada.
18Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
19Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
20Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
21Also at Borough of Manhattan Community College, City University of New York, New York City, USA.
22Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
23Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
24Also at Louisiana Tech University, Ruston LA, USA.
25Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
26Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.
27Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
28Also at Graduate School of Science, Osaka University, Osaka, Japan.
29Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.
30Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
31Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
32Also at CERN, Geneva, Switzerland.
33Also at Georgian Technical University (GTU), Tbilisi, Georgia.
34Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
35Also at Manhattan College, New York NY, USA.
36Also at Hellenic Open University, Patras, Greece.
37Also at The City College of New York, New York NY, USA.
38Also at Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain.
39Also at Department of Physics, California State University, Sacramento CA, USA.
40Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
41Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
42Also at School of Physics, Sun Yat-sen University, Guangzhou, China.
43Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.
44Also at School of Physics, The University of Texas at Austin, Austin TX, USA.
45Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.
46Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
47Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
48Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
49Also at National Research Nuclear University MEPhI, Moscow, Russia.
50Also at Department of Physics, Stanford University, Stanford CA, USA.
51Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
52Also at Giresun University, Faculty of Engineering, Turkey.
53Also at Department of Physics, Nanjing University, Jiangsu, China.
54Also at Department of Physics, Academia Sinica, Taipei, Taiwan.
55Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
56Also at Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia.