Search for High-Mass Resonances Decaying to $\tau\nu$ in pp Collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

M. Aaboud et al. (ATLAS Collaboration)

(Received 22 January 2018; published 20 April 2018)

A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s}=13$ TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy W' bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal $G(221)$ model are excluded at the 95% credibility level.

DOI: 10.1103/PhysRevLett.120.161802

Heavy charged gauge bosons (W') appear frequently in theories of physics beyond the standard model (SM). They are often assumed to obey lepton universality, such as in the sequential standard model (SSM) [1], which predicts a W'_{SSM} boson with couplings identical to those of the SM W boson. However, this assumption is not required. In particular, models in which the W' boson couples preferentially to third-generation fermions may be linked to the high mass of the top quark [2–5] or to recent indications of lepton flavor universality violation in B meson decays [6,7]. An example is the nonuniversal $G(221)$ model (NU) [4,5], which exhibits a $SU(2)_l \times SU(2)_R \times U(1)$ gauge symmetry, where $SU(2)_l$ couples to light fermions (first two generations), $SU(2)_R$ couples to heavy fermions (third generation), and ϕ_{NU} is the mixing angle between them. The model predicts W'_{NU} and Z'_{NU} bosons which are approximately degenerate in mass and couple only to left-handed fermions. At leading order and neglecting sign, the W'_{NU} couplings to heavy (light) fermions are scaled by $\cot \phi_{NU}$ ($\tan \phi_{NU}$) relative to those of W'_{SSM}. Thus $\cot \phi_{NU} > 1$ corresponds to enhanced couplings to tau leptons while $\cot \phi_{NU} = 1$ yields W'_{NU} couplings identical to those of W'_{SSM}. For Z'_{NU}, the coupling to heavy (light) fermions is given by $g \cot \phi_{NU}$ ($g \tan \phi_{NU}$), where g is the SM weak coupling constant. At high values of $\cot \phi_{NU}$, the branching fraction of W'_{NU} to a tau lepton (τ) and a neutrino (ν) approaches 26%.

In this Letter, a search for high-mass resonances (0.5–5 TeV) decaying to $\tau\nu$ using proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV produced by the Large Hadron Collider (LHC) is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. Only τ decays with hadrons in the final state are considered; these account for 65% of the total τ branching fraction. A counting experiment is performed from events that pass a high transverse-mass threshold, optimized separately for each of the signal mass hypotheses.

A direct search for high-mass resonances decaying to $\tau\nu$ has been performed by the CMS Collaboration using 19.7 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=8$ TeV [8]. The search excludes W'_{SSM} with a mass below 2.7 TeV at the 95% credibility level and W'_{NU} with a mass below 2.7–2.0 TeV for $\cot \phi_{NU}$ in the range 1.0–5.5. The most stringent limit on W'_{SSM} from searches in the $e\nu$ and $\mu\nu$ final states is 5.1 TeV from ATLAS [9] using 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=13$ TeV.

The ATLAS experiment is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry [10,11]. It consists of an inner detector for charged-particle tracking in the pseudorapidity region $|\eta|<2.5$, electromagnetic and hadronic calorimeters that provide energy measurements up to $|\eta|=4.9$, and a muon spectrometer that covers $|\eta|<2.7$. A two-level trigger system is used to select events [12].

Hadrronic τ decays are composed of a neutrino and a set of visible decay products (τ_{vis}), typically one or three charged pions and up to two neutral pions. The reconstruction of the visible decay products [13] is seeded by jets reconstructed from topological clusters of energy depositions [14] in the calorimeter. The τ_{vis} candidates must have a transverse momentum $p_T>50$ GeV, $|\eta|<2.4$.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
(excluding $1.37 < |\eta| < 1.52$), one or three associated tracks, and an electric charge of ±1. Only the candidate with the highest p_T in each event is selected. Hadronic τ decays are identified using boosted decision trees that exploit calorimetric shower shape and tracking information [15,16]. Loose criteria are used, which offer adequate rejection against quark- and gluon-initiated jets. Very loose criteria, with about one quarter of the rejection power, are used to create control regions. An additional dedicated veto is used to reduce the number of electrons misidentified as $\tau_{\text{had-vis}}$. The total efficiency for $\tau_{\text{had-vis}}$ is \sim60% at $p_T = 100$ GeV and decreases to \sim30% at $p_T = 2$ TeV, where the large boost and collimation of the decay products causes inefficiencies in the track reconstruction and association.

Events containing electron or muon candidates are rejected. Electron candidates [17–19] must have $p_T > 20$ GeV, $|\eta| < 2.47$ (excluding $1.37 < |\eta| < 1.52$) and must pass a loose likelihood-based identification selection. Muon candidates [20] are required to have $p_T > 20$ GeV, $|\eta| < 2.5$ and to pass a very loose muon identification requirement. The missing transverse momentum, with magnitude E_T^{miss}, is calculated as the negative vectorial sum of the p_T of all reconstructed and calibrated $\tau_{\text{had-vis}}$ candidates and jets [21–23]. A correction that accounts for momentum not associated with these reconstructed objects is calculated using inner-detector tracks that originate from the hard-scattering vertex [23]. The correction contributes no more than 5% on average in signal events.

Events are selected by triggers that require E_T^{miss} above thresholds of 70, 90, or 110 GeV depending on the data-taking period. To minimize uncertainties in the trigger efficiency, the offline reconstructed E_T^{miss} is required to be at least 150 GeV. At this threshold the trigger efficiency is 80% and increases to more than 98% above 250 GeV. This behavior is determined by the E_T^{miss} resolution of the trigger, which is lower than in the offline reconstruction. The events must satisfy criteria designed to reduce backgrounds from cosmic rays, single-beam-induced events and calorimeter noise [24] and they must contain a loose $\tau_{\text{had-vis}}$ candidate. To further suppress single-beam-induced background, the $\tau_{\text{had-vis}}$ must have at least one associated track with $p_T > 10$ GeV. The multijet background is further suppressed by requiring that the $\tau_{\text{had-vis}}$ p_T and the E_T^{miss} are balanced: $0.7 < p_T^\tau/E_T^{\text{miss}} < 1.3$. The azimuthal angle between the $\tau_{\text{had-vis}}$ and the missing momentum, $\Delta \phi$, is required to be larger than 2.4. Finally, thresholds ranging from 0.25 to 1.8 TeV in steps of 0.05 TeV are placed on the transverse mass, m_T, where $m_T^2 = 2p_T E_T^{\text{miss}}(1 - \cos \Delta \phi)$.

The background is divided into events where the selected $\tau_{\text{had-vis}}$ originates from a quark- or gluon-initiated jet (jet background) and those where it does not (nonjet background). The jet background originates primarily from W/Z + jets and multijet production and is estimated using a data-driven technique. The nonjet background is estimated using simulation and originates primarily from $W/Z\gamma$, $t\bar{t}$, single top-quark, and diboson (WW, WZ and ZZ) production (collectively called others).

The event generators and other software packages used to produce the simulated samples are summarized in Table I. The $W/Z/\gamma^*$ sample is artificially enhanced in high-mass events to improve statistical coverage in the scanned mass range. Particle interactions with the ATLAS detector are simulated with GEANT 4 [25,26] and contributions from additional pp interactions (pileup) are simulated using PYTHIA 8.186 and the MSTW2008LO parton distribution function (PDF) set [27]. Finally, the simulated events are processed through the same reconstruction software as the data. Corrections are applied to account for mismodeling of the momentum scales and resolutions of reconstructed objects, the $\tau_{\text{had-vis}}$ reconstruction and identification efficiency, the electron to $\tau_{\text{had-vis}}$ misidentification rate, and the E_T^{miss} trigger efficiency.

The simulated samples are normalized using the integrated luminosity of the collected data set and their theoretical cross sections. The $W/Z/\gamma^*$ cross sections are calculated as a function of the boson mass at next-to-next-to-leading order (NNLO) [49] using the CT14NNLO PDF set, including electroweak corrections at next-to-leading order (NLO) [50] using the MRST2004QED PDF set [51]. Uncertainties are taken from Ref. [52] and include variations of the PDF sets, scale, α_s, beam energy, and electroweak corrections. The variations amount to a \sim5% total uncertainty in the $W/Z/\gamma^*$ cross section at low mass, increasing to 34% at 2 TeV. The $t\bar{t}$ and single top-quark production cross sections are

Table I

<table>
<thead>
<tr>
<th>Process</th>
<th>Matrix element</th>
<th>Nonperturbative</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W/Z/\gamma^*$</td>
<td>POWHEG-Box 2, CT10, PHOTOS++ 3.52</td>
<td>PYTHA 8.186, AZNLO, CTEQ6L1, EVTGEN 1.2.0</td>
<td>[28–36]</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>POWHEG-Box 2, CT10</td>
<td>PYTHA 6.428, P2012, CTEQ6L1, EVTGEN 1.2.0</td>
<td>[37–39]</td>
</tr>
<tr>
<td>Single top</td>
<td>POWHEG-Box 1, CT104, MADSPIN</td>
<td>PYTHA 6.428, P2012, CTEQ6L1, EVTGEN 1.2.0</td>
<td>[40–43]</td>
</tr>
<tr>
<td>Diboson</td>
<td>SHERPA 2.1.1, CT10</td>
<td>SHERPA 2.1.1</td>
<td>[44–48]</td>
</tr>
</tbody>
</table>
calculated to at least NLO with an uncertainty of 3%–6% [53–56]. The diboson cross sections are calculated to NLO with an uncertainty of 10% [44,57].

The simulated samples are affected by uncertainties associated with the generation of the events, the detector simulation, and the determination of the integrated luminosity. Uncertainties related to the modeling of the hard scatter, radiation, and fragmentation are at most 2% of the total background estimate. Uncertainties in the detector scatter, radiation, and fragmentation are at most 2% of the event purity in CR2 and CR3, while the very loose identification factor, Njet = NCR1/NCR2/NCR3. The nonjet contamination in CR1 (10%), CR2 (3.7%), and CR3 (0.5%) is subtracted using simulation. The transfer factor, NCR2/NCR3, is parametrized in τhad-vis pT and track multiplicity and is in the range 0.4–0.7 (0.15–0.3) for 1-track (3-track) τhad-vis. Systematic uncertainties are assigned to account for any residual correlation between the transfer factor and the ETmiss and pT/ETmiss selection criteria, which would arise if the jet composition was different in CR1 and CR3. They are evaluated by repeating the jet estimate with the following modified control region definitions: (a) altered very loose τhad-vis identification criteria, (b) modified ETmiss and pT/ETmiss selection, and (c) CR2 and CR3 replaced by alternative control regions rich in W(→μν) + jets events. The corresponding variations define the dominant uncertainty in the jet background contribution, which ranges from 20% at mT = 0.2 TeV to 200% at mT = 2 TeV, where the jet background is subdominant. The uncertainty due to the subtraction of nonjet contamination in the control regions is negligible.

To reduce the impact of statistical fluctuations in the jet background estimate, a function f(mT) = mT^a + b log mT, where a and b are free parameters, is fitted to the estimate in the range 400 < mT < 800 GeV and is used to evaluate the jet background in the range mT > 500 GeV. The impact of altering the fit range leads to an uncertainty that increases with mT, reaching 50% at mT = 2 TeV. The statistical uncertainty from the control regions is propagated using pseudoexperiments and also reaches 50% at mT = 2 TeV.

Figure 1 shows the observed mT distribution of the data after event selection, including the estimated SM background contributions and predictions for W'_{SSM} and W'_{NU} (cot φ_{NU} = 5.5) bosons with masses of 3 TeV. The number of observed events is consistent with the expected SM background. Therefore, upper limits are set on the production of a high-mass resonance decaying to τν. The statistical analysis uses a likelihood function constructed as the Poisson probability describing the total number of observed events given the signal-plus-background expectation. Systematic uncertainties in the expected number of events are incorporated into the likelihood via nuisance parameters constrained by Gaussian prior probability density distributions. Correlations between signal and background are taken into account. A signal-strength parameter, with a uniform prior probability density distribution, multiplies the expected signal. The dominant relative uncertainties in the expected signal and background contributions are shown in Fig. 2 as a function of the mT threshold.

Limits are set at the 95% credibility level (C.L.) using the Bayesian Analysis Toolkit [60]. Figure 3 shows the
model-independent upper limits on the visible \(\tau \nu \) production cross section, \(\sigma(pp \rightarrow \tau \nu + X)A \), as a function of the \(m_T \) threshold, where \(A \) is the fiducial acceptance (including the \(m_T \) threshold) and \(\epsilon \) is the reconstruction efficiency. Model-specific limits can be derived by evaluating \(\sigma, A, \) and \(\epsilon \) for the model in question and checking if the corresponding visible cross section is excluded at any \(m_T \) threshold. This allows the results to be reinterpreted for a broad range of models, regardless of their \(m_T \) distribution. Good agreement between the generated and reconstructed \(m_T \) distributions is found, indicating that a reliable calculation of the \(m_T \) threshold acceptance can be made at generator level. The reconstruction efficiency depends on \(m_T, \epsilon(m_T[GeV]) = 0.633 - 0.313m_T + 0.0688m_T^2 - 0.00575m_T^3 \), ranging from 60% at 0.2 TeV to 7% at 5 TeV, and must be appropriately integrated out given the \(m_T \) distribution of the model. The relative uncertainty in the parametrized efficiency due to the choice of signal model is \(\sim 10\% \). With these inputs the visible cross sections for \(W'_{SSM} \) and \(W'_{NU} \) bosons could be reproduced within 10% using only generator-level information. Data and details to facilitate reinterpretations can be found at Ref. [61].

Limits are also set on benchmark models by selecting the most sensitive \(m_T \) threshold for each \(W' \) mass hypothesis (\(\sim 0.6m_{W'} \) up to a maximum of 1.45 TeV). The chosen threshold is found to have little dependence on the \(W' \) width. Figure 4(a) shows the 95% C.L. upper limit on the cross section times branching fraction as a function of \(m_W \) in the SSM. Heavy \(W'_{SSM} \) bosons with a mass lower than 3.7 TeV are excluded, with an expected exclusion limit of 3.8 TeV. Figure 4(b) shows the excluded region in the parameter space of the nonuniversal \(G(221) \) model. Heavy \(W'_{NU} \) bosons with a mass lower than 2.2–3.8 TeV are excluded depending on \(\cot \phi_{NU} \), thereby probing a significantly larger region of parameter space than previous searches [8]. The \(W'_{NU} \) limits are typically weaker than the \(W'_{SSM} \) limits as the increased \(W' \) width yields lower acceptances, while the enhancement in the decay rate cancels with the suppression in the production via first- and second-generation quarks. Limits from the ATLAS \(ee, \mu\mu, \) and \(\tau\tau \) searches [58,62] are
also overlaid, showing that the $\tau\nu$ search is complementary and extends the sensitivity over a large fraction of the parameter space. These results suggest that the $\tau\nu$ searches should be considered when placing limits on nonuniversal extended gauge groups, such as those seeking to explain lepton flavor violation in $\nu\tau$ decays.

In summary, a search for $W' \rightarrow \tau\nu$ in 36.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the LHC is presented. The channel where the τ decays hadronically is analyzed and no significant excess over the SM expectation is found. Upper limits are set on the visible cross section for $\nu\tau \rightarrow W' X \rightarrow \tau\nu X$. The W'_{SM} cross section for $\nu\tau$ production, allowing interpretation in a broad range of models. Sequential standard model W'_{SM} bosons with masses less than 3.7 TeV are excluded at 95% C.L., while nonuniversal $G(221) W'_{\text{NU}}$ bosons with masses less than 2.2–3.8 TeV are excluded depending on the model parameters.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partagé le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [66].

[11] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

\^ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

\^ Also at Novosibirsk State University, Novosibirsk, Russia.

\^ Also at TRUUMF, Vancouver BC, Canada.

\^ Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.

\^ Also at Physics Department, An-Najah National University, Nablus, Palestine.

\^ Also at Department of Physics, California State University, Fresno CA, USA.

\^ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

\^ Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.

\^ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain

\^ Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

\^ Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.

\^ Also at Universita di Napoli Parthenope, Napoli, Italy.

\^ Also at Institute of Particle Physics (IPP), Canada.

\^ Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.

\^ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

\^ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

\^ Also at Borough of Manhattan Community College, City University of New York, New York City, USA.

\^ Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.

\^ Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.

\^ Also at Louisiana Tech University, Ruston LA, USA.

\^ Also at Instituto Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain

\^ Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.

\^ Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.

\^ Also at Graduate School of Science, Osaka University, Osaka, Japan.

\^ Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.

\^ Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.

\^ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

\^ Also at CERN, Geneva, Switzerland.

\^ Also at Georgian Technical University (GTU), Tbilisi, Georgia.

\^ Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.

\^ Also at Manhattan College, New York NY, USA.

\^ Also at Hellenic Open University, Patras, Greece.

\^ Also at The City College of New York, New York NY, USA.

\^ Also at Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada, Spain.

\^ Also at Department of Physics, California State University, Sacramento CA, USA.

\^ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

\^ Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.

\^ Also at Department of Physics, The University of Texas at Austin, Austin TX, USA.

\^ Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.

\^ Also at School of Physics, Sun Yat-sen University, Guangzhou, China.

\^ Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

\^ Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

\^ Also at National Research Nuclear University MEPhI, Moscow, Russia.

\^ Also at Department of Physics, Stanford University, Stanford CA, USA.

\^ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

\^ Also at Giresun University, Faculty of Engineering, Turkey.

\^ Also at Department of Physics, Nanjing University, Jiangsu, China.

\^ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

\^ Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

\^ Also at Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia.