The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/190634

Please be advised that this information was generated on 2020-01-22 and may be subject to change.
REVIEW

Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders [version 1; referees: 2 approved]

Martijn Selten¹⁻⁴, Hans van Bokhoven²⁻⁴, Nael Nadif Kasri³⁻⁴

¹Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
²MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
³Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands
⁴Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands

Abstract
Neuronal networks consist of different types of neurons that all play their own role in order to maintain proper network function. The two main types of neurons segregate in excitatory and inhibitory neurons, which together regulate the flow of information through the network. It has been proposed that changes in the relative strength in these two opposing forces underlie the symptoms observed in psychiatric disorders, including autism and schizophrenia. Here, we review the role of alterations to the function of the inhibitory system as a cause of psychiatric disorders. First, we explore both patient and post-mortem evidence of inhibitory deficiency. We then discuss the function of different interneuron subtypes in the network and focus on the central role of a specific class of inhibitory neurons, parvalbumin-positive interneurons. Finally, we discuss genes known to be affected in different disorders and the effects that mutations in these genes have on the inhibitory system in cortex and hippocampus. We conclude that alterations to the inhibitory system are consistently identified in animal models of psychiatric disorders and, more specifically, that mutations affecting the function of parvalbumin-positive interneurons seem to play a central role in the symptoms observed in these disorders.
Corresponding author: Hans van Bokhoven (Hans.vanbokhoven@radboudumc.nl)

Author roles: Selten M: Conceptualization, Data Curation, Investigation, Writing – Review & Editing; van Bokhoven H: Conceptualization, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Nadif Kasri N: Conceptualization, Data Curation, Supervision, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

How to cite this article: Selten M, van Bokhoven H and Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders [version 1; referees: 2 approved] F1000Research 2018, 7(F1000 Faculty Rev):23 (doi: 10.12688/f1000research.12155.1)

Copyright: © 2018 Selten M et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: The author(s) declared that no grants were involved in supporting this work.

First published: 08 Jan 2018, 7(F1000 Faculty Rev):23 (doi: 10.12688/f1000research.12155.1)
Introduction
Psychiatric disorders, including autism, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and depression, affect millions of people and are a major socio-economic burden\(^1\). The identification of underlying genetic defects and risk factors is becoming increasingly efficient because of genome-wide interrogation methodologies, yet owing to the complex multificorial origin of most cases, a conclusive molecular diagnosis is made for only a minority of patients. Therefore, the underlying causes for these conditions are poorly understood, and often treatment is still based on symptomology\(^1,4\). In 2003, Rubenstein and Merzenich proposed autism spectrum disorders (ASDs) to be caused by an increase in the ratio between excitation and inhibition, called the E/I balance\(^1\). Since then, this hypothesis has been substantiated by a vast number of studies and also has been implicated in other psychiatric disorders such as schizofrenia\(^5\), consistent with their partially overlapping phenotypes\(^6\). Recently, the focus has shifted to changes to the inhibitory side of the E/I balance\(^10,11\), in particular to one class of inhibitory neurons, parvalbumin (PV)-positive interneurons\(^12\). In this review, we focus on the role of the inhibitory system in psychiatric disorders and explore the changes to the inhibitory systems in different disorders. We then discuss the role and function of PV interneurons and highlight the changes to this specific class of interneurons in the various psychiatric disorders.

Evidence for inhibitory dysfunction in psychiatric disorders
Since Rubenstein and Merzenich postulated their hypothesis of a reduced E/I balance in ASDs, there has been an increasing amount of evidence for disrupted inhibitory control in psychiatric disorders. This evidence comes from post-mortem studies and studies of patient phenotypes.

Firstly, post-mortem studies on patient brains have revealed consistent changes to the inhibitory system in various disorders. Studies of autistic brains revealed reduced expression of the gamma-aminobutyric acid (GABA) synthesizing enzymes GAD65 and GAD67, as well as various GABAA receptor subunits, in parietal cortex and cerebellum\(^13,14\). In schizophrenia, reductions of interneuron markers have been found in the prefrontal cortex\(^15,16\), a region strongly implicated in this condition\(^19\). Interestingly, in recent years, this reduction has been shown to be caused by a reduction of the expression of the interneuron markers rather than a reduction of the number of interneurons\(^20-22\), which indicates reduced activity of these neurons\(^23-25\). In addition, both increased and decreased numbers of specific interneuronal subtypes are reported in bipolar disorder\(^26,27\), while a reduced inhibitory function is reported in depression\(^28,29\) and bipolar disorder\(^30\).

Secondly, patients with psychiatric disorders display phenotypes that are strongly correlated to impaired inhibition. Epilepsy is a common comorbidity with psychiatric disorders and has consistently been linked to impaired inhibitory function\(^30-32\). In patients with autism, it is estimated that the prevalence of epilepsy comorbidity is around 25%\(^33-35\). However, this is dependent on the type of autism, and the prevalence can be as high as 80% in Rett syndrome\(^36\), a monogenic form of autism caused by mutation in the \textit{MeCP2} gene\(^37\). It is currently unclear whether schizophrenia is a risk factor for epilepsy. A limited number of studies have been dedicated to this question, and contradicting results have been reported\(^38,39\). However, patients with epilepsy show an increased risk of schizophrenia or schizophrenia-like psychosis\(^40\). Likewise, patients with epilepsy show an increased risk for ADHD\(^41,42\).

Another recurrent phenotypic change is the altered power of gamma oscillations, as measured with electroencephalography or magnetoencephalography in humans, indicating changes in neuronal synchrony\(^43\). Gamma oscillations are important for integration of information in neuronal circuits and have been linked to various functions, including attention\(^44\) and memory\(^45\). It was shown that PV-positive interneurons\(^46\), specifically PV-positive basket cells (see below), play an important role in these oscillations\(^47,48\). Changes in gamma oscillations are consistently found in patients with schizophrenia\(^49\), affecting different regions, including the prefrontal cortex\(^50,51\). Interestingly, while a decrease in gamma power is linked to negative symptoms of this disorder, such as psychomotor poverty\(^52\), increased gamma power has been observed during positive symptoms, such as hallucinations\(^53\). In addition, computational studies suggest a central role for inhibitory synaptic scaling in maintaining a stable neuronal network\(^54\) and found changes in inhibitory transmission to be sufficient to explain the changes in gamma oscillations in schizophrenia\(^55\). Together, altered inhibitory control is believed to lead to a change in the power of gamma oscillations, which play a central role in schizophrenia\(^56\).

Though studied mainly in schizophrenia, changes in gamma oscillations have been observed in other psychiatric disorders, including autism, ADHD and bipolar disorder\(^57-60\). For example, children with autism show a reduced gamma frequency modulation to a visual task\(^61\), whereas in ADHD, increased power and synchrony were observed\(^62,63\). Together, post-mortem and patient studies point to an important role for altered inhibitory function in various psychiatric disorders and indicate a vital role for inhibition in the maintenance of the E/I balance in the healthy brain.

The central role of parvalbumin-positive interneurons in E/I balance
Cortical and hippocampal synaptic inhibition is mediated by inhibitory interneurons, most of which use GABA as their neurotransmitter. While interneurons make up around 20% of the total neuronal population, they are highly diverse\(^64,65\). For example, different classes of interneurons are specialized to target the dendrites, soma or axon initial segment (AIS) of pyramidal neurons\(^65\). This large variety of cell types is believed to illustrate the distinct functions that these cells have in regulation of the network\(^65\). Cortical interneurons can be segregated in three non-overlapping groups by means of specific markers: PV, somatostatin (SOM) and the serotonin receptor 3a (5HT3aR), accounting for 40%, 30% and 30% of the total interneuron population, respectively\(^65\). 5HT3aR-positive cells mainly originate from the caudal ganglionic eminence and are further divided as vasoactive intestinal peptide (VIP)-positive and VIP-negative interneurons\(^66\). VIP-positive interneurons mainly inhibit other interneurons and play an important role in disinhibition of the local circuit\(^66\), where they receive excitatory input from other cortical areas\(^67,68\). VIP cells mainly inhibit SOM
cells but also target PV interneurons and are involved in the regulation of the behavioural state of the network. Recent studies have suggested a direct inhibition by VIP interneurons of pyramidal cells in cortex. Despite the prominent, mainly disinhibitory, function of VIP cells in the network, only a limited number of studies have implicated VIP cells to be involved in psychiatric disorders.

SOM interneurons are a diverse class of interneurons originating from the medial ganglionic eminence (MGE). These interneurons target non-SOM interneurons as well as the dendritic domain of pyramidal neurons, including dendritic spines. SOM interneurons regulate the integration of local excitatory input and have been shown to regulate synaptic plasticity via the control of dendritic calcium spikes in pyramidal cells, affecting learning tasks. Increasing evidence implicates SOM interneurons in psychiatric disorders. Disinhibition of SOM interneurons leads to an antidepressive–like phenotype in mice, and reduced levels of SOM in cerebral spinal fluid have been linked to major depression and mood disorders. In addition, a recent article shows a role for SOM interneurons in gamma oscillations in the visual cortex, hinting towards a possible role for SOM interneurons in the changes in gamma oscillations observed in psychiatric disorders.

PV interneurons are MGE-derived and are electrophysiologically identified by their fast-spiking phenotype. Although PV interneurons make up only a small part of the entire neuronal population, these interneurons are strongly implicated in psychiatric disorders and have been shown to play an important role in the regulations of the E/I balance. PV interneurons are involved in gamma oscillations (see above), and various mutations in disease-linked genes affect PV interneuron function (discussed below) (Table 1). Different subtypes of PV interneurons are distinguished: basket cells, chandelier cells, bistratified cells, and, in hippocampus, oriens-alveus-lacunosum-moleculare cells. Basket cells specifically target the soma and proximal dendrite of pyramidal neurons.

PV basket cells

Basket cells are the largest group of PV interneurons and specifically target the soma and proximal dendrite of pyramidal neurons. The perisomatic location of these axon terminals allows PV basket cells to have a strong control over the excitability of pyramidal neurons. Among other cortical types, PV basket cells receive the same excitatory input as their pyramidal cell targets, wiring the basket cell into a feed-forward circuit: excitatory input will excite both the PV basket cell and the pyramidal neuron, followed by the PV basket cell inhibiting the pyramidal neuron. The delay between the excitatory and inhibitory input onto the pyramidal cell creates a coincidence detection window, in which excitatory input can summate to elicit an action potential in the pyramidal cell. If inhibitory input arrives at the pyramidal cell before an action potential is evoked, the somatic targeted GABA action will prevent action potential initiation. So PV basket cells allow action potential initiation in pyramidal neurons only if the excitatory information is time-locked and of sufficient strength.

In order to mediate fast inhibition, PV basket cells are optimized for fast signalling. Action potentials are initiated at the AIS and propagate at high velocities through the axon, which is enriched for the fast sodium channel Na\(^+\). Synaptically, calcium inflow is mediated by fast P/Q-type calcium channels, which are located directly adjacent to the release site. The post-synaptic site, on the pyramidal neuron, contains the fast GABAA\(\alpha\)1 receptor subunit. These fast properties ensure an optimal speed of PV basket cell signalling and tightly regulate coincidence detection windows of pyramidal neurons.

Chandelier cells

Chandelier cells, or axo-axonic cells, are a group of interneurons that target the AIS of pyramidal neurons. These cells form vertically oriented clusters of axon terminals, called cartridges, giving them a chandelier-like appearance. A single pyramidal cell receives contacts from multiple chandelier cells, forming an average of 3 to 5 boutons each depending on the brain region and age. The synapses are enriched for the GABAA\(\alpha\)z2 receptor subunit and pre-synaptically express the high-affinity GABA transporter 1 (GAT1). The function of chandelier cells in the network remains largely unknown. However, chandelier cell activity has been shown to increase with increasing network activity. In addition, the axon terminals of chandelier cells are specifically absent from the epileptic focus, and pharmacological induction of seizures leads to a loss of chandelier cells in rats, suggesting a role in preventing excessive excitatory activity in the network for these interneurons.

Since their discovery, there has been a debate about the actions of chandelier cells (reviewed by Wang and colleagues). Some studies using brain slice recordings showed a depolarizing action and even excitatory action for these interneurons, whereas others report an inhibitory action. However, chandelier cell membrane potential fluctuations resembling in vivo patterns appear strongly inhibitory and recordings in vivo also suggest an inhibitory role for these interneurons.

Whereas patient studies of schizophrenia patients consistently identify both a reduction in the number or length of chandelier cell cartridges as well as the misregulation of proteins associated with chandelier cell synapses, mouse research on this interneuron class is hampered by the absence of a strategy to specifically target these interneurons. As a result, a limited number of studies focus on chandelier cells but instead report on PV interneurons in general, or PV basket cells, which provide a more accessible target of study because of their relative abundance (Figure 1). Nonetheless, chandelier cells are considered to play an important role in psychiatric disorders, and the development of strategies to specifically target this interneuron subtype would be an important step towards understanding the role of these interneurons.

Targeting the perisomatic region (basket cells) or AIS (chandelier cells) gives these interneurons strong control over pyramidal cell excitability, and regulation of the synaptic strength of these interneurons is important for normal function of the network. For
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Gene</th>
<th>Syndrome/Disorder</th>
<th>Model</th>
<th>Investigated region</th>
<th>Phenotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Erbb4</td>
<td>SZ</td>
<td>PV interneuron KO</td>
<td>Hippocampus</td>
<td>Reduced excitatory input to PV basket cells and chandelier cells</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Nrg1</td>
<td>Fragile X syndrome; ASD</td>
<td>NRG1 treatment of dissociated cortical cultures</td>
<td>Cortex</td>
<td>Reduced local excitatory input onto FS interneurons</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>DISC1</td>
<td>SZ, ASD, depressive disorder, BD</td>
<td>PV-specific shRNA KD in vivo</td>
<td>Cortex</td>
<td>Increased excitatory input onto PV interneurons</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Nlgn3</td>
<td>ASD</td>
<td>PV interneuron KO</td>
<td>Hippocampus</td>
<td>Decreased NMDAR responses Increased glutamate release onto PV interneurons</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Mecp2</td>
<td>Rett syndrome; ASD</td>
<td>PV interneuron KO</td>
<td>Cortex</td>
<td>Reduced excitatory input onto PV interneurons</td>
<td>125</td>
</tr>
<tr>
<td>Intrinsic</td>
<td>Mecp2</td>
<td>Rett syndrome; ASD</td>
<td>PV interneuron KO</td>
<td>Cortex</td>
<td>Increased intrinsic excitability of PV interneurons</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Dysbindin</td>
<td>SZ</td>
<td>Dysbindin KO mouse</td>
<td>Cortex</td>
<td>Reduced excitability of FS interneurons</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Scn1a</td>
<td>Dravet syndrome; ASD</td>
<td>Scn1a KO mouse</td>
<td>Hippocampus</td>
<td>Impaired action potential kinetics in interneurons</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Shank3</td>
<td>ASD, SZ</td>
<td>Shank3B KO mouse</td>
<td>Cortex, Striatum</td>
<td>Reduced activity of PV interneurons</td>
<td>22</td>
</tr>
<tr>
<td>Output</td>
<td>Erbb4</td>
<td>SZ</td>
<td>PV interneuron KO</td>
<td>Hippocampus</td>
<td>Reduced cartridges from chandelier cells onto pyramidal neurons</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Nrg1</td>
<td>SZ</td>
<td>Overexpression in pyramidal neurons</td>
<td>Cortex</td>
<td>Increased basket cell and chandelier cell boutons onto pyramidal neurons</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Tsc1</td>
<td>Tuberous sclerosis; ASD</td>
<td>Maternal loss of Tsc1 in CA1 pyramidal neurons</td>
<td>Hippocampus</td>
<td>Reduced inhibitory synaptic strength onto pyramidal neurons</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Shank3</td>
<td>ASD, SZ</td>
<td>Shank3-exon9 KO mice</td>
<td>Cortex</td>
<td>Reduced inhibitory input onto pyramidal neurons</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Git1</td>
<td>ADHD</td>
<td>Git1 KO mouse</td>
<td>Hippocampus</td>
<td>Reduced inhibitory inputs onto pyramidal neurons</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Cdh13</td>
<td>ADHD</td>
<td>Cdh13 KO mouse</td>
<td>Hippocampus</td>
<td>Increased number of inhibitory synapses onto pyramidal neurons</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Nlgn2</td>
<td>ASD</td>
<td>Nlgn2 KO mouse</td>
<td>Cortex</td>
<td>Reduced inhibitory drive onto pyramidal neurons from FS interneurons</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Nlgn3</td>
<td>ASD</td>
<td>Nlgn3 R451C mouse</td>
<td>Hippocampus</td>
<td>Reduced inhibitory drive from PV basket cells onto pyramidal neurons</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Cntnap2</td>
<td>ASD</td>
<td>shRNA KD in dissociated cortical cultures</td>
<td>Cortical (cultures)</td>
<td>Reduced inhibitory drive onto pyramidal neurons</td>
<td>137</td>
</tr>
</tbody>
</table>

ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; BD, bipolar disorder; FS, fast-spiking; KD, knockdown; KO, knockout; PV, parvalbumin-positive; shRNA, short hairpin RNA; SZ, schizophrenia.
example, Xue and colleagues have shown that pyramidal neurons receive an amount of synaptic inhibition that is proportional to the amount of synaptic excitation they receive, maintaining the E/I balance on the pyramidal cell. Manipulation of pyramidal cell activity leads to a compensatory change in inhibitory drive onto these cells, specifically from PV interneurons. In addition, PV interneuron activity is reduced during learning and increased during fear conditioning, and an experimental increase of PV interneuron activity leads to impaired learning. Apart from synaptic connections, basket cells and chandelier cells connect via electrical connections, called gap junctions. This electrical coupling synchronizes the interneurons, which in turn allows them to synchronize the network (for example, in gamma oscillations).

Together, these studies indicate that control of the E/I balance by PV interneurons is important for normal network function and that PV interneuron-mediated inhibition can be regulated upon alterations in the network state. Changes in PV interneuron-mediated inhibition would shift the E/I balance and lead to a disruption in network function. Indeed, various parameters affecting inhibitory function of PV cells are consistently found to be altered in psychiatric disorders. In the next section, we focus on studies on animal models of these conditions and discuss how different changes affecting PV cell activity lead to a shift of the E/I balance (Table 1).

Figure 1. Genes linked to psychiatric disorders affect inhibition on different subcellular aspects. (Left) Genes affecting the input, intrinsic properties or output of chandelier cells. (Right) Genes affecting the input, intrinsic properties or output of parvalbumin-positive (PV) basket cells. (Middle) Genes affecting input, intrinsic properties or output of interneurons, without the interneuron subtype being identified. Pyramidal cells are shown in red, and interneurons are shown in blue.

Altered PV interneuron activity is caused by changes to different subcellular aspects.

Alterations to the inhibitory drive, affecting the E/I balance, can arise in different ways. Reduced excitatory input onto interneurons, reduced intrinsic excitability of interneurons, and a reduction in inhibitory synapse number or strength onto pyramidal cells all result in a shift of the E/I balance towards excitation. Indeed, patient and animal studies of psychiatric disorders consistently report changes affecting inhibitory function. A complicating factor in the interpretation of these results comes from the dynamic ability of neuronal networks to adapt to changes, known as homeostatic plasticity. Homeostatic plasticity is the ability of neurons to maintain their levels of excitability within a narrow range and is a constantly active feedback process. For example, classic experiments have shown that blocking of action potentials leads to a strengthening of excitatory and a weakening of inhibitory synapses. Apart from their synaptic input, neurons can regulate their intrinsic excitability, which is observed both in excitatory and inhibitory neurons in culture and in vivo. This means that genetic mutations affecting a specific neuronal property in a specific cell type can trigger homeostatic processes affecting other properties or cell types. In this way, mutations affecting both inhibitory or excitatory cells could ultimately affect inhibitory function. It is therefore difficult to distinguish the direct effect of a gene related to a psychiatric disorder from the network adaptation it causes.

Nonetheless, changes to the function of PV interneurons, either direct or indirect, are consistently observed in psychiatric disorders affecting input, output and intrinsic properties, which all lead to an altered inhibitory action of these cells onto their targets (Figure 1).

Changes to the input onto PV interneurons

Excitatory inputs onto neurons drive their excitability. Depending on the brain region, PV interneurons receive various types of
excitatory input14, and the amount of excitatory inputs onto PV interneurons is dynamically regulated by behaviour35. Changes in the amount of excitation onto PV interneurons, altering their activity, have been reported in mouse models of various psychiatric disorders.

The tyrosine kinase receptor ErbB4 has been identified as a risk gene for schizophrenia in genome-wide association studies (GWASs)149,150. In the adult mouse, expression of ErbB4 is restricted to interneurons128,152 and localizes to both the axon terminals128,152 and post-synaptic densities128,151. Selective removal of ErbB4 from PV interneurons causes a reduction in excitatory synapses formed onto both PV basket cells and chandelier cells as well as a reduced number of PV synapses formed on pyramidal neurons20,121. This reduced input and output connectivity of PV interneurons is indicative of a reduced inhibitory drive onto pyramidal neurons. As a result of this reduced inhibition of the pyramidal neurons, these neurons become more active, as was seen from the increased frequency of excitatory inputs to both pyramidal neurons and PV interneurons20. Consequently, recording of the local field potential in vitro revealed a hyperactive network and increased gamma oscillations20. Single-nucleotide polymorphisms in neuregulin 1 (NRG1), a ligand of ErbB4, have been implicated in schizophrenia11 and bipolar disorder135. Treatment of neuronal cultures with NRG1, activating ErbB4, leads to an increase in excitatory synapses formed onto interneurons31. Together, these data show that ErbB4 signalling plays an important role in the regulation of excitatory synapse number onto PV interneurons and that disruption of this system leads to a shift of the E/I balance towards excitation20.

Also, studies on animal models of ASD have reported postsynaptic changes on PV interneurons. Fragile X syndrome is caused by reduced or absent levels of the RNA-binding protein FMRP, leading to intellectual disability and, in about half of the affected males, ASD156,157. While changes to long-term depression on excitatory inputs have been the centre of attention for this condition158, changes to the inhibitory system have consistently been identified159,160.

\textit{Fmr1} knockout (KO) mice show a reduced expression of GABAA receptor subunits161 as well as a reduction in the number of PV interneurons162. In addition, these mice show a marked reduction in local, but not thalamic, excitatory input onto fast-spiking interneurons in layer 4 of the somatosensory cortex, while both the connectivity of fast-spiking interneurons onto pyramidal neurons and excitatory inputs onto pyramidal neurons were unaltered162. Consistently, the resulting reduced inhibitory drive from fast-spiking interneurons was accompanied by reduced synchrony of gamma oscillations122. These changes point towards an altered E/I balance towards excitation in fragile X syndrome165.

Mutations in another gene linked to autism, the transcriptional modulator methyl-CpG-binding protein 2 (MECP2), the causative gene for Rett syndrome17, show a similar phenotype. Selective removal of MECP2 from PV cells leads to a specific reduction of local excitatory input, but not thalamocortical input, onto these cells in layer 4 of the visual cortex at post-natal day (P) 30173. In addition, experimentally evoked PV interneuron input onto pyramidal cells was unaltered172. Calcium imaging revealed that these synaptic changes lead to a reduced visually evoked, but not spontaneous, activity of PV interneurons175. Paired recordings at P15 revealed an increased inhibition from PV interneurons through an earlier maturation in MECP2 KO mice166, and this earlier maturation might influence network development through interference with the normal critical period164,165, leading to the changes observed at later ages. This notion is consistent with the recent idea that developmental changes might play an important role in the development of psychiatric symptoms later in life166. The exact contribution of PV interneurons to the phenotypes observed in Rett syndrome is still unclear. While a general interneuron removal of MECP2 does recapitulate most Rett syndrome phenotypes167, studies removing MECP2 specifically from PV interneurons have been able to replicate only some of these phenotypes168 or none at all125. Of note, selective removal of MECP2 from SOM interneurons also recapitulates part of the Rett syndrome phenotypes168, and selective removal of MECP2 from either PV interneurons or SOM interneurons has been reported to cause circuit-wide deficits in information processing169. From these studies, a picture is emerging in which excitatory inputs onto PV interneurons are found to be altered in different psychiatric disorders, leading to a reduced activity of these neurons and thereby tilting the E/I balance towards excitation.

\textbf{Changes to the intrinsic properties of PV interneurons}

The intrinsic properties of neurons are important in translating input into output. Altering these properties allows the neurons to regulate their excitability170,171, through which they play an important role in the maintenance of the E/I balance170. Whereas some of these changes might be causative to psychiatric disorders, others are believed to be compensatory. For example, selective deletion of MECP2 from PV interneurons leads to an increased membrane potential, as well as a hyperpolarized action potential threshold in these cells at P30172, but only a slight hyperpolarization of the membrane potential at P15164. These changes increase the cell’s excitability and are most likely compensatory for the reduced excitatory synaptic input described above125 but could still act towards deficits in information processing observed in these animals166.

Family-based association data have identified dysbindin (\textit{DTNBP1}) as a susceptibility gene for schizophrenia172, whose dominant circuit impact is impaired inhibition173. Dysbindin KO mice show a reduced number of PV interneurons in hippocampal CA1173,174, and transcriptome changes of various proteins involved the regulation of intrinsic properties175. Recordings from PV interneurons in dysbindin KO mice show a reduction in action potential frequency resulting in a reduced inhibitory drive176. Interestingly, dopamine D2-receptor expression is increased in these mice, and application of the D2-receptor antagonist quinpirole increases PV interneuron action potential frequency more in dysbindin KO mice than in wild-type mice, suggesting that the changes in action potential frequency are compensatory126.

Intrinsic changes can also be the primary cause of psychiatric disorders. Single-gene mutations in \textit{SCN1A}, encoding the sodium channel Na\textsubscript{v}1.1\alpha subunit, give rise to Dravet syndrome, a rare genetic epileptic encephalopathy. Patients with Dravet syndrome suffer from epilepsy and have an increased risk for autism175,176.

Na\textsubscript{v}1.1 is enriched in the AIS of inhibitory neurons177, primarily of PV interneurons9, where axon potentials are initiated175. Interneurons from \textit{Scn1a} heterozygous and KO mice show reduced firing frequencies to current injections as well as a reduced action potential amplitude and an increased action potential width, indicating a reduced inhibitory control over downstream targets172. Removal of \textit{Scn1a} specifically from forebrain interneurons179 or PV interneurons specifically180 recapitulates phenotypes found in patients. In addition, increasing GABA signalling by application of the positive allosteric GABA\textsubscript{A} receptor modulator clonazepam was sufficient to rescue the abnormal social behaviour in \textit{Scn1a}−/− mice181. These data show that loss of SCN1A primarily affects interneurons and that the consequently reduced inhibitory drive plays an important role in Dravet syndrome.

Recently, a new hypothesis has been proposed in the field of schizophrenia, focussing on the myelination of PV interneurons as a point of pathological convergence182. As discussed above, PV cells play a central role in schizophrenia. Myelination abnormalities, including white matter abnormalities183, reduced numbers of oligodendrocytes184 and post-mortem gene expression analysis185, have been identified in schizophrenia. Myelination of PV interneurons has been observed in rats186, mice187 and post-mortem in humans188. Myelination is important for fast action potential propagation189 and deficits in the myelination of PV interneurons are proposed to disrupt inhibitory network function190. However, this appealing hypothesis remains to be experimentally tested.

Changes to synapses formed by PV interneurons

Changes to PV synapses are abundantly studied and identified in various conditions. Post-mortem studies of schizophrenia patients consistently identify changes to the cartridges formed by chandelier cells, showing a decrease in pre-synaptic GAT1 expression191,192,193 and an increase in the expression of post-synaptic GABA\textsubscript{A}R\textsubscript{2}194. These changes would lead to an increased inhibitory drive from chandelier cells and are believed to be compensatory for a reduced activity of these cells, as indicated by reduced levels of GAD67 in PV cells195. In addition, a recent study shows a reduction in the density of a specific type a cartridges, calbindin-positive cartridges, in schizophrenia114.

Besides changes in the input to PV interneurons, mutations in \textit{Erbb4} also lead to a reduction in synapses formed by PV interneurons on pyramidal neurons, specifically from chandelier cells20,202. In addition, overexpression of \textit{Nrg1}, the ligand for ErbB4, in pyramidal neurons increases bouton density on both the AIS and the soma of pyramidal neurons. The increase in bouton density on the AIS originates from chandelier cells since only these cells target the AIS. The origin of the increase in perisomatic bouton density is not clear since a recent report has shown that synapses formed by cholecystokinin (CCK) basket cells require ErbB4 function to form perisomatic synapses191. Future research should unveil whether the increase in perisomatic boutons density arises from PV or CCK basket cells.

Tuberous sclerosis is a disorder whose symptoms include epilepsy and autism92. Loss-of-function mutations in the mammalian target of rapamycin (mTOR)-negative regulators TSC1 or TSC2 underlie this condition93. Slice recordings from \textit{Tsc1} KO neurons revealed a reduced inhibitory drive onto CA1 pyramidal neurons, while excitatory input was unaltered203. \textit{Tsc1} KO neurons were created by sparsely targeting neurons in a conditional \textit{Tsc1} KO mouse with a cre-expressing adeno-associated virus207. The finding that sparse KO of \textit{Tsc1} leads to a similar phenotype as in neurons from full KO animals indicates that these results are cell-autonomous rather than compensatory105.

Angelman syndrome, caused by loss-of-function mutations or deletion of E3 ubiquitin ligase \textit{UBE3A}208, is characterized by epilepsy and autism206,207. Mouse models for Angelman syndrome recapitulate human phenotypes209 and initially were found to show a reduced excitatory drive onto pyramidal neurons210. However, inhibitory input was also found to be decreased, caused by defects in synaptic vesicle cycling212. It was hypothesized that the reduced inhibition could outweigh the reduced excitation, leading to the epilepsy and autism phenotypes observed138,199. Consistent with this idea, a recent study using \textit{in vivo} whole cell recordings shows that pyramidal neurons in \textit{Ube3a} KO mice display decreased orientation selectivity200, indicative of reduced inhibition201,202. However, these mice also show increased excitability of pyramidal neurons, which is non-cell-autonomous, suggesting that pyramidal neurons homeostatically increase their excitability because of a relative decrease of excitation203. While it is unclear whether reduced inhibition or reduced excitation has a stronger impact on pyramidal neurons in Angelman syndrome, the change in their relative contribution, resulting in an altered E/I balance, seems to play a pivotal role in this condition.

Single \textit{Shank3} mutations, at the level of point mutations or microdeletions, have been identified in patients with ASD201. In the human genome, there are three \textit{SHANK} genes (\textit{SHANK1}-3), which all code for scaffold proteins located at the postsynaptic density of excitatory synapses, of which \textit{SHANK3} is best studied204-206. Because of this localisation, most studies have focussed on excitatory synapses, where \textit{Shank3}-deficient mice show reduced cortico- striatal connectivity207, impaired long-term potentiation208 and reduced GluA1 expression209. Recent studies, however, indicate that the inhibitory system is also affected. \textit{Shank3} mutant mice lacking exon 9 show reduced inhibitory input onto layer 2/3 pyramidal neurons but an increase of these events in CA1 pyramidal neurons210. In addition, PV levels are reduced in \textit{Shank1} KO and \textit{Shank3b} KO mice, indicating reduced activity202.

Presynaptic neurexins and their postsynaptic partners neuloligins are a large class of cell-adhesion molecules that have been shown to play important roles in synaptic specificity207. Overexpression or knockdown of neuloligins leads to an increase or decrease in synapse number, respectively211. Neuloligins are expressed at specific synapses: neuloligin 1 (NLGN1) is mainly expressed at excitatory synapses212, NLGN2 is expressed at inhibitory synapses213, NLGN3 is expressed at both inhibitory and excitatory synapses214 and NLGN4 is expressed at glycnergic synapses215. Mutations and deletions affecting human \textit{NLGN3}, including a gain-of-function mutation, and \textit{NLGN4 de novo} mutations have been found in Swedish families and have been associated with autism216. \textit{Nlgn3} deletion in mice leads to increased inhibitory transmission onto pyramidal neurons217, specifically from CCK-positive interneurons because of an increased tonic endocannabinoid.
signalling, whereas PV interneuron connectivity is unaffected136. A recent study, however, has shown that conditional deletion of *Ngln3* from PV interneurons alters AMPA/NMDA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate) ratio of excitatory input onto these cells and causes reduced gamma oscillations224. In addition to the loss of *NLGN3*, a gain-of-function amino acid substitution (R451C) in *NLGN3* is associated with autism136. Mice carrying this mutation show a strong reduction in inhibitory drive from PV interneurons while increasing the inhibitory drive from CCK cells119.

Nlgn4 KO mice show a reduced number of perisomatic inhibitory synapses in hippocampus and a concomitant reduction in inhibitory input218. In addition, a reduced power of evoked gamma oscillations in acute slices was observed218. Different mutations in *NLGN2* have been linked to autism190 and schizophrenia220. Deletion of *Nlgn2* has been shown to specifically reduce the amount of perisomatic synapses on pyramidal neurons in hippocampus315 and reduce inhibitory transmission from PV interneurons but not SOM interneurons214.

Neurexins are less well studied in the context of psychiatric disorders. There are three neurexin genes, each coding for an α- and β-neurexin. Mutations in neurexin (*NRXN1*) have been associated with autism315 and schizophrenia220. Both *NRXN1α* and *NRXN1β*201,202. *Nrxn1α* KO mice do not show changes in inhibitory drive but do show a reduced excitatory drive onto CA1 pyramidal neurons224. However, mice carrying mutations in *Nrxn1β* show a reduced frequency of both inhibitory and excitatory input onto cortical pyramidal neurons212, suggestive of a reduced number of synaptic contacts. These studies show that neuroligin and neurexin mutations that are linked to autism affect the inhibitory system, including perisomatic-targeting interneurons.

Studies of ADHD rodent models have mainly focussed on the dopamine system and excitatory synapses226. However, recent studies identify changes to inhibitory connectivity. G protein–coupled receptor kinase interacting protein 1 (GIT1) has been identified by a GWAS as a risk gene for ADHD135, but recent studies challenge this claim217,228. *Git1* KO mice show ADHD-like phenotypes, including hyperactivity222. While excitatory input to CA1 pyramidal neurons remains unaltered, the frequency of inhibitory inputs is reduced, suggesting a reduction of inhibitory synaptic contacts119, consistent with previous studies showing a role for GIT1 in inhibitory synapses229. In addition, PV expression was reduced while other interneuron markers remained unaltered122.

Another ADHD-linked gene identified by GWASs, cadherin 13 (*CDH13*)203,204, is exclusively expressed in inhibitory neurons113. *Cdhl3* KO mice show an increase in inhibitory synaptic contacts onto CA1 pyramidal neurons, while excitatory inputs remained unaltered111. This increase in inhibitory synaptic contacts could underlie the increase in gamma oscillations observed in ADHD patients discussed before219,220. *Cdhl3* KO mice show a reduced number of interneurons at embryonic day 18.5219 but not at P21113. Experiments are needed to test whether the changes in interneuron number have a role in the aetiology of ADHD.

In addition to changes in the number and strength of inhibitory synapses, changes are found in the modulation of inhibitory synaptic transmission. Metabotropic GABA receptors, GABA\textsubscript{A} receptors, are expressed both pre- and postsynaptically in GABAergic synapses226. Postsynaptic GABA\textsubscript{A} receptors activate potassium channels that hyperpolarize the postsynaptic cell315. Presynaptic GABA\textsubscript{B} receptors, in addition, can reduce calcium inflow and reduce neurotransmitter release216,237. A reduction of GABA\textsubscript{B} subunit expression has been observed in post-mortem studies of patients with schizophrenia238,239, patients with bipolar disorder210 and patients with major depression241 as well as animal models for schizophrenia242-244. However, more research is required to identify the exact role for GABA\textsubscript{B} receptors in psychiatric disorders.

In summary, changes to the inhibitory drive of PV interneurons can be caused by changes affecting the input, output or intrinsic properties of PV interneurons, and animal models of various psychiatric disorders all show alterations to one or more of these aspects, tilting the E/I balance.

Conclusions

Psychiatric disorders are a diverse group of disorders, but changes to the inhibitory system seem to be a point of convergence. Impairment of normal inhibitory function can arise from input to, output from, or intrinsic properties of inhibitory neurons. Altered inhibitory activity or drive leads to changes in signal processing, which in turn is believed to underlie the phenotypic changes observed in the various psychiatric disorders. PV-positive interneurons play a pivotal role in these conditions, possibly through their strong inhibitory effect on pyramidal cell activity due to the axonal or perisomatic targeting of their axons in combination with the nature of their functions in the network.

Changes to either excitation or inhibition will change the ratio between these two types of input, leading to a change in the E/I balance. The examples described above indicate that various psychiatric disorders occur following changes to the input, output or intrinsic properties of specific interneurons, PV interneurons, leading to an altered activity of these neurons. It seems from the studies discussed that specific changes in the E/I balance lead to a disruption of specific function(s) in the network that affect signal processing in a specific way to result in a specific psychiatric phenotype. This might explain why different disorders present different phenotypes, in both patients and animal studies. For example, changes in chandelier cell cartridges seem to be more prominent in schizophrenia. However, other factors are likely to contribute to the development of a specific disorder. Apart from the affected PV cell type, the direction of the altered activity (increased/decreased E/I balance) might be an important factor. Another interesting aspect might be the changes in interneuron-interneuron connectivity, which could lead to altered signal integration and network activity. Some genes have been associated with multiple psychiatric disorders, indicating that a mutation does not in all cases lead to a specific condition. Individual difference in compensatory plasticity could subtly affect network development, steering the developing network towards a specific disorder. It should be noted that while homeostatic changes might compensate a specific alteration, this compensation might disrupt other pathways.
While the above-mentioned factors potentially all play a role in the development of specific psychiatric disorders, more research is needed to identify how specific alterations to PV interneurons affect network processing and behaviour.

The notion that psychiatric disorders are caused by changes to the inhibitory drive from PV interneurons means that a restoration of this drive could improve patient symptoms. An interesting possibility of counteracting the changes to the inhibitory system would be to make use of the neuron’s ability for homeostatic plasticity. Homeostatic mechanisms function to keep neurons in an optimal range of activity. Understanding which genetic and molecular mechanisms underlie these homeostatic processes opens the possibility to ‘hijack’ these pathways and manipulate the neuron’s activity in a way to compensate for the altered inhibitory drive. In this way, it might be possible to selectively up- or downregulate the activity levels of specific interneuron populations and thereby ameliorate the symptoms observed in patients with the various disorders.

While psychiatric disorders are still far from being fully understood, the study of the role of the inhibitory system in these conditions might further increase our understanding of both the diseased and the healthy brain and hopefully could lead to treatment or alleviation of the symptoms for those suffering from these conditions.

Competing interests

The authors declare that they have no competing interests.

Grant information

The author(s) declared that no grants were involved in supporting this work.

Acknowledgements

The authors would like to thank Wei Ba and Clémence Bernard for valuable discussions.

References

29. Guidotti A, Auta J, Davis JM, et al.: Decrease in relin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem study. Arch Gen Psychiatry. 2000; 57(11): 1061–9. Published Abstract | Publisher Full Text

63. Pi H, Hangya B, Kvitsiani D, et al.: Cortical interneurons that specialize in...

100. Pieroni JM, Chaudry AS, Woo TU, et al.: Alterations in chandelier neuron axon...
null
180. Dutton SB, Makinson CD, Papale LA, Cheah CS, Yu FH, Westenbroek RE, Carlson GC, Talbot K, Halene TB, Beck H, Yaari Y:

179. Cea-Del Rio CA, Huntsman MM:

178. Paluszewicz SM, Martin BS, Huntsman MM: Fragile X syndrome: the

177. Dutton SB, Makinson CD, Papale LA, Cheah CS, Yu FH, Westenbroek RE, Carlson GC, Talbot K, Halene TB, Beck H, Yaari Y:

176. Dutton SB, Makinson CD, Papale LA, Cheah CS, Yu FH, Westenbroek RE, Carlson GC, Talbot K, Halene TB, Beck H, Yaari Y:

175. Carlson GC, Sun QD, Major defects in neocortical

174. Cea-Del Rio CA, Huntsman MM:

173. Paluszkiewicz SM, Martin BS, Huntsman MM:

172. Bear MF, Huber KM, Warren ST:

171. Bear MF, Huber KM, Warren ST:

170. Paluszkiewicz SM, Martin BS, Huntsman MM:

169. Paluszkiewicz SM, Martin BS, Huntsman MM:

168. Paluszkiewicz SM, Martin BS, Huntsman MM:

167. Paluszkiewicz SM, Martin BS, Huntsman MM:

166. Paluszkiewicz SM, Martin BS, Huntsman MM:

165. Paluszkiewicz SM, Martin BS, Huntsman MM:

164. Paluszkiewicz SM, Martin BS, Huntsman MM:

163. Paluszkiewicz SM, Martin BS, Huntsman MM:

162. Paluszkiewicz SM, Martin BS, Huntsman MM:

161. Paluszkiewicz SM, Martin BS, Huntsman MM:

160. Cea-Del Rio CA, Huntsman MM:

159. Paluszkiewicz SM, Martin BS, Huntsman MM:

158. Bear MF, Huber KM, Warren ST:

157. Paluszkiewicz SM, Martin BS, Huntsman MM:

156. Paluszkiewicz SM, Martin BS, Huntsman MM:

155. Paluszkiewicz SM, Martin BS, Huntsman MM:

154. Paluszkiewicz SM, Martin BS, Huntsman MM:

153. Paluszkiewicz SM, Martin BS, Huntsman MM:

152. Paluszkiewicz SM, Martin BS, Huntsman MM:

151. Paluszkiewicz SM, Martin BS, Huntsman MM:

150. Paluszkiewicz SM, Martin BS, Huntsman MM:

149. Paluszkiewicz SM, Martin BS, Huntsman MM:

148. Paluszkiewicz SM, Martin BS, Huntsman MM:

147. Paluszkiewicz SM, Martin BS, Huntsman MM:

146. Paluszkiewicz SM, Martin BS, Huntsman MM:

145. Paluszkiewicz SM, Martin BS, Huntsman MM:

144. Paluszkiewicz SM, Martin BS, Huntsman MM:

143. Paluszkiewicz SM, Martin BS, Huntsman MM:

142. Paluszkiewicz SM, Martin BS, Huntsman MM:

141. Paluszkiewicz SM, Martin BS, Huntsman MM:

140. Paluszkiewicz SM, Martin BS, Huntsman MM:

139. Paluszkiewicz SM, Martin BS, Huntsman MM:

138. Paluszkiewicz SM, Martin BS, Huntsman MM:

137. Paluszkiewicz SM, Martin BS, Huntsman MM:

136. Paluszkiewicz SM, Martin BS, Huntsman MM:

135. Paluszkiewicz SM, Martin BS, Huntsman MM:

134. Paluszkiewicz SM, Martin BS, Huntsman MM:

133. Paluszkiewicz SM, Martin BS, Huntsman MM:

132. Paluszkiewicz SM, Martin BS, Huntsman MM:

131. Paluszkiewicz SM, Martin BS, Huntsman MM:

130. Paluszkiewicz SM, Martin BS, Huntsman MM:

129. Paluszkiewicz SM, Martin BS, Huntsman MM:

128. Paluszkiewicz SM, Martin BS, Huntsman MM:

127. Paluszkiewicz SM, Martin BS, Huntsman MM:

126. Paluszkiewicz SM, Martin BS, Huntsman MM:

125. Paluszkiewicz SM, Martin BS, Huntsman MM:

124. Paluszkiewicz SM, Martin BS, Huntsman MM:

123. Paluszkiewicz SM, Martin BS, Huntsman MM:

122. Paluszkiewicz SM, Martin BS, Huntsman MM:

121. Paluszkiewicz SM, Martin BS, Huntsman MM:

120. Paluszkiewicz SM, Martin BS, Huntsman MM:

119. Paluszkiewicz SM, Martin BS, Huntsman MM:

118. Paluszkiewicz SM, Martin BS, Huntsman MM:

117. Paluszkiewicz SM, Martin BS, Huntsman MM:

116. Paluszkiewicz SM, Martin BS, Huntsman MM:

115. Paluszkiewicz SM, Martin BS, Huntsman MM:

114. Paluszkiewicz SM, Martin BS, Huntsman MM:

113. Paluszkiewicz SM, Martin BS, Huntsman MM:

112. Paluszkiewicz SM, Martin BS, Huntsman MM:

111. Paluszkiewicz SM, Martin BS, Huntsman MM:

110. Paluszkiewicz SM, Martin BS, Huntsman MM:

109. Paluszkiewicz SM, Martin BS, Huntsman MM:

108. Paluszkiewicz SM, Martin BS, Huntsman MM:

107. Paluszkiewicz SM, Martin BS, Huntsman MM:

106. Paluszkiewicz SM, Martin BS, Huntsman MM:

105. Paluszkiewicz SM, Martin BS, Huntsman MM:

104. Paluszkiewicz SM, Martin BS, Huntsman MM:

103. Paluszkiewicz SM, Martin BS, Huntsman MM:

102. Paluszkiewicz SM, Martin BS, Huntsman MM:

101. Paluszkiewicz SM, Martin BS, Huntsman MM:

100. Paluszkiewicz SM, Martin BS, Huntsman MM:

99. Paluszkiewicz SM, Martin BS, Huntsman MM:

98. Paluszkiewicz SM, Martin BS, Huntsman MM:

97. Paluszkiewicz SM, Martin BS, Huntsman MM:

96. Paluszkiewicz SM, Martin BS, Huntsman MM:

95. Paluszkiewicz SM, Martin BS, Huntsman MM:

94. Paluszkiewicz SM, Martin BS, Huntsman MM:

93. Paluszkiewicz SM, Martin BS, Huntsman MM:

92. Paluszkiewicz SM, Martin BS, Huntsman MM:

91. Paluszkiewicz SM, Martin BS, Huntsman MM:

90. Paluszkiewicz SM, Martin BS, Huntsman MM:

89. Paluszkiewicz SM, Martin BS, Huntsman MM:

88. Paluszkiewicz SM, Martin BS, Huntsman MM:

87. Paluszkiewicz SM, Martin BS, Huntsman MM:

86. Paluszkiewicz SM, Martin BS, Huntsman MM:

85. Paluszkiewicz SM, Martin BS, Huntsman MM:

84. Paluszewicz SM, Martin BS, Huntsman MM:

83. Paluszewicz SM, Martin BS, Huntsman MM:

82. Paluszewicz SM, Martin BS, Huntsman MM:

81. Paluszewicz SM, Martin BS, Huntsman MM:

80. Paluszewicz SM, Martin BS, Huntsman MM:

79. Paluszewicz SM, Martin BS, Huntsman MM:

78. Paluszewicz SM, Martin BS, Huntsman MM:

77. Paluszewicz SM, Martin BS, Huntsman MM:

76. Paluszewicz SM, Martin BS, Huntsman MM:

75. Paluszewicz SM, Martin BS, Huntsman MM:

74. Paluszewicz SM, Martin BS, Huntsman MM:

73. Paluszewicz SM, Martin BS, Huntsman MM:

72. Paluszewicz SM, Martin BS, Huntsman MM:

71. Paluszewicz SM, Martin BS, Huntsman MM:

70. Paluszewicz SM, Martin BS, Huntsman MM:

69. Paluszewicz SM, Martin BS, Huntsman MM:

68. Paluszewicz SM, Martin BS, Huntsman MM:

67. Paluszewicz SM, Martin BS, Huntsman MM:

66. Paluszewicz SM, Martin BS, Huntsman MM:

65. Paluszewicz SM, Martin BS, Huntsman MM:

64. Paluszewicz SM, Martin BS, Huntsman MM:

63. Paluszewicz SM, Martin BS, Huntsman MM:

62. Paluszewicz SM, Martin BS, Huntsman MM:

61. Paluszewicz SM, Martin BS, Huntsman MM:

60. Paluszewicz SM, Martin BS, Huntsman MM:

59. Paluszewicz SM, Martin BS, Huntsman MM:

58. Paluszewicz SM, Martin BS, Huntsman MM:

57. Paluszewicz SM, Martin BS, Huntsman MM:

Open Peer Review

Current Referee Status: ✔ ✔

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1. **Rhiannon Meredith** Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands

 Competing Interests: No competing interests were disclosed.

1. **Hisashi Umemori** Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA

 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com