The version of the following full text has not yet been defined or was untraceable and may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/19047

Please be advised that this information was generated on 2019-12-20 and may be subject to change.
A NEW CHARACTERIZATION OF THE UNIT BALL OF H^2

R.A. Kortram

Report No. 0127 (November 2001)
A new characterization of the unit ball of H^2

R.A. Kortram

Abstract
We derive a new expression for the norm of H^2 functions; we present some well-known results in a different setting.

Introduction
In 1915, Pick [3] proved the following result

Theorem 1 Let g be an analytic function on the unit disc Δ in the complex plane. Then $|g(z)| \leq 1$ for all $z \in \Delta$ if and only if for all $n \in \mathbb{N}$, for all sequences z_1, z_2, \ldots, z_n in Δ and for all sequences $\lambda_1, \lambda_2, \ldots, \lambda_n$ we have

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)g(z_l)}{1 - z_k z_l} \lambda_k \overline{\lambda_l} \geq 0.$$

(1)

Ahlfors [1] page 3, gives an elegant proof of this characterization of the unit ball of H^∞.

In this note we shall present a characterization of the unit ball of H^2. Our main tool will be an explicit solution of the “Minimal Interpolation Problem” for H^2. [2] page 141. As a byproduct we obtain a new proof of Pick’s theorem.

Description of the main result
Let z_1, z_2, \ldots, z_n be a sequence in Δ, and let b be the Blaschke product generated by this sequence:

$$b(z) = \prod_{j=1}^{n} \frac{z - z_j}{1 - z_j z}.$$

(2)

We shall prove that the following conditions are equivalent for continuous functions f on Δ.

1) f lies in the unit ball of H^2.

2) for every $n \in \mathbb{N}$ and for every sequence z_1, z_2, \ldots, z_n of mutually distinct points in Δ we have

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k) \cdot \overline{f(z_l)}}{1 - z_k z_l} \frac{1}{b'(z_k)b'(z_l)} \leq 1.$$

(3)
Preliminaries

For mutually distinct points z_1, z_2, \ldots, z_n in Δ and for w_1, w_2, \ldots, w_n in \mathbb{C} we define

$$\Lambda = \{ f \in H^2 : f(z_j) = w_j, \; j = 1, 2, \ldots, n \}.$$

Λ is not empty; it contains the Lagrange interpolation polynomial

$$\lambda(z) = l(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k) \cdot b'(z_k)},$$

where $l(z) = \prod_{j=1}^{n} (z - z_j)$.

In the context of H^p spaces it is more natural to work with the Blaschke interpolation function

$$\beta(z) = b(z) \sum_{k=1}^{n} \frac{1 - \overline{z}_k z}{z - z_k} \cdot \frac{w_k}{b'(z_k)(1 - |z_k|^2)},$$

with $b(z)$ defined as in (2). Of course $\beta \in \Lambda$. However, for our purposes we are better off with

$$\varphi(z) = b(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k) b'(z_k)}.$$ \hfill (4)

$\varphi \in \Lambda$, and φ is analytic on some neighbourhood of Δ. Λ is a hyperplane in H^2.

With φ and b defined as in (4) and (2) we have

$$\Lambda = \{ \varphi + b \cdot g : g \in H^2 \}.$$

Theorem 2 φ is the unique solution of the “Minimal Interpolation Problem”, i.e. for every $f \in \Lambda \setminus \{ \varphi \}$ we have $\|f\|_2 > \|\varphi\|_2$.

Proof: It suffices to show that $\varphi \perp (f - \varphi)$ for every $f \in \Lambda$ (since under those circumstances $\|f\|^2 = \|\varphi\|^2 + \|f - \varphi\|^2$).

From the decomposition $f = \varphi + b \cdot g$ we have

$$\langle f - \varphi, \varphi \rangle = \langle b \cdot g, \varphi \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} b(e^{it}) g(e^{it}) \overline{\varphi(e^{it})} dt = \frac{1}{2\pi} \int_{0}^{2\pi} b(e^{it}) g(e^{it}) \sum_{k=1}^{n} \frac{w_k}{(e^{-it} - z_k) \cdot b'(z_k)} dt.$$

Note that $|b(e^{it})|^2 = 1$. Thus

$$\langle f - \varphi, \varphi \rangle = \sum_{k=1}^{n} \frac{w_k}{2\pi b'(z_k)} \int_{0}^{2\pi} g(e^{it}) \frac{e^{it}}{1 - e^{it} z_k} dt = \sum_{k=1}^{n} \frac{w_k}{b'(z_k)} \cdot \frac{1}{2\pi i} \int_{\Gamma} \frac{g(z)}{1 - \overline{z}_k z} dz = 0,$$
because the integrand is analytic on Δ.

It will be convenient to have an explicit expression for $\|\varphi\|_2$.

$$
\|\varphi\|_2^2 = \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} |\varphi(e^{it})|^2 dt = \frac{1}{2\pi} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \overline{w_l}}{b'(z_k)b'(z_l)} \int_{0}^{2\pi} \frac{dt}{(e^{it} - z_k)(e^{-it} - z_l)}
$$

$$
= \frac{1}{2\pi i} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \overline{w_l}}{b'(z_k)b'(z_l)} \int_{\Gamma} \frac{dz}{(z - z_k)(1 - z_lz)} = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \overline{w_l}}{b'(z_k)b'(z_l)}\frac{1}{1 - z_k \overline{z_l}}.
$$

There are of course many other expressions for $\|\varphi\|_2$.

Theorem 3

$$
\|\varphi\|_2 = \max \left\{ \left| \sum_{k=1}^{n} \frac{w_k f(z_k)}{b'(z_k)} \right| : f \in H^2, \|f\|_2 \leq 1 \right\}.
$$

Proof:

$$
\sum_{k=1}^{n} \frac{w_k f(z_k)}{b'(z_k)} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)\varphi(z)}{b(z)} dz,
$$

hence by Schwarz’s inequality we have

$$
\left| \sum_{k=1}^{n} \frac{w_k f(z_k)}{b'(z_k)} \right| \leq \left(\int_{0}^{2\pi} |f(e^{it})| \cdot |\varphi(e^{it})| dt \right) \leq \|f\|_2 \cdot \|\varphi\|_2 \leq \|\varphi\|_2.
$$

Equality holds for the function $f : z \rightarrow \frac{1}{\|\varphi\|_2} \sum_{k=1}^{n} \frac{w_k}{1 - z_k \overline{z_l} b'(z_k)}$.

An immediate result from Theorem 2 is

Corollary For every sequence z_1, z_2, \ldots, z_n of mutually distinct points of Δ we have

$$
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.
$$

Proof: Take $w_1 = w_2 = \ldots = w_n = 1$. Then $1 \in \Lambda$ and since

$$
\|1\|_2 = 1,
$$

we have

$$
1 \geq \|\varphi\|_2^2 = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)}.
$$

The equality sign certainly occurs if $0 \in \{z_1, z_2, \ldots, z_n\}$:

$$
1 = \varphi(0)^2 \leq \frac{1}{2\pi} \int_{0}^{2\pi} |\varphi(e^{it})|^2 dt = \|\varphi\|_2^2 = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)}.
$$

3
If \(0 \not\in \{ z_1, z_2, \ldots, z_n \} \) there is strict inequality:
Because of the uniqueness of \(\varphi \) there can be equality only if
\[
b(z) \sum_{k=1}^{n} \frac{1}{(z-z_k)b'(z_k)} = 1.
\]
In this identity for rational functions we let \(z \to \infty \). Since \(z_j \neq 0 \), \(\lim_{z \to \infty} b(z) \) has a finite value. Therefore, the left hand side has limit zero.

The fact that \(\varphi \in \Lambda \) has an interesting reformulation. We start with a lemma.

Lemma 1 The partial fraction decomposition of \(\varphi \) is
\[
\varphi(z) = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1 - \overline{z_l}z)(1 - \overline{z_l}z_k)b'(z_k)b'(z_l)}. \tag{5}
\]

Proof: An elegant way to prove this is to compute both sides of the following identity.

For \(z \in \Delta \) we have
\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{1 - \zeta z} \frac{d\zeta}{\zeta} = \frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{1 - \zeta z} \frac{d\zeta}{\zeta}.
\]

The left hand side is equal to
\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{\zeta - z} dz = \varphi(z),
\]
while the right hand side is equal to the complex conjugate of
\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{b(\zeta)}{\zeta - z} dz = \varphi(z),
\]

i.e. to the complex conjugate of
\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{1}{b(\zeta)} \sum_{k=1}^{n} \frac{\overline{w_k}}{(1 - \overline{z_k}\zeta)b'(z_k)} \frac{1}{1 - \overline{\zeta}z} \frac{d\zeta}{\zeta}.
\]

Calculation of the residues at the points \(z_1, z_2, \ldots, z_n \) lead to (5).

The condition \(\varphi \in \Lambda \) implies that \(\varphi(z_j) = w_j, \ j = 1, \ldots, n \) i.e.
\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1 - \overline{z_l}z_j)(1 - \overline{z_l}z_k)b'(z_k)b'(z_l)} = w_j.
\]
This is equivalent to the assertion that the matrices
\[
B = (\beta_{lk})
\]
and its conjugate \(\overline{B} = (\overline{\beta}_{lk}) \) where
\[
\beta_{lk} = \frac{1}{(1 - \overline{z_l}z_k)b'(z_k)}
\]
are each others inverse, i.e. \(B \) and \(\overline{B} \) are unitary.
Proof of the main result

Lemma 2 Assume that f lies in the unit ball of H^2, and let a sequence of mutually distinct points z_1, z_2, \ldots, z_n in Δ be given. Then (3) holds.

Proof: Define $w_j = f(z_j)$. f lies in the hyperplane Λ and the element φ of Λ with minimal norm satisfies
\[\|\varphi\|_2 \leq \|f\|_2 \leq 1. \]

Use of the explicit expression for $\|\varphi\|_2$ leads to (3).

Lemma 3 Assume that f is continuous and that f satisfies (3). We shall show that $f \in H^2$ and that $\|f\|_2 \leq 1$.

Proof: We apply (3) for the case $n = 1$; an easy computation shows that
\[|f(z)| \leq \frac{1}{\sqrt{1 - |z|^2}} \]
for every choice of $z \in \Delta$.

Let $0 < r < \rho < 1$, and let z_1, z_2, \ldots be an enumeration of the rational points of $\overline{\Delta}_\rho$. For every n there is a function φ_n with
\[\varphi_n(z_j) = f(z_j), \quad j = 1, 2, \ldots, n \]
and
\[\|\varphi_n\|_2^2 = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)\overline{f(z_l)}}{1 - z_k\overline{z_l}} \frac{1}{b'(z_k)b'(z_l)} \leq 1. \]

Thus, φ_n lies in the unit ball of H^2, and so by lemma 2, we have for every sequence $\zeta_1, \zeta_2, \ldots, \zeta_n$ in Δ
\[\sum_{k=1}^{m} \sum_{\ell=1}^{m} \frac{\varphi_n(\zeta_k)\overline{\varphi_n(\zeta_\ell)}}{1 - \zeta_k\overline{\zeta_\ell}} \frac{1}{b'(z_k)b'(z_\ell)} \leq 1. \]

It follows from (6) that
\[|\varphi_n(\zeta)| \leq \frac{1}{\sqrt{1 - |\zeta|^2}}, \]
hence the sequence $\varphi_1, \varphi_2, \ldots$ is uniformly bounded on $\overline{\Delta}_\rho$. Therefore, it contains a locally uniformly convergent subsequence φ_{n_j}. At the points z_1, z_2, \ldots the subsequence converges to f. By the continuity of f and the fact that $\{z_1, z_2, \ldots\}$ is dense in Δ_ρ we see that
\[\lim_{n_j \to \infty} \varphi_{n_j} = f. \]

This shows that f is analytic on Δ_ρ for all $\rho < 1$. Because of uniform convergence on Γ_r we have
\[\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^2 dt = \lim_{n_j \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} |\varphi_{n_j}(re^{it})|^2 dt \leq 1. \]
Thus, \(f \in H^2 \) and \(\|f\|_2 \leq 1 \).

Lemma 2 and lemma 3 together constitute a proof of the main result.

Corollary For \(f \in H^2 \) we define

\[
\nu(f) = \sup \left\{ \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)\overline{f(z_l)}}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)} ; z_1, z_2, \ldots, z_n \text{ mutually distinct points of } \Delta \right\}.
\]

Then \(\nu(f) = \|f\|_2^2 \).

Proof: Assume that \(\nu(f) = 1 \). Then by lemma 3: \(\|f\|_2^2 \leq 1 \). If \(\|f\|_2^2 < \lambda^2 < 1 \) for some \(\lambda \), then we have \(\|\frac{f}{\lambda}\|_2^2 < 1 \) but \(\nu\left(\frac{f}{\lambda}\right) > 1 \) which is impossible by lemma 2.

In a similar way we can show that \(\|f\|_2^2 = 1 \) implies that \(\nu(f) = 1 \). By the homogeneity of \(\nu \) and \(\|\cdot\|_2^2 \) it follows that for all \(f \in H^2 \) \(\nu(f) = \|f\|_2^2 \).

Pick’s theorem

As an application of our results we shall give a proof of Pick’s theorem.

Let \(g \) belongs to the unit ball of \(H^\infty \), and let \(z_1, z_2, \ldots, z_n \) be a sequence of mutually distinct points in \(\Delta \). Let \(w_1, w_2, \ldots, w_n \) be an arbitrary sequence of complex numbers.

We consider the hyperplanes \(\Lambda \) and \(\Lambda_g \) where

\[
\Lambda_g = \{ f \in H^2 : f(z_j) = w_j \cdot g(z_j), j = 1, 2, \ldots, n \}.
\]

Of course, if \(f \in \Delta \), then \(g \cdot f \in \Delta_g \), and by Theorem 2 applied to \(\Lambda_g \) we have

\[
\|gf\|_2^2 \geq \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k g(z_k) \cdot w_l g(z_l)}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)}.
\]

Let \(\varphi \) be, as before, the element of \(\Lambda \) with smallest norm. From \(\|g\|_\infty \leq 1 \) we obtain

\[
\|gf\|_2^2 \leq \|\varphi\|_2.
\]

Combination of these steps leads to

\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k w_l}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)} = \|gf\|_2^2 \geq \|\varphi\|_2^2 \geq \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k w_l g(z_k) g(z_l)}{1 - z_k \overline{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)}
\]

i.e. to

\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)\overline{g(z_l)}}{1 - z_k \overline{z}_l} \cdot \frac{w_k w_l}{b'(z_k)b'(z_l)} \geq 0
\]

and since the sequence \(w_1, w_2, \ldots, w_n \) is arbitrary we have for all choices of \(\lambda_1, \lambda_2, \ldots, \lambda_n \)

\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)\overline{g(z_l)}}{1 - z_k \overline{z}_l} \cdot \lambda_k \lambda_l \geq 0.
\]

By the choice \(n = 1, \lambda_1 = 1 \) we see that the converse is trivial.

6
References

