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Generalizations of a lemma of Freudenburg

Arno van den Essen Andrzej Nowicki* Andrzej Tyc* 

A b stra c t

Let k be an algebraically closed field of characteristic zero and p a prime ideal in 
k [X ] := k [ X i , . . . ,  X n]. Let g G k[X ] and d >  1. If for all 1 <  |a| <  d the derivatives 
d ag belong to p, then there exists c G k such that g — c G p (d+1), the d +  1-th symbolic 
power of p. In particular if p is a complete intersection it follows that g — c G p d+1.

1 Introduction

In [4] it was shown by Freudenburg that if f  is an irreducible polynomial in C[x, y] 
and g any polynomial in C[x, y] such that both partial derivatives of g are divisible 
by f , then g — c is divisible by f  for some c G C.
In this paper we will consider various generalizations of this result to n variables. 
More precisely, in section one we show that if p is any prime ideal in k[X ] then the 
following holds: if g is an element of k[X ] such that all its partial derivatives d^g 
belong to p , then for some c G k also g — c belongs to p . In section two we show that 
this result can be improved, namely we obtain that g — c belongs to p (2), the second 
symbolic power of p . In fact, using a result of Zariski-Nagata we extend this result 
to higher order partial derivatives and higher order symbolic powers. For the precise 
formulation we refer to Theorem 3.1.

2 A generalization of Freudenburg’s lem m a to  prim e 
ideals

Throughout this paper k will denote an algebraically closed field of characteristic zero 
and k[X] (resp. k[[X]]) denotes the polynomial ring (resp. the power series ring) in 
n variables over k. All rings are commutative and contain 1. B y dim (A) we denote 
the Krull dimension of A. The main result of this section is
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P r o p o s it io n  2 .1  Let p  be a prime ideal in k [X ] and g G k[X ]. If for each i the 
partial derivative dig belongs to p, then there exists c G k such that g — c G p.

To prove this result we need the following lemma

L em m a 2 .2  Let A  be a finitely generated k-domain. Then there exists an injective 
k-algebra homomorphism p  : A ^  k[[T1, .. ., Ts]], where s =  dim(A).

P roof. The k-algebra A is of the form k[X1, . . .  , X n] /p  for some prime ideal p of 
k[X1, . . .  , X n]. Let x be a non-singular point of the variety defined by p in kn and 
let m be its corresponding maximal ideal in A. Then A m is a regular local ring of 
dimension s. Since A contains Q the complete local ring A m has equicharacteristic 
zero, so by Cohen’s structure theorem (see [1] or [10], Chap. VIII, §12) we get that 
A m =  k[[T1,. . . ,  Ts]], a power series ring in s variables over k. (Observe that by the 
Nullstellensatz k is isomorphic to A m/m A m, so indeed k is a field of representatives 
of A m). Then the result follows from the inclusions A C A m C A m.

P r o o f  o f  P r o p o s it io n  2.1
Let A := k[X ] /p  and p  : A ^  k[[T1, . . . , T s]] be the injection of lemma 2.2. Put 
f i := p (X i)  for each i (X i := X i +  p). So p (h  +  p) =  h( f 1, . . . ,  f n) for all h G k[X ]. 
In particular since p  is well-defined it follows that h( f 1, . . . ,  f n) =  0 for all h G p. 
Hence di g( f 1 , . . . ,  fn)  =  0 for all i. Now consider Q( T  ) := g ( A ( T  ) , . . . , f n ( T  )) G 
k[[T1, . . . ,  Ts]]. Then, using that dig ( f 1, . . . ,  f n) =  0 it follows that -¡TQ (T ) =  0 for 
all 1 <  j  <  s. Consequently Q (T ) =  c G k. So (g — c) ( f 1, . . . ,  f n ) =  0 i.e. g — c G p,  
as desired.

R em ark  2 .3  If in Proposition 2.1 we take p to be a principal ideal generated by an 
irreducible polynomial f  of k[X ] then we obtain that if g G k [ X ] is such that f  divides 
all di (g), then f  divides g — c for some c G k. In case n =  2 this is Freudenburg’s 
original lemma.

R em ark  2 .4  i) The condition ”k is algebraically closed” in Proposition 2.1 cannot 
be dropped: namely take f  =  x 2 +  1 and g =  x3 +  3x in R[x]. Then f  is irreducible 
in R[x] and divides g' . However if f  divides g — c for some c G R, then x 3 +  3x — c =  
(x2 +  1)(x +  b) for some b G R. Looking at the coefficient of x 2 we see that b =  0 and 
hence, looking at the coefficient of x, we get 3 =  1, a contradiction. 
ii) Viewing both polynomials f  and g in C[x], the same argument shows that also the 
assumption that f  is irreducible cannot be dropped i.e. in Proposition 2.1 one cannot 
replace p by a non-prime ideal.
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3 A further generalization

In the previous section we showed that if for a polynomial g all its derivatives di (g) 
belong to a prime ideal p, then for some c G k also g — c G p. Looking at special 
cases, for example when p is a maximal ideal, one observes that in fact g — c G p 2. 
So one wonders if such a result holds for all prime ideals.
In this section we show that the answer in general is no (see Example 3.3 below) 
and that the statement is true if we replace p2 by p (2), its second symbolic power 
(p (n) :=  p nR p fi R, for all n >  1). In fact, also allowing higher order derivatives we 
get the following more general result

T h eo rem  3 .1  Let p  be a prime ideal in R  := k[X 1 , . . . ,  X n] and g G R. Let d >  1. 
If d a (g) := g G p  for all a  =  ( « 1 , .. ., a n), with 1 <  |a| <  d, then there
exists c G k with g — c G p (d+1).

P roof. Let p < d+1> := {h G p | d a h G p for all 1 <  |a| <  d }. Then p<d+1> is an 
ideal in R and in fact p < d+1> =  p (d+1). (See [9], or [3], Theorem 3.14). Now let 
c G k be as in Proposition 2.1 and put h := g — c. Then h G p<d+1> =  p (d+1) i.e. 
g — c G p (d+1) □

C oro llary  3 .2  Notations as in 3.1. If  p is a complete intersection (i.e. generated 
by an R-sequence), then g — c G pd+1. In particular this is the case if  htp  = 1  or p 
is maximal.

P roof. By [5], Proposition 2.1 the hypothesis on p implies that p (d+1) =  p d+1 □

The question when p (d+1) =  p d+1 (and hence the question if p<d+1> =  pd+1) is 
well-studied (see for example [5]). One easily verifies that p (d+1) =  pd+1 if and only 
if pd+1 is p-primary (since p (d+1) is the primary component of p (d+1)). So to get a 
prime ideal p such that p <2> is not equal to p2 we need to have a prime ideal p such 
that p2 is not p-primary. Such an example can be found in [6], page 29, Example 3. 
Using this prime ideal we give an element g in p such that all its derivatives belong 
to p but g does not belong to p2. More precisely

E x a m p le  3 .3  Let R := k[x, y, z] and p the prime ideal of the curve (t3, t4, t5) i.e. 
the set of all f  G R such that f  (t3, t 4, t 5) =  0. Then one can verify (or see [6], 
page 29, Example 3) that p is generated by the polynomials y2 — xz, yz — x 3 and 
z2 — x 2y. Now let g := x 5 +  xy3 — 3x2yz +  z3. Then it is easy to see that g and all its 
partial derivatives (of order 1) belong to p (just substitute x =  t3, y =  t4, z =  t5 and 
check that the result is zero) i.e. g G p< 2>. However g G p2: namely all monomials 
appearing in the generators of p have degree >  2, hence all monomials appearing in 
the generators of p2 have degree >  4. But g contains a monomial of degree 3, namely
z3
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More generally, given d >  1 and a prime ideal p C R := k[X1, . . .  , X n] we can 
decide if p d+1 is equal to p < d+1> and if not construct elements g G p < d+1> \p d+1. 
To explain this we need some preparations.

Let 1 be an ideal in R and d >  0. Define

ƒ  1 := {h G 1 1 di h G 1 for all 1 <  i <  n}

and

1<d+1> := {h G R | da h G 1 for all 0 <  |a | <  d}.

Observe that 1< 1> =  1 and 1 <d+1> =  ƒ  1 <d> for all d >  1. So in order to compute 
1  <d+ 1> inductively we only need to give

A n  a lg o r ith m  for co m p u tin g  ƒ  1

Let f  1 , . . . ,  f s be generators of 1. For each 1 <  i <  n put

p i :=  { E  f j | E  di ( f j ) G p } .

Then ƒ  1 =  P 1 f  . . .  f  Pn . Hence, using standard Grobner basis techniques it suffices 
to compute Pi . So consider Pi and observe that ^  di ( f j ) G p if and only if there 
exist b1, . . . ,  bs G R such that

a 1di ( f 1) +  . . .  +  asdi ( f s ) +  b1f 1 +  . . .  +  bsf s =  0 .

By Grobner basis methods one can compute generators for the module of syzygies 
between (di( f 1 ) , . . . ,  á¿(fs), f 1 , . . . ,  f s). Let

(a11), . . . ,  aS1), b11), . . . ,  bS1)) , . . . ,  (a1N), . . . ,  aSN), b1N), . . . ,  bSN))

be such generators. Then the elements a11)f 1 +  . . .  +  aS1)f s , . .. ,a1N)f 1 +  . . .  +  aSN)f s 
generate the ideal P i .

C oro llary  3 .4  Let d >  1 and p a prime ideal in R. Then one can decide if  p < d+1> =  
pd+1 and if  there is no equality one can give g G p<d+1> \p d+1.

Namely by the algorithm above we can compute inductively p<d+1>. Then check for 
each of the generators of p<d+1> if they belong to p d+1 (using the ideal membership 
algorithm from Grobner basis theory).

R em ark  3 .5  Using the algorithm above we computed p<2> for the prime ideal 
p given in Example 3.3. The computation done by the computeralgebra system  
MAGMA showed that all generators of p<2> except one belonged to p2. The only 
exception was the element g described in Example 3.3. It is interesting to remark that 
g is exactly the same element that appeared in Example 3, page 30 of Northcott: this 
is not surprising since, as remarked above g is the only obstruction to p 2 being equal 
to p <2> and hence to p2 being equal to p(2) or equivalently to p 2 being p-primary, 
the question considered by Northcott !
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R em ark  3 .6  In [8] and [9] other algorithms are given to compute ƒ  1 and symbolic 
powers.

R em ark  3 .7  The notation ƒ  1 is taken from the thesis [7] of Pellikaan. 
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