Many-Sorted Coalgebraic Modal Logic: a Model-theoretic Study
B.P.F. Jacobs

Computing Science Institute/

CSI-R0020 December 2000

Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1

6525 ED Nijmegen

The Netherlands

Many-Sorted Coalgebraic Modal Logic:
a Model-theoretic Study

Bart Jacobs

Department of Computer Science, Univ. of Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
Email: bart@cs.kun.nl URL: http://www.cs . kun.nl/" bart

Abstract

This paper gives a semantical underpinning for a many-sorted modal logic
associated with certain dynamical systems, like transition systems, automata
or classes in object-oriented languages. These systems will be described as
coalgebras of so-called polynomial functors, built up from constants and iden-
tities, using products, coproducts and powersets. The semantical account in-
volves Boolean algebras with operators indexed by polynomial functors, called
MBAOs, for Many-sorted Boolean Algebras with Operators, combining stan-
dard (categorical) models of modal logic and of many-sorted predicate logic.
In this setting we will see Lindenbaum MBAO models as initial objects, and
canonical coalgebraic models of maximally counsistent sets of formulas as final
objects. They will be used to (re)prove completeness results, and Hennessey-
Milner style characterisation results for the modal logic, first established by
RéBiger.

Keywords: Modal logic, coalgebra, Boolean algebra with operators
Classification: 03G05, 03G30, 06E25, 18C50, 68Q55, 68Q60 (AMS’91);
F.4.1 (CR98).

1 Introduction

Coalgebras are simple mathematical structures that can be seen as very general
state-based dynamical systems. Examples include automata and transition systems,
but also programs (as state transformers) and classes in object-oriented languages,
see [13, 25, 20]. Modal logic is a logic for dynamical systems. The connections
between the areas of coalgebra and modal logic [19, 21, 22, 23, 16, 11, 1, 5, 4] form
currently an area of active research.

The following developments constitute the background of the current work.

1. The idea that the functor of a coalgebra determines a certain modal logic was
first put forward by Moss [19]. He developed it for very general functors, but
the idea was applied by others (RéBiger, Kurz, Jacobs, Goldblatt) mostly to
a restricted class of inductively defined “polynomial functors”.

2. The idea to extract coalgebraic structure from maximally consistent sets of
formulas is due to RoBiger [23, 22], and was used by him to prove a complete-
ness result via an extension of what is called a canonical model construction
in modal logic.

mailto:bart@cs.kun.nl
http://www.cs.kun.nl/~bart

3. The idea to use a many-sorted modal logic for coalgebras is due to Venema!,
and was elaborated in [22].

4. The idea to define appropriate Boolean Algebras with Operators (BAOs) for
(single-sorted) coalgebraic modal logic, with suitable back-and-forth trans-
lations between these algebraic models and coalgebraic (dynamical) models,
comes from [12]. There, however, this is elaborated only for polynomial func-
tors without powerset.

The single-sorted approach of [12] involves non-trivial properties of so-called
observer and operator paths of maximal length, with a constant or identity func-
tor as codomain. These “global” properties are not so easy to formulate. In the
many-sorted approach these properties are replaced by relatively simple “local” re-
quirements about the single steps in paths. This makes the many-sorted approach
more convenient, and makes it more suited to handle non-determinism (via the
powerset functor).

This paper applies the semantical approach from [12] to the many-sorted modal
logic from [22]. This involves the move from single-sorted to many-sorted BAOs,
via the introduction of appropriately indexed BAOs. This follows general ideas in
categorical logic (see [10]) where, for example, models of many-sorted predicate logic
are described as Boolean algebras indexed by the sorts. Technically, this indexing
takes the form of an indexed category or, alternatively, of a fibration. Here we shall
use the slightly more elementary notion of indexed category, which, in general, is
a functor of the form ®:B°® —» Cat, for a base category B of sorts (where Cat
is the category of categories). For each sort S € B, the so-called fibre category
®(S) will in our case be a Boolean algebra, so that ® restricts to a functor of the
form B°P — BA,, where BA , is the category of Boolean algebras and finite meet
(T, A) preserving functions between them. Note that these maps need not preserve
all the Boolean algebra structure. A Lindenbaum construction will give rise to
such an indexed BAO, which turns out to be an inital object (Proposition 4.8).
Another basic result will be that each coalgebra gives rise to such an indexed BAQ,
incorporating its logic. This will give a (functorial) translation from dynamic to
algebraic models.

The completeness result of [22] (but also [23]) involves a “canonical model” con-
struction of a coalgebra out of maximally consistent sets of formulas. In our setting
this construction will be generalized (like in [12]) by formulating it in terms of ultra-
filters, and showing that it gives rise to a functor from indexed BAOs to coalgebras,
yielding a translation from algebraic to dynamic models. We single out the crucial
step in this construction (see Definition 5.1), and show how it can be used to give an
alternative translation from indexed BAOs to coalgebras. The latter translation,
when applied to the Lindenbaum model, will give rise to a final coalgebra (The-
orem 5.8). This coalgebra can then be used directly to give a Hennessey-Milner
characterisation result [6]: that two elements of coalgebras are bisimilar if and only
if they satisfy the same formulas (on states), see also [16, 23, 22].

This paper is organised as follows. It starts with a preliminary section introduc-
ing some background information on polynomial functors, on paths between them
and predicate lifting, on bisimulations and bisimilarities, on ultrafilters, and on al-
gebraic and dynamical models of standard modal logic. Then, Section 3 introduces
our reformulation of the many-sorted coalgebraic modal logic used in [22] (using

!Expressed in conversation to RéBiger and the present author.

weak instead of strong nexttime operators), together with the interpretation of this
logic in coalgebras. Section 4 introduces our notion of “many-sorted Boolean alge-
bra with operators” (MBAOQ), as a suitable indexed collection of Boolean algebras
with operators. A sound interpretation of the logic is given in such MBAOs, and its
completeness is proved via a Lindenbaum construction. The latter gives, as usual,
an initial object. Also, a functorial translation from coalgebras to MBAOs is given.
Section 5 focusses on a translation in the reverse direction. Actually, besides an
algebraic analogue of RoBiger’s construction we shall introduce another translation
which corresponds to what is done in standard modal logic and works better in the
sense that it gives rise to an ultrafilter extension result, and to a final coalgebra.

2 Preliminaries

Let Sets be the category of sets and functions. We shall be using a particular
collection of functors T: Sets — Sets, as interfaces of coalgebras. These so-called
Kripke polynomial functors are built up inductively from the identity and constants,
using products, coproducts, exponents (with constants) and powersets. Products of
sets X,Y will be written as X x Y, with projection functions X <~ X x Y 2% Y.
The set 1 is a singleton set, typically written as 1 = {x}. It can be regarded as the
empty product. Coproducts (or disjoint unions, or sums) are denoted by X + Y,
where, for example X +Y = {(z,0) | x € X} U {(y,1) | v € Y}. They come
with coprojection functions X % X + Y <2 Y. The coprojections are injective,
digjoint (in the sense that ki(z) # k2(y), for all # € X and y € Y), and cover
X +Y (ie. each z € X 4+ Y is either in the image of k1 or of ke). The collection
of functions from a set X to Y is denoted by Y¥. For a function f:Y — Z there
is an associated function fX:Y* — Z¥ by g+ f o g. The (covariant) powerset
functor P: Sets — Sets sends a set Y to the set of its subsets P(Y) ={b|bC Y},
and a function f:Y -» Z to the function P(f): P(Y) -+ P(Z) given by image:
b f(b) ={f(y) |y € b}.

2.1. Definition. The collection of Kripke polynomial functors (KPFs) Sets —
Sets that we use arises in the following way.

1. The identity functor Id: Sets — Sets is a KPF.

2. For each non-empty finite set D, the constant functor D: Sets — Sets, given
by X = D and (f: X —Y) > idp, is a KPF.

3. The product X = T1(X) x To(X) of two KP¥s T3, 75 is a KPF.
4. The coproduct X = T1(X) + To(X) of two KPFs T3, T is also a KPF.

5. For a KPF T, and an arbitrary non-empty set D the exponent functor X +»
T(X)P is also a KPF.

6. For a KPF T, the functor X — P(T(X)) is a KPF.

The collection of finite KPFs is constructed in the same way, except that in the
last point the finite powerset Pgy is used—instead of the ordinary one.

Finiteness of KPFs will only play a role in the last part of the paper (Subsec-
tions 5.2 and 5.3). All earlier results hold for all KPFs.

A coalgebra of a (Kripke polynomial) functor 7: Sets — Sets consists of a set
X, usually called the state space or set of states, together with a function ¢: X —»
T(X), giving the operations of the coalgebra. A (homo)morphism of coalgebras
from X 5 T(X) to YV 4 T(Y) is a function f: X — Y between the underlying
state spaces which commutes with the operations: d o f = T(f) o ¢. We write
CoAlg(T) for the resulting category of coalgebras of the functor 7.

2.2. Example. We briefly mention several examples of coalgebras.

(1) Kripke structures and labeled transition systems. A Kripke structure
or a frame consists of a set of “states” X together with a binary “transition” relation
~»on X. If x — 2/, then z' is a successor state of x. Notice that a state may have
multiple successor states (non-determinism). A function f: X - Y between the
state spaces of two Kripke structures (X,-»x) and (¥,-+y) is called a bounded
morphism if it satisfies:

1. 2 —x ' = flx) =y f(2')
2. fla@)=»yy=32' € X.a—x 2" and f(a')=y.

It is not hard to see that a Kripke structure (X, -+) corresponds to a coalgebra
X - P(X), given by = {2’ € X |z - 2'}. And also that bounded morphisms
correspond to homomorphisms of coalgebras. Thus the category of Kripke struc-
tures may be identified with the category CoAlg(P) of coalgebras of the powerset
functor.

A labeled transition system (LTS) is like a Kripke structure but has labels in the
transition relation. If A is a set of labels, then an A-LTS consists of a set of states
X with a transition relation - C X x A x X. Equivalently, it is a coalgebra of the
KPF P(A x Id).

(2) Bounded stacks. In object-oriented programming a class is a basic entity
combining data and associated operations. These data can be described via “at-
tributes” X — D on the state space X of the class; they make certain information
observable. The associated operations, often called methods in this setting, can be
described as acting on (or modifying) the state space; they are naturally represented
as coalgebras. For instance, the attributes and methods of a “bounded stack” (used
in [12]) can be described as:

size: X — {0,1,...,N}
push: X x D —3 X + X
pop: X —» X + (D x X)

These separate operations can equivalently be described via a single map, forming
a coalgebra of a KPF:

(size, push, pop)

{0,1,...,N} x (X +X)P x (X + (D x X))

In this description the types of the operations capture the different possible out-
comes: the push operation of adding an element to the stack may fail or succeed,
depending on whether the stack is full or not. This is reflected in the result type

X + X. Similarly, the pop operation for removing an element may fail or suc-
ceed, depending on whether the stack is empty or not. In the latter case, the pop
operation produces an element (in D) together with a (modified) state.

More information on the coalgebraic description of classes in object-oriented
languages may be found in [20, 9, 7, 14, 11, 24].

(3) Deterministic and non-deterministic automata. Let A be an arbitrary
set, often called an alphabet of symbols in this context. A deterministic automaton
consists of a set of states X with a transition function §: X x A — X and a subset
F C X of final (or halting) states. This function and subset can be combined into
a coalgebra X — X4 x {0,1} of the KPF Id* x {0,1}. Notice that we ignore
initial states, although they could also be described via an additional subset (or
characteristic function).

Non-deterministic automata have a transition function §: X — P(X)4 that can

produce multiple successor states for a single symbol. They correspond to coalgebras
of the functor (P(Id))* x {0,1}.

What we see is that the functor describes the kind of computation that can be
performed by a coalgebra. And associated with this kind of computations there are
appropriate logical operators. This key idea comes from [19]. Making this explicit
for Kripke polynomial functors requires a further structural analysis.

2.1 Paths as sorts
Let T be a KPF which contains another KPF S as ingredient, like in:

=[5

We shall make such occurrences explicit by defining how such an S can be reached
via a “path” p inside 7. In that case we write T ~~5. The path p is a finite
list of symbols 7y, w2, k1, ke, P, ev(d), for elements d € D of sets D occurring as
exponent in 7. Such a path tells us how to find S in 7. Note that paths enable us
to distinguish different occurrences (if any) of S'in 7.

2.3. Definition. Let T and S be KPFs. The relation 7~ is the least relation
generated by the following clauses.

o T «</>\>T, where () is the empty list.

o Ty xTy™tEg for Ty F-g8, and Ty x Th %&£ for T ~E>5.

T1 —Jr—Tg 5JAQS for T1 ’\g\>S, and T1 —Jr—Tg @@S for Tg ,\£\>S

TDEL@Q&S for alld € D and T ~¥>5.

. P(T)&»S for all T7~¥-3.

We shall write Ing(T) for the set of “ingredient” functors® that are used in the
inductive construction of 7'. More precisely, S € Ing(T) if and only if there is a
path 7 ~~§.

>These are called subfunctors in [22] but this terminology may be confusing, since these ingre-
dients of T" have nothing to do with subobject of 7" in a functor category, as the name subfunctor
suggests.

Notice that almost all KPFs, except constant ones, have the identity functor Id
as ingredient.

It is not hard to see that these paths can be composed (via concatenation of
lists): if T} ~=Ty and Ty ~*=Tj, then Ty ~ELsTy. This leads to a category.

2.4. Definition. We shall write KPF for the category with Kripke polynomial
functors as objects and paths between them as morphisms. The empty paths are
identity morphisms, and composition of paths yields composition in KPF.

For a KPF T, we shall write Ing(7T") for the full subcategory of KPF with
ingredients of T' as objects, i.e. with objects from Ing(T).

The following basic constructions will be important later. They involve “predi-
cate lifting” for paths (from [8, 12, 11]).

2.5. Definition. For a path 7 ~¥>¢§ and an arbitrary set X there is a “predicate
lifting” function
, (=) ,
PS(X)) —=P(T(X))

defined on a subset o € S(X) by induction on p:

L] a() =

o aM? = {z|m(z)€ar}
a™? = {z|m(z) € a?}

o oMP = {z|Vy.z=ri(y)=>y€ar}
a™P = {z|Vy.z=ra(y) =y € ¥}

. aev(a)p — {f i f((l) S ap}
o aF* = {B|BCar}.

The next result from [12] gives some elementary properties of predicate lifting.
Proofs are by induction on paths.

2.6. Lemma. 1. The predicate lifting function (—)P: P(S(X)) — P(T(X)) as-
sociated with a path T ~F>S preserves arbitrary meets \. In the special cases
where p is a projection w; or an evaluation step ev(d), all the Boolean structure
s preserved.

2. Predicate lifting preserves composition, in the sense that if Ty ~~T, and
Ty ~4=Ty, then the following diagram commutes.

P — L)
(- l(')

P(T1(X))

3. Predicate lifting is natural: for an arbitrary function f: X - Y and path
T ~2s8 the following diagram commutes.

s — iy
sm*T TT(f)‘l
PSI) — > PIY) .

The last two points allow us to set up appropriately indexed structures via
predicate lifting. It will be investigated further in Section 4.

2.7. Proposition. Let BA, be the category of Boolean algebras and finite meet
preserving maps between them. Each KPF T and set X gives rise to a functor

Ing(T)® —— > BA,

by:
S s P(S(X))

This gives an example of what is called an “indexed Boolean algebra”, because
the functor describes an Ing(T')-indexed collection (P(S(X))) 5 of Boolean algebras,
with appropriate homomorphisms between them.

Actually, the functor T does not really play a role in the previous result—we
could write KPF instead of Ing(T)—but we shall use functors as above with some
more structure related to T below. Therefore we already use this formulation here.

2.2 Bisimulations and bisimilarity

This subsection recalls the definition of bisimulations and bisimilarity via relation
lifting, following [8].

2.8. Definition. Let T be a KPF, and let X, Y be arbitrary sets with a relation
RC X xY between them.

1. The “lifted” relation RT C T(X) x T(Y) is defined by induction on the
structure of the functor T

RA = =4
RId —
R = {(u,v) | R (71 (u), 71 (v)) and R”2 (w2 (u), m2(v))}
RTAT = [(u,v)| Jz,y.u = ki(z) and v = k1 (y) and RT (z,y)
or
Jz,y.u = ko(z) and v = ka(y) and RT2(z,y)}
R™ = {(f.9)|Vde D.R" (f(d),g(d))}
RPT = {(a,B)] Vx € a.3y € B.RT (z,y)

and
vy € 8.3z € a. RT (z,y)}.

2. Assume now two coalgebras ¢: X - T(X) and d:Y — T(Y). A relation
R C X xY is called a bisimulation (w.r.t. ¢,d) if, forall z € X andy € Y,

R(z,y) = R"(c(x),c(y)).

This means that R is closed w.r.t. the operations ¢ and d.

3. The bisimilarity relation > C X x Y w.r.t. coalgebras ¢ and d as before, is
defined as the greatest bisimulation (w.r.t. ¢,d), i.e. as:

r&y < FRC X xY.Ris a bisimulation and R(z,y).

Bisimilar states are observationally indistinguishable.

It is not hard to see that bisimilarity £ C X x X w.r.t. a single coalgebra ¢: X —
T(X) is an equivalence relation. The following is a standard result, see e.g. [26, 25]—
where it occurs w.r.t. a different, but equivalent, definition of bisimulation.

2.9. Proposition. LetT be o KPF which happens to have a final coalgebra z: Z —»
T(Z). For arbitrary coalgebras ¢: X - T(X) and &Y — T(Y), let |.: X — Z
and 13:Y — Z be the corresponding unique coalgebra homomorphisms to the final
coalgebra. Then, for allxz € X and y € Y,

x &y = L(x) =li(y). O

2.3 Ultrafilters

This subsection reviews the basics of ultrafilters. See e.g. [2, 15] for further infor-
mation. Let B be a Boolean algebra, i.e. a poset with finite meets T, A and joins
1,V and a complement operators —. A typical example is the powerset P(A4) of
subsets (also called predicates) of an arbitrary set A. A filter of Bisasubset U C B
which is closed under meets T, A and is also upwardly closed. Thus: T € U, and
z,yelU=>acAyelU,andy > a2 € U=y € U. The least filter containing an
arbitrary subset S C B is the set 49 = M A« | o C S finite}—where /(—) is the
upward closure operation: AS = {z | Jy € S.z > y}.

An wltrafilter of B (or also called a maximal or prime filter) is a filter U C B
which satisfies: for each # € B, either € U or -2 € U, but not both. As a
consequence, | € U. Also, if # V y € U, then either z € U or y € U. Further, if
V is the exclusive disjunction z Vy = (z V y) A =(z A y), then z V y € U implies
either x € U or y € U but not both. We write spec B for the set of ultrafilters of the
Boolean algebra B, and call it the spectrum of B. Ultrafilters in a Boolean algebra
are the algebraic counterparts of maximally consistent theories in logic.

The following result is often useful. Its proof depends on the Axiom of Choice
(in the form of Zorn’s Lemma}, see [15, I, 2.3 and 2.4] or [2, Theorem 9.13].

2.10. Lemma (Ultrafilter Lemma). Let F' be a filter of a Boolean algebra B, with
1 & F. Then there is an ultrafilter U of B with F C U. O

The next result relates filters and ultrafilter. It is used for instance in [18] (see
88 T1I, Lemma 2 and 3). It resembles the “Scott open filter lemma”, see e.g. [27,
Lemma 8.2.2].

2.11. Lemma. Let B be Boolean algebra with o filter F C B. Then
F= ﬂ{UE specB | F CU}.

Proof. The direction (C) is immediate. For the reverse inclusion (2) assume YU €
spec B.F CU =z €U and = € F. We first show that L is then not in the filter
NF U {=z}), because it implies € F. If L > A« for a finite set « C F U {2}
we can distinguish whether —z is in « or not. If it is not, then 1 € F and thus
certainly z € F. If -z € «, write « = {2} U g with f C F and -2 A A3 = L.
Then A 3 <z, and thus z € F.

Now we can apply the previous lemma to the filter §(F U {=2}). It yields an
ultrafilter U with F'' U {-z} C U. But then F' C U and = ¢ U, contradicting the
assumption. O

2.12. Corollary. For an arbitrary element a of a Boolean algebras B,
a=T <= VYU € specB.a e U.

Proof. Because, by the previous lemma,

a=T <= ae{T}=(HUespecB|{T}CU}
< VU especB.aelU. O

2.4 Kripke structures and Boolean algebras with operators

This subsection recalls some standard results ([18, 3]) about the relation between
dynamic models (Kripke structures, see Example 2.2(1)) and algebraic models
(Boolean algebras with operators) of modal logic.

A Kripke structure ¢: X — P(X) induces a modal operator O,: P(X) - P(X)
on the Boolean algebra of predicates on the state space X. It is given by

Oa)={zeX|cx)Ca}={ze X |Va'a =2 =2 €a}

It is not hard to see that O, preserves (arbitrary) meets. It thus forms a Boolean
algebra with operators.

In the reverse direction, a Boolean algebra B with a unary modal operator
0: B — B preserving finite meets, can be turned into a Kripke structure, with state
space spec B: a coalgebra structure cp:spec B — P(spec B) can be defined as

cg(U)={V especB|OHU)CV} ie U—=Ve=DOY)CW

These translations back-and-forth can both be made functorial. Further, there
are canonical comparison maps: a “unit” map ng: B -~ P(spec B) given by b +»
{U | be U} is a “homomorphisms of BAOs”. And for a coalgebra ¢: X — P(X),
there is the canonical embedding : X —» spec P(X) into the “ultrafilter extension”,
given by « ~ {a | v € «}. It is folklore knowledge that ¢ is in general not a
morphism of coalgebras (or Kripke structures), but in case each set ¢(x) is finite
(when ¢ is “image finite”, and the level of non-determinism is limited), it is. We
shall see a similar situation in Subsection 5.2 below.

3 Formulas and rules of many-sorted coalgebraic logic

This section introduces the sort-indexed formulas of many-sorted modal logic, to-
gether with their axioms and rules, following [22].

3.1. Definition. The way we introduce formulas is to define first what are some-
times called raw formulas, and then to single out the well-typed ones via appropriate
rules. The raw formulas are:

p=L]o—plal|nexty|[m]p|[mlp|[s]e] [kl | lev(d]p | [Pl

For each KPF T we form an indexed collection (Formg) Seing(T) of subsets of
formulas as follows. For each sort S € Ing(T') the set Formg contains falsum L and

is closed under implication —:

1 € Formg 9 € Formg

1 € Formg o1 — o € Formg

Further, there are the following closure rules.

p € Formg, p € Formg, @ € Formg @ € Formg

[m:)p € Formg, xs, [ki]p € Formg, 15, [ev(d)]p € Formgo [Py € Formp (s

And, if Id € Ing(T"),
p € Formyp
nexty € Formpg
The formulas of sort Id are most interesting, and will be called state formulas.

We shall use standard abbreviations: - p = ¢ - L, o Vb = - — 1), ¢ A b =
=), o v =(p=Y) A=), oV =(p Vi) A(p Ay, and also
finite generalisations of V, A and V.

The next step is to turn these sort-indexed sets of formulas into a deduction
calculus. Therefore we introduce axioms and rules.

3.2. Definition. Let T be a KPF. For each ingredient S € Ing(T) of T we de-
fine the subset ¢ C Formg of derivable formulas as the least subset satisfying the
following axioms and rules.

For each ingredient S, each Boolean tautology ¢ € Formg satisfies g .
Also, the modus ponens (MP) rule holds for each ingredient S:

Fs =1 Fso
g

Additionally there are requirements for specific ingredients. For a constant functor
A-—using that the set A is finite:

Fa \/aeAa (Det)
For the identity functor (if in Ing(T)):

F1q nexty ¢ —next—y (Det) Fry
F1q next(y — 1) —> (nexty - nextyy) (K) g nexty

10

For a product functor:

}_151 xSz [7(@]30 ARS _'[7(27]_'30 (Det) }ﬂsi ¥ (N)
Fsixs: [mil(e = ¢) = ([mde = [m]y) (K) Fsixs, [m]e
For a coproduct functor:
Fsi+s, (Flm1]L) V (=[s2]L) (DC) b
Fsits, (Dlsd]L) = ([r]w € a[ki—p) (Det) m (N)
Fvtss il =) = (ke = [m]) (K) e
For an exponent functor:
Fso [ev(d)]p ¢ —lev(d)] -, (Det) Fs ¢ (N)
Fso [ev(d)](p =) = ([ev(d)]p = [ev(d)]y) (K) Fsp [ev(d)]yp

For a powerset functor:

s
F Pl =) = ([Ple = [Ply) (K) — ()
pis) [P [Ple = [P S
We shall write MSMLy for this Many-Sorted Modal Logic associated with the func-
tor 7.

Most of the above rules are standard from modal logic, except the rule (DC)—
for disjoint cover—used for coproduct ingredients. It says that an element of a
coproduct comes from precisely one of the components, see the proof of Lemma 3.5
below.

3.3. Lemma. 1. Each operator O € {next,[m;], [k;],[ev(d)],[P]} maps equiva-
lent formulas to equivalent formulas, and preserves finite conjunctions:

TSOOY g FsOT and bsO(pAd) © (Op A OY)
I—— N ¥ £] an
s Op © O s s Uy 14

2. An operator O € {next, [r;], [ev(a)]} preserves all Boolean operations.

Proof. 1. The first two statements follow from the rules (N) and (K) for each
operator. For preservation of A in the third statement we reason as follows.
Since ¢ - (1b — (@ A 1)) is a tautology, we have O(p — (¢ - (p A 1)),
by what we just proved. By applying axiom (K) twice we get Op - (Ot —
O(p A), de. (Op A O) = O(p A 1), For the reverse implication we
derive from the tautology (¢ A) -+ @ that O(¢ A ¥) -» Owp. Similarly,
O(p A1) = O, and thus O(p A) — (Op A O).

2. All Boolean structure is preserved because the operators next, [m;], [ev(d)] pre-
serve negations, by their axiom (Det). O

We conclude this section by showing how the formulas of the logic MSML7 can
be interpreted in a T-coalgebra.

11

3.4. Definition. Let ¢: X — T(X) be a coalgebrafor a KPF T'. For each ingredient
S € Ing(T') there is an interpretation function

Formg [[—> P(S(X))

defined by induction on formulas (using predicate lifting from Definition 2.5):

[Ltls = L
[e—=vls = [els—=[¥]s
[a]la = {a}

[nextoia = ¢ Y[w]r)
[milelsi xs, ([els)™
[[sdelsits. = ([wls)™
[lev(dlelse = ([]s)@

[[Plelpsy = ([els)”.

Sometimes we shall write [—]¢ instead of [—] to make the coalgebra ¢ explicit.

Notice that state formulas are interpreted as subsets of the state space of a
coalgebra.

3.5. Lemma (Soundness). If g ¢ in MSMLy, then ¢ is valid, i.e. [@p]ls =T, in
each T'-coalgebra.

Proof. By induction on the length of the derivation of i-g . We only consider the
(non-standard) rules (DC) and (Det) for a coproduct functor. The rule (DC) holds
because the coprojections k; are injective, disjoint and cover the coproduct:
[=sa]L v =lro] L]

= (L) V(L)

= {z]|Ve.z=rm(x)=>ze L} V{z| Vyz=ro(y =>yel}

= {z|dr.z=m(x)} V{z]|Jy.2 = ka(y)}

= T.
And if =(L") holds of z, i.e. if 3z. 2z = K;(x), then

[-lril=el(z) = —Vao.z=ri(x) = -[e](2)
< Hdr.z=ki(z) and [@](x)
= Vr.z=rx) = [e](x) because dx. 2z = k;(x)
= [lrdel(2). O

The following preservations result is as expected. The proof is by induction.

3.6. Lemma. Consider a KPF T with a homomorphism (X - T(X)) N (v 4
T(Y)) between two of its coalgebras. Then, for each sort S € Ing(T) and formula

@ € Formg,
S(H([#18) = [e]s-
As a consequence, all formulas that are valid in d are also valid in c. O

12

In the remainder of this section we intend to show that bisimilar states validate
the same formulas. This is standard.

3.7. Lemma. Letc: X — T(X) and d:Y — T(Y) be coalgebras for o KPF T, with
a bisimulation R C X xY. Then for each formula @ of MSMLy of sort S € Ing(T),
i.e. for each ¢ € Formg, we have:

R¥(u,0) = ([¢]5(w) & [#]5().

Proof. By induction on the formula . For convenience we omit the superscripts

‘¢’ and ‘d’.

e ¢ = 1. Obvious, since [L] = L.

o 0= — ps. Assume R(u,v) and thus, by (IH), [¢;]s(u) & [¢:]s(v).
Suppose now that [p1 — 2 [s(u), i.e. that [w1 [s(u) implies [@2 [s(u). We
can then derive [p1 — @2] s(v) as follows.

[e1ls(v) = [e1]s(u) = [w2]s(w) = [@2]s(v).
The reverse implication is proved similarly.
e 9 =a,and S = A. Then R*(u,v) implies u =4 v, and thus:
[e]s(v) u=acv=ac[a]s().

e = nexty, and § = Id. Assume R'(z,y), i.e. R(x,y). By induction hypoth-
esis, RT (u,v) implies [¢]r(u) & [4]r(v). Because R is a bisimulation we
have RY (¢(z),c(y)) and thus

[nexty Js(z) = [¢]7(c(@)) & [#]r(c(y)) = [nexti [s(v).

o o =[mtp, and § = 51 x So. Assume R51*52(y, v), so that R (my (u), 71 (v))

and R (my(u), m2(v)). Then
[lmlills(u) = [1s: (mi(uw) & []s. (mi(v) = [[m]y 1s(v).
o 0 =[x, and S = Sy + S. Assume R%X52(u,v), say u = k1 (), v = £1(y)
with R (2,y). Then
el]s(w) = [91s:(z) & [¢]s: () = [m] Is ().
o o =[ev(d)]i), and § = SP. Assume RSV (f, g), so that RS (f(d), g(d)). Then:
[lev(d)]e 1s(f) = [9]s, (f(d) & []s,(9(d)) = [[ev(D]¥ |5 (9)-

e ¢ =[P],and S = PS;. Assume R7%1(a, 3), sothat Vo € a. 3y € 3. RS (2, y)

and Yy € 8.3z € . R (z,y). Then

[P Ts(a) & Vo € a.[$]s, () & vy € 8.[¢]s, () & [P]s()-
The equivalence Q requires some care; we show Q Assume [¢] s, (z) for all
x € a, and let y € 3. Then there is an = € a with R51(z,y). Then [¢]s, (v)
follows from []s, (x) by (IH). O

13

3.8. Corollary. Bisimilar states in T -coalgebras satisfy the same state formulas
Of MSMLT N
&y = Yo € Formpy. [¢]u(z) € [¢luly). O

Later, in Corollary 5.9 we shall see the validity of the reverse implication for

finite KPFs.

4 Many-sorted Boolean algebras with operators

This section introduces the main semantical structures of this paper, namely Boolean
algebras with operators which are indexed by sorts. As explained before, these sorts
will be ingredients of a given functor. And the indexing by sorts is realised by a
functor from sorts to Boolean algebras, like in Proposition 2.7.

4.1. Definition. Let T be a KPF. A Many-sorted Boolean Algebra with Operators
of type T, or a T-MBAO for short, consists of a “sort-indexed Boolean algebra”

Tng(T) —2 -~ BA,

such that

1. the functions ®(7;) and ®(ev(d)) induced by projection and evaluation paths
preserve all Boolean operations;

2. the functions ®(x;) induced by coprojection paths satisfy
P) (L) V -P(ra)(L) = T
“P(k)(L) < 2@(ki)(ma) ¢ R(ki) ().
Together with the following additional structure.

3. For each constant functor A € Ing(T) a map obsg: A — ®(A) satisfying
Vaeca0bsa(a) =T.
4. If the identity functor Id is in Ing(7T"), a mapping next: ®(7") — ®(Id) which

preserves all Boolean operations.

Before we consider examples of MBAQOs, we show how to interpret the many-
sorted modal logic from the previous section in an arbitrary MBAO.

4.2, Definition. Let & = (0:Ing(T)°® — BA,,obs,next) be a T-MBAO as
above. An interpretation [~] in ® of the many-sorted modal logic MSMLy as-
sociated with the functor 7' is introduced via interpretation functions

[-1Is

Formg —————— ®(5)

14

which are defined inductively:
[L]s = 1L
[e—=vls = [els—=1¢ls
[[a]]A = ObSA((Z)
[nexte]ia = next([e]r)
[milpllsixs. = 2(m)([e]s))
[kilplsi+s. = 2(k:)([]s)
[ev(a)lplse = ®(ev(d))([#]s)
[[Plelrs = @P)[¢]s)-

Sometimes we shall write [—]® instead of [—] to make the MBAO & explicit.

[
[
[

4.3. Lemma (Soundness). If g @ in MSMLy, then @ is valid, i.e. [@]s =T, in
each T-MBAO.

Proof. By induction on the length of the derivation of g ¢, using properties 1-4
from Definition 4.1. O

From the formulas of our logic we can also construct a model, in a so-called
Lindenbaum construction. This syntactic model has some special properties, see
Propositions 4.5 and 4.8. It will be used later in Subsection 5.3 to construct final
coalgebras.

4.4. Example. In the logic MSMLy for a KPF T, we define an equivalence relation
~g on Formg, for a path S € Ing(T), by:

def
prsth £ Fsp o .

The resulting quotient Formg/~gs= {{¢|~. | ¢ € Formg} then forms a Boolean
algebra, with obvious structure defined via representatives:

T = iTiws’ _‘i‘Piws = i_“Piws’ i‘Piws /\“MNS = i‘PAwiws’ etc.

In this way we get the object part S > Formg/~g of a functor Ing(T)°P — BA 4, for
which we shall write Lr. For the morphism part of L7, consider a path p =87+ 3,
where each individual step s; is of the form 7, 4, ev(d) or P, say in S; ~¥+S,. We
then define L7 (p): Formg, /~g, — Formg, /~g, by |@|~s, = |[s1] - [$n]p|~s, - In
this way we get a functor which satisfies requirements (1) and (2) from Definition 4.1,
by Lemma 3.3.

The definition of an MBAO requires two special functions. The first one,
namely obss: A — Lp(A) = Forma/~4, is simply a@ + |a].,. The other func-
tion, next: Lp(T) — Lr(Id), is the function Formy/~7 — Formig/~14 given by
| @ |~p = [next |y,

4.5. Proposition (Completeness for MBAOs). If a formula in MSMLy is valid in
all T-MBAQs, then it is derivable.

Proof. If ¢ € Formg is valid in each T-MBAQ, it is in particular valid in the
Lindenbaum model Ly:Ing(T)°? —» BA from the previous example. The inter-
pretation in this model is given by: [¢]s = |¢lvs. Validity of ¢ € Formg means
that @ les = 1T vy, ie. that g @ <> T, and thus that Fg . O

15

We continue with an important construction of MBAQOs, namely from coalge-
bras. The construction is already suggested by Proposition 2.7 and by the interpre-
tation of the logic in a coalgebra, at the end of the previous section.

4.6. Example. Assume a coalgebra ¢: X — T(X) for a KPF T. As we saw in
Proposition 2.7, predicate lifting gives rise to a functor:

Ale)

Ing(T)» —————= BA,

by § = P(S(X)) and p = (~)¥. This functor is actually a T-MBAO, because the
four requirements of Definition 4.1 are satisfied:
1. The predicate lifting functions A(c)(m;) = (=)™ and A(c)(ev(d)) = (—)¥(4)
preserve all Boolean structure, see Lemma 2.6(1).

2. The functions A(c)(k;) = (—)" satisfy the required properties, as shown in
the proof of the soundness Lemma, 3.5.

3. For each constant functor A € Ing(T"), there is a canonical function obsy =
{=}: A= A(c)(4) = P(A). It clearly satisfies \/ . jobsa(a) = T.

4. If Id € Ing(T') then there is function next from A(c)(T) to A(c)(Id), i.e. from
P(T(X)) to P(X), namely

next(a) = ¢ H(a) = {z | c¢(z) € al.

It commutes with all the Boolean operations—Ilike any inverse image function.

Notice that this MBAO A(c) constructed out of the coalgebra ¢ makes use of
the operations used in the interpretation of many-sorted modal logic in a coalgebra,
see Definition 3.4. Indeed, it is not hard to see that the interpretation [¢]° of
a formula ¢ in the coalgebra ¢ is the same as its interpretation [[w]]A(C) in the
associated MBAO A(e).

The next step is to consider morphisms of MBAOQOs.

4.7. Definition. A homomorphism from one T-MBAOs (P, obs, next) to another
(@', 0obs’, next') is a natural transformation o in:

P
Ing(T)°P % BA,
@I
such that for each ingredient S € Ing(T) the component og: ®(S) — ®'(S) pre-

serves (all) the Boolean structure, and such that for all appropriate ingredients, the
following two diagrams commute.

J1d

(A) — 2~ (A) &(1d) 3'(1d)
ObSA\ /Ob . nextT Tnext,
A (T) —5—= ¥(T)

This yields a category, for which we shall write MBAO(T).

16

Now that we have maps between MBAQOs we can establish a familiar property
of Lindenbaum constructions.

4.8. Proposition. The Lindenbaum MBAO Lr from Example 4.4 is an initial
object in the category MBAO(T): for an arbitrary T-MBAQO @ there is a unique
homomorphism [—]: Lr — ®. It corresponds to the interpretation of MSMLy in
D, as described in Definition 4.2.

This view of interpretations as structure preserving maps comes from Lawvere’s
so-called functorial semantics, see [17].

Proof. First we note that the interpretation functions [—Js: Formg — ®(5) from
Definition 4.2 map the equivalence relation ~g from Example 4.4 to equality, since
if Fg @ <> ¢, then ([w]s ¢ [#]s) = T in the Boolean algebra ®(S5), by sound-
ness, and thus [¢]ls = [¥]s. This means that these interpretation functions
Formg — ®(5) give rise to functions L7(S) = Formg/~g —+ ®(S) preserving the
Boolean algebra structure. They form the components of a natural transformation
L1 = @, which is a homomorphism of T-MBAOs. It is not hard to see that it is
the only possible one, because it is completely determined by the requirements in
Definition 4.7. O

4.9. Proposition. The construction ¢ - A(c) from Example 4.6 yields a functor

A

CoAlg(T)? MBAO(T)

Proof. For a morphism of coalgebras (X 5 T(X)) N (Y 4 T(Y)) we obtain a
natural transformation A(f): A(d) = A(c) with components A(f)s at an ingredient
S € Ing(T) defined as S(f)~!. Naturality follows from Lemma 2.6(3). The diagrams
in Definition 4.7 obviously commute. O

Finally, the following point can be mentioned.

4.10. Lemma. A homomorphism o:® = ®' of T-MBAOs preserves interpreta-
tions, in the sense that the diagram

Formg)
ny Ns
2(8) e ¥(8)
commutes for each sort S € Ing(T). O

5 From MBAGOs to coalgebras

In the previous section we have seen a translation from coalgebras to MBAOs. The
aim in this section is to study reverse translations, and their consequences. One such
translation arises as an algebraic reformulation of the construction used by RoBiger
in [22, Definition 5.8], formulated in terms of maximally consistent sets of formulas,
and used for a completeness result for dynamic models (coalgebras) of many-sorted
model logic. Here we shall identify an essential step from this construction (in the

17

next definition) and use it for an alternative translation. The latter can also be used
for a completeness result. It turns out to be more natural because it gives rise to an
ultrafilter extension result (Subsection 5.2) and a final coalgebra (Subsection 5.3).

5.1. Definition. Let ¢ be an MBAO for a KPF T with the identity functor Id as
ingredient. For each sort S € Ing(T") there is a canonical map

spec ®(S) & S (spec ®(Id))

which produces S-structure from ultrafilters. It is defined in the following way.

re(A)(U) = a if and only if obs(a) € U
re(I)(U) = U

re(S1 x S2)(U) = (ra(S1)(®(m)~ 1(U)), re (S2) (®(m2) "1 (U)))
. K1re Sl)(q) 1(U)) if —|(I>(/§,1)(J_) eU
o(S1+5)U) = { Kot (S2) (B(s2) "L(U)) if ~®(ko)(L) € U

|
>
&
m
b
=
&

re(S7)(U)

(S)((ev(d))~H(1))
re(PS)(U) /

(8)()|V € spec®(S) and &(P)~H(U) C V).

These maps rg(S) do the crucial work of extracting the structure of the functor
S from ultrafilters U € ®(5). It is not hard to see that they are well-defined. In the
constant functor case we use requirement (3) from Definition 4.1, which says that
VaerbsA(a) = T, and thus an element of an ultrafilter U € ®(A). As a result,
there is precisely one a € A with obs(a) € U. In the identity, product and exponent
case we use that the functions next, ®(m;) and ®(ev(a)) preserve all Boolean oper-
ations, so that their inverse image functors map ultrafilters to ultrafilters. In the
coproduct case we use the disjoint cover property —®(r1)(L) V ~®(ke)(L) =T € U
to make a case distinction. In the case =®(k;)(L) € U, we then use ~®(x;)(~a) € U
if and only if ®(k;)(a) € U, in order to see that ®(k;)™1(U) is an ultrafilter.

These maps re(S) are used to construct coalgebras.

I
—~—
-

ks

5.2. Definition. Consider a T-MBAQ & as above. It gives rise to two T-coalgebras,
one with state space spec ®(T') and one with spec ®(Id).

1. RoBiger’s construction [22, Definition 5.8] yields a coalgebra:
re (T T (next™?
R(®) = (spec o(T) % T (spec ®(1d)) g T (spec <I>(T)))

2. Alternatively, one can define:

C(®) = (next™! re(T)

spec (Id) ————— spec &(T') ————— T'(spec ®(1d)))

By construction, next™! is a homomorphism of coalgebras C(®) — R(®).

18

5.3. Proposition. Both the mappings ® ~ R(®P) and ¢ > C(P) are functorial,
and next™' is a natural transformation between them:

C
m
MBAO(T) U next-1 _ CoAlg(T)°?
_/
R

Proof. Let 0: ® —» ¥ be a homomorphism of T-MBAQOs. One can define R on a
morphism o as o ! and C as al—dl. This yields homorphisms of coalgebras, because
for each ingredient S € Ing(T") the following diagram commutes.

S (spec ¥(Id)) 51) S (spec @(Id))
rq,(S)T TI’CI)(S)
spec U(5) - spec ®(S5)
T3

The proof proceeds by induction on the structure of 5, and is straigthforward except
for the powerset case. So assume S = PS; and U € spec ¥(S). Then:

(S(oia) o ra(9)) (M) = {Si(oa)(ra (S)(V)) | T(P)~1(T) C V)
W {re ()05 (V) | B(P) (V) C V)
2D {re(S)(W) | B(P) (o5 (U) C W)
= (re(8) 0057)(U).

The inclusion-part (C) of the marked equation Qs obvious, so we concentrate
on (D). Let therefore W € spec ®(S;) be given with ®(P) 1 (o5'(U)) € W. In
order to get an appropriate V, we follow the lines of the proof of Lemma 2.11, and
consider the filter

F=}¥(P)""(U) Uas (W)).

The first step is to show that L ¢ F. If not, é.e. if L € F, then there are z &
U(P)"1(U) and y € W with L = 2 A 0s,(y). Then z < og, (—y), which yields
¥(P)(x) < ¥(P)(as,(~y)) = 05((P)(-y)), and thus os(®(P)(-y)) € U. But
then —~y € ®(P)~*(a5"(U)) C W, which contradicts y € W.

Lemma 2.10 now yields an ultrafilter V' € spec®(S;) with ¥(P)~}(U) C V
and og, (W) € V. The latter yields W = agll(V), and thus shows that V' is the
ultrafilter we are looking for. The inclusion-part (C) of W = 0511 (V) is obvious. For
(D), notice that if y € agll(V) but y € W, then -y € W, and thus -y € ogll(V).
This is impossible because agll(V) is an ultrafilter. O

From a logical perspective, the C functor takes states of the coalgebra that is
constructed to be ultrafilters of state formulas. This is more natural than the R
functor, and clearly in line with the standard approach in modal logic, see Subsec-
tion 2.4. Also, it gives rise to the results below.

19

5.1 Completeness

Towards the end of Example 4.6 we saw that the interpretation of a formula in a
coalgebra ¢ is the same as its interpretation in its associated MBAO A(¢). The
relation between interpretations in an MBAO @ and the translations R(®) and
C(®) are more complicated, but follows a standard pattern.

5.4. Lemma. Let ® be a T-MBAO, and ¢ a formula of sort S € Ing(T). Then for
an ultrafilter U € spec®(S),

@)

o]t e U &L r($)U) € [9]5® £ S(next 1) (re(S)(1)) € [0]R'.

Proof. The second equivalence <(£> follows directly from Lemma 3.6, so we con-

centrate on & It is proved by induction on the structure of .
o The case ¢ = L is obvious, for each sort.
o Similarly, if ¢ = @1 — 9, then
[p1 = @218 =[e1]5 = [p2]5 €U
< [¢1]% €U implies [p2]2 € U
TH N
LN re (SYU) € []]g@) implies re (SY(U) € [¢2]]C(q))
= re(S)(U) € [p1 = w2]9
o If p=a € A, when S is a constant functor A, we get
[¢]% =obss(a) €U = ra(S)H(U) =ae {a} =[]
o If o = nexty) when S is the identity functor Id, then:
[nexty |§ = next([4]7) € U
< [¥]% € next—1(U)
TH
oD (next (U) = C@)(V) € [w]"
= EU) =U @ ([¢17") = ey 5.

o If ¢ = [m;]yp when S is a product functor S; x Sa, we have:
[[rdy e = @(r)([#]8) €U
= [4]8 € (r)"(U)
EL g (8)(@m) (V) € [¢15"
= 1e(S)(U) = (re(S1)(2(m1) 1)), re(S2)(2(m2) ~H(U)))
€ ([#1™)™ = [mlw 15
o If © = [#4]1p when S is a coproduct functor Sq + Sa:

[[rde 1S = ®(s)([]8,) €U
Lh @ (ki)(L) € U implies [¢]2, € (k)L (U)
S @ (ky)(L) € U implies rg (S)(® (k)1 (U)) € [$]5®
= re(S)(U) € ([#1E") = [s 15"

20

The marked implication (:*)> obviously holds. For <(*:), we distinguish whether
—®(k;}(L) € U or not. In the first case we are done, and in the second case
we know ®(k;)(L) € U and thus ®(x;)([¢]%) € U because ®(x;)(L) <
® (k) ([¥]E,) by montonicity of ®(s;).

o The case when ¢ = [ev(d}]+ is much like the projection case, and will therefore
be skipped.

o Finally, if ¢ = [P]y we use Lemma 2.11:

[[P1]E = (P) ([]ps) €U
= [¥]%s € B(P)H(U) =V € spec®(PS) | &(P)~ (U) C V'}
< VV €spec®(PS). &(P)~1(U) CV implies [¢]pg € V
LU vV € spec ®(PS). &(P)~1(U) C V implies ra(PS)(V) € [$]52
= re(S)(U) = {re(PS)(V) | 2(P)"(U) CV} C [¢]ps
= re(S)(U) € ([#156N7 = [Pl] O

This technical lemma is crucial for the following result from [22].

5.5. Theorem (Completeness for coalgebras). If a formula in MSMLy is valid in
all T'-coalgebras, then it is derivable.

The proof in [22] makes use of the coalgebra R(L7) obtained by applying the
functor R to the Lindenbaum MBAO L7 from Example 4.4. As we show, also
C(L7) can be used.

Proof. Assume that a formula ¢ of sort S € Ing(T) holds in each coalgebra. In
particular this means that both [[ga]]?wﬂ =T and [[ap]]ng) = T. From either
of those facts one can conclude that ||, = [[<p]]§T € U, for every ultrafilter
U € spec L1(S), by Lemma 5.4. Hence |p|., =T |~,, by Corollary 2.12, which

says that g ¢ ¢> T, and thus that Fg . O

5.2 Ultrafilter extensions for coalgebras

In this subsection we establish an ultrafilter extension result for coalgebras of finite
KPFs. Recall that for an arbitrary set X, there is the so-called ultrafilter extension
map ex:X -+ specPX sending z € X to the principal ultrafilter Mz} = {a €
PX |z € a}. Our aim is to show that if X carries a coalgebra structure, then this
€ 18 a homomorphism of coalgebras.

5.6. Lemma. Let c: X — T(X) be a coalgebra for o finite KPF T, with associated
MBAO A(c) and canonical map ra)(S) as in Definition 5.1. For each sort S €
Ing(T) the following diagram commutes.

. rage) () i
specP(S(X)) = spec A(c)(S) S(spec A(c)(Id)) = S (specP(X))
:% S(ex)
S(X)

21

