A Case Study in Class Library Verification: Java’'s Vector Class
M. Huisman, B.P.F. Jacobs, J.A.G.M. van den Berg
Computing Science Institute/

CSI-R0007 March 2000

Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1

6525 ED Nijmegen

The Netherlands

A Case Study in Class Library Verification:
Java’s Vector Class

MARIEKE HUISMAN, BART JACOBS, JOACHIM VAN DEN BERG

Computing Science Institute, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

{marieke,bart, joachim}@cs.kun.nl

Abstract This paper presents a verification of an invariant property for
the Vector class from java’s standard library {API). The property says
(essentially) that the actual size of a vector is less than or equal to its
capacity. It is shown that this “safety” or “data integrity” property is
maintained by all methods of the Vector class, and that it holds for all
ohjects created by the constructors of the Vector class.

The verification of the Vector class invariant is done with the proof
tool pvs. It is based on a semantics of java in higher order logic. The
latter is incorporated in a special purpose compiler, the LOOP tool, which
translates JAVA classes into logical theories. It has been applied to the
Vector class for this case study.

The actual verification takes into account the object-oriented character of
Java: (non-final) methods may always be overridden, so that one cannot
rely on a particular implementation. Instead, one has to reason from
method specifications in such cases.

This project demounstrates the feasibility of tool-assisted verification of
non-trivial properties for non-trivial Java classes.

Keywords: Java, invariant, program verification, specification.
Classification: 68P05, 68Q55, 68Q60, 68Q65 (MSC 2000);
D.1.5,D.2.4, F.3.1, F.3.2, F.4.1, E2 (CR'98).

1 Introduction

One of the reasons for the popularity of object-oriented programming is the
possibility it offers for reuse of code. Usually, the distribution of an object-
oriented programming language comes together with a collection of ready-to-use
classes, in a class library or API (Application Program Interface). Typically,
these classes contain general purpose code, which can be used as basis for many
applications. Before using such classes, a programmer usually wants to know how
they behave and when their methods terminate normally or throw exceptions.
One way to do this, is to study the actual code. This is time-consuming and
requires understanding all particular ins and outs of the implementation—which
may even be absent, for native methods. Hence this is often not the most efficient
way. Another approach is to study the (informal) documentation provided. As
long as this documentation is clear and concise, this works well, but otherwise
a programmer is still is forced to look at the actual code.

One way to improve this situation is to formally specify suitable properties
of standard classes, and add these specifications as annotations to the documen-
tation. Examples of properties that can be specified are termination conditions
(in which cases will a method terminate normally, in which cases will it throw
an exception), pre-post-condition relations and class invariants. Once sufficiently
many properties have been specified, one only has to understand these proper-
ties; and then there is no need anymore to study the actual code, in order to be
able to use a class safely.

Programmers must of course be able to rely on such specifications. This in-
troduces the obligation to actually verify that the specified properties hold for
the implementation. Even stronger, specifications can exist independently of im-
plementations, as so-called interface specifications. As such they may describe li-
brary classes in a component-oriented approach, based on interface specifications
regulating the interaction between components. In such a “design by contract”
scenario the provider of a class implementation has the obligation to show that
the specification is met. And naturally, every next version of the implementation
should still satisfy the specification, ensuring proper upgrading.

Thus, verification of class specifications is an important issue. This paper
describes a case study verification of one particular library class, namely Vector,
which is in the standard Java distribution [AG97,GJS96,CLK98]. The Vector
class basically consists of an array of objects, which is internally replaced by an
array of different size, according to needs!. The essence of the Vector invariant
that is proven is that the size of a vector never exceeds the length of this internal
array. Clearly, this is a crucial safety property.

The choice for the Vector class in this verification is in fact rather arbitrary:
it serves our purposes well because it involves a non-trivial amount of code
(including the code from its surrounding classes from the library), and gives rise
to an interesting invariant. However, other classes than Vector could have been
verified. And in fact, there are many classes in the Java API, like StringBuffer
using an array of characters with a count, for which a similar invariant can
be formulated. Thus the property that we consider is fairly typical as a class
invariant.

For the specification of the Vector invariant (and many pre- and post-
conditions) we make use of the experimental behavioural interface specifica~
tion language JML (short for Java Modeling Language) [LBRI8], see [Vec]. Its
syntax is much like JavA’s, and mostly self-explanatory. JML is also used for a
follow-up specification and verification project focussing on the entire JAVAC-
ARD API [PBJO0] (which is much smaller than the standard yava API). In these
projects, the JML specifications are added post hoc, after the JAVA code has al-
ready been written. It would have been much more efficient (for us, as verifiers)
if the JML specifications would have been written together with (or even before)
the JavA implementation. One of the main points behind JML (and this paper) is
that writing such specifications at an early stage really pays off. It makes many

! Arrays in JAVA have a fixed size; vectors are thus useful if it is not known in advance
how many storage positions are needed.

of the implicit assumptions underlying the implementation explicit (e.g. in the
form of invariants), and thus facilitates the use of the code and increases the reli-
ability of software that is based on it. Furthermore, the formal specifications are
amenable to tool support, for verification purposes. It is our hope that certainly
for crucial classes in standard libraries the use of specification in languages like
JML (and subsequent verification) becomes standard. For such library classes,
the additional effort is justifiable.

This verification project makes use of two tools: the pvs [ORRT96,0RSvH95]
proof tool?, and the LooP [JBHT98 HHIT98,LOO] translation tool. The latter
is a compiler which translates JAVA classes® into logical theories in the higher
order logic of pvs, in the following way.

|
user statements

|

JAVA | LOOP PVS PVS QED
*— . _— e]
classes | compiler theories proof tool
A
JML classes
.

The generated logical theories contain definitions, embodying the semantics of
the classes, plus special lemmas that are used for automatic rewriting. These
logical theories can be loaded into the proof tool, together with the so-called se-
mantical prelude, which containsg basic definitions, like in Section 3 below. Sub-
sequently, the user can state desired properties about the original JAVA classes
and prove these on basis of the semantical prelude and the generated theories.
For example, a user may want to prove that a method terminates normally,
returning a certain value.

The L.OOP tool makes use of a semantics of JAVA in higher order logic. This
paper includes a description of a relevant part of this semantics, see Section 3.
More information can be obtained from [JBHT98 BHJP00,HJ00b,HJ00a,Hui00].

An important aspect of the verification of the Vector invariant is the exten-
sive use we have made (in Pvs) of a Hoare logic that can handle abrupt termina-~
tion (caused e.g. by an exception or a return), see [HJOOb] and Section 4. This
Hoare logic has various “correctness modes”, not only for normal termination as
in standard Hoare logic, but also for abrupt termination caused by an exception,
return, break or continue. These different modes are needed for reasoning about
the frequently occurring abrupt terminations in JAVA programs. In its actual use,
the extended Hoare logic is very similar to traditional Hoare logic, involving for
example variants and invariants to handle while and for loops.

The LOOP tool is currently being extended to translate also JML specifi-
cations. They will give rise to specific proof obligations in Hoare logic. The

2 The LOOP tool can also produce output for the proof tool ISABELLE [Paud4], but that
is not relevant for this verification because it is done with pvs.
3 Currently, the translation covers basically all of sequential JavA (without threads).

JML specifications used in this paper have been translated by hand, and not
automatically, into corresponding Hoare sentences (in pvs), which are used in
verifications, see Section 5.

This paper presents state-of-the-art work in (object-oriented) program spec-
ification and verification, using modern tools both for compilation and for rea-
soning. The work is not about programs written is some clean, mathematically
civilised, abstract programming language, but about actual JAVA programs with
all their messy (semantical) details. We consider it a challenge to be able to
handle such details. This is the largest case study done so far within the Loor
project. It demonstrates the feasibility of the formal approach to software devel-
opment, as advocated in the LOOP project.

There are relatively few references on formal verification for object-oriented
languages. Specific logics for reasoning about abstract object-oriented programs
are proposed in [Boe99,AL.97.Lei98]. When it comes to Java, one can distinguish
between (1) reasoning about Java as a language, and (2) reasoning about pro-
grams written in Java. In the first category there is work on, for example, safety of
the type system [ON99,Sym99], or bytecode verification [Pus99,Qia99,HBL99).
But the present paper falls in the second category. Related work in [PHM99)
does not, in its current state of development, cover abrupt termination (caused,
for instance by exceptions). Being able to reason also about abrupt termination
(see also [HJOOD]) is crucial for the verification in this paper.

The paper is organised as follows. It starts with a brief introduction to the
(standard) type theoretic language that will be used (instead of the possibly
less familiar language of Pvs). Section 3 explains some basic aspects of the
semantics of JAVA in this type theory. It forms the basis for our extended Hoare
logic in Section 4. Section 5 gives a brief introduction to JML, explaining how
specifications give rise to proof obligations in Hoare logic. Then, Section 6 starts
the Vector class case study, by first introducing the Vector class in JAVA and
its translation into pvs. Then it explains the invariant, and its verification by
discussing several typical Vector methods with their JML specification in detail.
Finally, Section 7 discusses conclusions and experiences.

2 Type theory

The semantics for JAVA on which the verification effort of this paper relies is
sketched in Section 3. This semantics is described in a simple type theory with
higher order logic. Using this general type theory and logic enables us to abstract
away from the particulars of the language of Pvs and make this work more
accessible to readers unfamiliar with pvs.

Our type theory is a simple type theory with types built up from:

type variables;

— type constants nat, bool, string (and some more);

— exponent types ¢ — T,

— labeled product (or record) types [laby: o1,... ,lab,: 0,];
labeled coproduct (or variant) types {laby: a1 | ... | lab,: op };

for given types o,7,01,...,0,, and with all labels lab; within one {(co)product
type distinct.

For exponent types the standard notations for lambda abstraction \z: 0. M
and application NL are used. Given terms M;: o;, there exists a labeled tuple
(laby = M, ... ,lab, = M,) in the labeled product type [laby: o1,... ,laby,: 0,].
Given a term N: [laby: o1, ..., lab,: 0,] in such a product, N.lab; denotes the
selection term of type o;. Terms for labeled coproducts are formed as follows.
Given a term M : o; there exists a tagged term lab; M, inhabiting the labeled
coproduct type {laby: oy | ... | lab,: 0, }. For N: {laby: a1 | ... | lab,: 0y },
and n terms L;(z;): 7, where z;: 0, is free in L;, there is a case term

of type 7, which binds the variables z;. It reduces to L;[M/z;] if N is of the form
lab; M. The introduction and elimination terms for exponents, labeled products
and labeled coproducts satisfy standard (3)- and (n)-conversions.

New types can be introduced via definitions, as in:

liftfa] : TYPE %' {bot: unit | up: a}
where unit is the empty product type []. This lift type constructor adds a bottom
element to an arbitrary type, given as type variable «.

Formulas in higher order logic are terms of type bool. The connectives A
(conjunction), V (disjunction), D (implication), = (negation, used with rules of
classical logic) and constants true and false are used, together with the (typed)
quantifiers Va: 0. and dx: 0., for a formula ¢. There is also a conditional
term IF ¢ THEN M ELSE N, for terms M, N of the same type.

3 Java semantics

This section presents the basic ingredients of the semantics for JAVA as used for
the Vector invariant verification. It describes the semantics of statements and
expressions, the underlying memory model and the formalisation of references
(including arrays). Inheritance does not play an important réle in the Vector
class, so we will not discuss its type theoretic semantics here, and refer the
interested reader to [HJ00a] instead.

3.1 Statements and expressions

In classical program semantics the assumption is that statements either termi-
nate normally, resulting in a successor state, or do not terminate at all, see
e.g. [Bak80, Chapter 3] or [Rey98, Section 2.2]. In the latter case one also says
that the statement hangs, typically because of a non-terminating loop. Hence,
statements may be understood as partial functions from states to states. Writ-
ing Self as a type variable for the state space, statements can be seen as “state
transformer” functions of the form:

— TYPE THEORY

Self ————— { hang: unit | norm: Self }

This classical view of statements turns out to be inadequate for reasoning about
JAVA programs. JAVA statements may hang, or terminate normally (like above),
but they may additionally “terminate abruptly” (see e.g. [GJS96,AG97]). Abrupt
termination may be caused by an exception (typically a division by 0), a re-
turn, a break or a continue (inside a loop). Abrupt (or abnormal) termination is
fundamentally different from non-termination: abnormalities may be temporary
because they may be caught at some later stage, whereas recovery from non-
termination is impossible. Abnormalities can both be thrown and be caught, ba-
sically via re-arranging coproduct options. Abrupt termination affects the flow
of control: once it arises, all subsequent statements are ignored, until the abnor-
mality is caught, see the definition of composition “;” later in this section. From
that moment on, the program executes normally again.

Abrupt termination requires a modification of the standard semantics of
statements and expressions, resulting in a failure semantics, as for example
in [Rey98, Section 5.1]. Therefore, in our approach, statements are modeled
as more general state transformer functions

—TYPE THEORY

Self — =2t StatResult[Self] def {hang : unit

Inorm : Self
| abnorm : StatAbn[Self] }

The first option hang captures the situation where a statement hangs. The second
option norm occurs when it terminates normally, resulting in a successor state.
The final option abnorm describes abrupt termination, yielding a value of the
type StatAbn (for Statement Abnormal). It can be subdivided into four parts:

—TYPE THEORY

StatAbn[Self] : TYPE &'
{excp : [es: Self,ex: RefType]
rten ;o Self
| break : [bs: Self, blab: lift[string]]
| cont : [cs: Self,clab: lift[string]] }

These four constituents of StatAbn typically consists of a state in Self together
with some extra information. An exception abnormality consists of a state to-
gether with a reference to an exception object. The reference is represented as
an element of the type RefType, which is described below (see Subsection 3.3).

A return abnormality only consists of a (tagged) state, and break and continue
abnormalities consist of a state, possibly with a label (given as string).

A similar reasoning applies to expressions. In classical semantics, expressions
are viewed as functions of the form:

—TYPE THEORY

Self ———— = Out

The type Out is the type of the result. This view is not quite adequate for our
purposes, because it does not involve non-termination, abrupt termination or
side-effects. As statements, expressions in JAVA may hang, terminate normally or
terminate abruptly. If an expression terminates normally, it produces an output
result (of the type of the expression) together with a successor state (since it
may have a side-effect). If it terminates abruptly, this can only be because of an
exception (and not because of a break, continue or return, see [GJS96, §15.5]).
Hence an expression of type Out is (in our view) a function of the form:

— TYPE THEORY

e
Self* ExprResult[Self, Out] def {hang : unit

Inorm : [ns: Self,res: Out]
| abnorm : ExprAbn[Self] }

Notice that the second option norm occurs when an expression terminates nor-
mally, resulting in a successor state together with an output result. The third
option abnorm describes abrupt termination—because of an exception—ifor ex-
pressions:

—TYPE THEORY

ExprAbn[Self] : TYPE %'
[es: Self,ex: RefType]

To summarise, in our formalisation statements are modeled as functions from
Self to StatResult[Self], and expressions as functions from Self to ExprResult[Self,
Out], for the appropriate result type Out. This abstract representation of state-
ments and expressions as “one entry /multiexit” functions (terminology of [Chr&4])
forms the basis for the work presented here. It is used to give a (compositional)
meaning to basic programming constructs like composition, if-then-else, and
while. For example, the statement composition operator “;” of JAVA is translated
into “;” in type theory. Thus, for JAVA statements s, t,

[s;t] = [s:[t]

where the definition of ; in type theory is as follows.

— TYPE THEORY

s,t: Self — StatResult[Self]
def

s;t : Self — StatResult[Self] =
Az: Self. CASE s« OF {
| hang = hang
[normy = ty
| abnorma ~ abnorma }

Thus if statement s terminates normally in state x, resulting in a next state
y, then (s;t)z is ty. And if s hangs or terminates abruptly in state x, then
(s;t)x is sz and t is not executed.

A typical example of an abruptly terminating statement in JAVA is the return
statement. When a return statement is executed, the program immediately exits
from the current method. A return statement may have an expression argument;
if o, this expression is evaluated and returned as the result of the method. The
translation of the JAVA return statement (without argument) is,

[return] = RETURN

where RETURN is defined as:

—TYPE THEORY

RETURN : Self — StatResult[Self] 4 \a: Self. abnorm(rtrn x)

This statement produces an abnormal state, which will be caught at the end of a
method body. The translation of a return statement with argument is similar,
but more subtle. First the value of the expression is stored in a special local
variable, and then the state becomes abnormal, via the above RETURN.

To recover from this return abnormality, functions CATCH-STAT-RETURN
and CATCH-EXPR-RETURN are used. In our translation of JAVA programs, a
function CATCH-STAT-RETURN is wrapped around every method body that
returns void. First the method body is executed. This may result in an abnormal
state, because of a return. In that case the function CATCH-STAT-RETURN
turns the (abnormal) state back to normal again. Otherwise, it leaves the state
unchanged.

— TYPE THEORY

s: Self — StatResult[Self]
def

CATCH-STAT-RETURN(s) : Self — StatResult[Self] =

Ax: Self. CASE sa OF {

| hang = hang

[normy = normy

| abnorm a — CASE a OF {
| excp e + abnorm(excp e)
| rtrn z = norm z
| break b =+ abnorm(break b)
| cont e = abnorm(contc) } }

If a method returns a value, a function CATCH-EXPR-RETURN is used, in-
stead of CATCH-STAT-RETURN. Recall that the result value of a method is
stored in a special variable. This function CATCH-EXPR-RETURN turns the
state back to normal and, in that case, returns the output that is held by this
special variable.

Below, a similar function CATCH-CONTINUE is used, which catches an ab-
normal state, because of a continue, and turns it back to normal. Since continue
statements can only occur in loops, with the effect that control skips the rest of
the loop’s body and starts re-evaluating (the update statement, in a for loop,
and) the Boolean expression which controls the loop, this function is used in the
semantics of loops.

Finally, there is one technicality that deserves some attention. Sometimes
an expression has to be transformed into a statement, which is only a matter
of forgetting the result of the expression. However, in our formalisation this
transformation has to be done explicitly, using a function E2S.

— TYPE THEORY

e: Self — ExprResult[Self, Out]

E25(e) : Self — StatResult[Self] L'
Ax: Self. CASE ex OF {
| hang = hang
[normy + norm(y.ns)
| abnorma ~ abnorm(excp(es = a.es,ex = a.ex)) }

In the last line an expression abnormality (an exception) is transformed into a
statement abnormality.

A more detailed elaboration of this semantics can be found in [HJ00b,Hui00].

3.2 Memory model

This section starts by defining memory cells for storing JAVA objects and arrays.
They are used to build up the main memory for storing arbitrarily many such
items. This object memory OM comes with various operations for reading and
writing. More information on this memory model is given in [BHJP0Q].

Memory cells A single memory cell can store the contents of all the fields from
a single object belonging to an arbitrary class. The (translated) types that the
fields of objects can have are limited to byte, short, int, long, char, float, double,
bool and RefType (which is defined below in Subsection 3.3). Therefore a cell has
entries for all of these. The number of fields for a particular type is not bounded,
so infinitely many are incorporated in a memory cell:

— TYPE THEORY

ObjectCell : TYPE &'

[bytes: CellLoc — byte,
shorts: CellLoc —» short,
ints: CellLoc — int,
longs: CellLoc — long,
chars: CellLoc — char,
floats: CellLoc — float,
doubles: CellLoc — double,
booleans: CellLoc — bool,
refs: CellLoc — RefType|

where CellLoc: Type 4 hat. Our memory is organised in such a way that each

memory location points to a memory cell, and each cell location to a position
for a particular label inside the cell.

Storing an object belonging to a class with, for instance, two integer fields
and one Boolean field in a memory cell is done by (only) using the first two
values (at 0 and at 1) of the function ints: CellLoc —» int and (only) the first
value (at 0) of the function booleans: CellLoc — bool. Other values of these and
other functions in the object cell are irrelevant, and are not used for objects
belonging to this class. Enormous storage capacity is wasted in this manner,
but that is unproblematic. The LOOP compiler attributes these cell positions
to (static) fields of a class, local variables and parameters. These cell positions
are hidden away from the user.

Object memory Object cells form the main ingredient of a new type OM
representing the main memory. It has a heap, stack and static part, for storing
the contents of respectively instance variables, local variables and parameters,
and static (also called class) variables:

10

— TYPE THEORY

OM : TYPE %

[heapmem: MemLoc — ObjectCell,

heaptop: MemlLoc,

stackmem: MemLoc — ObjectCell,

stacktop: MemLoc,

staticmem: MemLoc — [initialised: bool, staticcell: ObjectCell] |

For reasons of abstraction we define MemLoc: Type 4 hat. The entry heaptop

(resp. stacktop) indicates the next free (unused) memory location on the heap
(resp. stack). These numbers change during program execution (in type theory).
The LOOP compiler assigns locations (in the static memory) to classes with
static fields. At such locations a Boolean initialised tells whether static initiali-
sation has taken place for this class. One must keep track of this because static
initialisation should be performed at most once.

Reading and writing in the object memory Accessing a specific value in
an object memory x: OM, either for reading or for writing, involves the following
three ingredients: (1) an indication of which memory (heap, stack, static), (2) a
memory location (in MemlLoc), and (3) a cell location (in CellLoc) giving the
offset in the cell. These ingredients are combined in the following variant type
for memory addressing.

—TYPE THEORY

MemAdr : TYPE %'

{ heap: [ml: MemLoc, cl: CellLoc]
| stack: [ml: MemLoc, cl: CellLoc]
| static: [ml: MemLoc,cl: CellLoc] }

For each type typ from the collection of types byte, short, int, long, char, float,
double, bool and RefType occurring in object cells (see the definition of Object-
Cell), there are two operations:

— TYPE THEORY

get_typ(x,m): typ for z: OM,m: MemAdr
puttyp(z,m,u): OM for z: OM,m: MemAdr,u: typ

These functions are described in detail only for typ = byte; the other cases are
similar. Reading from the memory is easy: for z: OM, m: MemAdr,

11

— TYPE THEORY

get_byte(z, m) 4f CASE m OF {
| heap £ = ((x.heapmem(£.ml)).bytes)(€.cl)
| stack £ = ((x.stackmem(£.ml)).bytes)(£.cl)
| static € — ((x.staticmem(€.ml)).staticcell.bytes)(£.cl) }

The corresponding write-operation uses updates of records and also updates of
functions; both these use a ‘WiTH’ notation, which is hopefully self-explanatory:
for z: OM, m: MemAdr and u: byte,

—TYPE THEORY

put_byte(x, m,u) def

CASE m OF {
[heap £~ WITH [((x.heapmem(£.ml)).bytes)(£.cl) = u]
| stack £ = = WITH [((x.stackmem(£.ml)).bytes)(£.cl} = u]
| static € = x WITH [((«.staticmem(£.ml)).staticcell.bytes)(£.cl) = u] }

The various get- and put-functions (18 in total) satisfy obvious commutation
equations, like:
— TYPE THEORY

get_byte(put_byte(x,m,u),n) = IF m = n THEN u ELSE get_byte(z,n)
get_byte(put_short(z, m,v),n) = get_byte(z,n).

Such equations (81 together) are used for auto-rewriting: whenever these equa-
tions can be applied, the back-end proof-tool simplifies goals automatically.

3.3 Formalising references to objects and arrays

Reference types are used in JAVA for objects and arrays. A reference may be null,
indicating that it does not refer to anything. In our model, a non-null reference
contains a pointer ‘objpos’ to a memory location (on the heap, see Section 3.2),
together with a string ‘clname’ indicating the run-time type of the object, or
the run-time elementtype of the array, at this location, and possibly two natural
numbers describing the dimension and length of non-null array references. This
leads to the following definition.

—TYPE THEORY

RefType : TYPE

{ null: unit | ref: [objpos: Memlboc,
clname: string,
dimlen: lift[[dim: nat,len: nat]]]}

12

Based on this type RefType, various operations on references can be for-
malised in type theory, e.g. comparing two references is translated as

[r1 == r2] & [r1]==[r2]

where == is defined in type theory, following [GJS96, §§ 15.20.3], as follows.

— TYPE THEORY

r1,72: OM — ExprResult{[OM, RefType] +

ry==rg : OM — ExprResult{OM, bool] def
Ax: OM.
CASE 7« OF {
| hang = hang
| normy
CASE 73 (y.ns) OF {
| hang = hang
| norm z +>
norm (ns = z.ns,
res = CASE y.res OF {
[null —
CASE z.res OF {
[null = true
| ref s+ false }
| refr
CASE z.res OF {
| null = false
| ref s — r.0bjpos = s.objpos } })
| abnorm b ~ abnormb }
| abnorm @ ~ abnorma }

For arrays in particular, appropriate operations, such as accessing and stor-
ing elements in an array are formalised. For example, the array_access function,
defined below, is used for the translation of indexing an array, in the following
way:

[alil] def array_access(get_typ, [a], [1])
assuming that al[i] is not the left hand side of an assignment. The function
get_typ is determined by the component type of a, for example: if a is an integer

array of type int[], then get_typ = get_int. And if a is a 2-dimensional array of,
say Booleans, then get_typ = get_ref.

13

The JAVA evaluation strategy prescribes that first the array expression, and
then the index expression must be evaluated. Subsequently it must be checked
first if the array reference is non-null, and then if the (evaluated) index is non-
negative and below the length of the array. Only then the memory can be ac-
cessed. See [GJS96, §§ 15.12.1 and §§ 15.12.2]. This is described in our setting
as follows (omitting the details of how exceptions are thrown).

—TYPE THEORY

a: OM — ExprResult{OM, RefType],i: OM — ExprResult[OM, int] +

array_access(get_typ,a,i) : OM — ExprResult[OM, typ] def
Az: OM.
CASE ax OF {
| hang hang
[normy
CASE i (y.ns) OF {

| hang = hang
| norm z +>

CASE y.res OF {
I null = [new NullPointerException()]
| refr
CASE r.dimlen OF {
| bot ++ hang // should not happen
|upp
IF z.res <0V z.res > p.len
THEN [new ArrayIndexOutOf-
BoundsException()]
ELSE norm(ns = z.ns,res =
get_typ(z.ns, heap(ml = r.objpos,
cl=zres))) } }
| abnorm ¢ = abnorme }
| abnorm b ~ abnorm b }

Notice that arrays, like objects, are stored on the heap. All translated non-
null array references have a non-bottom dimlen field by construction, so in the
case indicated as “should not happen” we choose to use hang as output. We
also could have thrown some non-standard exception. There is a similar func-
tion array_assign which is used for assigning a value at a particular index in an
array. Further, there are also functions for array creation and returning the array
length. The function for array creation sets up an appropriately linked number
of (empty) memory cells, depending on the dimension and lengths of the array
that is being created.

14

4 A Hoare logic for Java

Many verifications of JAVA programs can be done immediately in terms of the se-
mantics as described in Section 3. But “[...] reasoning about correctness formulas
in terms of semantics is not very convenient. A much more promising approach
is to reason directly on the level of correctness formulas.” (quote from [AO97,
p. 57]). Hoare logic is a formalism for doing precisely this. This section describes
an extension of Hoare logic which is especially tailored to JAvA. The proof rules
that are discussed here are heavily used in the Vector case study described below.

Our Hoare logic extension is a concrete and detailed elaboration and adap-
tation of existing approaches to programming logics with exceptions, notably
from [Chr84,LvdS94,Lei95] (which are mostly in weakest precondition form).
Although the basic ideas used here are the same as in [Chr84,LvdS94,Lei95], the
elaboration is different. For example, in this elaboration many forms of abrupt
termination are considered, and not just one sole exception. Also, a semantics
of statements and expressions as particular functions is used (as described in
Section 3), and not a semantics of traces.

Hoare logic for a particular programming language consists of a series of de-
duction rules for special sentences, involving constructs from the programming
language, like assignment, if-then-else and composition. In particular, (while)
loops have received much attention in Hoare logic, because they involve a judi-
cious and often non-trivial choice of a loop invariant. For more information, see
e.g. [Bak80,Gri81,Apt81,Gor88,A097]. There is a so-called “classical” body of
Hoare logic, which applies to standard constructs from an idealised imperative
programming language. This forms a well-developed part of the theory of Hoare
logic. It is based on sentences of the form {P} S {Q}, for partial correctness, or
[P] S [@], for total correctness. They involve assertions P and ¢ in some logic
(usually predicate logic), and statements S from the programming language that
one wishes to reason about. The partial correctness sentence {P} S {Q)} expresses
that if the assertion P holds in some state z and if the statement S, when eval-
uated in state x, terminates normally, resulting in a state x', then the assertion
Q holds in 2'. Total correctness [P] S [Q] expresses something stronger, namely:
if P holds in x, then S in z terminates normally, resulting in a state ' where
@ holds. These partial and total correctness sentences can be translated easily
into our type theory.

15

— TYPE THEORY

pre, post: Self — bool, stat: Self — StatResult[Self]

. f
PartialNormal?(pre, stat, post) : bool e

Va: Self. prex O CASE statx OF {
| hang ~ true
I normy + posty
| abnorm g~ true }

pre, post: Self — bool, stat: Self — StatResult[Self]

f
TotalNormal?(pre, stat, post) : bool de

Va: Self. prex O CASE statx OF {
| hang — false
I normy + posty
| abnorm g~ false }

To adapt this classical body to JAVA proof rules are described for normally
terminating statements. Following Gordon [Gor89], these proof rules are shown
to be sound with respect to the semantics. In our case, the soundness of all
the rules has been proven in pvs. This enables both semantic and axiomatic
reasoning about JAVA programs. These (standard) proof rules are described in
more detail in [HJ00b,Hui00].

4.1 A Hoare logic with abrupt termination

Unfortunately, the proof rules for normal termination do not give enough power
to reason about arbitrary JAVA programs. Therefore it is necessary to have a
“correctness notion” for being in an abnormal state, e.g. if execution of S starts
in a state satisfying P, then execution of S terminates abruptly, because of a
return, in a state satisfying). To this end, the notions of abnormal correctness
are introduced. They appear in four forms, corresponding to the four possible
kinds of abnormalities. Rules are formulated to derive the (abnormal) correctness
of a program compositionally. These rules allow the user to move back and forth
between the various correctness notions.

The first notion that is introduced is partial break correctness (with nota-
tion: {P} S {break(@,[}}), meaning that if execution of S starts in some state
satisfying P, and execution of S terminates in an abnormal state, because of a
break, then the resulting abnormal state satisfies Q. If the break is labeled with
lab, then [= up(“lab”), otherwise [= bot.

Naturally, there exists also total break correctness ([P] S [break(@,1)]), mean-
ing that if execution of S starts in some state satisfying P, then execution of §
terminates in an abnormal state, satisfying @, because of a break. If this break
is labeled with lab, then I = up(“lab”), otherwise I = bot. Continuing in this

16

manner leads to the following eight notions of abnormal correctness.

partial break correctness {P} S {break(®,1)}
partial continue correctness {P} S {continue(Q,l)}
partial return correctness {P} S {return(@)}
partial exception correctness { P} .S {exception(Q, E)}
total break correctness [P] S [break(Q,1)]

total continue correctness [P]S [continue(Q,!)]
total return correctness [P] S [return(@)
[P]5]

]
total exception correctness [P]S [exception(Q, F)]

The formalisation of these correctness notions in type theory is straightfor-
ward. As an example, consider the predicate PartialReturn? for partial return
correctness. This is used to give meaning to the notation {P} [S]{return(@)} =
PartialReturn?(P,[S], Q). This predicate is defined as follows.

—TYPE THEORY

pre, post: Self — bool, stat: Self — StatResult[Self] -

. f
PartialReturn?(pre, stat, post) : bool &

Va: Self. prex O CASE statx OF {

| hang ~ true

| normy ~ true

| abnorma + CASE a OF {
[excpe = true
| rtrn z > post z
| break b — true
| conte w true } }

Many straightforward proof rules can be formulated and proven, for these
correctness notions. First of all, there are the analogues of the skip axiom, e.g.

—TYPE THEORY

{P} RETURN {return(P)}

Then there are rules, expressing how these (partial and total) correctness notions
behave with “traditional” program constructs e.g. with statement composition.
Notice that these rules are always about one correctness notion.

17

—TYPE THEORY
[P] S [return(R)]
[P]S; T [return(R)]

[P]S[Q] [Q)T [return(R)]
[P]S; T [return(R)]

{P} S{return(R)} {P}S{Q} {Q} T {return(R)}
{P}S;T {return(R)}

There are rules to move between two correctness notions, from normal to abnor-
mal and vice versa. Here are some examples for the return statement again.

—TYPE THEORY

{P}S{return(Q)} {P}S{Q}
{P} CATCH-STAT-RETURN(S) {Q}

[P] S [return(Q)]
[P] CATCH-STAT-RETURN(S) [Q)]

Most of these proof rules are easy and straightforward to formulate, and they
provide a good framework to reason about programs in JAVA. However, proof
rules for while loops with abrupt termination are more difficult to formulate.

4.2 Hoare logic of while loops with abrupt termination

Recall that in classical Hoare logic, reasoning about while loops involves the fol-
lowing ingredients: (1) an invariant, i.e. a predicate over the state space which
is true initially and after each iteration of the while loop; (2) a condition, which
is false after normal termination of the while loop; (3) a body, which is iterated
a number of times; (4) (when dealing with total correctness) a variant, i.e. a
mapping from the state space to some well-founded set, which strictly decreases
every time the body is executed. To see what is needed to extend this to abnor-
mal correctness, first a silly example of an abruptly terminating while loop is
discussed.

— JAVA

while (true) { if (i < 10) { i++; } else { break; }}

This loop always terminates, and a variant can be constructed to show this, but
after termination it cannot be concluded using only traditional Hoare logic rules

18

that the condition has become false. Thus proof rules have to be formulated
in such a way that, in this case, it can be concluded that after termination
of the while loop ¢ < 10 does not hold (anymore). This desire leads to the
development of special rules for partial and total abnormal correctness of while
loops. Below, the partial and total break correctness rules are described in full
detail, the rules for the other abnormalities are basically the same. The JAVA
while statement is formalised in type theory by a function WHILE(])(C)(S),
where [is a formalisation of the possible label of the while statement, C is a
formalisation of the condition and S of the body. This definition boils down to
iterating the so-called iteration body

E25(C) ; CATCH-CONTINUE(®)(S)

an appropriate number of times. More information on the definition of WHILE
can be found in [HJOOb,Hui00].

Partial break while rule Assume a while loop WHILE(],)(C)(S), which will
be executed in a state satisfying P. The aim is to prove that if the while loop
terminates abruptly, because of a break, then the result state satisfies (—where
P is the loop invariant and @ is the condition which holds upon abrupt termina-
tion (in the example above: ¢ > 10). A natural condition for the proof rule is thus
that if the body terminates abruptly, because of a break, then @ should hold.
Furthermore, it should be shown that P is an invariant if the body terminates
normally. This leads to the following proof rule.

—TYPE THEORY
{P}E25(C) ; CATCH-CONTINUE(I1)(S) { P}
{P}YE25(C) ; CATCH-CONTINUE(l;)(S) {break(Q, I5)}
{P} WHILE(l1)(C)(5) {break(Q,)}

[partial-break]

In ordinary language this rule states the following. Suppose: (1) if the iteration
body E25(C) ; CATCH-CONTINUE(I;)(S) is executed in a state satisfying P and
terminates normally, then P still holds, and (2) if the iteration body is executed
in a state satisfying P and ends in an abnormal state, because of a break, then
this state satisfies some property (). Then, if the while statement is executed in
a state satisfying P and it terminates abruptly, because of a break, then its final
state satisfies .

Soundness of this rule is easy to see (and to prove): suppose there exists a
state satisfying P, in which WHILE(l;)(C)(S) terminates abruptly, because of a
break. This means that the iteration body E25(C); CATCH-CONTINUE(;)(S)
terminates normally a number of times. All these times, P remains true. How-
ever, at some stage the iterated statement must terminate abruptly, because of a
break, labeled Iz, and then the resulting state satisfies (. As this is also the final
state of the whole loop, {P} WHILE(l1)(C)(S) {break(@,l2)} can be concluded.

19

Total break while rule Next a proof rule for the total break correctness of
the while statement is presented. Suppose there exists a state satisfying P A
C*. Notice that if C would not hold in the initial state, the loop would never
terminate abruptly. The aim is to prove that execution of WHILE(l1)}(C)(S) in
this state terminates abruptly, because of a break, resulting in a state satisfying
Q. Therefore it has to be shown that (1) the iteration body terminates normally
only a finite number of times (using a variant}, and (2) if the iteration body does
not terminate normally, it must be because of a break, resulting in an abnormal
state, satisfying). This gives:

— TYPE THEORY
[P A C] CATCH-BREAK(I2)(E25(C) ; CATCH-CONTINUE(l;)(S)) [true]
{P A C A variant = n} E2S(C) ; CATCH-CONTINUE(11)(S) { P A C A variant < n}
{P A CYE25(C) ; CATCH-CONTINUE(l1)(S) {break(Q, 15)}

[P A CYWHILE(I)(C)(S) [break(@, I2)] [total-break]

The first condition states that execution of the iteration body followed by a
CATCH-BREAK, in a state satisfying P A C, always terminates normally, thus
the iteration body itself must terminate either normally, or abruptly because of
a break. The second condition expresses that if the iteration body terminates
normally, the invariant and condition remain true and some variant decreases.
Thus, the iteration body can only terminate normally a finite number of times.
Finally, the last condition of this rule requires that when the iteration body ter-
minates abruptly (because of a break), the resulting state satisfies (). Soundness
of this rule is easy to prove.

5 Class Annotations

A behavioural interface specification language for JAVA is proposed in [LBR9S],
following the tradition of Eiffel and the well-established design by contract ap-
proach [Mey97]. This language is called ML, short for JAVA Modeling Language.
A programmer can annotate JAVA code with specifications in JML, using the an-
notation markers //@ and /*x@ ... ©*/. For a JAVA compiler these annotations
are ordinary comments, so the annotated JAVA code still remains valid. In this
paper we shall use JML specifications to express the properties—including the
invariant—that we wish to prove about JAVA’s Vector class.

A behavioural interface specification consists of various specification decla~
rations. Here we will only mention invariants, and pre- and post-conditions for
methods and constructors. For more information, see [LBR9g]. From a client’s

4 The use of the (translated) Java condition C' in here is deliberately sloppy. This C'
is a Boolean expression, of type OM —+ ExprResult{]OM, bool}, but occurs in P A C,
where P is a predicate OM —+ bool. The latter conjunction A in a state : OM should
be understood as: P(xz), and C'(z) terminates normally, and its result is true.

20

perspective the specifications describe properties that can be assumed, but from
the provider’s perspective they represent proof obligations, because the provided
code is supposed to satisfy these properties. Here we shall take the latter per-
spective.

5.1 Predicates in JML

The predicates used in JML are built from JAVA expressions extended with logical
operators, such as equivalence, <==>, and implication, ==>, and with the exis-
tential and universal quantifiers, \exists and \forall, respectively. Also some
new expression syntax is added: \o1ld(FE) is used for evaluation of expression
E in the “pre-state” of a method (i.e. in the state before method execution is
started), \result denotes the result of a non-void method. These are only used
in post-conditions.

Predicates in JML are required to be side-effect free, and therefore they are
not allowed to contain assignments, including the increment and decrement op-
erators, ++ and --. Methods may be invoked in predicates only if they are pure,
i.e. terminate normally, and do not modify any field.

Requiring that predicates are side-effect free does not imply that predicates
always terminate normally. Consider the predicate a.length >= 0, for a an
array. If this predicate is evaluated in a state where a is a null reference, it
will terminate abruptly with a NullPointerException. To prevent this kind
of abrupt termination, an extra conjunct has to be added to the predicate:
a != null && a.length >= 0.

5.2 Behaviour specifications

In JML behaviour specifications can be written for methods and constructors.
Below we concentrate on methods. JML supports three kinds of behaviour specifi-
cations, namely normal behavior, exceptional behavior and behavior speci-
fications. If a method has a normal behavior specification, then it should termi-
nate normally, assuming the pre-condition holds. Similarly, an exceptional be-
havior prescribes that a method can only terminate abnormally, and a behavior
specification that the method can terminate sometimes normally and sometimes
abnormally.
Let’s consider a normal behavior specification for a method m.

— JML

void m(Q);
/%@ normal_behavior
@ requires: P; // P is a predicate
@ ensures : Q; // Q is a relation, relating
@ // the method’s pre-state and post-state.
ex/

21

The basic ingredients of normal _behavior are its pre-condition, in JML called the
requires clause, and its post-condition, the ensures clause. This normal be-
havior specification is a total correctness assertion: it says that if P holds in a
state x, then method m executed in state z will terminate normally, resulting in
state y with Q holding of (z,y). The pre-state z is needed in the post-condition
because Q may involve an \old(-) expression for evaluation in the pre-state.

A behavior specification can consist of the two abovementioned clauses,
extended with a signals clause:

— JML
void m(Q);
/%@ behavior
@ requires: P;
@ ensures : Q;
@ signals : (E) R;
ex/

The signals clause is the post-condition, in case of abrupt termination of
method m. This example specification is a conjunction of two partial correct-
ness Hoare sentences. The first one says that if P holds in a state and method
m executed in state x terminates normally resulting in a state y, then Q should
hold of (z,y). The second one says that if P holds in a state 2 and method m
executed in state x terminates abruptly with an exception of type E’ in a state
y, then R should hold of (x,y), and E’ should be a subclass of E.

5.3 Invariants

An invariant is a predicate on states which always holds, as far as an outsider
can see: an invariant holds immediately after an object is created and before and
after a method is executed, but during a method’s execution it need not hold.
To prove that a certain predicate is an invariant, one therefore proves that it
holds (1) after object creation, and (2) after (normal or abnormal) termination
of a method, assuming that it holds when the method’s execution starts. Note
that even when a method terminates abruptly, an invariant should hold. This
means that if something goes wrong, a method must throw an exception before
any crucial data is corrupted. A consequence is that if the exception is caught
at some later stage, the invariant still holds.
An example of a (trivial) JML invariant is:

— JML
class A {

//@ invariant: true;

JML offers the possibility to write multiple invariants within one class. They can
be transformed into a single invariant via conjunctions.

22

5.4 Proof obligations

As already mentioned, invariants and behaviour specifications give rise to proof
obligations. They can be expressed in our extended Hoare logic. This requires the
use of so-called logical variables (like z below) in order to allow post-conditions
to be relations. For example, the normal behaviour specification for m above,
together with an invariant I, yields the following proof obligation for total cor-
rectness.

— TYPE THEORY

Vz: OM.[Ax: OM. I(x) A P(z) A z = 2] m [Ay: OM. I{y) A Q(z,y)].

Similarly, the behaviour specification yields a conjunction of two partial Hoare
sentences:

—TYPE THEORY
Vz: OM.
{A: OM. I(x) AP(z)yAz=a}m{Ay: OM.I(y) A Q(z,y)}
A
{Az: OM. I(z) A P(x) A z = 2} m {exception(Ay: OM. I(y) A R(z,y), E)}

In this way the proof rules for the extended Hoare logic can be used to prove
JML obligations in PVs.

6 The case study: Java’s Vector class

6.1 Vector in Java

JAVA’s Vector class® is part of the java.util package. It can be found in the
sources of the JDK distribution. The class as a whole is too big to describe here
in detail. It contains three fields, three constructors, and twenty-five methods.
Most of the method bodies consist of between five and ten lines of code. The
interface of the Vector class, and also its “surrounding” classes in the JAvA
library are described. The latter are classes that are used in the Vector class.

Interface of the Vector class The Vector class has three fields, namely an
array elementDataof type Object in which the elements of the vector are stored,
an integer elementCount which holds the number of elements stored in the
vector, and an integer capacityIncrement which indicates the amount by which
the vector is incremented when its size (elementCount) becomes greater than its
capacity (length of elementData). If capacityIncrement is greater than zero,

5 We use version number 1.38, written by Lee Boynton and Jonathan Payne, under
Sun Microsystems copyright.

23

every time the vector needs to grow the capacity of the vector is incremented by
this amount, otherwise the capacity is doubled. These fields are all protected, so
that they can only be accessed in (a subclass of) Vector.

The Vector class has three constructors, which all are public and thus can
be accessed in any class. The constructor Vector () creates an instance of the
Vector class by allocating the array elementData with an initial capacity of ten
elements, and a capacity increment of zero. The second constructor Vector (int
initialCapacity) takes an integer argument, which is the initial capacity,
and sets the capacity increment to zero. The third constructor Vector (int
initialCapacity, int capacityIncrement) takes two integer arguments, one
for the initial capacity and the other for the capacity increment. After creating
an instance of the Vector class the field elementCount is implicitly set to zero.

Space restrictions prevent us from describing all methods of the Vector
class in detail. Therefore, the reader is referred to the standard documenta-
tion [CLK98] for more information, and only the interface of the Vector class
is listed here, see Figure 1. The names and types give some idea of what these
methods are supposed to do.

Surrounding classes The Vector class implicitly extends the Object class. All
fields and methods declared in the Object class are thus inherited. Of particular
importance in the Vector class are the methods equals, clone, and toString
from Object. These may be overridden in particular instantiations of the data
in a vector (and the new versions are then selected via the “dynamic method
look-up” or “late binding” mechanism). The Vector class also implements two
(empty) JAVA interfaces, namely Cloneable and Serializable.

The following JAVA classes are used in the Vector class, in one way or an-
other: CloneNotSupportedException, InternalError, Object, StringBuffer,
String, System, ArrayIndexOut0fBoundsException (all from the java.lang
package)}, Enumeration, NoSuchElementException (both from the java.util
package), and Serializable (from the java.ic package). These additional
classes are relevant for the verification, since they also have to be translated
into pvs. They are intertwined via mutual recursion.

6.2 Translation of Vector into PVS

The LOOP tool translates JAVA classes into logical theories for pvs, following the
semantics as described before. In this section some aspects of the actual trans-
lation of the Vector class are briefly discussed. For this project, it is not needed
to translate the whole JAvA library. Only those classes that are actually used
in the Vector class—called the “surrounding” classes—have to be translated. A
further reduction has been applied: from these surrounding classes, only those
methods that are actually needed have been translated. Thus, 10K of JAvA code

24

— JAVA
public class Vector implements Cloneable, java.io.Serializable {
// fields
protected Object elementDatall;
protected int elementCount;
protected int capacitylncrement;

// constructors

public Vector(int initialCapacity, int capacityIncrement);
public Vector(int initialCapacity);

public Vector();

// methods

public final synchronized void copyInto(Object anArray[]);

public final synchronized void trimToSize();

public final synchronized void ensureCapacity(int minCapacity);
private void ensureCapacityHelper(int minCapacity);

public final synchronized void setSize(int newSize);

public final int capacity();

public final int size();

public final boolean isEmpty();

public final synchronized Enumeration elements();

public final boolean contains{(Object elem);

public final int index0f(Object elem);

public final synchronized int index0f(0Object elem, int index);
public final int lastIndex0f (Object elem);

public final synchronized int lastIndex0Of(Ubject elem, int index);
public final synchronized Object elementAt(int index);

public final synchronized Object firstElement();

public final synchronized Object lastElement();

public final synchronized void setElementAt(Object obj, int index);
public final synchronized void removeElementAt(int index);

public final synchronized void insertElementAt(Object obj, int index);
public final synchronized void addElement(Ubject obj);

public final synchronized boolean removeElement(Ubject obj);
public final synchronized void removeAllElements();

public synchronized Object clone();

public final synchronized String toString();

Figurel. The interface of Java's Vector class

25

remains, excluding documentation. The LOOP tool turns it into about 500K of
Pvs code®.

JAVA’s Object and System classes have several native methods. A native
method lets a programmer use some already existing (non-JAVA) code, by in-
voking it from within JAVA. In the Vector class two native methods are used,
namely clone from Object, and arraycopy from System. Our own PVS code
has been inserted as translation of the method bodies of these native methods.
An alternative approach would be to use requirements for these methods, like
for toString and equals, see the next section.

The current version of our LOOP tool handles practically all of “sequential”
JAVA, i.e. of JAVA without threads. The possible use of vectors in a concur-
rent scenario is not relevant for this invariant verification. The synchronized
keyword in the method declarations is therefore simply ignored.

There is one point where we have cheated a bit in the Vector translation.
Often in the Vector class an exception is thrown with a message, like in the
following code fragment.

— JAVA

public final synchronized Object elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndex0ut0fBoundsException
(index + " >= " + elementCount);

Implicitly in JAVA, the integers index and elementCount are converted to strings
in the exception message. Such conversion is not available in pvs. Of course it
can be defined, but that is cumbersome and totally irrelevant for the invariant.
Therefore, we have eliminated such exception messages in throw clauses, thereby
avoiding the conversion issue altogether. This affects the output, but not the
invariant.

6.3 The class invariant

The first step is to formulate the desired class invariant property. Finding an
appropriate, provable, invariant is in general a non-trivial exercise. Usually one
starts with some desired property, but to be able to prove that this is an invari-
ant, it has to be strengthened in an appropriate manner’. As suggested by the
informal documentation in the Vector class, a class invariant should be:

5 This may seem a formidable size multiplication, but it does not present problems in
verification. Reductions in size may still be possible by making more efficient use of
parametrisation in PVS code generation.

7 This is in analogy with “induction loading”, where a statement that one wishes to
prove by induction must be strengthened in order to get the induction going.

26

the number of elements in the array of a vector object never exceeds its
capacity.

This property alone is not a class invariant. Strengthening is necessary to obtain
an actual invariant. This invariant has been obtained “by hand”, and not via
some form of automatic invariant generation. Precisely annotating all the meth-
ods in Vector with sML-specifications helps in finding the appropriate strength-
ening, because it brings forward the pre-conditions for normal and abrupt termi-
nations. The strengthened version of the above property can be extracted from
these pre-conditions for normal termination. During verification it turned out
that the resulting property had to be strengthened only once more (in a very
subtle manner). In JML, the main ingredients of the invariant are:

— JML
/*@ public invariant:
@ elementData != null &&

@ elementCount <= elementData.length && // main point

@ elementCount >= 0 &&

@ elementData != this &&

@ elementData instanceof Object[] &&

@ (\forall (int 1) O <= i &% i < elementData.length

@ ==> (elementDatali] == null ||

@ elementDatali] instanceof Object));
Qx/

One more requirement is needed that is directly related to the particular memory
model that we use (see Subsection 3.2), and is not expressible in JML. It says that
elementData refers to an “allocated” cell in the heap memory, whose position
is below the heaptop.

The resulting combined property on OM will be called Vectorlntegrity?. No-
tice that it says nothing about the value of the capacityIncrement field. One
would expect it to be positive, but this is not needed, since the only time
capacityIncrement is actually used (in the body of the method ensureCapa-
cityHelper), it is first tested whether its value is greater than zero. The informal
documentation for this field states that “if the capacity increment is 0, the ca-
pacity of the vector is doubled each time it needs to grow”, but a more precise
statement would be “if the capacity increment is 0 or less, ...”.

6.4 Verification of the class invariant of Vector

After translation of the Vector class (and all surrounding classes), the generated
theories are loaded into Pvs and the verification effort starts. This means that we
have to show that the predicate Vectorintegrity? is indeed an invariant. To this
end, it has to be shown that (1) Vectorintegrity? is established by the constructors
and (2) that Vectorintegrity? is preserved by all public methods of class Vector,
see Subsection 5.3. Notice that it is essential that the fields of the Vector class

27

are protected, so that they cannot be accessed directly from the outside, and the
Vectorintegrity? predicate cannot be corrupted in this manner.

Point (1) is relatively easy. Point (2) is handled by assuming an arbitrary
state x, satisfying Vectorintegrity?; for each method m, say with arguments @,
the cases where m(d@)(x) terminates normally, and where it throws an exception
are distinguished. This is done via JML behaviour specifications. In all the cases,
it has to be shown that the predicate Vectorlntegrity? still holds in the resulting
state, see Subsection 5.4.

Before going into some proof details, we illustrate that detecting all possible
exceptions is a non-trivial, but useful exercise. Therefore we consider the fol-
lowing fragment from the Vector class, which describes the method copyInto
together with its informal documentation.

— JAVA
VEL]

Copies the components of this vector into the specified
array. The array must be big enough to hold all the
objects in this vector.

@param anArray the array into which the components
get copied.

¥ X X X X * ¥

@since JDK1.0
*/
public final synchronized void copyInto(Object anArray[]) {
int i = elementCount;
while (i-- > 0) {
anArray[i] = elementDatali];

3

This method throws an exception in each of the following cases.

— The field elementCount is greater than zero, and the argument array anArray
is a null reference;

— elementCount is greater than zero, anArray is a non-null reference, and its
length is less than elementCount;

— elementCount is greater than zero, anArray is a non-null reference, its length
is at least elementCount, and there is an index i below elementCount such
that the (run-time) class of elementDatal[i] is not assignment compatible
with the (run-time) class of anArray.

The first of these three cases produces a Nul1lPointerException, the second one
an ArrayIndexOut0fBoundsException,the third one an ArrayStoreException®.

This last case is subtle, and not documented at all; it can easily be overlooked.

See the explanation in [GJS96], Subsection 15.25.1, second paragraph on page 371.
This exception occurs for example during execution of the following (compilable, but

28

But in all three cases, no data in Vector is corrupted, and the predicate Vector-
integrity? still holds in the resulting (abnormal) state.

Below the verification in Pvs of several methods is discussed in some detail,
namely of setElementAt, toString and index0f. These methods are exem-
plaric: the method setElementAt is a typical example of a method for the which
the invariant is verified automatically. The verification of toString shows how
we deal with late binding and index0f demonstrates the use of the extended
Hoare logic for 1avA. The verifications make extensive use of automatic rewriting
to increase the level of automation. For instance, the low-level memory manip-
ulations (involving the get- and put-operations from Subsection 3.2) require no
user interaction at all. Automatic rewriting is also very useful in verifications
using Hoare logic, because it simplifies the application of the rules.

Verification of setElementAt

The first method that is discussed in more detail is setElementAt. This method
takes a parameter obj belonging to class Object and an integer index, and
replaces the element at position index in the vector with obj. A possible JML
specification for this method looks as follows.

— JML

/*@
@ normal_behavior
@ requires: index >= 0 && index < elementCount;
@ ensures:
@ (Aforall (int i) 0 <= i && 1 < elementCount ==
@ ((i == index &% elementDatali] == obj) ||
@ (i '= index &% elementDatali] ==
@ \old(elementDatalil))));
@ also
@ exceptional_behavior
@ requires: index < 0 || index >= elementCount;
@ signals: (ArrayIndex0Out0fBoundsException)
@ (Aforall (int i) O <= i && i < elementCount ==
e elementDatali] == \old(elementDatali]));
Qx/
public final synchronized void setElementAt(Object obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount) ;

3

silly) code fragment.
Vector v = new Vector();
v.addEIement (new Object());
v.copyInto(new Integer[1]);

29

elementDatalindex] = obj;

3

Notice that we have given a “functional” specification by describing post-con-
ditions for this method. These post-conditions can be strengthened further,
e.g. by including that the fields elementCount and capacityIncrement are not
changed. But for our invariant verification, these post-conditions are usually not
relevant, and so we shall simply write true in the ensures: clause, giving so-
called lightweight specifications (like in [PBJ00]). In contrast, the pre-conditions
are highly relevant.

Ignoring the post-conditions, the proof obligations (as Hoare sentences, see
Subsection 5.4) for this method are:

— TYPE THEORY

Yobj: RefType. Vindex: int.
[Az: OM. Vectorintegrity?(x) A index > 0 A index < elementCount(x)]
setElementAt(obj, index)
[Vectorintegrity?]

Yobj: RefType. Vindex: int.
[Az: OM. Vectorintegrity?(z) A index < 0V index > elementCount(z) |
setElementAt(obj, index)
[exception(Vectorintegrity?, “ArrayIndexOutOfBoundsException”) |

The proofs of these properties proceed mainly by automatic rewriting in pvs.
For the first proof obligation, regarding normal termination, we do explicitly
have to make the case distinction whether the argument obj is a reference not.

Verification of toString

Unfortunately, the correctness of the methods in Vector is not always as easy to
prove as for the above example setElementAt. Several methods in the Vector
class invoke other methods, or contain while or for loops. Above, we already
have seen copylInto as an example of such a method. We now concentrate on
the method invocations in Vector’s toString method.

Recall that each class in JAVA inherits the toString method from the root
class Object. In a specific class this method is usually overridden to give a
suitable string representation for objects of that class. For a vector object the
toString method in the Vector class yields a string representation of the form
[S0,.-. ,8n—1], Where n is the vector’s size elementCount, and s; is the string ob-
tained by applying the toString method to the ith element in the vector’s array.
The particular implementations that get executed as a result of these toString
invocations are determined by the actual (run-time) types of the elements in

30

