The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/18782

Please be advised that this information was generated on 2018-11-23 and may be subject to change.
AN AMUSING IDENTITY

R.A. Kortram

Report No. 9942 (November 1999)
An amusing identity

R.A. Kortram

Abstract

We present a family of identities for integrals of square integrable functions. We also derive discrete analogues for square summable sequences.

Introduction

Let \(f \in L^2[0, \infty) \) and assume that

\[
x \to \frac{f(x)}{x} \in L^1[0,1].
\]

Since \(x \to \frac{1}{x} \in L^2[1, \infty) \) this assumption implies that

\[
x \to \frac{f(x)}{x} \in L^1[0, \infty).
\]

We shall show that for every \(\tau > 0 \) we have

\[
\int_0^\tau \left(\int_x^\infty \frac{f(t)}{t} \, dt \right)^2 \, dx = \int_0^\tau \left(\frac{1}{x} \int_0^x f(t) \, dt \right)^2 \, dx + \left(\sqrt{\tau} \int_0^\infty \frac{f(t)}{t} \, dt + \frac{1}{\sqrt{\tau}} \int_0^\tau f(t) \, dt \right)^2
\]

(1)

and

\[
\int_0^\infty \left(\int_x^\infty \frac{f(t)}{t} \, dt \right)^2 \, dx = \int_0^\infty \left(\frac{1}{x} \int_0^x f(t) \, dt \right)^2 \, dx.
\]

(2)

For the discrete analogue we consider sequences \(a_1, a_2, \ldots \in l^2 \). We define \(A_0 = 0, A_k = \sum_{n=1}^k a_n \) (\(k = 1, 2, \ldots \)) and \(\alpha_k = \sum_{n=k}^\infty \frac{a_n}{n} \). (Note that \(\alpha_k \) exists; both sequences \(a_1, a_2, \ldots \) and \(1, \frac{1}{2}, \frac{1}{3}, \ldots \) belong to \(l^2 \).)

We shall prove for every \(k \)

\[
\sum_{n=1}^k \alpha_n^2 = \sum_{n=1}^{k-1} \frac{1}{n(n+1)} A_n^2 + \left(\sqrt{k \alpha_k + \frac{1}{\sqrt{k}}} A_{k-1} \right)^2
\]

(3)

and

\[
\sum_{n=1}^\infty \alpha_n^2 = \sum_{n=1}^\infty \frac{1}{n(n+1)} A_n^2.
\]

(4)
Preliminaries

For the proofs of these identities we shall make use of some general results for integrable functions. In this section we state and prove these auxiliary results.

Lemma 1 Let \(f^2 \) be integrable on \([0, 1]\); then

\[
\lim_{a \to 0} \frac{1}{\sqrt{a}} \int_0^a f(t)dt = 0.
\]

Proof:

\[
|\int_0^a f(t)dt|^2 \leq \int_0^a dt \int_0^a \left| f^2(t) \right| dt = a \int_0^a \left| f^2(t) \right| dt,
\]

and the assertion follows immediately.

Lemma 2 Let \(f \in L^2 \), let \(a_1, a_2, \ldots \in l^2 \). Then we have

\[
\lim_{\tau \to \infty} \sqrt{\tau} \int_\tau^\infty \frac{f(t)}{t} dt = 0,
\]

and its discrete analogue

\[
\lim_{k \to \infty} \sqrt{k} \sum_{n=k}^\infty \frac{n}{a_n} = 0.
\]

Proof: The first assertion follows from

\[
\left| \int_\tau^\infty \frac{f(t)}{t} dt \right|^2 \leq \int_\tau^\infty \frac{1}{t^2} dt \cdot \int_\tau^\infty \left| f^2(t) \right| dt = \frac{1}{\tau} \int_\tau^\infty \left| f^2(t) \right| dt;
\]

the second follows from

\[
\left| \sum_{n=k}^\infty \frac{a_n}{n} \right|^2 \leq \sum_{n=k}^\infty \frac{1}{n^2} \cdot \sum_{n=k}^\infty \left| a_n \right|^2 \leq \frac{1}{k-1} \sum_{n=k}^\infty \left| a_n \right|^2.
\]

Lemma 3 Let \(f \in L^2 \), let \(a_1, a_2, \ldots \in l^2 \). Then we have

\[
\lim_{\tau \to \infty} \frac{1}{\sqrt{\tau}} \int_0^\tau f(t)dt = 0,
\]

and its discrete analogue

\[
\lim_{k \to \infty} \frac{1}{\sqrt{k}} \sum_{n=1}^k a_n = 0.
\]

Proof: Let \(\epsilon > 0 \) be given; choose \(b \) so large that

\[
\int_b^\infty \left| f^2(t) \right| dt < \frac{1}{4} \epsilon^2.
\]
For \(\tau > b \) we have
\[
\left| \int_0^{\tau} f(t) dt \right| \leq \int_0^b |f(t)| dt + \int_b^{\tau} |f(t)| dt \leq \int_0^b |f(t)| dt + \sqrt{\int_0^b f^2(t) dt} \cdot \sqrt{\int_b^{\tau} f^2(t) dt} \leq \int_0^b |f(t)| dt + \frac{1}{2} \sqrt{\tau - b}
\]
and the first assertion follows. The proof of the second assertion is completely analogous.

Lemma 4 Let \(I \) be either \([0,1]\) or \([0,\infty)\). The functions \(f \in L^2(I) \) such that \(x \to \frac{f(x)}{x} \in L^1(I) \) form a dense subset of \(L^2(I) \).

Proof: Let \(f \in L^2(I) \) and let \(f_k = \left(1 - 1_{[0,\frac{1}{k}]} \right) f \). Then \(f_k \in L^2(I) \) and \(\frac{1}{k} f_k(x) \in L^1(I) \) and \(\|f - f_k\|_2 = \int_0^1 |f(x)|^2 dx \to 0 \).

Lemma 5 Let \(f, g \in L^2(0, \infty) \). Then we have
\[
\lim_{a \to \infty} \int_a^\infty \frac{g(t)}{t} dt \cdot \int_0^a f(t) dt = 0.
\]

Proof: We have
\[
\left| \int_a^\infty \frac{g(t)}{t} dt \cdot \int_0^a f(t) dt \right| \leq \sqrt{\int_a^\infty |g(t)|^2 dt} \cdot \sqrt{\int_a^\infty \frac{1}{t^2} dt} \leq \frac{1}{\sqrt{a}} \|g\|_2.
\]

Therefore
\[
\left| \int_a^\infty \frac{g(t)}{t} dt \cdot \int_0^a f(t) dt \right| \leq \|g\|_2 \cdot \frac{1}{\sqrt{a}} \left| \int_0^a f(t) dt \right|
\]
and the assertion follows from lemma 3.

Historical remarks

The identities (1), (2) and (3), (4) are inspired by classical inequalities proved by Hardy in the beginning of the 20th century (and refined by Landau) ([2], page 239). In order to obtain an appropriate setting for our identities we include simple proofs for (generalisations of) Hardy-Landau’s inequality.

Theorem 1 Let \(f \in L^2(0, \infty) \) and let
\[
F(x) = \frac{1}{x} \int_0^x f(t) dt.
\]

Then \(F \in L^2(0, \infty) \) and \(\|F - f\| = \|f\| \).

In particular we have \(\|F\| \leq 2\|f\| \).
Proof: Assume first that f is real valued. From

$$\frac{d}{dx} (xF^2(x)) = 2f(x)F(x) - F^2(x)$$

we see that for every $a > 0$

$$2 \int_0^a f(x)F(x)dx - \int_0^a F^2(x)dx = \left[\frac{1}{x} \left(\int_0^x f(t)dt \right)^2 \right]_0^a,$$

and by an application of lemma 1

$$2 \int_0^a f(x)F(x)dx - \int_0^a F^2(x)dx = \frac{1}{a} \left(\int_0^a f(t)dt \right)^2. \quad (5)$$

Consequently

$$\int_0^a F^2(x)dx \leq 2 \int_0^a f(x)F(x)dx$$

and by Schwarz’s inequality

$$\int_0^a F^2(x)dx \leq 2 \sqrt{\int_0^a f^2(x)dx} \cdot \sqrt{\int_0^a F^2(x)dx},$$

i.e.

$$\int_0^a F^2(x)dx \leq 4 \int_0^a f^2(x)dx \quad (6)$$

This shows that $F \in L^2[0, \infty)$ (and that $\|F\| \leq 2||f\|$). Therefore we can let a tend to infinity in (5) and we obtain from lemma 3:

$$2 \int_0^\infty f(x)F(x)dx - \int_0^\infty F^2(x)dx = 0,$$

i.e.

$$\int_0^\infty (F(x) - f(x))^2 dx = \int_0^\infty f^2(x)dx. \quad (7)$$

Thus we have

$$\|F-f\| = ||f||.$$

In the general case where we do not assume f to be real valued, we apply (6) and (7) to $\text{Re } f$ as well as to $\text{Im } f$ and add the results.
Theorem 2 Let $a_1, a_2, a_3, \ldots \in l^2$ and let $A_k = \sum_{n=1}^{k} a_n$ $(k = 1, 2, \ldots)$. Then $A_1, \frac{1}{2}A_2, \frac{1}{3}A_3, \ldots \in l^2$,

$$\sum_{n=1}^{k} \frac{1}{n^2} |A_n|^2 \leq 4 \sum_{n=1}^{k} |a_n|^2 \quad k = 1, 2, \ldots,$$

and

$$\sum_{n=1}^{\infty} \left| \frac{1}{n} A_n - a_n \right|^2 \leq \sum_{n=1}^{\infty} |a_n|^2.$$

Proof: Assume first that all the numbers a_1, a_2, a_3, \ldots are real. For every $n \in \{2, 3, 4, \ldots\}$ we have

$$\left(\frac{1}{n} A_n \right)^2 - \frac{2}{n} A_n a_n = \left(\frac{1}{n} A_n \right)^2 - \frac{2}{n} A_n (A_n - A_{n-1}) =$$

$$(1-2n) \left(\frac{1}{n} A_n \right)^2 + 2(n-1) \frac{1}{n} A_n \cdot \frac{1}{n-1} A_{n-1} \leq$$

$$(1-2n) \left(\frac{1}{n} A_n \right)^2 + (n-1) \left\{ \left(\frac{1}{n} A_n \right)^2 + \left(\frac{1}{n-1} A_{n-1} \right)^2 \right\} =$$

$$\frac{1}{n-1} A_{n-1}^2 - \frac{1}{n} A_n^2,$$

and for $n = 1$ we have

$$A_1^2 - 2A_1 a_1 = -A_1^2.$$

This shows that

$$\sum_{n=1}^{k} \left\{ \left(\frac{1}{n} A_n \right)^2 - \frac{2}{n} A_n a_n \right\} \leq -\frac{1}{k} A_k^2 \leq 0,$$

i.e.

$$\sum_{n=1}^{k} \left(\frac{1}{n} A_n \right)^2 \leq 2 \sum_{n=1}^{k} \frac{1}{n} A_n a_n,$$

and by Schwarz’s inequality

$$\sum_{n=1}^{k} \left(\frac{1}{n} A_n \right)^2 \leq 2 \sqrt{\sum_{n=1}^{k} a_n^2} \cdot \sqrt{\sum_{n=1}^{k} \left(\frac{1}{n} A_n \right)^2},$$

so

$$\sum_{n=1}^{k} \left(\frac{1}{n} A_n \right)^2 \leq 4 \sum_{n=1}^{k} a_n^2.$$
This shows that \(A_1, \frac{1}{2} A_2, \frac{1}{3} A_3, \ldots \in l^2 \).
Thus we can rewrite (8) and send \(k \) to infinity. We obtain
\[
\sum_{n=1}^{\infty} \left(\frac{1}{n} A_n - a_n \right)^2 \leq \sum_{n=1}^{\infty} a_n^2.
\]
(10)

In the general case where we do not assume that the numbers \(a_1, a_2, a_3, \ldots \) are real, we apply (9) and (10) to \(\text{Re} \ a_n \) and \(\text{Im} \ a_n \) and add the results.

The identity for functions

Let \(f \in L^2[0, \infty) \) and assume that
\[
x \to \frac{f(x)}{x} \in L^1[0, \infty);
\]
then we have for every \(\tau > 0 \)
\[
\int_{0}^{\tau} \left(\int_{x}^{\infty} \frac{f(t)}{t} \, dt \right)^2 \, dx = \int_{0}^{\tau} \left(\frac{1}{x} \int_{0}^{x} f(t) \, dt \right)^2 \, dx + \left(\frac{\sqrt{\tau}}{\sqrt{\tau}} \int_{\tau}^{\infty} \frac{f(t)}{t} \, dt \right)^2.
\]

Proof: Integration by parts shows that
\[
\int_{0}^{\tau} \left(\int_{x}^{\infty} \frac{f(t)}{t} \, dt \right)^2 \, dx = \left[x \left(\int_{x}^{\infty} \frac{f(t)}{t} \, dt \right) \right]_{0}^{\tau} + 2 \int_{0}^{\tau} x \cdot \frac{f(x)}{x} \left(\int_{x}^{\infty} \frac{f(t)}{t} \, dt \right) \, dx.
\]

Another integration by parts leads to
\[
\tau \left(\int_{\tau}^{\infty} \frac{f(t)}{t} \, dt \right)^2 + 2 \left[\int_{0}^{\tau} f(t) \, dt \, \int_{\tau}^{\infty} \frac{f(t)}{t} \, dt \right]_{0}^{\tau} + 2 \int_{0}^{\tau} \int_{\tau}^{\infty} \frac{f(t)}{t} \, dt \, \frac{f(x)}{x} \, dx =
\tau \left(\int_{\tau}^{\infty} \frac{f(t)}{t} \, dt \right)^2 + 2 \int_{0}^{\tau} f(t) \, dt \, \int_{\tau}^{\infty} \frac{f(t)}{t} \, dt + \int_{0}^{\tau} \frac{1}{x} \, dx \left(\int_{0}^{x} f(t) \, dt \right)^2.
\]

Thus we have
\[
\int_{0}^{\tau} \left(\int_{x}^{\infty} \frac{f(t)}{t} \, dt \right)^2 \, dx - \int_{0}^{\tau} \left(\frac{1}{x} \int_{0}^{x} f(t) \, dt \right)^2 \, dx =
\tau \left(\int_{\tau}^{\infty} \frac{f(t)}{t} \, dt \right)^2 + 2 \int_{0}^{\tau} f(t) \, dt \int_{0}^{x} \frac{f(t)}{t} \, dt + \int_{0}^{\tau} \frac{1}{x} \, dx \left(\int_{0}^{x} f(t) \, dt \right)^2 \, dx =
\tau \left(\int_{\tau}^{\infty} \frac{f(t)}{t} \, dt \right)^2 + 2 \int_{0}^{\tau} f(t) \, dt \int_{\tau}^{\infty} \frac{f(t)}{t} \, dt + \int_{0}^{\tau} \frac{1}{x} \, dx \left(\int_{0}^{x} f(t) \, dt \right)^2 \, dx =
\tau \left(\int_{\tau}^{\infty} \frac{f(t)}{t} \, dt \right)^2 + 2 \int_{0}^{\tau} f(t) \, dt \int_{\tau}^{\infty} \frac{f(t)}{t} \, dt + \left[\frac{1}{x} \left(\int_{0}^{x} f(t) \, dt \right)^2 \right]_{\tau}^{x}.
Lemma 1 implies that the third term gives no contribution at 0, so we are left with

\[
\tau \left(\int_0^\infty \frac{f(t)}{t} \, dt \right)^2 + 2 \int_0^\tau f(t) \, dt \int_0^\infty \frac{f(t)}{t} \, dt + \frac{1}{\tau} \left(\int_0^\tau f(t) \, dt \right)^2 = \\
\left(\sqrt{\tau} \int_0^\infty \frac{f(t)}{t} \, dt + \frac{1}{\sqrt{\tau}} \int_0^\tau f(t) \, dt \right)^2.
\]

Lemma 2 and 3 show that \(\lim_{\tau \to \infty} \) of this expression equals zero, hence

\[
\int_0^\infty \left(\int_x^\infty \frac{f(t)}{t} \, dt \right)^2 = \int_0^\infty \left(\frac{1}{x} \int_0^x f(t) \, dt \right)^2 \, dx.
\]

If we apply the identities to Re \(f \) and to Im \(f \) and add them, we obtain

\[
\int_0^\infty \left| \int_x^\infty \frac{f(t)}{t} \, dt \right|^2 \, dx = \int_0^\infty \left| \frac{1}{x} \int_0^x f(t) \, dt \right|^2 \, dx + \left| \sqrt{\tau} \int_0^\tau \frac{f(t)}{t} \, dt + \frac{1}{\sqrt{\tau}} \int_0^\tau f(t) \, dt \right|^2
\]

(11)

and

\[
\int_0^\infty \left| \int_x^\infty \frac{f(t)}{t} \, dt \right|^2 \, dx = \int_0^\infty \left| \frac{1}{x} \int_0^x f(t) \, dt \right|^2 \, dx.
\]

(12)

Application of (1) to \(f \cdot 1_{[0,1]} \) with \(0 < \tau < 1 \) and taking \(\lim_{\tau \to 1} \) leads to

\[
\int_0^1 \left(\int_x^1 \frac{f(t)}{t} \, dt \right)^2 \, dx = \int_0^1 \left(\frac{1}{x} \int_0^x f(t) \, dt \right)^2 \, dx + \left(\int_0^1 f(t) \, dt \right)^2,
\]

and in a similar way as before to

\[
\int_0^1 \left| \int_x^1 \frac{f(t)}{t} \, dt \right|^2 \, dx = \int_0^1 \left| \frac{1}{x} \int_0^x f(t) \, dt \right|^2 \, dx + \left| \int_0^1 f(t) \, dt \right|^2.
\]

Example

Let \(a > 0 \) and let

\[
f : t \to \frac{1}{a+t}.
\]

Then the identity (2) leads to the well-known but nevertheless charming result

\[
\int_0^\infty \left(\frac{1}{x} \log \frac{a+x}{a} \right)^2 \, dx = \int_0^\infty \left(\frac{1}{a} \log \frac{a+x}{x} \right)^2 \, dx.
\]
The identity for sequences

The discrete analogues (3) and (4) of (1) and (2) are a bit more delicate. We have to replace integration by parts, with Abel’s partial summation formula:

\[\sum_{k=1}^{m} b_k c_k = B_m c_m + \sum_{k=1}^{m-1} B_k (c_k - c_{k+1}), \]

where \(B_k = \sum_{n=1}^{k} b_n \quad k = 1, 2, \ldots. \)

Let \(a_1, a_2, a_3, \ldots \in I^2. \) Define \(A_k = \sum_{n=1}^{k} a_n \quad k = 1, 2, \ldots \) and

\[\alpha_k = \sum_{n=k}^{\infty} \frac{a_n}{n}. \]

Then we have for every \(k \)

\[\sum_{n=1}^{k} \alpha_n^2 = \sum_{n=1}^{k} \frac{1}{n(n+1)} A_n^2 + \left(\sqrt{k} \alpha_k + \frac{1}{\sqrt{k}} A_{k-1} \right)^2. \]

Proof: A first application of Abel’s partial summation formula leads to

\[\sum_{n=1}^{k} \alpha_n^2 = k \alpha_k^2 + \sum_{n=1}^{k-1} n \left(\alpha_n^2 - \alpha_{n+1}^2 \right) = k \alpha_k^2 + \sum_{n=1}^{k-1} n (\alpha_n - \alpha_{n+1}) (\alpha_n + \alpha_{n+1}) = \]

\[k \alpha_k^2 + \sum_{n=1}^{k} a_n (\alpha_n + \alpha_{n+1}). \]

A second application leads to

\[k \alpha_k^2 + A_{k-1} (\alpha_{k-1} + \alpha_k) + \sum_{n=1}^{k-2} A_n (\alpha_n + \alpha_{n+1} - \alpha_{n+1} - \alpha_{n+2}) = \]

\[k \alpha_k^2 + A_{k-1} \left(2 \alpha_k + \frac{\alpha_{k-1}}{k-1} \right) + \sum_{n=1}^{k-2} A_n \left(\frac{a_n}{n} + \frac{a_{n+1}}{n+1} \right) = \]

\[k \alpha_k^2 + 2 \alpha_k A_{k-1} + \sum_{n=1}^{k-1} (A_n + A_{n-1}) \frac{a_n}{n} = \]

\[k \alpha_k^2 + 2 \alpha_k A_{k-1} + \sum_{n=1}^{k-2} 1 (A_n + A_{n-1}) (A_n - A_{n-1}) = \]

\[k \alpha_k^2 + 2 \alpha_k A_{k-1} + \sum_{n=1}^{k-1} 1 (A_n^2 - A_{n-1}^2). \]
Thus we have
\[
\sum_{n=1}^{k} \alpha_n^2 - \sum_{n=1}^{k-1} \frac{1}{n(n+1)} A_n^2 = \left(k\alpha_k^2 + 2\alpha_k A_{k-1} + \sum_{n=1}^{k-1} \left(\frac{1}{n+1} A_n^2 - \frac{1}{n} A_{n-1}^2 \right) \right) = k\alpha_k^2 + 2\alpha_k A_{k-1} + \frac{1}{k} A_{k-1}^2 = \left(\sqrt{k}\alpha_k + \frac{1}{\sqrt{k}} A_{k-1} \right)^2
\]
(3)

If we take \(\lim _{k \to \infty} \) we obtain
\[
\sum_{n=1}^{\infty} \alpha_n^2 = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} A_n^2.
\]
(4)

In the by now familiar way we obtain
\[
\sum_{n=1}^{k} |\alpha_n|^2 = \sum_{n=1}^{k-1} \frac{1}{n(n+1)} |A_n|^2 + \left| \sqrt{k}\alpha_k + \frac{1}{\sqrt{k}} A_{k-1} \right|^2
\]
(13)

and
\[
\sum_{n=1}^{\infty} |\alpha_n|^2 = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} |A_n|^2.
\]
(14)

Generating functions

Let \(a_1, a_2, a_3, \ldots \in l^2 \), let \(A_k = \sum_{n=1}^{k} a_n \), and \(\alpha_k = \sum_{n=k}^{\infty} \frac{a_n}{n} \). We have shown in Theorem 2 that \(A_1, \frac{1}{2} A_2, \frac{1}{3} A_3, \ldots \in l^2 \), and it is a consequence of the previous section that \(\alpha_1, \alpha_2, \alpha_3, \ldots \in l^2 \). We shall present expressions for the generating functions of these sequences. Denote
\[
a(z) = \sum_{n=1}^{\infty} a_n z^{n-1}
\]
\[
A(z) = \sum_{n=1}^{\infty} \frac{1}{n} A_n z^{n-1}
\]
and
\[
\alpha(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1}.
\]

From
\[
(zA(z))' = \sum_{n=1}^{\infty} A_n z^{n-1}
\]
we deduce that
\[
(1-z) (zA(z))' = a(z)
\]
hence
\[A(z) = \frac{1}{z} \int_0^z \frac{a(w)}{1-w} \, dw. \]

Since \(a_1, a_2, a_3, \ldots \in l^2 \) and \(1, \frac{1}{2}, \frac{1}{3}, \ldots \in l^2 \), we have \(a_1, \frac{1}{2}a_2, \frac{1}{3}a_3, \ldots \in l^1 \); therefore by Abel’s theorem
\[\alpha_1 = \lim_{z \to 1} \sum_{n=1}^{\infty} \frac{a_n}{n} z^n = \lim_{z \to 1} \int_0^z a(w) \, dw \]
which we denote as \(\int_0^1 a(w) \, dw \). Starting from
\[\alpha(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1} \]
we see that
\[(1-z)\alpha(z) = \alpha_1 - \sum_{n=2}^{\infty} \frac{a_{n-1}}{n-1} z^{n-1} = \alpha_1 - \int_0^z a(w) \, dw = \int_z^1 a(w) \, dw, \]
i.e.
\[\alpha(z) = \frac{1}{1-z} \int_z^1 a(w) \, dw. \]

Application

Define the Cesaro operator \(T \) on \(L^2[0, \infty) \) by
\[T f(x) = \frac{1}{x} \int_0^x f(t) \, dt. \]

As a consequence of theorem 1 we see that \(T \) is continuous, and that \(||T|| \leq 2 \). For every \(g \in L^2[0, \infty) \) such that
\[x \to \frac{g(x)}{x} \in L^1[0, \infty) \]
we have
\[\langle f, T^* g \rangle = \langle Tf, g \rangle = \int_0^\infty \frac{1}{x} \int_0^x f(t) \, dt \cdot g(x) \, dx = \]
(by partial integration, and an application of lemma 5)
\[\left[- \int_x^\infty \frac{g(t)}{t} \, dt \cdot \int_0^x f(t) \, dt \right] + \int_0^\infty f(x) \int_x^\infty \frac{g(t)}{t} \, dt \, dx = \langle f, \int_x^\infty \frac{g(t)}{t} \, dt \rangle. \]

Therefore we have
\[T^* g(x) = \int_x^\infty \frac{g(t)}{t} \, dt. \]
It follows from (12) that for every $f \in L^2[0, \infty)$ such that $x \to \frac{|f(x)|}{x} \in L^1(0,1]$ we have
\[
\|Tf\| = \|T^*f\|.
\]
Since this collection of functions is dense in L^2 we have for all $f \in L^2$ this equality, i.e. T is a normal operator.

Application

As a corollary of (14) we mention the following result that was proved in [1].

The Cesàro operator on l^2 has a positive commutator.

Proof: The Cesàro operator T on l^2 is defined by
\[
T(a_1, a_2, a_3, \ldots) = \left(A_1, \frac{1}{2}A_2, \frac{1}{3}A_3, \ldots \right).
\]

A simple computation shows that its adjoint T^* satisfies
\[
T^*(a_1, a_2, a_3, \ldots) = (\alpha_1, \alpha_2, \alpha_3, \ldots).
\]

It follows from (14) that
\[
\|T^*(a_1, a_2, a_3, \ldots)\|^2 = \sum_{n=1}^{\infty} |\alpha_n|^2 = \sum_{n=1}^{\infty} \frac{1}{n(n-1)} A_n^2 \leq \sum_{n=1}^{\infty} \frac{1}{n^2} |A_n|^2 = \|T(a_1, a_2, \ldots)\|^2.
\]

We thus have
\[
\langle TT^*a, a \rangle \leq \langle T^*Ta, a \rangle
\]
where $a = a_1, a_2, a_3, \ldots$ i.e.
\[
\langle (T^*T - TT^*)a, a \rangle \geq 0,
\]
so $T^*T - TT^*$ is positive.

References
