The Temporal Logic of Coalgebras via Galois Algebras
B.P.F. Jacobs
Computing Science Institute/

CSI-R9906 April 1999

Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1

6525 ED Nijmegen

The Netherlands

The Temporal Logic of Coalgebras
via GGalois Algebras

Bart Jacobs®

Department of Computer Science, University of Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
Email: bart@cs.kun.nl URL: http://www.cs.kun.nl/™ bart

Abstract

This paper introduces a temporal logic for coalgebras. Nexttime and last-
time operators are defined for a coalgebra, acting on predicates on the state
space. They give rise to what is called a Galois algebra. Galois algebras
form models of temporal logics like Linear Temporal Logic (LTL) and Com-
putation Tree Logic (CTL). The mapping from coalgebras to Galois algebras
turns out to be functorial, yielding indexed categorical structures. This con-
struction gives many examples, for coalgebras of polynomial functors on sets.
More generally, it will be shown how “fuzzy” predicates on metric spaces, and
predicates on presheaves, yield indexed Galois algebras, in basically the same
coalgebraic manner.

Keywords: Temporal logic, coalgebra, Galois connection, fuzzy predicate,
presheaf
Classification: 68Q60, 03G05, 03G25, 03G30 (AMS'91); D.2.4, F.3.1, F.4.1
(CR98).

1 Introduction

This paper combines the areas of coalgebra and of temporal logic. Coalgebras are
simple mathematical structures (similar, but dual, to algebras), underlying state-
based dynamical systems [JR97, Rut99], including automata, transition systems and
classes in object-oriented languages. Temporal logic is a logic which is particularly
suitable for reasoning about (reactive) state-based systems, as argued for example
in [Pou77, Pnu8l], via its nexttime and lasttime operators. Hence one expects
a connection. It is probably Moss [Mos99] who was the first to realise that the
shape of a coalgebra (as given by its interface functor) determines a logical modal
language. His emphasis lies on characterisation results, capturing bisimilarity as
validity for the same formulas. This line is followed in [R6899b, R6899a, Kur98].
Here the emphasis lies on the temporal aspects of a coalgebra, in particular on the
associated nexttime and lasttime operators. Moreover, this is basically a semantical
study, leaving proof-theoretic aspects for future work.

We will give a sketch of the underlying developments, leaving some notions (at
this stage) without precise definition. Let a: X — T(X) be a coalgebra. One can

*Research Fellow of the Royal Netherlands Academy of Arts and Sciences.

mailto:bart@cs.kun.nl
http://www.cs.kun.nl/~bart

think of it as a particular transition system (in particular when T is powerset P),
with the set X as its state-space (i.e. set of states). There is the following familiar
definition of bisimilarity (¢*,) with respect to «. For z,y € X,

x £, y<= 3R C X x X. R is an a-bisimulation, and R(x,y).

This introduces bisimilarity as the greatest bisimulation. It contains those pairs of
states which are observationally indistinguishable.

Besides bisimulation, invariance is very important in the theory of coalgebras
(and in system theory in general). An invariant is a predicate on the state space
which is maintained by all operations. The following definition is probably less
familiar. For an arbitrary predicate P C X, a new predicate OP C X is defined as:

OP(z) < 4Q C X.(Q is an a-invariant, @ C P, and Q(x).

It is not hard to see that OP is the greatest invariant contained in P. It may be
read as: “henceforth P”, that is, “in all future states, P holds”. We like to write
% P for OP. There is a related operation & on predicates on X, given by:

&P(SE) < VYQ C X.Q is an a-invariant and P C @ implies Q(z).

Then ¢ P is the least invariant containing P. It may be read as: “in some earlier
state, P holds”. There is the following fundamental Galois connection: & P C
PePC a Ps.

The definitions of a P and & P occur in [Rut99] (as [P] and (P) respectively)

and in [Jac97] (as P and P). In [Jac97, before Proposition 3.8] the connections
with temporal logic are mentioned, but not elaborated. Also the single-step, future
and past operators « and « occur there. The full impact of these operators be-
comes apparent when they are identified as giving examples of “Galois algebras”,
introduced in [Kar98]. These Galois algebras are simple structures consisting of
a complete Boolean algebra carrying a Galois connection (in the spirit of [JT51]).
The latter is interpreted as the connection between lasttime and nexttime opera-
tors. It is shown in [Kar98] that all axioms and rules of Computation Tree Logic
(CTL) [MP92, Eme90, Gol92] are valid in Galois algebras, and that all axioms and
rules of Linear Temporal Logic (LTL) are valid in Galois algebras satisfying certain
linearity conditions. Several examples of Galois algebras are given in [Kar9§], but
no systematic construction is presented. The main contribution of this paper lies in
establishing a connection between coalgebras and temporal logic (at a semantical
level), by showing that each coalgebra (of a suitable functor T') gives rise to a Galois
algebra. Technically, this mapping is functorial, and gives rise to “coalgebra-indexed
Galois algebras” of the form

CoAlg(T)°P GA

where CoAlg(T) is the category of coalgebras of the functor T', and where GA is the
category of Galois algebras (see Theorem 6.1 below). Further, it will be shown how
familiar models of temporal logic given by fuzzy predicates and presheaves [GM88]
exhibit the same underlying structure of coalgebra-indexed Galois algebras. Proba-
bly, the contribution of this paper lies not so much in the results that are obtained,
but more in the integration of fields.

One area of direct application of the definitions and results in this paper is
specification and verification for classes in object-oriented languages, based on coal-
gebras, see [Rei95, Jac96, Jac97, HHJTI8, JvdBH198, Hen99]. When a class is
seen as a coalgebra of its interface functor, then the definitions in this paper give
tailor-made temporal operators for the class, incorporating appropriate clauses for
all the methods of the class. This makes it possible to formulate and prove proper-
ties about future and past states of an object of the class. In particular, safety and
liveness properties of classes can be expressed, and also refinements (as in [Jac97])
can be formulated via 0. A suitable logical language with temporal operators for
such coalgebraic specifications will be described elsewhere (together with a com-
parison with alternative approaches [SSC95] based on Kripke structures). This is a
topic on its own. Here we will simply give an illustration, see Example 3.7 (iii).

A crucial aspect of the connection between coalgebra and temporal logic that
is unveiled here is that it is parametric in the functor (or interface) and coalge-
bra involved. This means that the definitions of the temporal operators can be
instantiated with different functors (and coalgebras) and thus give different logics.
This opens a new perspective, in which for example the operators from LTL and
CTL arise from the same pattern, see Example 3.7. Also this opens up new re-
search questions. One of the more interesting ones involves the possibility of model
checking [CE81, McM93] for coalgebras, in suitably parametrised form.

The paper is organised as follows. It starts with a preliminary section providing
some order-theoretic background information, and also introducing the definition of
Galois algebras. The next section 3 shows how coalgebras of so-called polynomial
functors on sets give rise to Galois algebras, making crucial use of “predicate lifting”.
Section 4 forms an intermezzo, showing how the temporal operators can also be
defined pathwise, as in [Mo0s99, R6899b, R6699a, Kur9g], and give rise to Galois
algebras as well. Then, Section 5 elaborates on Galois algebras. Most of this comes
directly from [Kar98] (with our own notations and proofs), except for the part
dealing with strict and affine lifting. The final section 6 describes the main result
(Theorem 6.1) and elaborates on the examples of fuzzy predicates and presheaves.
These examples are mere illustrations which do not contribute to the general theory.
Especially the last example requires some categorical sophistication. But the first
sections (2 — 5) do not really require experience in category theory.

2 Preliminaries

We start with a brief overview of the notions and notations that will be used. At the
end we will briefly introduce Galois algebras. They are studied further in Section 5.
We do not include an introduction to coalgebra, and refer to [JR97, Rut99] instead.

Some basic constructions on sets will be used, like product, coproduct and ex-
ponent. The product of two sets X, Y will be written as X x Y, with projection
functions X & X x Y 5 Y. The coproduct, or disjoint union, of X,V is X + Y,
with coprojection (or injection) functions X <% X +Y £y, And the exponent, or
function space, is XY, with evaluation function X¥ x ¥ <% X. The empty product
is a singleton set, typically written as 1 = {x}.

Posets play an important role in the sequel. Finite meets in a poset will be
written as T,A, and finite joins as 1,V. A poset X is complete if each subset
S C X has a join VS € X. It is well-known that each subset S then also has a
meet A S € X, given as \/{x € X |Vy € S.x <y}.

A function f: X -+ Y between posets X,Y is monotone if z < 2’ = f(x) <
f(a") for all z,2" € X. Such a function f:X - Y is said to have a right (or
upper) adjoint if there is a function ¢g:Y -+ X in the reverse direction such that
flz) <y e < gy forall x € X,y € Y. Such a situation forms a Galois
connection (or an adjunction between poset categories), and will often be denoted
by f -1 g. Then f is also called a left (or lower) adjoint of g. If X, Y are complete
posets, then f: X - Y has a right adjoint if and only if f preserves all joins. The
right adjoint is then g(y) = V{z € X | f(2) < y}, see e.g. [Joh82, I, Theorem 4.2]
or [MSS85]. Similarly, a function g: ¥ — X is a right adjoint (i.e. has a left adjoint)
if and only if g preserves all meets.

Each monotone function f: X — X on a complete poset X has both a least fixed
point pf € X and a greatest fixed point vf € X, see e.g. [DP90, Chapter 4]. These
can be described explicitly as:

pf=MreX[flz) <z} and vfi=V{zeX|z<f(r)}

A Heyting algebra is a poset X with finite meets and joins such that for each
element 2 € X, the function 2 A (—): X — X has a right adjoint 2 D (—), also called
implication. A complete Heyting algebra is a Heyting algebra which is complete as
a poset. A complete poset is thus a complete Heyting algebra if and only if the
following distributivity = A (V S) = V,cg(z A s) holds. The canonical example
of a complete Heyting algebra is the poset O(X) of open subsets of a topological
space X.

In a Heyting algebra one can define negation —z as & O L. Then # < ——z. The
Heyting algebra is called a Boolean algebra if -—a < x, for all . The canonical
example of a complete Boolean algebra is the poset P(X) of subsets of an arbitrary
set X. Such subsets P C X are also called predicates on X, and membership « € P
is therefore also written as P(x).

2.1. Definition ([Kar98]). A Galois algebra is a complete Boolean algebra B to-
gether with a “nexttime” function B —+ B that preserves all meets.

The nexttime operator B — B in the definition is written as & in [Kar98], but
here we shall write it as e . Since this operation preserves all meets, it has a left

adjoi.nt 2 g.ivenby;y:/\-{ze B-iyg :}z}, so that ;ny@yS X2 If
sz is ‘nexttime x’, then 2yis ‘lasttime 3.

3 Polynomial functors on Sets

In this section we introduce a collection of special functors® on the category Sets
of sets and functions, containing so-called polynomial functors. They can be ex-
tended to predicates, in what is called predicate lifting [HJ98, Jac97]. It forms a
crucial technique for the construction of nexttime and lasttime operators for each
coalgebra of a polynomial functor. These operators yield a Galois algebra on the
complete Boolean algebra of subsets of the state space of the coalgebra. This will
be illustrated in several examples.

!Briefly, in this context a functor 7' is a mapping X + T'(X) of sets to sets, which also works on

functions, written as (X EN Y) = (T(X) p T(Y)), in such a way that identities and composites

are preserved. How polynomial functors work on functions is “obvious” and left to the reader.
P poly

The polynomial functors are defined as the least collection of functors Sets —»
Sets containing:

(i) the identity functor Sets — Sets, and constant functors K4, given by X =
A, for an arbitrary set A;

(ii) the product X = T7(X) x To(X) and the coproduct X + T1(X) + T2(X) of
polynomial functors Ty, T5: Sets — Sets;

(iii) the (constant) exponent X + T'(X)4, for an arbitrary set A, and the covari-
ant powerset X = P(T(X)), of a polynomial functor T Sets — Sets.

Typical polynomial functors are X ++» 1 4 (A x X), where 1 is a singleton set
{*}, and X = P(Bx X). Coalgebras S — 1+ (A x S) give rise to finite and infinite
sequences of elements of A, and coalgebras S — P(Bx.S) capture transition systems
with labels in B.

In the sequel it is convenient to use the coproduct [] and product], functions
P(A) — P(B) along a function f: A — B. These are given by

[[;(P) = {yeB|IrecAfla)=yAaeP}
{f(x) |z € P} (the image of P under f)
[1;(P) = {yeB|VeecA f(z)=y=uz€P}

There are the standard adjunctions [[, -+ f* 4 [[;, where f*:P(B) — P(4) is
the “substitution” or “inverse image” function, given by Q — {a € A | f(a) € Q}.
Using this notation will give a hint for the upgrade of the next result to a more
general setting where similar adjunctions exist.

3.1. Definition (See [HJ98, Jac97]). Let T': Sets — Sets be a polynomial functor
as described above, and let X be an arbitrary set.

(i) The predicate lifting function (—)7:P(X) — P(T(X)) is defined by induc-
tion on the structure of 7. For P C X, one gets PT C T(X) as:

pPd = p
P¥a = A
PTXTs = q#(PTs) A n” (PT2)
= {(21,22) | 21 € PTt A 29 € PT2}
PRt — [(P™) UL (P™)
= [1.(P") N IL.(P™)
= {kz |z € PhYU{k'20 | 20 € P2}
P = [l.ev*(PT) where ev: T(X)4 x A — T(X)

is the evaluation function
= {f|Vae A f(a)e PT}
PPM = Tl.(ex(x) D =*(PT)) where e x) C P(T(X)) x T(X)
is the membership relation
= {U|VzeT(X).2e U=z PT.

(i) A left adjoint (—)7:P(T(X)) — P(X) to (—)” can also be desribed explic-

itly:

Qu = @
R, = 0
QT x T (@)1 U (L (@)1,
= ({z1 |30 (x1,22) € Q) U {22321 (=1,22) € QD) ny
Qri+13 (@)1 U (7(Q)7s
({zr | pm € QY U({z | K22 € @)1y
Qra = (Hev ™(Q))r
({fla)[ae AN fe@r
Qpry = (Uplerx)y Am™(Q)r
= U

By induction on the structure of T one checks that PT C T(X) as described in
the definition can also be defined directly as T(P) C T(X), where P is considered
as set itself. The above inductive definition however is convenient, because it gives a
good handle on the various cases, and allows us to describe the left adjoint explicitly.
It is not hard to see, again by induction on the structure of 7', that Q7 C P & Q C
PT. Thus (—)r is indeed the left adjoint of (—)7.

3.2. Lemma. Let T be a polynomial functor, and f: X — Y be a function.
(i) For a predicate PCY,
(frpnt = TH(P).
(ii) And for a predicate @ C T(X),

H;(QT) = (HT(f) (Q))T

Proof. (i) By induction on the structure of 7.
(ii) Because for an arbitrary predicate P C X,

I,@rcP & Qc(fPr)' by the adjunctions
& QCT(H(PT) by ()
& (Upp@)r P O

Next we turn to coalgebras of polynomial functors, see [JR97] for more informa-
tion.

3.3. Definition. Let T: Sets — Sets be a polynomial functor, and a: X — T(X)
be a T-coalgebra, with a predicate P € X on its state space (or carrier) X.
(i) Define a new predicate gP C X as

def

aP = o (PT)
_)

= {reX|a) e P}

Intuitively, « P contains those states all whose direct successor states (w.r.t. «), if

any, satisfy P. It is the weak nexttime operator from temporal logic. The corre-
sponding strong nexttime operator is — &, see Example 3.7.

(iiy Call P C X an a-invariant if P C g)P. This means that o« maintains P.
(iii) We further write

P (1),
= ({a(z) |z € P}),.

The predicate & P contains those states which are direct successors of states in

[e3
4

P. 1t is the strong lasttime operator (involving an existential quantifier), with the
corresponding weak version given by — Qs see Example 3.7.

It is not hard to see that a (~) and & (-) form a Galois connection: & P C
P, & P, C « Ps. Hence, as an alternative formulation, a predicate P is an invariant
if and only if « P C P.
(_

3.4. Proposition. For a coalgebra X = T(X) of a polynomial functor T:Sets —
Sets, the set P(X) of predicates on its state space forms o Galois algebra, with
(weak) nexttime operator g}:P(X) - P(X). O

Note that our construction of the nexttime - and lasttime - operations is

very general, because it works for an arbitrary coalgebra of an arbitrary polyno-
mial functor. It thus applies to all (coalgebraic) systems whose interface forms a
polynomial functor.

The weak lasttime operator — a P(X) —» P(X) also forms a Galois algebra on

P (X)—with left adjoint — o =—Dbut we shall take « as basic operation. Similarly,
the derived henceforth operator & gives a Galois algebra, as shown in the next
result.

3.5. Definition (Least and greatest invariants). In the context of the previous def-
inition, we write

a4 P for the greatest fixed point of § = P A a S
a P for the least fixed point of S ++ PV « S.
= —

One reads « P as “henceforth P7, i.e. as: P holds now and in all successor states
(w.r.t. o). Similarly, one can read & P as “P sometime earlier”, i.e. as: P holds
now or at some predecessor state.

It is easy to see that & P is the greatest invariant contained in P, and that
& P is the least invariant containing P. The latter predicate contains all states
which are reachable from P. By construction we have a new Galois connection:
&Pl Ch &P C_:%Pg.

Alternative notation for a P is X, P [Eme90], or O, P [Gol92], or [a]P [KT90]
(in the style of dynamic logic). Similarly, one may write o P as G, P or as O,P.
And —|§>—|P is also written as Fo P, or $o P.

Before presenting examples, we consider the interaction of the future modalities
with homomorphisms of coalgebras.

3.6. Lemma. Consider two coalgebras X = T(X) and Y LA T(Y') of a polynomial
functor T, with a homomorphism f: X - Y between them—so that Bo f=T(f) o
«. Then,

() f(BP)= af (P
(ii) @ is an a-invariant = [[;(Q) is o B-invariant;
(i) f*(4P) = af*(P).

Proof. (i) Since
PP = fEPT)

= (T(f) o a)*(PT) because f is a homomorphism

“((F(PHT) by Lemma 3.2 (i)

(i) Assume @ is an a-invariant, i.e. (J[,(Q))r = gQ C Q. Then [[4(Q) is a
[B-invariant, because:

S1,@) =

= (1. (@)r) by Lemma 3.2 (ii)
c I f(Q) since () is an a-invariant.

(iii) By construction, a f*(P) is the greatest a-invariant contained in f*(P). We
show that f*(:@ P) also satisfies this characterisation.

(a) f*(:@P) is contained in f*(P) since :@P is contained in P.

(by f (:@P) Ts an a-invariant, by (i): f (:@P) cf (é}:@P): g)f (:@P)

(c) f*(:@P) is the greatest a-invariant contained in f*(P): if @ C f*(P) is a
a~invariant, then Hf(Q) C P is a f-invariant by (ii). Hence Hf(Q) - :@P, and
thus @ C f*(:@P).

=

|

3.7. Example. First we investigate the temporal operators associated with the
functors for infinite sequences and also for transition systems. These give the famil-
iar operators of Linear Temporal Logic (LTL) and Computation Tree Logic (CTL),
see [Eme90, MP92]. Then, in the last point, we sketch an example of temporal
operators in coalgebraic specification.

(i) Consider the functor T(X) = B x X on the category Sets, for an arbitary
set B. For predicates P C X and @ € T(X) we have, following Definition 3.1,

Pl ={(bz) e T(X)|be BAz € P} and Qr={x€ X|3Ie B.(bx) €Q}

For an arbitary coalgebra v: X - T(X) we get
P = {zeX|~@x) ePl} and aP = ({v(x) |z e P}),
= {rxe X |n'y(x)e P} {n'v(z) | x € P}.

So that P C X is an invariant if and only if x € P = #a'y(z) € P, forallxz € X. It
is easy to see that the greatest invariant ~ P contained in P is {z | Ym. ('y)™(2) €

7,

P}. Similarly, the least invariant <7:P containing P is {(x'~y)™(z) | x € P,m &€ N}.
We now consider a concrete instantiation: we take B = {0,1} and write B¥ for
the set of bit streams, consisting of infinite sequences (by,)nen of bits b, € {0,1}. We
consider B¥ with the (terminal) T-coalgebra 8 = (hd,tl): B¥ —» B x B“ consisting
of head and tail function given by
hd((bn)) =bo and tl((bn)) = (bnt1)-

Let P C BY“ be the predicate given by (b,) € P < byg = 0. Then, for example,

(by) € Q)P & (bpr1) € P

b =0

Aan) € P.(an+1) = (by)
by =0

“((bny1) € =P)

(bn+1) epP

b1 =0.

¢

1
~
Tt TP

This shows that (Q # - _6) —. But é} coincides with — é} = due to a special property
of the interface functor 7', namely that it has an “affine” lifting, as investigated in

the second part of Section 5.

Further,
Y. tI"((b,)) € P
Vm. (bpym) € P
Yn > 10.b, =0
=Vm.t"™((b,)) € P
Im. (bpym) € P
In > 10.b, =0
Aayn). 3dm. (a,) € P At ((a,)) = (by)
Aay). Im. a0 = 0 A (Gpam) = (by)
true
~A(an). 3m. (an) & P AU ((an)) = (ba)
V(an). Vm. ((antm) = (bn) = a10 = 0)
Vn < 10.b, = 0.

S D R O T 2

¢

Next consider the T-coalgebra o = (hd,tl o tl): BY —» B x B¥, together with the
function evens: BY —» B¥ given by (b,) = (bay). Then evens is a homomorphism
from « to 3.

For the above predicate P we have:

(by) € evens™(P) & (be,) € P

& by =0

(by) € gevens*(P) & (ay) € evens™(P). (ap+1) = (by)
& bg=20

(by) € evens*(éP) & (ban) € g_P
& bis=0

This shows that Lemma 3.6 (i) does not hold for o instead of oy This point is

stressed in [GMS&S].
(ii) In order to see the difference between the weak and strong versions of the
nexttime - and lasttime - operators we take a look at the functor T(X) =

P(Ax X) on Sets, which forms an interface for transition systems with labels from
A. For predicates P C X we have, following Definition 3.1,

pT = P’P(KAXid)
= {UeT(X)|VzeU.ze Praxid}
= {UeT(X)|Vze Uz € P’ A’z € P}
= {UeT(X)|VY(a,z)elUac Arhz e P}

= {UeT(X)|V(a,az)eUuze P}

Similarly, for @ € P(A x X),
Qr = {eeX|ZacAIUeQ. (a,2)eU}
Consider now a T-coalgebra c: X — P(A x X). For elements z,2' € X anda € 4

one often writes 2 — z' for (a,z') € a(z), and one says that z can do an a-step to
z'. The associated nexttime and lasttime operators are, on P C X,

aP = {r e X |a(x)e Pt}
= {zeX|V2'€e X.Va€ AdaDH a2 =2 € P} (weak nexttime)
apP = ({afx) |z € P}),
= {2eX|FTwreX.FacAxSa' Axe P} (strong lasttime)
—g}—'P = {zeX|TeX.JacA xS Az’ € P} (strong nexttime)
—|£—|P = {deX|VreXVacAazSHa' =xe P} (weak lasttime)

(iii) In coalgebraic specification (see [Rei95, Jac96]) one specifies object-oriented
systems via coalgebraic operations and initial states, satisfying certain assertions.
Typically in these assertions, one uses bisimilarity < instead of equality = on states.
We shall present an example of a coalgebraic specification of a stack, using some

10

(hopefully) self-explanatory notation.

Stack[A : TYPE] : CLASSSPEC
METHOD
size: Self — Z
push: Self x 4 — Self
pop: Self — 1+ (A x Self)
ASSERTION
Va € Self.Va € A.size(push(z,a)) = size(z) + 1
Va € Self. CASES pop(z) OF
ku : size(z) =0
k'v: size(wv) = size(x) ~ 1
ENDCASES
Va € Self.Ya € A. CASES pop(push(z,a)) OF
ku @ false
sv:mv=aArve
ENDCASES
CONSTRUCTOR
new_stack: Self
CREATION
pop(new_stack) = kx

Notice that the last assertion says that pop(push(x,a)) is always of the form &'(a, y)
with y bisimilar to . This says that after a push, the pop operation returns and
removes the most recently pushed element from the stack (leaving a stack which is
indistinguishable from the stack before the push). The pop method can also fail,
by returning s* in the 1-component of its codomain 1+ (A x Self). This indicates
that the stack is empty.

The first thing to note is that the interface of the operations is captured by a
polynomial functor, namely:

T(X)=ZxX*x(1+(4xX))

A coalgebra X — T(X) of this functor combines the three methods size, push, pop
in a single function. For a predicate P C X, we get the predicate lifting PT C T(X)
consisting of:

PT ={(n,f, 2)|Va€ A. P(f(a)) AVa € A.Vy € X.z = &'(a,y) = P(y)}.

Thus, for a coalgebra ¢ = {size, push, pop) the predicate < P for ‘nexttime P’ is
defined by:
gP(x) & PT(c(x))
& Va € A P(push(z,a)) AVa € A.Vy € X.pop(z) = k'(a,y) = Py).
It holds for o if P holds at each (immediate) successor state, obtained by either
push or pop.

In order to say something interesting about this stack, we use the following aux-
iliary iterate function. For arbitrary f: X - 1+ (A x X) and n € N, we introduce

iterate(f,n)

1+ (AxX)

11

as:
iterate(f,0)(z) = f(a)
iterate(f,n + 1)(z) = CASES f(z) OF
Ku Kk
k'v : iterate(f,n)(x'v)
ENDCASES

Consider now the following specific predicate).
Q(x) & size(z) > 0 A iterate(pop, size(z)) = k x .

We claim that for each T-coalgebra ¢ = (size, push, pop) satisfying the assertions in
the class specification Stack, the predicate) is an invariant, i.e. Q C < . Then,

writing O(c) for the weak henceforth operator £ and $(c) for strong one — £
we can prove:

O(c) (Az. size(z) = 0 = pop(z) = & *) (new_stack). (1)

This says that for all reachable states, pop fails if (and only if) the size is zero. For
the proof we use that there is an invariant P (namely Q) with P(x) = (size(z) =
0 = pop(z) = kx) and P(new_stack). This proves the result because O yields the
greatest invariant.

Similarly, one has:

O(e) ()\:v. size(z) > 0 A $(c) (Ay. size(y) = 0) (:v)) (new_stack). (2)

This statement says that for all reachable states = the size is positive, and for some
future state y of x the size is zero. It can be proved via a slightly stronger invariant
Q' given as

Q'(x) & Q(x) AVn € N.n < size(x) = iterate(pop,n) # & * .

The tool described in [HHJT98] translates class specifications as above into log-
ical theories for a back-end proof tool (like PVS [ORSvH95] or Isabelle [Pau94]). It
extracts the interface functor from a class specification, generates the associated lift-
ing, and thereby also the definitions of invariant and bisimulation. Additionally, it
generates tailor-made O(c) = ¢ and {(¢) = = ¢ — operators for the class/coalgebra
c. This allows us to formulate and prove results like above in the back-end proof
tool. Actually, the above statements (1) and (2) have been proved in PVS.

3.8. Remark. In the end one can ask what is so special about polynomial functors
to make the construction of Galois algebras work, for example, in order to generalise
the approach. For an arbitrary functor 7:B — B one can require that 7" preserves
arbitrary? weak pullbacks. The structure one needs in B is that pullbacks of monos
exist and that the posets Sub(X') of objects X &€ B are complete Boolean (or Heyt-
ing, see Defintion 5.5) algebras and that the induced substitution (pullback) functors
f* preserve meets (or equivalently have left adjoints || f). One can then define pred-

icate lifting (—)7: Sub(X) — Sub(T(X)) simply by (A — X) = (T(4) — T(X)).

2This means weak pullbacks of arbitrary set-indexed collections of morphisms with a common
codomain. This is an essentially stronger requirement than preservation of weak pullbacks of just
two morphisms, as shown in [Gum99].

12

This operation preserves all meets (because T' preserves arbitrary weak pullbacks),
and thus has a left adjoint, say (—)7. In this way one gets nexttime a*(P”) and
lasttime (][, (P))r operations for a coalgebra a: X — T(X) as above, and thus a
Galois algebra on the poset Sub(X) of subobjects of the state space X.

Allthough this generalises the construction of Galois algebras for polynomial
functors, it does not cover examples like in Subsection 6.1 where fuzzy predicates
are used, which are not subobjects. There, the more general notion of indexed
category or fibration (see [Jac99]) is needed. This goes beyond the scope of the
present paper.

We have concentrated on polynomial functors because they include many im-
portant examples, and because their lifting (with left adjoint) can be described by
induction on the structure of the functor. This makes it possible to mechanise the
lifting, and generate appropriate notions of invariant, and thereby nexttime and
lasttime operators, as described in Example 3.7 (iii).

4 Galois algebras from nexttime and lasttime along paths

Sofar we have seen the nexttime operator « P, containing those states all of

whose successor states (w.r.t. «) satisfy P. Consider for example, a coalgebra
a: X — X x X of the functor T(X) = X x X. Then gP(m) means that both

P(ra(z)) and P(n'a(z)) hold. In this section we shall introduce nexttime and last-
time operators with respect to paths, so that we can use “nexttime P along the
first path”, holding on z if P(ra(x)). Such operators have been studied previously
in [Mos99, R6899b, R6899a, Kur98]. Here we introduce them in a slightly different
manner, via operations on predicates (like in Definition 3.1), and we show that they
also give rise to Galois algebras.

For a polynomial functor 7', let Inputs(T) be the set of sets A occuring as
exponent (—)* in T. Thus, Inputs(id) = Inputs(K4) = @, Inputs(Ty x T}) =
Inputs(Ty + T») = Inputs(T1) U Inputs(Ty), Inputs(T4) = {4} U Inputs(T), and
Inputs(PT) = Inputs(T").

The set PathSymbols(T') contains the symbols out of which paths will be built.
It is defined as {m, 7", &, £'} U U gcinpurs(r {€v(a) | @ € A}

Next, the set Paths(T") is the subset of the set PathSymbols(T)* of lists of path
symbols that is defined as follows.

Paths(id) = {{} (where () is the empty list)
Paths(K4) = 0
Paths(T1 xTo) = {m-p|p € Paths(T1)} U {n'-p|p € Paths(T>)}
Paths(Ty + T3) {k-p|pe Paths(Ty)} U{x' - p|p € Paths(T)}
Paths(T4) = {ev(a)-p|a € A,p € Paths(T)}
Paths(PT) = Paths(T).

where we have used - as shorthand for the cons operation which adds an element to
a list.
For a set X with predicates P C X and @ € T(X), we define for a path

13

p € Paths(T") new subsets P? C T'(X) and ¢, € X by induction on T

PO =P Qy = @
PP = g*(PP) Qrp = U@
P = W'*(Pp) Qnyp = (U (@)p
per = T1.(PP) Qry = (K(Q))p
p¥r = T[.(P?) Quyp = (K@)
pY@r = {f] f(a) € PP} Qeviyp = {fla)[FEQ})y
PP = {U|VueUwue PP} Qp = UQ)y

Just like there is a Galois connection (—)7 - ()7 for the lifting of the previous
section, there is a Galois connection for the lifting with respect to paths. The proof
is by induction on the length of paths.

4.1. Lemma. For a path p of o polynomial functor, the above operation (—), is
left adjoint to (—)?, that is, Q, C P & Q C PP, O

4.2, Definition. Consider a coalgebra a: X — T(X) of a polynomial functor T'.
For a path p € Paths(T') we define two operators P(X) -+ P(X), namely Py for

‘nexttime along p’ and pa for ‘lasttime along p’ (w.r.t. «). They are defined on
PCX as

def def
p_c)zP = a*(PF) and }EQP = (11.(P),-

4.3. Example. Fix a set A, and consider the (polynomial}) functor
TX)=A+({(Ax X))+ (A x (X x X))

describing an interface for finite and infinite A-labeled trees with at each node either
only a label, or a label with one successor tree, or a label with two successor trees.
The set Paths(T') contains the following three elements.

K kr! sub = 'k’
K& &'ww which will be written as leftsub = &'s/ 7'
g &lmlw! rightsub = g7 7

These paths point to specific state positions in the interface functor:

leftsub

|

T(X) = A + (4 x X)+ (4 x(X x X))

f i

sub rightsub

14

For predicates P C X and @ C T(X), the associated liftings are:

P = 1y eT(X)|Vze X.Va€ Az =k'(s(a,7)) = P(x)}
Qs = {z€X|3a€ Ak (ka,2) €Q}
Plefisub - — L2 € T(X) | Va1,22 € X.Va € A.z = £'(s'(a, (21,22))) = P(x1)}
Qs = {2 € X |Fa€ A Fye X.k'(K'(a,(2,y))) € Q}
prightsub — {2 ¢ T(X) | Vay,22 € X.Va € A. 2 = &' (k' (a, (21, 72))) = P(22)}
Qrightsus = {r € X |Jae A Jy e X.k'(k'(a,(y,2))) € Q}

Now assume we have a coalgebra a: X - T(X). It gives for each tree z € X the
label and successors (if any) of z. Then, for example,

z € leftsubaP & x € o (Peftsub)
ety
& Vay,ae € X.Va€ A a(z) = k'(K' (a, (x1,22)) = Pla1)
< if x has two successor trees, then P holds for the left one
z € leftsubaP & 2 € ([, (P))eftsub
& da€ Adry,zg € X.oa(x) = k(K (a,(z,22)) Az € Q

&z is a left successor of a tree satisfying P.
Also the path modalities form a Galois algebra.

4.4. Lemma. For a coalgebra a: X — T(X) of a polynomial functor T and a path
p € Paths(T) one has ggQ CP&esQRC p_c)zP, so that P(X) with P is a Galois
algebra. O

For these path modalities P and pa one can define corresponding strong pg=
and weak —pa- versions. But also:

4.5. Lemma. For a coalgebra a: X — T(X) and a path p € Paths(T) we define
new operators P and na with type P(X) — P(X) as fized points: for P C X,

gc}zP is the greatest fived point of S+ P A p_c)zS
P is th] P
P is the least fized point of S~ PV (pgS

Then na - pg; so that P(X) with pg is also a Galois algebra (for each path p). O

To conclude this section on operators along paths, we briefly discuss logics. For
a polynomial functor T:Sets — Sets one can define two logics, differing in the
modal operators that they have. In one “single-modal” logic £(T), there is only
a single nexttime operator ¢ + X4 and in the other “multi-modal” logic £(T),

there is a nexttime operator ¢ =+ ny for each path p of T. The atomic propositions

of both logics are given by the elements a € T(1), where 1 is a singleton set {x}.
And the propositional connectives are negation — and conjunction A (say). Each
proposition ¢ of L(T')s or L(T '}y, gives rise to a subset [¢]* € X in the following

15

way.

[a]* = {aeX|(T()oa)a)=a)
(where a € T(1), and ! is the unique function X - 1)
[-e]* = {fzeX[zg[p]™}
[or Ape]® = [or]* 0 [e]”
[2e]* = ale]* forpe L),
[pel* = palel® forpeL(T)m

Alternative notation for validity of ¢ at z, i.e. for [@[*(z), is o, 2 F .

An important result of [R6899a] is that for two elements x € X,y € Y in the
state spaces of coalgebras a: X — T(X) and 3: Y —» T(Y") are bisimilar if and only
if they satisfy the same formulas from the multi-modal logic £(T'),,. This result is
proved under certain restrictions: the sets A whose constant functors K 4 occur in
T should all be finite, and the powerset functor should not occur in 7'. The result
is proved® via a terminal coalgebra construction out of maximally consistent sets of
formulas. Similar such characterisation results occur in [Mos99, R6899b, Kur98].

This logical characterisation of bisimilarity does not hold for the single-modal
logic £(T)s. The following two coalgebras present a counter example, for the tree
functor T(X) = A+ ((4A x X) + (4 x (X x X))) from Example 4.3. We take
A ={a,b} and X = {0,1,2} with the following two coalgebras «, 3: X — T(X).

N N R N

a(0) = £'(k'(a, (1,2))) B(0) = k' (k' (a, (1,2))
a(l) = ka, a(2) = kb B(1) = kb, B(2) = ka

Clearly, 0 & 50 does not hold, where ¢ ; denotes bisimilarity w.r.t. a and (3.
But the same propositions from the single modal logic £(T"); hold at 0: the same
atomic propositions hold there, and, for a predicate P C X, the nextstep operators

2 and é} say that some observation can be made at both successor trees at the

same time. But since the labels are different, there are no such observations.

The “pathwise” modalities P thus give a more refined expressivity than the
“broad” modality « . But the latter is more useful for expressing safety and live-
ness properties, involving all possible successor states in a single operator, see Ex-
ample 3.7 (iii).

5 Galois Algebras

Now that we have seen several examples of Galois algebras—arising from next-
time operators for coalgebras—it is time to have a closer look at these structures.
This section repeats several basic facts from [Kar98], and adds certain results (like
Lemmas 5.3, 5.4) which relate specifically to coalgebras and polynomial functors.

3In recent, as yet unpublished, work of R&Biger these size restrictions are removed, and the
finite powerset functors is included in this result.

16

Definition 2.1 already introduced Galois algebras B as complete Boolean alge-
bras with a nexttime operator e : B — B preserving all meets. The resulting “last
time” left adjoint was written as e . It should be noted that AN is the weak lasttime
operator, and e the strong lasttime. To emphasise this aspect we sometimes write

o for o and e for e. For a general Galois algebra we write a bullet where
—>w — 8

we put a particular (coalgebraic) operation in concrete examples.
We first recall how other temporal operators can be defined, using fixed points.

Notation Meaning Definition
o b at some next step b —(& —b)
—>s —
W b at each previous step b —(2 —b)
obh always in the future b ve.(bA ex)
= =
<o:b sometime in the past b pz. (bv (o_:v)
bi ¢ b until ¢ pr.{cvV{bA e x))
—s
bS e b since ¢ pr.{cV{bA e x))
sé—

We use different notation from [Kar98]. The following table gives an overview.

Here H * = o * = ‘ . . ‘ . ‘ .
S ow e s | o | wee | = | =
von Karger [Kar98] H o ‘ o ‘ ® ‘ © ‘ B ‘ ¢

What makes Galois algebras appealing is that their defining requirements are
very simple, but have strong consequences. For example, all axioms and rules of
CTL are valid in Galois algebras, see [Kar98, 7.2].

As an example, we consider what is usually called the induction? rule of temporal
logic, formulated inside an arbitrary Galois algebra:

b/\:o>(b3_o)b) < :o>b

where b O ¢ = —b V ¢ is implication in a Boolean algebra. We call an element b in
a Galois algebra an invariant if b < e b, or equivalently, if o b < b. Then it is easy

to see that e b is the greatest invariant below b. Hence it suffices to show that the
left-hand-side b A & (b D e b) is also below b and is also an invariant. The first
point is immediate, and for the second we calculate:

b/\:o>(b3_o)b) = b/\(b):}b)/_o):g(bD_o)b) smce:gmaﬁxedpomt
< obA e o (bD eb)
= o= —
= eo(bA o(bD eb)) since o is a right adjoint.
= = — —

Certain additional requirements can be imposed on Galois algebras so that all
axioms and rules from linear temporal logic (LTL) are valid, see [Kar98, 5.3 and 6].

4To use ‘induction’ for a rule which crucially depends on a greatest fixed is a misnomer; it is
better called ‘coinduction’ rule.

17

Here we concentrate on the following points relating to forward- or right-linearity.
These requirements will be relevant for coalgebras.

5.1. Definition. A Galois algebra will be called strict if . 1 = 1. And it will
be called affine (right-linear in [Kar98)) if R4 b <. b, for all elements b.

Intuitively, in a strict Galois algebra there is at every stage at least one successor
state, whereas in an affine one there is at most one successor state. There are dual
requirements about predecessor states, but they will not be considered here. The
combination of these requirements gives models of LTL, see [Kar98].

A typical property which holds in an affine Galois algebra is:

s (bDc)= obD ec (where o = o)
— - 7 = - —w

The direction (<) holds in arbitrary Galois algebras because *, breserves meets

(since it’s a right adjoint). The reverse direction (>) uses the affine inequality
—ex < e —xin:
-7 = =

s (bD¢) o (¢)
e —bV e ¢ by monotonicity of e
— - -
— e bV e ¢ by the affine inequality
s e
= Y IDER sk
= 7 =

We consider some examples of strict and affine Galois algebras induced by coal-
gebras of polynomial functors. We take the functor T(X) = X x X on Sets. For
an aribitrary coalgebra a: X -+ T(X) and a predicate P C X we have “ P =

{z | P(ra(x)) vV P(r'a(z))} and Q. P = {z | P(ra(x)) A P(r'a(z))}. " The
Galois algebra induced by « is strict, since a (0 = (. But if it is affine or not
cannot be stated in general. For instance, consider the state space N with coal-
gebras 3,v:N -+ T(N) given by f(z) = (x,z), and v(z) = {x,2 + 1). Then
BP={{x]Plx))= g P,but v P ={z] Plz)Vv Ple + 1)} which is not
—rs —rw —rs
contained in 4 P={x]Plx)APlz+1)}.
W

Thus the property of being affine depends on the coalgebra, and not on the

functor. But there is a bit more we can say.

5.2. Definition. Consider a polynomial functor 7 Sets — Sets, with predicate
lifting functions (—)7:P(X) — P(T(X)) as introduced in Definition 3.1.

(i) We say that T has a strict (predicate) lifting if the function (—)7 is strict,
i.e. preserves least predicates: #7 = .

(ii) And we say that T has a (finitely) affine (predicate) hftmg (—)T preserves
non-empty finite supremema. This amounts to (P, U P)T = PI' U Py for each
pair of predicates Py, P C X on a set X,

(Strict and affine functions between complete lattices are considered in [Jac94]
as one of the running examples giving categories having tensors with diagonals or
with projections, and with exponential operators ! introducing only weakening or
only contraction. The issue, like here, is the distinction between at least/most once.
See also [Jac93] for examples of models of untyped lambda calculi with variables
occuring at least/most once, constructed from strict/affine functions.)

18

5.3. Lemma. If T is o polynomial functor with a strict/affine lifting, then the
Galois algebra of each coalgebra of T' is strict/affine.

Proof. If T has a strict lifting, then for each coalgebra a: X — T(X) we get
% Ty _ % _
gw(?)—a (3 = o™ () = 0.
And if the lifting is affine, then
* T * T
aPc aP & —a*((=P)7) Car(P)
& o((-P)TuPh) =X
& of(XT) =X
& o' (T(X))=X since (—)T is a right adjoint
& true. O

Whether a polynomial functor has a strict/affine lifting can be deduced from its
structure.

5.4. Lemma. (i) The identity functor Sets —» Sets has a strict lifting. And if
T1,Ts: Sets — Sets have a strict lifting, then so have Ty + Ty, T{, Th x S, where
A is an arbitrary set and S is an arbitrary polynomial functor Sets — Sets.

(ii) The identity functor Sets — Sets also has an affine lifting. And if both
T,,T5: Sets — Sets have an affine lifting, then so have Ty + Ty, K4 x Ty, where A
18 an arbitrary set. O

These strict and affine lifting properties can also be investigated for the pathwise
operators from Section 4. But that will not be done here.

Just like Heyting algebras are the intuitionistic versions of Boolean algebras,
there are intuitionistic versions of Galois algebras. There, the weak and strong
versions of nexttime and lasttime are not interdefinable via negation, and have to
be present separately. We shall see examples in Subsection 6.1. Here we merely
repeat the definition from [Kar9g].

5.5. Definition. An intuitionistic Galois algebra consists of a complete Heyting

algebra B with a weak and a strong nexttime operator 202 :B — B, both
w s
preserving arbitrary meets, and satisfying the inequalities:

< <
SN gySseny) and - psh e yS g @A)

where o -1 e and e - e are the induced left adjoints, playing the role of
e — s

strong Sand weak lasttime operators.

We conclude this section by introducing homomorphisms of (intuitionistic) Ga-
lois algebras. The canonical examples in the next section will be substitution func-
tions f*. In the examples they all preserve arbitrary meets and joins, so that is
what we shall include in the definition of homomorphism. But possibly in another
context, a different requirement is more appropriate.

5.6. Definition. (i) A homomorphism (B, _o)) - (C, _o)) between ordinary (non-

intuitionistic) Galois algebras is a function f: B — C which preserves all meets and
joins, and commutes with the nexttime operations: f o =290 f- This yields a

category, which we shall write as GA.

19

(ii) Similarly, a homomorphism f:(B, e , e } — (C, e , e) between intu-
s - - - - - —)W —)S - —)W %S - -
itionistic Galois algebras is a function f: B - C preserving all meets and joins and
commuting with both nexttime operations: fo o = e ofand fo o = e o

. . —>w —>w —>s —>s
f. This gives a category iGA.

Notice that a morphism f of (intuitionistic) Galois algebras maps greatest fixed
points vg to greatest fixed points vh, for meet-preserving functions g and h with
ho f = fog. Inparticular, it will commute with the henceforth operators s

W

and e induced by the nexttime operators o and e —asin Lemma 3.6 (iii).
=s —rw s

6 Indexed Galois Algebras

In this section we first collect results from the previous sections in a summarising
theorem. Subsequently we concentrate on two specific examples, and show how
the coalgebraic structures which are of central importance in this paper also exist
in some other, possibly unexpected, situations that have been considered in the
literature (without the coalgebraic perspective).

Proposition 3.4 and Lemma 3.6 (i) yield the following fundamental result.

6.1. Theorem. For each polynomiol functor T: Sets — Sets there is functor

CoAlg(T)°P GA

given by
(x 2 7(x)) — (P(x), a) and fr—=f O

This functor forms what may be called an “indexed Galois algebra”, providing a
predicate logic on coalgebras. It can be seen as arising via composition (or change-
of-base, see [Jac99]) along the forgetful functor CoAlg(T) — Sets from the indexed
complete Boolean algebra

SetsP P cBA

incorporating the standard predicate logic on sets—where ¢BA is a category of
complete Boolean algebras.
In this section we shall describe similar examples following this pattern.

6.1 Galois algebras indexed by metric spaces

Let [0,1] be the unit interval of real numbers. It can be seen as a domain of
“fuzzy” truth values, with 0 as false and 1 as true (say). A function of the form
X — [0, 1] can then be considered as a fuzzy predicate, and a function of the form
X xX - [0,1] as a fuzzy (transition) relation, describing for example the probability
of a transition « — 2'. In [Kar98] an intuitionistic Galois algebra is constructed out
of such fuzzy predicates, given a transition relation R: X x X — [0,1]. It involves
for a fuzzy predicate p: X — [0, 1] strong nexttime and lasttime operators, defined
via the “max-min products”:

_R;sgp = Ar gleas}{(mm{R(SL’,y)a‘P(y)}
s£¢ = Ar gg}{cmm{R(y,m)a‘P(y)}-

20

Here we shall redescribe this intuitionistic Galois algebra as resulting from the
general constructions in this paper. We shall describe these constructions more
generally in terms of metric spaces and metric predicates, see also [Law73, Ken90],
or [Jac99, Example 4.6.3 (iv)].

First some preliminaries. We consider metric spaces (X, d) where the distance
function d: X x X — [0, c0] takes values in the non-negative reals, extended with a
top element co. As morphisms (X, d) - (Y, d) between such metric spaces we take
“non-expansive” functions f: X — Y, satisfving d(f(z), f(z')) < d(z,2'"), for all
xz,x' € X. This yields a category MS, with a forgetful functor M8 —» Sets. The
latter has a left adjoint which provides an arbitrary set X with the discrete metric:
d{z,2') = oo for & # 2, and d(x,z) = 0. We shall need the tensor product X @ ¥
of two metric space. It has the Cartesian product X x Y as underlying set, with
distance function d((z,y),(z',y")) = d(x,2") + d(y,y'). The projection function
m: X xY -+ X is then non-expansive, so that we have a tensor with projections
X ®Y — X, see [Jac94].

The interval [0, 00] with it usual order forms a complete Heyting algebra, with
max as least upper bound and min as greatest lower bound. The implication r O s
for r,s € [0,00] is given as r > s = oo if r < 5, and r O s = s otherwise. Then
min{t,r} < s & ¢t < r 2 s. And thus for a subset S C [0, 00], min{t, max S} =
max{min{t,s} | s € S}.

A metric predicate on a metric space (X, d) is a non-expansive function ¢: X —
[0,00]. The set MP(X,d) of metric predicates on (X,d) is a metric space itself,
with distance d{p,) = maxzex jo(x) — 9(z)]. This set can be ordered pointwise,
and thus inherits the complete Heyting algebra structure from [0, 00]. Moreover,
the mapping (X,d) = MP(X,d) extends to a functor MS°? -+ cHA, since a
non-expansive function f: X -+ Y yields a substitution function f*:MP(Y,d) —»
MP(X,d) by precomposition. We thus get metric-space-indexed complete Heyting
algebras. Note that f* preserves the (pointwise) joins and meets, and thus has both
a left adjoint][], and a right adjoint [].. Explicitly, they are given on a metric
predicate p: X — [0, 00] as [](¢)(y) = maxzex{p(@) | fz) =y} and [[;(p)(y) =
mingex{p(x) | f(z) = y}. Using the exponents one can prove the “Frobenius”
equation: [,(p A f*(¥)) = [1;(¢) A+, where A is min. We shall also make
use of the “Beck-Chevalley” property for coproducts [[, and products [along
projections m: X @ Z ~» X. These satisfy, for f: X — Y and ¢: Y ® Z — [0, 0],

f(Ua) = LL((F2id)"(p) and f"(I1.(0) = II.((f ® id)"(¥)).

Next we consider taking metric predicates as a (covariant) functor MP: MS —»
MS, given on morphisms as f = [] s- It can be seen as a metric analogue of
the covariant powerset functor. A coalgebra a: (X,d) - MP(X,d) is a “metric
fuzzy transition system”. As above, one can interpret a(z)(z') € [0,0¢] as some
probability for a transition z — 2/, for z,2' € X.

What we need to understand is the lifting of the functor MP to predicates
w: X = [0,00]. It should yield a new predicate o™¥: MP(X,d) — [0, c]. Basically
we follow the set-theoretic formulations for the powerset functor in Definition 3.1.
Therefore we first need a metric membership relation €, given as metric predicate
e MP(X,d) ® (X,d) = [0,0c]. It is simply given by evaluation:® (p,z) — (),
and is easily seen to be non-expansive. Now we can can define for metric predicates

5The set-theoretic membership relation ¢ « P(A) x A can equivalently be described as evalu-
ation {0,1}# x A — {0, 1}, using characteristic functions instead of subsets.

21

w: X — [0,00] and 9: MP(X,d) — [0, 0],

oM = TI.(e D a™(p)) (see Definition 3.1 (i))
= A MP(X, d). min x(y) 2 ¢(y)
= AeMP(X,d). min{e(y) | ¢(y) < x()}

Pvvp = [l (e A () (see Definition 3.1 (ii))
= s X max{min{x(2),$(0)} | x € MP(X,d)}.

These operations are used for the weak nexttime and the strong lasttime opera-
tions. For strong nexttime and weak lasttime we also consider, in analogy with the
formulations at the end of Example 3.7 (ii):

[l (enm™(@)) : MP(X,d) — [0,00]
[In(eD>7 (@) + X —[0,09]

Assuming a coalgebra «: (X, d) —» MP(X,d), this leads to the following weak and
strong next- and last-time operators, all with type MP(X,d) - MP(X, d).

a9 = a (@)

= X gg)fg{w(y) L oly) <alz)(y)}

ay = (I.(©)upr
= Az X. max min{x(zv),glea)}g{‘P(y) | ay) = x}}
= Az X maxmax{min{x(z), p(y)} | aly) = x}
= X max min{a(y)(z), »(y) }

ae = o (L(eAm"(p)

= Ao X macminda(o) (0),)}

a ¢ = [(. (@)
= Av:X. minmin{x(x), min{e(y) | a(y) = x}}
W) (@), ()}

= A X. mmmm{a y
yeX

It is then easy to see that there are Galois connections « @1 < w2 & 1 < @ P9
5% —rw
and a ;1 <2 & w1 < a . For example,
—bs Wi

a o =0 (LA @) <o & (e AT (o) < T, (0)
& enn(p) < ([(e)
& 7(p) < €2 r ([T (e2)
& g1 <Iole o m(Ta(w) =

W(—

Further, the additional requirements for intuitionistic Galois algebras can be proved

22

by abstract “logical” calculation using the Frobenius equation:

ap A gy = o ([(e An" (1)) All(e D 7" (02))
= o’ [I, (e Aa™(p1) A [T (e D 7™ (2)))
< o [L (e A 7™ (1) A (e D 7™ (2)))
< ot [I (e AT (1) A T (p2))
= o I, (e Aa™(p1 A)
= _Cgs(% A p2)
oo h g = Ll [e0) AlLle > [Tap2)
= [Iw (e A7 ITalpr) A ™ [T (e D 7 [T (92))
< U (e AT Ha(er) A (e D7 [T, (92))
< e (e A7 (I, (01) ATl (92))
= Lo (eAa" (01 Aa™ [T, (2)))
< e (eAa aler A g2))

To

Finally, for a non-expansive function f: X — Y forming a coalgebra homomorphism
from a: X — MP(X) to 3:Y — MP(Y)—so that 8 o f = MP(f) o a—the induced
substitution functor f*:MP(Y) — MP(X) commutes with the weak and strong
nexttime operators. For instance,

B9 = e
= o"MP(f)"(I[.(c > 7™ ()
= o ([[.(MP(f) @ id)*(e D 7" (¢))))
by Beck-Chevalley
= o ([[,(MP(f) ® id)*(e) D 7™ ()))
since substitution distributes over D
= o ([[((L;aes(€) O 7™ ()

(MP(f) ® id)"(e) = 1,4 (€) follows by direct calculation
(I Iiag s (e O (id & f) n"™ ()
“(I1:(e > 7™ f* ()

a f*(p).

—rw

o~
*
~—"

(%
(%

In the marked equation “ we have used the law® I,(») 2> ¢ =1I,(» > g" (),
which follows easily from the Frobenius equation.
Thus we have arrived at the following result.

6.2. Proposition. The metric predicate functor MP: MS — MS on the category
of metric spaces yields an indexed intuitionistic Galois algebra of the form:

Coalg(MP)°P iGA

81n logical terms it is (Jz.) D ¥ = Vz.(p D) with z not free in .

23

