A NOTE ON POSSIBLE COUNTEREXAMPLES TO THE ABHYANKAR-SATHAYE CONJECTURE CONSTRUCTED BY SHPILRAIN AND YU

Arno van den Essen, Peter van Rossum

Report No. 9924 (June 1999)
A Note on Possible Counterexamples to the Abhyankar-Sathaye Conjecture Constructed by Shpilrain and Yu

Arno van den Essen Peter van Rossum

7th June 1999

In [SY99], Shpilrain and Yu construct a class of candidate counterexamples to the Embedding Conjecture of Abhyankar and Sathaye (see [Sat76] and [Abh78]).

Proposition 1 ([SY99], Proposition 1.5). Let \(q \) be a polynomial over \(\mathbb{C} \) in four variables and let \(k \) be a positive integer. In \(\mathbb{C}[x,y,z,t,u] \), define \(\omega := x^k - tz^2 - uz \), \(\alpha := \omega - (w^2 + yz)z \), and \(\beta := y - (\omega^2 + yz)^2z + 2\omega(\omega^2 + yz) \) and consider the following polynomial \(p \):

\[
p := x - q(\beta + \alpha^2, z, t + \beta, u - \beta).
\]

Then the zero fiber of this polynomial is isomorphic to a coordinate hyperplane, i.e., \(\mathbb{C}[x,y,z,t,u]/(p) \cong \mathbb{C}[x,y,z,t] \).

If the Embedding Conjecture were true, then these polynomials \(p \) are all coordinates, i.e., component of a polynomial automorphism \(\mathbb{C}[x,y,z,t,u] \to \mathbb{C}[x,y,z,t,u] \). Shpilrain and Yu explain why this class of polynomials \(p \) (for \(k \geq 2 \)) could contain counterexamples to this conjecture.

However, this note shows that these polynomials \(p \) are all coordinates. They even turn out to be tame.

Proposition 2. In the situation of the previous proposition, \(p \) is a tame coordinate.

Proof. Write \(\nu := \omega^2 + yz \), \(A := \beta + \alpha^2 \), \(B := z \), \(C := t + \beta \), and \(D := u - \beta \). Note that \(\alpha = \omega - \nu z \), \(\beta = y - \nu^2 z + 2\omega \nu \), and \(\nu = x^k - z(u + tz) \). Applying the (elementary) polynomial automorphism

\[
\begin{align*}
 u &\mapsto u - tz \quad (\text{and} \, x \mapsto x, \, y \mapsto y, \, z \mapsto z, \, t \mapsto t)
\end{align*}
\] (1)
to the polynomials $\omega, \nu, \alpha, \beta, A, B, C,$ and D transforms them into

\[
\begin{align*}
\omega_1 & := x^k - zu, \\
\nu_1 & := \omega_1^2 + yz = x^{2k} + z(y - 2x^k u + zu^2), \\
\alpha_1 & := \omega_1 - \nu_1 z, \\
\beta_1 & := y - \nu_1^2 z + 2\omega_1 \nu_1, \\
A_1 & := \beta_1 + \alpha_1^2, \\
B_1 & := z, \\
C_1 & := t + \beta_1, \quad \text{and} \\
D_1 & := u - tz - \beta_1
\end{align*}
\]

respectively. Now applying the polynomial automorphism

\[y \mapsto y + 2x^k u - zu^2, \quad (2) \]

transforms these polynomials into

\[
\begin{align*}
\omega_2 & := x^k - zu, \\
\nu_2 & := x^{2k} + zy, \\
\alpha_2 & := \omega_2 - \nu_2 z \\
& = x^k - z(u + x^{2k} + zy), \\
\beta_2 & := y - \nu_2^2 z + 2\omega_2 \nu_2, \\
A_2 & := \beta_2 + \alpha_2^2, \\
B_2 & := z, \\
C_2 & := t + \beta_2, \quad \text{and} \\
D_2 & := u - tz - \beta_2,
\end{align*}
\]

respectively. Now applying the polynomial automorphism

\[u \mapsto u - x^{2k} - zy \quad (3) \]
transforms these polynomials into
\[\omega_3 := x^k - z(u - x^2 - zy),\]
\[\nu_3 := x^k + zy,\]
\[\alpha_3 := x^k - zu,\]
\[\beta_3 := y + 2x^k(u - x^2 - zy) - z(u - x^2 - zy)^2 - \nu_3^2 z + 2\omega_3 \nu_3,\]
\[A_3 := \beta_3 + \alpha_3^2,\]
\[B_3 := z,\]
\[C_3 := t + \beta_3, \quad \text{and}\]
\[D_3 := (u - x^2 - zy) - tz - \beta_3\]
\[= u - y - x^2 - 2x^k u - yz - tz + u^2 z\]
\[= u - y - x^2 - 2x^k u - z(t + y - u^2),\]
respectively. Now applying the polynomial automorphism
\[t \mapsto t - y + u^2\] transforms these polynomials into
\[\omega_4 := x^k - z(u - x^2 - zy),\]
\[\nu_4 := x^k + zy,\]
\[\alpha_4 := x^k - zu,\]
\[\beta_4 := y + 2x^k(u - x^2 - zy) - z(u - x^2 - zy)^2 - \nu_4^2 z + 2\omega_4 \nu_4,\]
\[A_4 := \beta_4 + \alpha_4^2,\]
\[B_4 := z,\]
\[C_4 := t - y + u^2 + \beta_4, \quad \text{and}\]
\[D_4 := u - y - x^2 - 2x^k u - zt,\]
respectively. Now applying the polynomial automorphism
\[y \mapsto -y + u - x^2 - tz - 2x^k u\] transforms the polynomials \(A_4, B_4, C_4,\) and \(D_4\) into
\[A_5 := -y + u - 2x^k uz - tz + u^2 z^2 - u^2 z,\]
\[B_5 := z,\]
\[C_5 := t + 2x^k u + u^2 - u^2 z, \quad \text{and}\]
\[D_5 := y,\]
respectively. Now applying the polynomial automorphism
\[t \mapsto t - 2x^k u - u^2 + u^2 z\]
transforms these polynomials into
\[A_6 := -y + u - 2x^k uz - tz + 2x^k uz + u^2 z - u^2 z^2 + u^2 z^2 - u^2 z \]
\[= u - y - tz, \]
\[B_6 := z, \]
\[C_6 := t, \]
\[D_6 := y, \]
respectively. Now applying the polynomial automorphism
\[u \mapsto u + y + tz \] (7)
transforms these polynomials into \(u, z, t, \) and \(y \) respectively. Hence the polynomial \(p = x - q(A,B,C,D) \) is transformed into \(x - q(u,z,t,y) \) by successively applying these automorphisms. Finally applying the polynomial automorphism
\[x \mapsto x + q(u,z,t,y) \] (8)
then transforms it into \(x \). Since the polynomial automorphisms (1)-(8) are all elementary, \(p \) is a tame coordinate. \(\square \)

References

Arno van den Essen <essen@sci.kun.nl> Department of Mathematics
Peter van Rossum <petervr@sci.kun.nl> University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands