Reasoning about Java Classes

B.P.F. Jacobs, J.A.G.M. van den Berg, M. Huisman, M. van
Berkum, U. Hensel, H. Tews

Computing Science Institute/

CSI-R9812 April 1998



Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1

6525 ED Nijmegen

The Netherlands



Reasoning about Java Classes
(Preliminary Report)

Bart Jacobs, Joachim van den Berg,
Marieke Huisman, Martijn van Berkum,
Dep. Comp. Sci., Univ. Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

{bart, joachim,marieke,mvberkum}@cs.kun.nl

Ulrich Hensel, Hendrik Tews
Inst. Theor. Informatik, TU Dresden, D-01062 Dresden, Germany.

{hensel,tews}@tcs.inf.tu-dresden.de

April 22, 1998

Abstract

We present the first results of a project called LOOP, on formal meth-
ods for the object-oriented language Java. It aims at verification of pro-
gram properties, with support of modern tools. We use our own front-end
tool (which is still partly under construction) for translating Java classes
into logic, and a back-end theorem prover (namely PVS, developed at
SRI) for reasoning. In several examples we will demonstrate how non-
trivial properties of Java programs and classes can be proved following
this two-step approach.
KEYWORDS: object-orientation, Java, higher-order logic, proof assistant,
front-end tool, coalgebra
CLASSIFICATION: 68Q60, 68Q65, 68T15, 03B70 (AMS’91); F.3.1, D.1.5,
D.2.4 (CR’98)

1 Introduction

Being able to reason about programs has always been one of the central objec-
tives of research in computer science. Progress in this area is slow, because the
subject matter is complicated. In order to reason about a program, one first has
to assign meaning to this program (usually as some function acting on states),
and then reason (using a suitable logic) about what this program does. Such
reasoning is often subtly different from ordinary mathematical reasoning be-
cause of typical imperative phenomena, like side-effects, or because of different
forms of partiality (ordinary or abrupt termination, e.g. via exceptions).

This paper concentrates on reasoning about Java [4, 8]. Java is quickly be-
coming one of the most widely used programming languages. Being able to
reason about programs and classes in Java—and hence being able to establish
correctness or incorrectness of a Java implementation with respect to some spec-
ification, see explicitly in Subsection 4.6—is of considerable interest. We use a



proof tool (namely PVS [18]) for reasoning, and avoid arguments “by hand”—
which are generally considered less trustworthy. Using such a proof assistant in
this area has definite advantages.

e A proof tool keeps track of which results have and which have not been
proved. It can easily tell a user if all the assumptions on which a certain
result relies have been proved. These are typical bureaucratic activities,
which can best be done by tools, because they often lead to mistakes,
when done by humans. Other such bookkeeping activities include keeping
track of all case distinctions in a proof—which there are usually many,
when reasoning about programs.

e Program verification involves much routine equational and boolean reason-
ing. A tool can do this very well, once it has been loaded with appropriate
rewrite rules (and decision procedures).

e Side-effects are important when dealing with imperative programs. How-
ever, they are notoriously hard to reason about. Once they are properly
incorporated in one’s theories, the proof tool helps the user to keep track
of all these side-effects, and to make the right deduction steps.

e Side-conditions which are required to hold before an auxiliary lemma can
be applied are enforced by the tool. This helps to prevent small mistakes.

In brief, a proof assistant is like a “sceptical colleague” who patiently checks
all details and is willing to do routine tasks.

An assertional approach (as used by such a proof tool, or possibly also by
someone reasoning by hand) has a definite advantage over testing: by testing one
only checks a limited number of cases!. In contrast, using assertional methods
one can prove statements of the form: for all parameters it is the case that - - -.
This achieves an appropriate level of generality (and thus, confidence).

So far we have discussed the use of a proof assistant in our project. Such
a tool is used as a back-end, to our own tool, which we call LOOP (for Logic
of Object-Oriented Programming). The LOOP tool translates Java classes into
higher-order logic, thus providing input for the back-end proof tool PVS. In
translating Java classes to logic, the LOOP tool provides a logical semantics for
Java. This will be an important topic in the paper. The LOOP tool is still under
development, but what we will discuss here is a version which automatically
translates a non-trivial part of Java. For example, it handles inheritance and
late binding in Java classes, but it does not handle threads.

What we shall describe is a part of a more general LOOP tool described
in [11] for translating object-oriented specifications into higher-order logic. The
tool performs the following transformations.

CCSL classes

representation PVS theories

in Ocaml & proofs

\
/

Java classes

LSelecting appropriate test cases is indeed a major issue in this area.



First it reads (lexes and parses) classes in CCSL (Coalgebraic Class Specification
Language, see [11]) or Java, and transforms these in some internal representa-
tion in the Ocaml programming language [20, 16] (the implementation language
of LOOP). This representation is subjected to certain internal analyses, e.g. for
establishing the inheritance relationships between classes. Finally, it is trans-
formed into theories (and proofs) of the PVS theorem prover [18]. Much of the
internal code of the tool is shared for both the translations from CCSL and Java
classes to PVS.

This LOOP tool (on Java classes) is typically used as follows. Assume a
user wishes to prove a certain property about a particular Java class (or about
a collection of classes). For example, that a certain method always terminates
normally, or that some property is an invariant of a class. The user can run the
LOOP tool on the class?, say in a file MyClass. java. The tool then produces a
new file3, called MyClass_basic.pvs. It contains a translation into the higher-
order logic of PVS of all of the Java classes in the original file MyClass. java.
This forms the basis for the user’s own work: (s)he can now create a separate
file, say MyClass_user.pvs, with user-defined theories in which the generated
theories from MyClass_basic.pvs are imported. The statements that the user
wishes to prove about the (translated) Java class should be put here. All these
(.pvs) files can be loaded into the PVS theorem prover, and the user can start
trying to prove the desired results, using the translation of the LOOP tool.
Summarising:

user statements

Java LOOP theories PVS QED
classes translation tool and proofs proof tool | (hopefully)

prelude files
|

In this paper we shall describe several examples of this two-step approach,
usually by presenting: (1) the original Java class(es) on which the LOOP tool
is run, (2) some interesting details of the resulting translation, (3) some propo-
sitions that we wish to prove, and possibly, (4) some details of the actual proof.
See the above diagram in which these four points can be recognised.

This project makes heavy use of traditional results and techniques from the
semantics of programming languages, see e.g. [5, 10]. In a nutshell, traditional
reasoning about programs in a language £ proceeds as follows. First, a suitably
rich mathematical structure D is identified, which can serve as semantic domain
for £, and as domain of reasoning. Then, an interpretation function [ —]: £ — D
is written out, mapping the well-formed expressions of £ to elements of the
domain D. Usually, this interpretation function is “compositional”, so that the
interpretation [ s1;s2] of a composite statement s1;s2 is equal to [ s1 [#[ sz,
where # is a composition operation defined on D. Once this interpretation

2We always assume that Java classes which are fed into the LOOP tool are accepted by a
(standard) Java compiler.

3 Actually, it also produces a file MyClass_basic.prf, containing proofs of standard results
in the file MyClass_basic.pvs. This proof file is not relevant here.



function is given, one can prove properties about statements s in £ by reasoning
about [s] in D.

Basically the same approach forms the basis of the translation of Java classes
into the higher-order logic of PVS, as performed by the LOOP tool. But also,
there are some notable differences:

e The semantic domain D is not described in the ordinary language of math-
ematics, but in the logic and type theory of PVS. These descriptions form
part of certain “prelude” PVS files, which are common to all translations,
see Section 2.

e The interpretation function [ — ] is not written out by hand, but calculated
by the LOOP tool. How to do this translation is of course a major issue
in this project. Section 3 gives more information.

e Proofs about the resulting interpretation are not done by hand but by
using a theorem prover (in this case PVS), as already discussed above.

e The translation works for object-oriented programs, organised in classes.
Therefore, the relations between classes (inheritance: what is a subclass
of what, and aggregation: what is a component of what) have to be trans-
lated appropriately, so that operations from one class are available (if
needed) in another. This is based on a coalgebraic analysis of classes, see
e.g. [19, 13, 14].

e Certain additional definitions are generated automatically. Especially, for
each class appropriate notions of invariant and bisimulation are generated,
see Subsection 4.5. These notions make it easier for the user to express
certain results.

What distinguishes the current project from other formal approach to object-
orientation (see e.g. [1, 2]) is the combination of: a coalgebraic semantics of
classes, and extensive use of tools, both for translating and for reasoning.

The work on the LOOP project can be divided into the following categories
(with initials of the authors who contribute most to these parts): (1) Java
semantics (BJ, MH), (2) automatic translation (JvdB, MvB, BJ), (3) proofs
and proof methods (MH, BJ), (4) general LOOP infrastructure (UH, HT). We
should emphasise that this is very much work in progress, and that we are
nowhere near a complete translation of all possible Java classes. The most
important restrictions are discussed in Section 3. But, as we hope that the
examples below demonstrate, we can already handle a substantial part of the
language. The manner in which it is done is of general interest, and the main
topic of this paper.

So far we have tested our tool only on microscopic examples: our tests are
not as big as possible, but as sick as possible. A semantics for a language like
Java should of course also include programs which are generally considered bad
style (e.g. because of multiply occurring variable names, or control flow via
too many return’s, break’s, continue’s or exceptions). It turns out that such
programs are difficult to reason about—and therefore good test programs for our
approach. Formal verification of software will always remain a knowledge and
labour intensive activity, but we hope that (eventually) our tool can contribute
to this area. For example, it may become worthwhile to formally verify certain



PreStatResult?[Self, Abnormal : TYPE] : DATATYPE
BEGIN

hang? : hang??

norm? (ns? : Self) : norm??

abnorm?(dev? : Abnormal) : abnorm??
END PreStatResult?

PreExprResult?[Self, Abnormal, Out : TYPE] : DATATYPE
BEGIN

hang? : hang??

norm? (ns? : Self, res? : Out) : norm??

abnorm?(dev? : Abnormal) : abnorm??
END PreExprResult?

ExprAbn?[Self : TYPE] : DATATYPE
BEGIN
IMPORTING ExceptionInterpretation
excp?(es? : Self, ex? : ExcpIlds) : excp??
END ExprAbn?

StatAbn?[Self, Label : TYPE] : DATATYPE
BEGIN
IMPORTING ExceptionInterpretation, Lift?[Labell
excp?(es? : Self, ex? : ExcpIlds) : excp??
rtrn?(rs? : Self) : rtrn??
break?(bs? : Self, blab? : Lift?[Label]) : break??
cont?(cs? : Self, clab? : Lift?[Label]) : cont??
END StatAbn?

Figure 1: The four main datatypes used for the translation

properties of classes which go into standard class libraries or into safety critical
applications.

This paper is organised as follows. It starts with a brief description of the
logical semantics that is used for Java. Subsequently, in Section 3 the translation
that is performed by the LOOP tool is sketched. Both these are substantial
topics, which we can only touch upon in the current paper. The remainder of the
paper is devoted to (typical) examples. It discusses reasoning about a non-trivial
method body, inheritance and late binding, local variables and recursion, while
loops with breaks and continues, invariance results, implementations satisfying
specifications, and also component classes.

2 Java semantics in the higher-order logic of PVS

In this section we will give an impression of the “prelude” PVS files which
provide the background for the translation of Java classes into higher order
logic. They incorporate the semantic structure D, as discussed in the previous
section. This prelude is divided into five files, describing the relevant datatypes,
statements, expressions, operations, and the underlying memory model. The
total size of these PVS files is over 200K (about 7000 lines). We will concentrate
on some essential ingredients.

Two important syntactic categories in Java are statements and expressions.
These will both be translated as state transformer functions (in PVS), namely



as:
[Self -> StatResult?[Self]] and [Self -> ExprResult?[Self, Outl]

The type Self is a parameter for the underlying state space*, and Out is the
parameter type of the output of the expression. We frequently use the question
mark ? in PVS expressions on which our tranlation is based because 7 can-
not occur in Java keywords nor in Java identifiers, and so we can prevent name
clashes. It clutters up the notation a bit, but it is probably best simply to ignore
all these ?’s. A more important point is that these state transformer functions
are examples of coalgebras (see [15]): they have a structured type (StatResult?
or ExprResult?, and not Self) as codomain. Such functions cannot be written
down in algebraic approaches (where one typically has structured types as do-
mains). The approach we use to give semantics to Java (as implemented in the
LOOP tool) is based on coalgebras, and is thus perfectly able to handle such
(statement and expression) functions.
The two codomain types of statements and expressions are abbreviations:

StatResult?[Self] = PreStatResult?[Self, StatAbn?[Self, string]l]
ExprResult?[Self, Out] = PreExprResult?[Self, ExprAbn?[Self], Out]

involving four data types, see Figure 1. The types PreStatResult? and
PreExprResult? describe the possible outcomes of statements and expres-
sions, as state transformer functions. A (translated) statement in a particular
state can either hang (yield outcome hang?), terminate normally (with outcome
norm? (x), where x is a new state in Self), or terminate abnormally/abruptly
(with outcome abnorm?(y), with y describing the kind of abnormality). The
latter is used to model exceptions and statements affecting the control flow
like break, return etc. In contrast an outcome hang? corresponds to non-
termination.

The PVS expressions hang?, norm? and abnorm? are the constructors of
the datatype PreStatResult?. The associated recognisers are hang??, norm??
and abnorm??, telling whether an element in PreStatResult? is of the form
hang?, norm? (x) or abnorm?(y). The associated accessors are ns? (extracting
the x in norm?(x)) and dev? (extracting y in abnorm?(y)). The outcome of a
(translated) expression is very similar, except that normal termination produces
a result in the output type Out of the expression, together with a (new) state,
because expressions can have side-effects. Hence there is a binary constructor
norm? in the data type PreExprResult?, with a state in Self and a result in
Out as arguments. In these definitions it is convenient to keep a type Abnormal
of abnormalities as parameter. The standard instantiation for Abnormal in
PreStatResult? is the type StatAbn? describing the possible abnormalities
for statements (exceptions, returns, breaks and continues). Similarly, the type
ExprAbn? captures abnormalities in expressions (namely, exceptions only).

On the basis of these datatypes we can already introduce some basic pro-
gram constructs. For example, a composition (infix) operator # (intended as
translation of ; in Java) is defined in PVS. It takes two statements s, t of type
[Self -> StatResult?[Self]] and produces a new statement s # t describ-
ing s followed by t, again of type [Self -> StatResult?[Self]]. It is defined
as:

4In the actual translation, Self will be instantiated as GM?, describing the global memory,
see the end of this section.



(s # t)(x) = IF norm?7?(s(x))
THEN t(ns?(s(x)))
ELSE s(x)
ENDIF

Thus if s terminates normally in state x, resulting in a next statey = ns?(s(x)),
then (s # t) (%) is t(y). And if s hangs or terminates abnormally in state x,
then (s # t) (x) is s(x) and t is not executed. It is not hard to show that # is
associative, and has a (left and right) unit skip, given by skip(x) = norm?(x).
Hence statements form a monoid.

In a similar way we define a conditional statement IF_THEN_ELSE(c) (s) (t),
for a boolean expression c of type [Self -> ExprResult?[Self, booll] and
two statements s, t, as:

IF_THEN_ELSE(c) (s) (t) (x) = IF hang??(c(x))
THEN hang??
ELSIF norm??(c(x))
THEN IF res?(c(x))
THEN s(ns?(c(x)))
ELSE t(ns?(c(x)))
ENDIF
ELSE abnorm? (E2SAbn? (dev?(c(x))))
ENDIF

(The E2SAbn7 term turns an expression abnormality into a statement abnor-
mality.)

In this manner, all Java constructs are translated in the prelude files, fol-
lowing the explanations in [8]. Another such example is a RETURN statement in
PVS, defined as:

RETURN(x) = abnorm? (rtrn?(x))

It creates a return abnormality, see Figure 1. Similarly, the two conjunction op-
erators & and && of Java are translated as AND and ANDTHEN in PVS, respectively.
They are defined on boolean expressions e, d as:

(e AND 4) (x) = (e ANDTHEN d) (x) =
IF norm??(e(x)) IF norm??(e(x))
THEN THEN
LET r = res?(e(x)), LET r = res?(e(x)),

y = ns?(e(x)) IN

y = ns?(e(x)) IN

IF norm?7(d(y)) IF NOT r
THEN norm?(ns?(d(y)), THEN e(x)
r AND res?(d(y))) ELSE d(y)
ELSE d(y) ENDIF
ENDIF ELSE e(x)
ELSE e(x) ENDIF

ENDIF

Notice how side-effects are propagated through these composite expressions.
Both AND and ANDTHEN equip the type of boolean expressions with a monoid
structure (both with the constantly true expression as unit).

Similar, but more complicated translations are formulated for SWITCH, WHILE,
etc. The latter works on a boolean expression and a statement, and basically
iterates the statement a certain number of times, in case there is an n such that



after n iterations the expression becomes false, or an abrupt termination occurs.
If there is no such n, the while statement hangs. We can declaratively make
this distinction in logic. More details are given in Subsection 4.4.

A large part of our prelude files is devoted to suitable rewrite lemmas for
all these definitions. They enable PVS to handle substantial parts of proofs
automatically via rewriting.

In one of the prelude files a model GM? is defined of a global memory, con-
taining an infinite® number of memory cells. It comes equipped with operations
for reading and writing values and references at particular positions. All classes
are translated as coalgebras (see the next section), acting on this global state
space GM?.

3 Translating Java classes

The LOOP tool calculates a function [—] which assigns meaning to Java
classes. It follows the Java grammar [8, Chapter 19], and takes for example
[e1]lAND[e2] as PVS translation [el & e2] of el & e2in Java. Such clauses
are handled, one-by-one, by Ocaml’s yacc. Basically, this is how the translation
works. But there is much more to say.

Ignoring static initialisers, a class in Java consists of fields, methods and con-
structors. The latter are not translated yet, but seem to present no fundamen-
tal difficulties, so we concentrate on fields and methods. The fields (sometimes
called instance variables) and methods of a class are collected by the LOOP
tool in an interface type (like in [11]). For each field i an associated assignment
operation i_becomes is generated. Thus, a class

class MyClass {
byte i, j;
void stat_meth() { .. }
float expr_meth() { .. }
}

will basically give rise to the following interface (record) type in PVS.

MyClassIFace[Self] = [#
i : byte,
j : byte,
i_becomes : [byte -> Self],
j_becomes : [byte -> Self],
stat_meth : StatResult[Self],
expr_meth : ExprResult[Self, float]

#]

Some additional variables may be incorporated in such an interface type of
a class: local variables, parameter variables of methods, and return variables
of non-void methods (occurring in this class). These variables are thus made
global, but this is harmless. Name clashes are avoided by putting a local variable
i in the interface as loc?i. Similarly, we use par?j for a parameter j, and
ret?meth for the return variable of method meth, see for example Figure 3 in
Subsection 4.1 below.

5Hence we do not bother about garbage collection, and an Out0fMemoryException is never
thrown in our translated classes.



A coalgebra for class MyClass, say, in this context is a function in PVS of
the form

c? : [Self -> MyClassIFace[Self]]

where MyClassIFace[Self] is the interface type generated for class MyClass
(like above). Such a coalgebra thus contains all the operations of a class in a
single function. The individual operations can be extracted via (automatically
generated) definitions like:

i(c?) : [Self -> bytel =
LAMBDA(x : Self) : i(c?(x))

stat_meth(c?) : [Self -> StatResult[Self]] =
LAMBDA(x : Self) : stat_meth(c?(x))

In the sequel we shall always use individual operations with respect to such a
coalgebra c?. For more information about coalgebras (versus algebras), see [15].

The body of a method meth in class MyClass gives rise to a predicate on a
MyClass-coalgebra c? which expresses that meth(c?) is equal to the (transla-
tion of the) body of meth. That is, a method

void move(int da, int db) {
fst = fst + da;
snd = snd + db;

}

in a class with integer fields fst and snd, is translated into a predicate called
move_def? on c?, which expresses that for all states x7,

FORALL(da : int, db : int)
move (c?) (x?, da, db) = (
E2S (fst_becomes(c?) (fst(c?) + da)) #
E2S(snd_becomes (c?) (snd(c?) + db))
) (x?)

(An aside about the translation: assignments are defined as expressions. When
they are used as statements, like in this move method, an additional function E2S
is inserted in the translation of the method body, which transforms an expres-
sion into a statement—basically by forgetting the output when the expression
terminates normally, see Figure 1.)

All method definitions are thus translated into predicates. The latter are
combined via conjunction into a single predicate MyClassAssert? on the coal-
gebra c?. A user can then develop the theory of coalgebras satisfying such
predicates, incorporating how methods are implementated. These coalgebras
can be seen as models of the class. This is basically as in [11].

This account simplifies matters slightly for explainatory purposes. We have
already mentioned (at the end of the previous section) that all coalgebras op-
erate on the same state space GM?, describing a global memory. Each field
declaration, say int i, is implemented as a function which can read a value
at a particular location in GM?. Similarly, the associated assignment opera-
tion (i_becomes) writes at this same location. This memory location is a PVS
variable in the predicates defining variables, assignments and method imple-
mentations, and ultimately also MyClassAssert?. Hence as models of classes
we really use functions in a dependent product of the form:

d? : [p? : nat -> (MyClassAssert?(p?))]



class WeirdExpr {
int i;
int lets_calculate(int j) {
try { i %= (i > 5) 7 (i++ % —-§) : 8; }
catch(Exception e) {
i
return i - j; };
return i + j;

}

Figure 2: A class in Java with a weird method

so that d7(p?) is a coalgebra satisfying the method implementations. (It should
have been used instead of c? above.) One can understand d?(p?) as an
implementation of the class MyClass which acts on memory location p?. In
general, if a new variable of a class is created, it gets a (new) position p? in
the main memory GM? together with a coalgebra (of the class) acting on this
position p?.

Here we conclude our brief sketch of the translation that the LOOP tool per-
forms. We emphasise that this translation is far from complete. For example
it does not handle threads, and some of the language constructs are not cov-
ered yet (like constructors). However, many statements and expressions have
already been translated. Besides being incomplete, the translation also simpli-
fies matters. For example, both floating point types float and double in Java
are translated to the PVS type real. The latter is introduced axiomatically in
PVS, and the former are approximations of real numbers (described precisely
in the IEEE 754 floating point format). In order to translate accurately, one
would have to formalise this IEEE format in PVS. This is a non-trivial ex-
ercise, which is a project on its own, see e.g. [6]. Similarly, we translate all
Java integer types (byte, short, int, long and char) to the PVS type int
of integers, without taking bounds into account. Another (temporary) simpli-
fication involves exceptions. These are translated as sets of natural numbers
(e.g. IndexOut0fBoundsExceptionis {x:nat|50 <= x AND x < 60}, which is
a completely arbitrary choice). Catching an exception then involves checking a
subset relationship. This simplification works well in many situations because
an exception object (like the e in Figure 2) is rarely really used (with as possible
exception, in a print statement). The motivation behind these simplifications is
to be able to get a rudimentory translation off the ground, and not to be held
up by initially irrelevant details.

4 Examples

In this section we will elaborate some examples. In particular, we will discuss:
several Java classes, their translation into PVS by the LOOP tool, some results
that a user may wish to prove (on the basis of the translation), and proofs of
such results. Only the first example will be described in some detail.

10



FORALL (j : int_java)
lets_calculate(c?) (x7, j) =
CATCH_EXPR_RETURN[GM?,int_java] (
E2S (par?j_becomes(c?) (const [GM?, int_javal(j))) #
(TRY_CATCH(
(E2S (i_becomes(c?) ((i(c?) =*
QUESTION(((i(c?) > const[GM?, int_javal(5))))
((((i(c?) ## i_becomes(c?) (inc(i(c?)))) //
par?j_becomes (c?) (dec(par?j(c?))))))
(const[GM?, int_javal(8)))))))
¢
(Exception,
(E2S((par?j(c?) ## par?j_becomes(c?) (dec(par?j(c?)))))) #
(E2S(ret?lets_calculate_becomes(c?) ((i(c?) - par?j(c?)))) #
RETURN) )
$))) #
(E2S(ret?lets_calculate_becomes(c?) ((i(c?) + par?j(c?)))) #
RETURN) )
(ret?lets_calculate(c?))
(x?)

Figure 3: The LOOP translation of the weird method in PVS

4.1 A weird method

Consider the Java class in Figure 2. It contains an integer field i and a method
lets_calculate yielding an integer after some intricate computation involving
a conditional operator 7 : and a remainder operation %. The latter throws an
exception, if its second argument is 0. The computation in itself is uninteresting,
but the challenge is to express the integer outcome (if any) of this method, in
terms of the values of the parameter j, and the field i.

In order to determine this outcome we have to take the following into account
(among many other things).

e The evaluation strategy: in the remainder expression i++ %, --j one takes
the value of i as first argument, then i is incremented, then j is decre-
mented, and the resulting value (if j) is taken as second argument, so that
the remainder can finally be computed.

e Exception handling: if j = 1, then the remainder operation (translated
as //) will throw an ArithmeticException, which is caught by the sub-
sequent catch clause—because ArithmeticException is a subclass of
Exception; this causes a particular flow of control. One of the subtleties
in this example is that the increment expression i++ only has a visible
effect if the exception is thrown—because otherwise it is overruled by the
*= assignment,.

e Return handling: the first return statement causes a jump of control to
the end of the method.

The latter two points are handled by using the abnorm? option in statements and
expressions (as discussed in the previous section). Special functions TRY_CATCH
and CATCH_EXPR RETURN are defined which detect such abnormal outcomes.
They remove certain abnormalities and take appropriate action. The first

11



point is handled by suitable PVS representations of the (pre- and post-) in-
crement/decrement and remainder operations, so that arguments are evaluated
in the right order. See the definitions of the AND and ANDTHEN functions in the
previous section.

Running the LOOP tool on this class yields a series of PVS theories. They
contain the translation of the lets_calculate method given in Figure 3. This
translation is probably unreadable, and not really meant for consumption, but is
included only to show what really comes out. Hopefully, the reader will recognise
the main structure of this JAVA method in its PVS translation, e.g. the Java
conditional ? translated as QUESTION in PVS. It is not feasible to explain the
whole translation in detail, so we will focus on some significant details.

e The c? and x? variables in the left hand side lets_calculate(c?) (x7?,
j) of the equation refer to the coalgebra of the current class (i.e. of
WeirdExpr) and the current state, respectively. Recall that methods and
fields are always described with respect to some coalgebra.

e A special variable ret?lets_calculate (together with an associated as-
signment) is used for the result of this method (which is returned at the
end, by the CATCH_EXPR_RETURN function). Another special Java variable
par?j holds the value of the PVS variable j (set at the beginning). It is
used because PVS variables are different from Java variables (for which
there are assignments)®.

e A pre increment or decrement operation is translated simply by an as-
signment (which returns a value, see the previous section). For a post
increment or decrement operation we use the ## operation between two
expressions. This ## operation returns the result of its first argument (and
ignores the second result) together with the state obtained from running
the second argument on the state resulting from the first argument.

e The TRY_CATCH statement takes as argument a list—indicated in PVS by
(: --- :)—of pairs consisting of an exception class, together with the
corresponding statement that should be executed if an exception of the
kind in the first part of the pair occurs. In this example the list contains
only one pair.

An example result that a user may wish to prove is described in Figure 4.
The lemma states that for all integers j, running the method lets_calculate
with respect to the WeirdExpr coalgebra d? (p?) (acting in memory location p?)
in state x? with parameter j terminates normally (expressed by norm??(-)),
and the resulting ouput value res? (-) satisfies the IF --- THEN - -- ELSE clause.
It expresses the outcome of the method run in state x? in terms of the values of
the field i in state x? and of the parameter j. Notice that the result involves a
universal quantifier FORALL. It achieves a level of generality which can never be
obtained by simply testing (i.e. by running the method for specific values and
checking the outcome). This shows the power of a theorem proving approach
to formal verification.

6Using such an auxiliary variable also ensures that parameters are passed by value, see [4,
2.6.1].

12



p? : VAR nat
d? : VAR [m : nat -> (WeirdExprAssert?(m))]
x? : VAR GM?

lets_calculate_return : LEMMA
FORALL(j : int_java)
norm?? (lets_calculate(d?(p?)) (x7, j))
AND
res?(lets_calculate(d?(p?)) (x7, j)) =
IF i(d?(p?)) (x?) > 5
THEN IF j =1
THEN i(d?(p?))(x?) - j + 3
ELSE i(d?(p?)) (x?) * remainder(i(d?(p?)) (x?), j-1) + j - 1
ENDIF
ELSE i(d?(p?)) (x?) * 8 + j
ENDIF

Figure 4: A lemma in PVS about the weird expression method

The lemma in Figure 4 can be proved in PVS by using basically only two
proof commands: (load-rewrite-theories ---) and (do-rewrite). All the expres-
sions in the lemma are then suitably rewritten (following the evaluation strategy
of Java) to the required result. This involves 222 single rewrite steps’. Such
rewriting must be done in a clever manner, because the number of possibilities
in each step is large: in principle, each expression and statement can hang,
terminate normally, or terminate abnormally (involving various possible abnor-
malities). Just unfolding the definitions describing all possible outcomes quickly
leads to screens full of unreadable PVS code. This complexity is managed by
using many small rewrite steps for all cases in expressions and statements from
the prelude files (and by letting LOOP generate additional rewrite rules which
are specific for the translated class), so that in principle, complete definitions
never have to be expanded.

4.2 Inheritance: overriding, hiding and late binding

The previous example does not involve any typically object-oriented aspects.
In this subsection we will consider the translation of the series of JAVA classes
Parent — Child — GrandChild in Figure 5, defined via inheritance. The declara-
tion int i in Child “hides” the i from Parent, see [8, Section 8.3], but running
derivin Child will affect i in Parent, and not i in Child. In contrast, running
deriv in GrandChild will affect i in Child, but not i in Parent, due to the late
binding mechanism which determines that within the GrandChild class deriv
will call the (redefined) base method from GrandChild.

The aim is to prove the right values of the i’s and j after running deriv
in Child and in GrandChild, via automatic rewriting. The difficulty in this
example is not located in the complexities of the expressions involved, but in
getting the bindings right. This is achieved in the LOOP tool by suitably
repeating method definitions from superclasses in subclasses.

7On the fastest machines at our disposal (a Pentium IT 300 with 128M RAM, or an Ultra-
SPARC 2 (model 2200) with 1000M RAM admitting maximally 1 CPU per user) this takes
in interactive mode (with prover output to the screen, via emacs) about 2 min. run time, and
a bit less than 3 min. real time (including garbage collecting). In batch mode, it takes less

13



class Parent {

int i;
void base() { i = 4; }
}
class Child extends Parent {
int i, j;
void deriv() { j = 1; base(); }

}

class GrandChild extends Child {
void base() { i = 8; }
}

Figure 5: Late binding example in Java
class Fac {
int fac (int n) {
int i = 1;
if (m> 1) {i=nx*fac (n - 1); };
return i;

}

Figure 6: A recursive factorial function in Java

In the LOOP translation of these JAVA classes into PVS we first have to show
that the method deriv terminates normally (and does not hang or terminate
abruptly). Then we can express the values of the fields in the resulting state
after deriv in terms of the original values as follows. For a Child coalgebra
d?(p?) acting on an arbitrary memory position p? this is expressed in the
following result.

Child_deriv : LEMMA
norm?? (deriv(d? (p?)) (x7))

AND

i(d?(p?)) (ns?(deriv(d?(p?)) (x?7))) = i(d?(p?)) (x?)
AND

j(d?(p?)) (ns?(deriv(d?(p?)) (x7))) =1
AND

Parent_i(d?(p?)) (ns?(deriv(d?(p?)) (x?))) = 4

The first assertion in the conjunction states that running deriv(d?(p?)) in
an arbitrary state x? is normal (i.e. terminates normally). The next three
statements describe the values of the variables 1(d7(p?)), j(d7(p?)) and
Parent_i(d7(p?)) (i.e. ifrom the super class Parent of child coalgebra d? (p?))
when evaluated in the normal state (accessed by ns?) resulting from running
deriv(d?(p?7)).

For a GrandChild coalgebra gc?(p?) the required result is:

GrandChild_deriv : LEMMA
norm?? (deriv(gc?(p?)) (x7))
AND
i(gc?(p?)) (ns?(deriv(ge?(p?)) (x7))) = 8
AND

than half of the run time.

14



class Loop {
void break_loop (int i) {
lab : while (true) {
if (i < 20) {i++; continue lab; }
else break;
};

Figure 7: An example of a while loop in Java, using break and continue

j(ge?(p?)) (ns?(deriv(ge? (p?)) (x7))) =1
AND
Parent_i(gc?(p?)) (ns?(deriv(gc?(p?)) (x?))) = Parent_i(gc?(p?)) (x7)

Both lemmas are proved by automatic rewriting®.

4.3 Local variables, and recursion

In Sections 3 and 4.1 it was already briefly discussed how the LOOP tool handles
parameters, local variables and special variables for returns. Here we will de-
scribe this in more detail, in the context of a recursive definition of the factorial
function (see Figure 6).

Function fac has a parameter n, a local variable i and it returns a value
of type int. As explained, local variables, parameters and return variables are
made global, and potential name clashes with any identifier from the Java source
are avoided by naming them loc?i, par?n and ret?fac, respectively.

Upon entry of each recursive call, “new” variables par?n and loc?i have to
be available, and they must be discarded after leaving this call. This is realised
using a BLOCK statement, with two parameters: a (composite) statement and a
restore function. When such a BLOCK is executed in state x, first the statement
runs on x, say resulting in a state y. Then the local variables are restored to
their values (or references) from x, yielding a state z. The BLOCK statement
then returns z.

Now, one can prove properties about the factorial function, such as termi-
nation for all n, simply by induction on n. Also, the facts that it returns what
is expected can be proven. In these proofs, one has to be careful: automatically
rewriting fac to its body loops.

4.4 A while loop, with break and continue

Towards the end of Section 2 the semantics of a WHILE statement is sketched:
first it is decided if/when the loop terminates. If not, the WHILE statement hangs,
otherwise it comes down to executing the body the appropriate number of times.
In Java, a WHILE statement can terminate for two reasons: at some stage (1) its
condition evaluates to false, or (2) execution of its expression or body statement
terminates abnormally, because of an exception, break or return. More details
about reasoning about such while loops will appear elsewhere.

Figure 7 shows an example of class with a while loop in Java—which ter-
minates because of a break. After translating this class with LOOP, we can

8The Child_deriv lemma requires 36 rewrite steps, taking about 10 sec. run time, and the
GrandChild_deriv lemma is proved in 40 steps, again in 10 sec.

15



class Counter {
private int max;
private int val;
int maximum() { return max; }
int value() { return val; }
void next() { if ( val < max ) { val = val + 1; } else { val = 0; } }
void clear() { val = 0; }
Counter(int n) { max = n; }

Figure 8: A Counter class in JAVA

prove that its method break loop terminates after max(21 - i, 1) iterations
(where i is the actual parameter of method break_loop). Also, we can prove
that the value of the parameter par?i will be max (20, i), after termination of
the WHILE statement.

par?i_WHILE : LEMMA
FORALL (i : int) : par?i[GM?](d?(p?))(x?) = i IMPLIES
par?i(d?(p?)) (bs?(dev? ((WHILE_DO (up?("1lab"))
(const [GM?, bool] (true))
(IF_THEN_ELSE
(par?i(d?(p?)) < const[GM?, int_java](20))
((E25[GM?, int_java] (par?i(d?(p?))
## par?i_becomes(d?(p?)) (inc(par?i(d?(p?))))))
# (CONTINUE("lab")))
(BREAK))) (x7)))) = max(20, i)

Reasoning about such while programs generally follows standard approaches,
see e.g. [9, 17, 3]. We plan to incorporate this via suitable proof methods in
PVS.

4.5 An invariance result

So far we have only seen examples of user statements about individual methods
in a Java class. The next two examples will consider a class as a whole, first in
showing that a certain predicate is an invariant of a class, and second in showing
that a class can be a model (or implementation) of a specification.

As mentioned briefly in the introduction, the LOOP tool not only translates
Java classes into PVS, but also generates for each class appropriate notions
of invariant and bisimulation. This involves some basic constructions from the
theory of coalgebras (see [14]), which are ultimately based on ideas in categorical
logic (see [12]). Here we will concentrate on invariants. These are predicates
on the state space, which, once they are true for a state x, will remain true no
matter which public? methods (or assignments for public variables) are applied
to x. Consider for example the class in Figure 8, describing a simple counter
modulo max. An invariant for this class is a predicate which is closed under
application of maximum, value, next and clear—but not under assignments
for the private variables max and val. Intuitively it is clear that the following
predicate on the global memory GM? is an invariant.

9n Java there are many visibility modifiers, see [8, Section 6.6] many of which are related
to Java’s package system, but the LOOP tool only has public and private. The LOOP
translation sends private in Java to private, and everything else to public. Within the
LOOP tool, these visibility modifiers are (currently) only relevant for the notions of invariant
and bisimulation.

16



BEGIN CCSLcounter : CLASSSPEC

METHOD
max : Self -> int;
val : Self -> int;
next : Self -> Self;
clear : Self -> Self;
ASSERTION
max_next : PVS max(next(x)) = max(x) ENDPVS
max_clear : PVS max(clear(x)) = max(x) ENDPVS
val_next : PVS val(next(x)) = IF val(x) < max(x)

THEN val(x) + 1 ELSE 0 ENDIF ENDPVS
val_clear : PVS val(clear(x)) = O ENDPVS

CONSTRUCTOR
new : int -> Self;

CREATION
max_new : PVS FORALL(n : int) : max(nmew(n)) = n ENDPVS
val_new : PVS FORALL(n : int) : val(mew(n)) = O ENDPVS

END CCSLcounter

Figure 9: A counter class specification in CCSL

val_below_max(d?, p?) : [GM? -> bool] =
LAMBDA(x : GM?) : O <= max(d?(p?))(x) AND
0 <= val(d?(p?))(x) AND
val(d?(p?)) (x) <= max(d?(p?)) (x)

Proving this formally amounts to proving the following lemma,

val_below_max_inv : LEMMA
invariant?(d?(p?)) (val_below_max(d?, p7?))

in which invariant? is a predicate which is generated by the LOOP tool. It
is not hard to prove this result, since most of the work is done via automatic
rewriting.

4.6 A Java implementation satisfying a CCSL class specification

The introduction of this paper describes how the LOOP tool accepts both class
specifications (in a language called CCSL, see [11]) and class implementations
(in Java) as input. An obvious question arises: can one formulate a class speci-
fication in CCSL, and a class implementation in Java, and then show that the
(translated) Java class forms a model (or implementation) of the (translated)
CCSL class specification. The answer is yes. We shall briefly indicate how this
is done, by (re)considering the Java counter class in Figure 8. A specification of
such a counter (modulo max) is presented in Figure 9. It is written in CCSL [11],
and this language is hopefully self-explanatory.

We shall concentrate on the (validity of the) assertions'®. The LOOP tool
translates the CCSL counter specification into a series of PVS theories. In one
of these theories, the assertions in Figure 9 are combined into a single predicate
CCSLcounterAssert? on a CCSLcounter coalgebra

c : [Self -> CCSLcounterIFace[Self]]

101n principle, the creation conditions for constructors are handled similarly.

17



which combines the methods of the CCSL counter class in a single function.
In order to show that the Java implementation forms a model of this CCSL
specification we first have to transform a coalgebra describing the Java class
into a coalgebra for this CCSL class, and then show that the assertions of the
CCSL class are satisfied. In PVS these steps are as follows.

p? : VAR nat
d? : VAR [p? : nat -> (CounterAssert?(p?))]

counter(d?, p?) : [GM? -> CCSLcounterIFace[GM?]] =
LAMBDA (x? : GM?)

(#
max := res?(max(d?(p7?)) (x7)),
val := res?(val(d?(p?)) (x?)),
next := ns?(next(d?(p?)) (x7)),
clear := ns?(clear(d?(p?)) (x7))

#)

CCSLcounter_JavaImplementation : LEMMA
CCSLcounterAssert? (counter(d?, p?))

The latter lemma is proved automatically by rewriting!!. This establishes the
desired implementation result.

4.7 Component classes and casting

Classes can form components of other classes: if MyClass is already defined,
then one can declare a field MyClass mc in some other class (or even in MyClass
itself). Once mc is properly initialised, methods from MyClass can be applied to
mc. But also, me can be cast to superclasses of MyClass, see [4, Subsection 5.13.2]
or [8, Section 5.5]. This creates substantial difficulties for the translation to
PVS, which we can currently only handle “by hand”. That is, we know how to
translate such casting, but LOOP does not!2.

Casting in Java introduces a difference between fields and methods (see [4,
Section 3.4]): suppose B is a subclass of A, and both A and B have a field £ and
a method m (of the same type). Thus £ from A is “hidden” in B and m from A
is “overridden” in B. Let b be of type B, and consider its cast a = (A)b to A.
Then a.f is f in A, whereas a.m is m in B. This difference is highly relevant for
reasoning about casting!?.

5 Conclusions and further work

We have sketched the essential ingredients of a (partial) translation of Java
classes into the higher order logic of PVS, as performed by the LOOP tool. Also

1 The definition of the counter function also generates several obligations (“tcc’s”) to prove
that the Java methods terminate normally, so that their result res? or resulting normal state
ns? can be accessed. Also these obligations are handled by automatic rewriting.

12The reason is that in order to perform the translation of a cast from class A to class
B we need to know both A and B. This information can only be obtained by letting LOOP
typecheck Java programs, because casting is often done implicitly. And Java typechecking is
not incorporated in LOOP yet.

13Qur translation “by hand” handles this difference by letting a look at b with an adapted
coalgebra. This can also be expressed in terms of “two references” to a, see [4, page 69]: “one
reference as its actual class and the other as its superclass”.

18



we have shown how this allows us to prove some elementary properties about
Java programs in PVS. This may be seen as applied semantics of programming
languages. Space restrictions prevent us from describing all details here, but
more will be presented in future work.

It may be clear that this project is far from finished. We will continue
to extend the translation to aspects of Java which are currently not covered.
Being able to reason about threads is a long-term goal, which will first require a
fundamental study of the semantics of threads in Java (see also [7]) within the
coalgebraic approach underlying the LOOP tool. Major applications are not
foreseen in the near future.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Comp. Sci.
Springer, 1996.

2. M. Abadi and K.R.M. Leino. A logic of object-oriented programs. In M. Bidoit
and M. Dauchet, editors, TAPSOFT’97: Theory and Practice of Software Devel-
opment, number 1214 in Lect. Notes Comp. Sci., pages 682-696. Springer, Berlin,
1997.

3. K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer, 1991.

4. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
214 edition, 1997.

5. J.W. de Bakker and E. Vink. Control Flow Semantics. The MIT Press, Cambridge,
MA, 1996.

6. V.A. Carreno and P.S. Miner. Specification of the IEEE-854 floating-
point standard in HOL and PVS. In E.Th. Schubert, Ph.J. Wind-
ley, and J. Alves-Foss, editors, Higher Order Logic Theorem Proving
and Its Applications, 1995. Category B Proceedings, available at URL
http://lal.cs.byu.edu/lal/hol95/Bprocs/indexB.html.

7. P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. From sequential to multi-
threaded Java: An event-based operational semantics. In M. Johnson, editor, Al-
gebraic Methodology and Software Technology, number 1349 in Lect. Notes Comp.
Sci., pages 75—90. Springer, Berlin, 1997.

8. J. Gosling, B. Jay, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

9. D. Gries. The Science of Programming. Springer, 1981.

10. C.A. Gunter. Semantics of Programming Languages. Structures and Techniques.
The MIT Press, Cambridge, MA, 1992.

11. U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in
object-oriented languages: Logical models and tools. In Ch. Hankin, editor, Euro-
pean Symposium on Programming, number 1381 in Lect. Notes Comp. Sci., pages
105-121. Springer, Berlin, 1998.

12. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. & Comp., to appear, 1998.

13. B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and
Persistence, pages 83-103. Kluwer Acad. Publ., 1996.

14. B. Jacobs. Invariants, bisimulations and the correctness of coalgebraic refinements.
In M. Johnson, editor, Algebraic Methodology and Software Technology, number
1349 in Lect. Notes Comp. Sci., pages 276—291. Springer, Berlin, 1997.

15. B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. FEATCS
Bulletin, 62:222-259, 1997.

19



16.

17.

18.

19.

20.

X. Leroy. The Objective Caml system, Documentation and user’s guide; Release
1.05, 1997. Available at URL http://pauillac.inria.fr/ocaml/htmlman.

J. Loeckx and K. Sieber. The Foundations of Program Verification. Wiley, 1987.
S. Owre, J.M. Rushby, N. Shankar, and F. von Henke. Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans. on
Softw. Eng., 21(2):107-125, 1995.

H. Reichel. An approach to object semantics based on terminal co-algebras. Math.
Struct. in Comp. Sci., 5:129-152, 1995.

D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension of
ML. Theory & Practice of Object Systems, 1998, to appear.

20



