
Reasoning about Java Classes

B.P.F. Jacobs, J.A.G.M. van den Berg, M. Huisman, M. van
Berkum, U. Hensel, H. Tews

Computing Science Institute/

CSI-R9812 April 1998

Computing Science Institute Nijmegen
Faculty of Mathematics and Informatics
Catholic University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands

Reasoning about Java Classes

�Preliminary Report�

Bart Jacobs� Joachim van den Berg�

Marieke Huisman� Martijn van Berkum�

Dep� Comp� Sci�� Univ� Nijmegen�

P�O� Box ����� ���� GL Nijmegen� The Netherlands�

fbart�joachim�marieke�mvberkumg�cs�kun�nl

Ulrich Hensel� Hendrik Tews

Inst� Theor� Informatik� TU Dresden� D	����
 Dresden� Germany�

fhensel�tewsg�tcs�inf�tu�dresden�de

April

� ����

Abstract

We present the �rst results of a project called LOOP� on formal meth	
ods for the object	oriented language Java� It aims at veri�cation of pro	
gram properties� with support of modern tools� We use our own front	end
tool
which is still partly under construction� for translating Java classes
into logic� and a back	end theorem prover
namely PVS� developed at
SRI� for reasoning� In several examples we will demonstrate how non	
trivial properties of Java programs and classes can be proved following
this two	step approach�
Keywords� object	orientation� Java� higher	order logic� proof assistant�
front	end tool� coalgebra
Classification� ��Q��� ��Q��� ��T��� ��B��
AMS����� F����� D�����
D�
��
CR����

� Introduction

Being able to reason about programs has always been one of the central objec�
tives of research in computer science� Progress in this area is slow� because the
subject matter is complicated� In order to reason about a program� one �rst has
to assign meaning to this program �usually as some function acting on states��
and then reason �using a suitable logic� about what this program does� Such
reasoning is often subtly di�erent from ordinary mathematical reasoning be�
cause of typical imperative phenomena� like side�e�ects� or because of di�erent
forms of partiality �ordinary or abrupt termination� e�g� via exceptions��

This paper concentrates on reasoning about Java 	
� ��� Java is quickly be�
coming one of the most widely used programming languages� Being able to
reason about programs and classes in Java
and hence being able to establish
correctness or incorrectness of a Java implementation with respect to some spec�
i�cation� see explicitly in Subsection
��
is of considerable interest� We use a

�

proof tool �namely PVS 	���� for reasoning� and avoid arguments �by hand�

which are generally considered less trustworthy� Using such a proof assistant in
this area has de�nite advantages�

� A proof tool keeps track of which results have and which have not been
proved� It can easily tell a user if all the assumptions on which a certain
result relies have been proved� These are typical bureaucratic activities�
which can best be done by tools� because they often lead to mistakes�
when done by humans� Other such bookkeeping activities include keeping
track of all case distinctions in a proof
which there are usually many�
when reasoning about programs�

� Program veri�cation involves much routine equational and boolean reason�
ing� A tool can do this very well� once it has been loaded with appropriate
rewrite rules �and decision procedures��

� Side�e�ects are important when dealing with imperative programs� How�
ever� they are notoriously hard to reason about� Once they are properly
incorporated in one�s theories� the proof tool helps the user to keep track
of all these side�e�ects� and to make the right deduction steps�

� Side�conditions which are required to hold before an auxiliary lemma can
be applied are enforced by the tool� This helps to prevent small mistakes�

In brief� a proof assistant is like a �sceptical colleague� who patiently checks
all details and is willing to do routine tasks�

An assertional approach �as used by such a proof tool� or possibly also by
someone reasoning by hand� has a de�nite advantage over testing� by testing one
only checks a limited number of cases�� In contrast� using assertional methods
one can prove statements of the form� for all parameters it is the case that � � ��
This achieves an appropriate level of generality �and thus� con�dence��

So far we have discussed the use of a proof assistant in our project� Such
a tool is used as a back�end� to our own tool� which we call LOOP �for Logic
of Object�Oriented Programming�� The LOOP tool translates Java classes into
higher�order logic� thus providing input for the back�end proof tool PVS� In
translating Java classes to logic� the LOOP tool provides a logical semantics for
Java� This will be an important topic in the paper� The LOOP tool is still under
development� but what we will discuss here is a version which automatically
translates a non�trivial part of Java� For example� it handles inheritance and
late binding in Java classes� but it does not handle threads�

What we shall describe is a part of a more general LOOP tool described
in 	��� for translating object�oriented speci�cations into higher�order logic� The
tool performs the following transformations�

CCSL classes

������
�����

representation

in Ocaml
�� PVS theories

� proofs

Java classes

������������

�Selecting appropriate test cases is indeed a major issue in this area�

�

First it reads �lexes and parses� classes in CCSL �Coalgebraic Class Speci�cation
Language� see 	���� or Java� and transforms these in some internal representa�
tion in the Ocaml programming language 	��� ��� �the implementation language
of LOOP�� This representation is subjected to certain internal analyses� e�g� for
establishing the inheritance relationships between classes� Finally� it is trans�
formed into theories �and proofs� of the PVS theorem prover 	���� Much of the
internal code of the tool is shared for both the translations from CCSL and Java
classes to PVS�

This LOOP tool �on Java classes� is typically used as follows� Assume a
user wishes to prove a certain property about a particular Java class �or about
a collection of classes�� For example� that a certain method always terminates
normally� or that some property is an invariant of a class� The user can run the
LOOP tool on the class�� say in a �le MyClass�java� The tool then produces a
new �le�� called MyClass basic�pvs� It contains a translation into the higher�
order logic of PVS of all of the Java classes in the original �le MyClass�java�
This forms the basis for the user�s own work� �s�he can now create a separate
�le� say MyClass user�pvs� with user�de�ned theories in which the generated
theories from MyClass basic�pvs are imported� The statements that the user
wishes to prove about the �translated� Java class should be put here� All these
��pvs� �les can be loaded into the PVS theorem prover� and the user can start
trying to prove the desired results� using the translation of the LOOP tool�
Summarising�

user statements

��

Java

classes
�� LOOP

translation tool

theories

and proofs
�� PVS

proof tool

QED

�hopefully�
��

prelude �les

��

In this paper we shall describe several examples of this two�step approach�
usually by presenting� ��� the original Java class�es� on which the LOOP tool
is run� ��� some interesting details of the resulting translation� ��� some propo�
sitions that we wish to prove� and possibly� �
� some details of the actual proof�
See the above diagram in which these four points can be recognised�

This project makes heavy use of traditional results and techniques from the
semantics of programming languages� see e�g� 	�� ���� In a nutshell� traditional
reasoning about programs in a language L proceeds as follows� First� a suitably
rich mathematical structure D is identi�ed� which can serve as semantic domain
for L� and as domain of reasoning� Then� an interpretation function 		� ���L � D
is written out� mapping the well�formed expressions of L to elements of the
domain D� Usually� this interpretation function is �compositional�� so that the
interpretation 		 s�� s� �� of a composite statement s�� s� is equal to 		 s� ���		 s� ���
where � is a composition operation de�ned on D� Once this interpretation

�We always assume that Java classes which are fed into the LOOP tool are accepted by a
�standard� Java compiler�

�Actually� it also produces a �le MyClass basic�prf� containing proofs of standard results
in the �le MyClass basic�pvs� This proof �le is not relevant here�

�

function is given� one can prove properties about statements s in L by reasoning
about 		 s �� in D�

Basically the same approach forms the basis of the translation of Java classes
into the higher�order logic of PVS� as performed by the LOOP tool� But also�
there are some notable di�erences�

� The semantic domain D is not described in the ordinary language of math�
ematics� but in the logic and type theory of PVS� These descriptions form
part of certain �prelude� PVS �les� which are common to all translations�
see Section ��

� The interpretation function 		� �� is not written out by hand� but calculated
by the LOOP tool� How to do this translation is of course a major issue
in this project� Section � gives more information�

� Proofs about the resulting interpretation are not done by hand but by
using a theorem prover �in this case PVS�� as already discussed above�

� The translation works for object�oriented programs� organised in classes�
Therefore� the relations between classes �inheritance� what is a subclass
of what� and aggregation� what is a component of what� have to be trans�
lated appropriately� so that operations from one class are available �if
needed� in another� This is based on a coalgebraic analysis of classes� see
e�g� 	��� ��� �
��

� Certain additional de�nitions are generated automatically� Especially� for
each class appropriate notions of invariant and bisimulation are generated�
see Subsection
��� These notions make it easier for the user to express
certain results�

What distinguishes the current project from other formal approach to object�
orientation �see e�g� 	�� ��� is the combination of� a coalgebraic semantics of
classes� and extensive use of tools� both for translating and for reasoning�

The work on the LOOP project can be divided into the following categories
�with initials of the authors who contribute most to these parts�� ��� Java
semantics �BJ� MH�� ��� automatic translation �JvdB� MvB� BJ�� ��� proofs
and proof methods �MH� BJ�� �
� general LOOP infrastructure �UH� HT�� We
should emphasise that this is very much work in progress� and that we are
nowhere near a complete translation of all possible Java classes� The most
important restrictions are discussed in Section �� But� as we hope that the
examples below demonstrate� we can already handle a substantial part of the
language� The manner in which it is done is of general interest� and the main
topic of this paper�

So far we have tested our tool only on microscopic examples� our tests are
not as big as possible� but as sick as possible� A semantics for a language like
Java should of course also include programs which are generally considered bad
style �e�g� because of multiply occurring variable names� or control �ow via
too many return�s� break�s� continue�s or exceptions�� It turns out that such
programs are di�cult to reason about
and therefore good test programs for our
approach� Formal veri�cation of software will always remain a knowledge and
labour intensive activity� but we hope that �eventually� our tool can contribute
to this area� For example� it may become worthwhile to formally verify certain

PreStatResult��Self� Abnormal � TYPE	 � DATATYPE

BEGIN

hang� � hang��

norm�
ns� � Self� � norm��

abnorm�
dev� � Abnormal� � abnorm��

END PreStatResult�

PreExprResult��Self� Abnormal� Out � TYPE	 � DATATYPE

BEGIN

hang� � hang��

norm�
ns� � Self� res� � Out� � norm��

abnorm�
dev� � Abnormal� � abnorm��

END PreExprResult�

ExprAbn��Self � TYPE	 � DATATYPE

BEGIN

IMPORTING ExceptionInterpretation

excp�
es� � Self� ex� � ExcpIds� � excp��

END ExprAbn�

StatAbn��Self� Label � TYPE	 � DATATYPE

BEGIN

IMPORTING ExceptionInterpretation� Lift��Label	

excp�
es� � Self� ex� � ExcpIds� � excp��

rtrn�
rs� � Self� � rtrn��

break�
bs� � Self� blab� � Lift��Label	� � break��

cont�
cs� � Self� clab� � Lift��Label	� � cont��

END StatAbn�

Figure �� The four main datatypes used for the translation

properties of classes which go into standard class libraries or into safety critical
applications�

This paper is organised as follows� It starts with a brief description of the
logical semantics that is used for Java� Subsequently� in Section � the translation
that is performed by the LOOP tool is sketched� Both these are substantial
topics� which we can only touch upon in the current paper� The remainder of the
paper is devoted to �typical� examples� It discusses reasoning about a non�trivial
method body� inheritance and late binding� local variables and recursion� while
loops with breaks and continues� invariance results� implementations satisfying
speci�cations� and also component classes�

� Java semantics in the higher�order logic of PVS

In this section we will give an impression of the �prelude� PVS �les which
provide the background for the translation of Java classes into higher order
logic� They incorporate the semantic structure D� as discussed in the previous
section� This prelude is divided into �ve �les� describing the relevant datatypes�
statements� expressions� operations� and the underlying memory model� The
total size of these PVS �les is over ���K �about ���� lines�� We will concentrate
on some essential ingredients�

Two important syntactic categories in Java are statements and expressions�
These will both be translated as state transformer functions �in PVS�� namely

�

as�

�Self �� StatResult��Self		 and �Self �� ExprResult��Self� Out		

The type Self is a parameter for the underlying state space�� and Out is the
parameter type of the output of the expression� We frequently use the question
mark � in PVS expressions on which our tranlation is based because � can�
not occur in Java keywords nor in Java identi�ers� and so we can prevent name
clashes� It clutters up the notation a bit� but it is probably best simply to ignore
all these ��s� A more important point is that these state transformer functions
are examples of coalgebras �see 	����� they have a structured type �StatResult�
or ExprResult�� and not Self� as codomain� Such functions cannot be written
down in algebraic approaches �where one typically has structured types as do�
mains�� The approach we use to give semantics to Java �as implemented in the
LOOP tool� is based on coalgebras� and is thus perfectly able to handle such
�statement and expression� functions�

The two codomain types of statements and expressions are abbreviations�

StatResult��Self	
 PreStatResult��Self� StatAbn��Self� string		

ExprResult��Self� Out	
 PreExprResult��Self� ExprAbn��Self	� Out	

involving four data types� see Figure �� The types PreStatResult� and
PreExprResult� describe the possible outcomes of statements and expres�
sions� as state transformer functions� A �translated� statement in a particular
state can either hang �yield outcome hang��� terminate normally �with outcome
norm��x�� where x is a new state in Self�� or terminate abnormally�abruptly
�with outcome abnorm��y�� with y describing the kind of abnormality�� The
latter is used to model exceptions and statements a�ecting the control �ow
like break� return etc� In contrast an outcome hang� corresponds to non�
termination�

The PVS expressions hang�� norm� and abnorm� are the constructors of
the datatype PreStatResult�� The associated recognisers are hang��� norm��
and abnorm��� telling whether an element in PreStatResult� is of the form
hang�� norm��x� or abnorm��y�� The associated accessors are ns� �extracting
the x in norm��x�� and dev� �extracting y in abnorm��y��� The outcome of a
�translated� expression is very similar� except that normal termination produces
a result in the output type Out of the expression� together with a �new� state�
because expressions can have side�e�ects� Hence there is a binary constructor
norm� in the data type PreExprResult�� with a state in Self and a result in
Out as arguments� In these de�nitions it is convenient to keep a type Abnormal
of abnormalities as parameter� The standard instantiation for Abnormal in
PreStatResult� is the type StatAbn� describing the possible abnormalities
for statements �exceptions� returns� breaks and continues�� Similarly� the type
ExprAbn� captures abnormalities in expressions �namely� exceptions only��

On the basis of these datatypes we can already introduce some basic pro�
gram constructs� For example� a composition �in�x� operator � �intended as
translation of � in Java� is de�ned in PVS� It takes two statements s� t of type
�Self 	
 StatResult��Self�� and produces a new statement s � t describ�
ing s followed by t� again of type �Self 	
 StatResult��Self��� It is de�ned
as�

�In the actual translation� Self will be instantiated as GM�� describing the global memory�
see the end of this section�

�

s � t�
x�
 IF norm��
s
x��

THEN t
ns�
s
x���

ELSE s
x�

ENDIF

Thus if s terminates normally in state x� resulting in a next state y � ns��s�x���
then �s � t��x� is t�y�� And if s hangs or terminates abnormally in state x�
then �s � t��x� is s�x� and t is not executed� It is not hard to show that � is
associative� and has a �left and right� unit skip� given by skip�x� � norm��x��
Hence statements form a monoid�

In a similar way we de�ne a conditional statement IF THEN ELSE�c��s��t��
for a boolean expression c of type �Self 	
 ExprResult��Self
 bool�� and
two statements s� t� as�

IF�THEN�ELSE
c�
s�
t�
x�
 IF hang��
c
x��

THEN hang��

ELSIF norm��
c
x��

THEN IF res�
c
x��

THEN s
ns�
c
x���

ELSE t
ns�
c
x���

ENDIF

ELSE abnorm�
E�SAbn�
dev�
c
x����

ENDIF

�The E�SAbn� term turns an expression abnormality into a statement abnor�
mality��

In this manner� all Java constructs are translated in the prelude �les� fol�
lowing the explanations in 	��� Another such example is a RETURN statement in
PVS� de�ned as�

RETURN
x�
 abnorm�
rtrn�
x��

It creates a return abnormality� see Figure �� Similarly� the two conjunction op�
erators � and �� of Java are translated as AND and ANDTHEN in PVS� respectively�
They are de�ned on boolean expressions e� d as�

e AND d�
x�

e ANDTHEN d�
x�

IF norm��
e
x�� IF norm��
e
x��

THEN THEN

LET r
 res�
e
x��� LET r
 res�
e
x���

y
 ns�
e
x�� IN y
 ns�
e
x�� IN

IF norm��
d
y�� IF NOT r

THEN norm�
ns�
d
y��� THEN e
x�

r AND res�
d
y��� ELSE d
y�

ELSE d
y� ENDIF

ENDIF ELSE e
x�

ELSE e
x� ENDIF

ENDIF

Notice how side�e�ects are propagated through these composite expressions�
Both AND and ANDTHEN equip the type of boolean expressions with a monoid
structure �both with the constantly true expression as unit��

Similar� but more complicated translations are formulated for SWITCH� WHILE�
etc� The latter works on a boolean expression and a statement� and basically
iterates the statement a certain number of times� in case there is an n such that

�

after n iterations the expression becomes false� or an abrupt termination occurs�
If there is no such n� the while statement hangs� We can declaratively make
this distinction in logic� More details are given in Subsection
�
�

A large part of our prelude �les is devoted to suitable rewrite lemmas for
all these de�nitions� They enable PVS to handle substantial parts of proofs
automatically via rewriting�

In one of the prelude �les a model GM� is de�ned of a global memory� con�
taining an in�nite� number of memory cells� It comes equipped with operations
for reading and writing values and references at particular positions� All classes
are translated as coalgebras �see the next section�� acting on this global state
space GM��

� Translating Java classes

The LOOP tool calculates a function 		� �� which assigns meaning to Java
classes� It follows the Java grammar 	�� Chapter ���� and takes for example
		 e� ��AND		 e� �� as PVS translation 		 e� � e� �� of e� � e� in Java� Such clauses
are handled� one�by�one� by Ocaml�s yacc� Basically� this is how the translation
works� But there is much more to say�

Ignoring static initialisers� a class in Java consists of �elds� methods and con�
structors� The latter are not translated yet� but seem to present no fundamen�
tal di�culties� so we concentrate on �elds and methods� The �elds �sometimes
called instance variables� and methods of a class are collected by the LOOP
tool in an interface type �like in 	����� For each �eld i an associated assignment
operation i becomes is generated� Thus� a class

class MyClass �

byte i� j�

void stat�meth
� � �� �

float expr�meth
� � �� �

�

will basically give rise to the following interface �record� type in PVS�

MyClassIFace�Self	
 ��

i � byte�

j � byte�

i�becomes � �byte �� Self	�

j�becomes � �byte �� Self	�

stat�meth � StatResult�Self	�

expr�meth � ExprResult�Self� float	

�	

Some additional variables may be incorporated in such an interface type of
a class� local variables� parameter variables of methods� and return variables
of non�void methods �occurring in this class�� These variables are thus made
global� but this is harmless� Name clashes are avoided by putting a local variable
i in the interface as loc�i� Similarly� we use par�j for a parameter j� and
ret�meth for the return variable of method meth� see for example Figure � in
Subsection
�� below�

�Hence we do not bother about garbage collection� and an OutOfMemoryException is never
thrown in our translated classes�

�

A coalgebra for class MyClass� say� in this context is a function in PVS of
the form

c� � �Self �� MyClassIFace�Self		

where MyClassIFace�Self� is the interface type generated for class MyClass
�like above�� Such a coalgebra thus contains all the operations of a class in a
single function� The individual operations can be extracted via �automatically
generated� de�nitions like�

i
c�� � �Self �� byte	

LAMBDA
x � Self� � i
c�
x��

stat�meth
c�� � �Self �� StatResult�Self		

LAMBDA
x � Self� � stat�meth
c�
x��

In the sequel we shall always use individual operations with respect to such a
coalgebra c�� For more information about coalgebras �versus algebras�� see 	����

The body of a method meth in class MyClass gives rise to a predicate on a
MyClass�coalgebra c� which expresses that meth�c�� is equal to the �transla�
tion of the� body of meth� That is� a method

void move
int da� int db� �

fst
 fst � da�

snd
 snd � db�

�

in a class with integer �elds fst and snd� is translated into a predicate called
move def� on c�� which expresses that for all states x��

FORALL
da � int� db � int� �

move
c��
x�� da� db�

E�S
fst�becomes
c��
fst
c�� � da�� �

E�S
snd�becomes
c��
snd
c�� � db��

�
x��

�An aside about the translation� assignments are de�ned as expressions� When
they are used as statements� like in this movemethod� an additional function E�S

is inserted in the translation of the method body� which transforms an expres�
sion into a statement
basically by forgetting the output when the expression
terminates normally� see Figure ���

All method de�nitions are thus translated into predicates� The latter are
combined via conjunction into a single predicate MyClassAssert� on the coal�
gebra c�� A user can then develop the theory of coalgebras satisfying such
predicates� incorporating how methods are implementated� These coalgebras
can be seen as models of the class� This is basically as in 	����

This account simpli�es matters slightly for explainatory purposes� We have
already mentioned �at the end of the previous section� that all coalgebras op�
erate on the same state space GM�� describing a global memory� Each �eld
declaration� say int i� is implemented as a function which can read a value
at a particular location in GM�� Similarly� the associated assignment opera�
tion �i becomes� writes at this same location� This memory location is a PVS
variable in the predicates de�ning variables� assignments and method imple�
mentations� and ultimately also MyClassAssert�� Hence as models of classes
we really use functions in a dependent product of the form�

d� � �p� � nat ��
MyClassAssert�
p���	

�

class WeirdExpr �

int i�

int lets�calculate
int j� �

try � i �

i � �� �
i�� � ��j� � �� �

catch
Exception e� �

j���

return i � j� ��

return i � j�

�

�

Figure �� A class in Java with a weird method

so that d��p�� is a coalgebra satisfying the method implementations� �It should
have been used instead of c� above�� One can understand d��p�� as an
implementation of the class MyClass which acts on memory location p�� In
general� if a new variable of a class is created� it gets a �new� position p� in
the main memory GM� together with a coalgebra �of the class� acting on this
position p��

Here we conclude our brief sketch of the translation that the LOOP tool per�
forms� We emphasise that this translation is far from complete� For example
it does not handle threads� and some of the language constructs are not cov�
ered yet �like constructors�� However� many statements and expressions have
already been translated� Besides being incomplete� the translation also simpli�
�es matters� For example� both �oating point types float and double in Java
are translated to the PVS type real� The latter is introduced axiomatically in
PVS� and the former are approximations of real numbers �described precisely
in the IEEE ��
 �oating point format�� In order to translate accurately� one
would have to formalise this IEEE format in PVS� This is a non�trivial ex�
ercise� which is a project on its own� see e�g� 	��� Similarly� we translate all
Java integer types �byte� short� int� long and char� to the PVS type int

of integers� without taking bounds into account� Another �temporary� simpli�
�cation involves exceptions� These are translated as sets of natural numbers
�e�g� IndexOutOfBoundsException is fx�nat��� �� x AND x � ��g� which is
a completely arbitrary choice�� Catching an exception then involves checking a
subset relationship� This simpli�cation works well in many situations because
an exception object �like the e in Figure �� is rarely really used �with as possible
exception� in a print statement�� The motivation behind these simpli�cations is
to be able to get a rudimentory translation o� the ground� and not to be held
up by initially irrelevant details�

� Examples

In this section we will elaborate some examples� In particular� we will discuss�
several Java classes� their translation into PVS by the LOOP tool� some results
that a user may wish to prove �on the basis of the translation�� and proofs of
such results� Only the �rst example will be described in some detail�

��

FORALL
j � int�java� �

lets�calculate
c��
x�� j�

CATCH�EXPR�RETURN�GM��int�java	

E�S
par�j�becomes
c��
const�GM�� int�java	
j��� �

TRY�CATCH

E�S
i�becomes
c��

i
c�� �

QUESTION

i
c�� � const�GM�� int�java	
�����

i
c�� �� i�becomes
c��
inc
i
c����� ��

par�j�becomes
c��
dec
par�j
c�������

const�GM�� int�java	
��������

�

Exception�

E�S

par�j
c�� �� par�j�becomes
c��
dec
par�j
c������� �

E�S
ret�lets�calculate�becomes
c��

i
c�� � par�j
c����� �

RETURN��

���� �

E�S
ret�lets�calculate�becomes
c��

i
c�� � par�j
c����� �

RETURN��

ret�lets�calculate
c���

x��

Figure �� The LOOP translation of the weird method in PVS

��� A weird method

Consider the Java class in Figure �� It contains an integer �eld i and a method
lets calculate yielding an integer after some intricate computation involving
a conditional operator �� and a remainder operation �� The latter throws an
exception� if its second argument is �� The computation in itself is uninteresting�
but the challenge is to express the integer outcome �if any� of this method� in
terms of the values of the parameter j� and the �eld i�

In order to determine this outcome we have to take the following into account
�among many other things��

� The evaluation strategy� in the remainder expression i�� � 		j one takes
the value of i as �rst argument� then i is incremented� then j is decre�
mented� and the resulting value �if j� is taken as second argument� so that
the remainder can �nally be computed�

� Exception handling� if j � �� then the remainder operation �translated
as ��� will throw an ArithmeticException� which is caught by the sub�
sequent catch clause
because ArithmeticException is a subclass of
Exception� this causes a particular �ow of control� One of the subtleties
in this example is that the increment expression i�� only has a visible
e�ect if the exception is thrown
because otherwise it is overruled by the
�� assignment�

� Return handling� the �rst return statement causes a jump of control to
the end of the method�

The latter two points are handled by using the abnorm� option in statements and
expressions �as discussed in the previous section�� Special functions TRY CATCH

and CATCH EXPR RETURN are de�ned which detect such abnormal outcomes�
They remove certain abnormalities and take appropriate action� The �rst

��

point is handled by suitable PVS representations of the �pre� and post�� in�
crement�decrement and remainder operations� so that arguments are evaluated
in the right order� See the de�nitions of the AND and ANDTHEN functions in the
previous section�

Running the LOOP tool on this class yields a series of PVS theories� They
contain the translation of the lets calculate method given in Figure �� This
translation is probably unreadable� and not really meant for consumption� but is
included only to show what really comes out� Hopefully� the reader will recognise
the main structure of this java method in its PVS translation� e�g� the Java
conditional � translated as QUESTION in PVS� It is not feasible to explain the
whole translation in detail� so we will focus on some signi�cant details�

� The c� and x� variables in the left hand side lets calculate�c���x�

j� of the equation refer to the coalgebra of the current class �i�e� of
WeirdExpr� and the current state� respectively� Recall that methods and
�elds are always described with respect to some coalgebra�

� A special variable ret�lets calculate �together with an associated as�
signment� is used for the result of this method �which is returned at the
end� by the CATCH EXPR RETURN function�� Another special Java variable
par�j holds the value of the PVS variable j �set at the beginning�� It is
used because PVS variables are di�erent from Java variables �for which
there are assignments���

� A pre increment or decrement operation is translated simply by an as�
signment �which returns a value� see the previous section�� For a post

increment or decrement operation we use the �� operation between two
expressions� This �� operation returns the result of its �rst argument �and
ignores the second result� together with the state obtained from running
the second argument on the state resulting from the �rst argument�

� The TRY CATCH statement takes as argument a list
indicated in PVS by
�� � � � ��
of pairs consisting of an exception class� together with the
corresponding statement that should be executed if an exception of the
kind in the �rst part of the pair occurs� In this example the list contains
only one pair�

An example result that a user may wish to prove is described in Figure
�
The lemma states that for all integers j� running the method lets calculate

with respect to the WeirdExpr coalgebra d��p�� �acting in memory location p��
in state x� with parameter j terminates normally �expressed by norm���	���
and the resulting ouput value res��	� satis�es the IF � � � THEN � � � ELSE clause�
It expresses the outcome of the method run in state x� in terms of the values of
the �eld i in state x� and of the parameter j� Notice that the result involves a
universal quanti�er FORALL� It achieves a level of generality which can never be
obtained by simply testing �i�e� by running the method for speci�c values and
checking the outcome�� This shows the power of a theorem proving approach
to formal veri�cation�

�Using such an auxiliary variable also ensures that parameters are passed by value� see �	�

����
�

��

p� � VAR nat

d� � VAR �m � nat ��
WeirdExprAssert�
m��	

x� � VAR GM�

lets�calculate�return � LEMMA

FORALL
j � int�java� �

norm��
lets�calculate
d�
p���
x�� j��

AND

res�
lets�calculate
d�
p���
x�� j��

IF i
d�
p���
x�� � �

THEN IF j
 �

THEN i
d�
p���
x�� � j � �

ELSE i
d�
p���
x�� � remainder
i
d�
p���
x��� j��� � j � �

ENDIF

ELSE i
d�
p���
x�� � � � j

ENDIF

Figure
� A lemma in PVS about the weird expression method

The lemma in Figure
 can be proved in PVS by using basically only two
proof commands� �load�rewrite�theories � � �� and �do�rewrite�� All the expres�
sions in the lemma are then suitably rewritten �following the evaluation strategy
of Java� to the required result� This involves ��� single rewrite steps�� Such
rewriting must be done in a clever manner� because the number of possibilities
in each step is large� in principle� each expression and statement can hang�
terminate normally� or terminate abnormally �involving various possible abnor�
malities�� Just unfolding the de�nitions describing all possible outcomes quickly
leads to screens full of unreadable PVS code� This complexity is managed by
using many small rewrite steps for all cases in expressions and statements from
the prelude �les �and by letting LOOP generate additional rewrite rules which
are speci�c for the translated class�� so that in principle� complete de�nitions
never have to be expanded�

��� Inheritance� overriding� hiding and late binding

The previous example does not involve any typically object�oriented aspects�
In this subsection we will consider the translation of the series of JAVA classes
Parent � Child � GrandChild in Figure �� de�ned via inheritance� The declara�
tion int i in Child �hides� the i from Parent� see 	�� Section ����� but running
deriv in Child will a�ect i in Parent� and not i in Child� In contrast� running
deriv in GrandChild will a�ect i in Child� but not i in Parent� due to the late
binding mechanism which determines that within the GrandChild class deriv
will call the �rede�ned� base method from GrandChild�

The aim is to prove the right values of the i�s and j after running deriv

in Child and in GrandChild� via automatic rewriting� The di�culty in this
example is not located in the complexities of the expressions involved� but in
getting the bindings right� This is achieved in the LOOP tool by suitably
repeating method de�nitions from superclasses in subclasses�

�On the fastest machines at our disposal �a Pentium II ��� with �
�M RAM� or an Ultra�
SPARC
 �model

��� with ����M RAM admitting maximally � CPU per user� this takes
in interactive mode �with prover output to the screen� via emacs� about
 min� run time� and
a bit less than � min� real time �including garbage collecting�� In batch mode� it takes less

��

class Parent �

int i�

void base
� � i
 �� �

�

class Child extends Parent �

int i� j�

void deriv
� � j
 �� base
�� �

�

class GrandChild extends Child �

void base
� � i
 �� �

�

Figure �� Late binding example in Java
class Fac �

int fac
int n� �

int i
 ��

if
n � �� � i
 n � fac
n � ��� ��

return i�

�

�

Figure �� A recursive factorial function in Java

In the LOOP translation of these JAVA classes into PVS we �rst have to show
that the method deriv terminates normally �and does not hang or terminate
abruptly�� Then we can express the values of the �elds in the resulting state
after deriv in terms of the original values as follows� For a Child coalgebra
d��p�� acting on an arbitrary memory position p� this is expressed in the
following result�

Child�deriv � LEMMA

norm��
deriv
d�
p���
x���

AND

i
d�
p���
ns�
deriv
d�
p���
x����
 i
d�
p���
x��

AND

j
d�
p���
ns�
deriv
d�
p���
x����
 �

AND

Parent�i
d�
p���
ns�
deriv
d�
p���
x����
 �

The �rst assertion in the conjunction states that running deriv�d��p��� in
an arbitrary state x� is normal �i�e� terminates normally�� The next three
statements describe the values of the variables i�d��p���� j�d��p��� and
Parent i�d��p��� �i�e� i from the super class Parent of child coalgebra d��p���
when evaluated in the normal state �accessed by ns�� resulting from running
deriv�d��p����

For a GrandChild coalgebra gc��p�� the required result is�

GrandChild�deriv � LEMMA

norm��
deriv
gc�
p���
x���

AND

i
gc�
p���
ns�
deriv
gc�
p���
x����
 �

AND

than half of the run time�

�

class Loop �

void break�loop
int i� �

lab � while
true� �

if
i � ��� �i��� continue lab� �

else break�

��

�

�

Figure �� An example of a while loop in Java� using break and continue

j
gc�
p���
ns�
deriv
gc�
p���
x����
 �

AND

Parent�i
gc�
p���
ns�
deriv
gc�
p���
x����
 Parent�i
gc�
p���
x��

Both lemmas are proved by automatic rewriting��

��� Local variables� and recursion

In Sections � and
�� it was already brie�y discussed how the LOOP tool handles
parameters� local variables and special variables for returns� Here we will de�
scribe this in more detail� in the context of a recursive de�nition of the factorial
function �see Figure ���

Function fac has a parameter n� a local variable i and it returns a value
of type int� As explained� local variables� parameters and return variables are
made global� and potential name clashes with any identi�er from the Java source
are avoided by naming them loc�i� par�n and ret�fac� respectively�

Upon entry of each recursive call� �new� variables par�n and loc�i have to
be available� and they must be discarded after leaving this call� This is realised
using a BLOCK statement� with two parameters� a �composite� statement and a
restore function� When such a BLOCK is executed in state x� �rst the statement
runs on x� say resulting in a state y� Then the local variables are restored to
their values �or references� from x� yielding a state z� The BLOCK statement
then returns z�

Now� one can prove properties about the factorial function� such as termi�
nation for all n� simply by induction on n� Also� the facts that it returns what
is expected can be proven� In these proofs� one has to be careful� automatically
rewriting fac to its body loops�

��� A while loop� with break and continue

Towards the end of Section � the semantics of a WHILE statement is sketched�
�rst it is decided if�when the loop terminates� If not� the WHILE statement hangs�
otherwise it comes down to executing the body the appropriate number of times�
In Java� a WHILE statement can terminate for two reasons� at some stage ��� its
condition evaluates to false� or ��� execution of its expression or body statement
terminates abnormally� because of an exception� break or return� More details
about reasoning about such while loops will appear elsewhere�

Figure � shows an example of class with a while loop in Java
which ter�
minates because of a break� After translating this class with LOOP� we can

�The Child deriv lemma requires �� rewrite steps� taking about �� sec� run time� and the
GrandChild deriv lemma is proved in 	� steps� again in �� sec�

��

class Counter �

private int max�

private int val�

int maximum
� � return max� �

int value
� � return val� �

void next
� � if
 val � max � � val
 val � �� � else � val
 �� � �

void clear
� � val
 �� �

Counter
int n� � max
 n� �

�

Figure �� A Counter class in JAVA

prove that its method break loop terminates after max��� 	 i
 �� iterations
�where i is the actual parameter of method break loop�� Also� we can prove
that the value of the parameter par�i will be max���
 i�� after termination of
the WHILE statement�

par�i�WHILE � LEMMA

FORALL
i � int� � par�i�GM�	
d�
p���
x��
 i IMPLIES

par�i
d�
p���
bs�
dev�

WHILE�DO
up�
�lab���

const�GM�� bool	
true��

IF�THEN�ELSE

par�i
d�
p��� � const�GM�� int�java	
����

E�S�GM�� int�java	
par�i
d�
p���

�� par�i�becomes
d�
p���
inc
par�i
d�
p�������

�
CONTINUE
�lab����

BREAK���
x�����
 max
��� i�

Reasoning about such while programs generally follows standard approaches�
see e�g� 	�� ��� ��� We plan to incorporate this via suitable proof methods in
PVS�

��� An invariance result

So far we have only seen examples of user statements about individual methods
in a Java class� The next two examples will consider a class as a whole� �rst in
showing that a certain predicate is an invariant of a class� and second in showing
that a class can be a model �or implementation� of a speci�cation�

As mentioned brie�y in the introduction� the LOOP tool not only translates
Java classes into PVS� but also generates for each class appropriate notions
of invariant and bisimulation� This involves some basic constructions from the
theory of coalgebras �see 	�
��� which are ultimately based on ideas in categorical
logic �see 	����� Here we will concentrate on invariants� These are predicates
on the state space� which� once they are true for a state x� will remain true no
matter which public	 methods �or assignments for public variables� are applied
to x� Consider for example the class in Figure �� describing a simple counter
modulo max� An invariant for this class is a predicate which is closed under
application of maximum� value� next and clear
but not under assignments
for the private variables max and val� Intuitively it is clear that the following
predicate on the global memory GM� is an invariant�

	In Java there are many visibility modi�ers� see ��� Section ���
 many of which are related
to Java�s package system� but the LOOP tool only has public and private� The LOOP
translation sends private in Java to private� and everything else to public� Within the
LOOP tool� these visibility modi�ers are �currently� only relevant for the notions of invariant
and bisimulation�

��

BEGIN CCSLcounter � CLASSSPEC

METHOD

max � Self �� int�

val � Self �� int�

next � Self �� Self�

clear � Self �� Self�

ASSERTION

max�next � PVS max
next
x��
 max
x� ENDPVS

max�clear � PVS max
clear
x��
 max
x� ENDPVS

val�next � PVS val
next
x��
 IF val
x� � max
x�

THEN val
x� � � ELSE � ENDIF ENDPVS

val�clear � PVS val
clear
x��
 � ENDPVS

CONSTRUCTOR

new � int �� Self�

CREATION

max�new � PVS FORALL
n � int� � max
new
n��
 n ENDPVS

val�new � PVS FORALL
n � int� � val
new
n��
 � ENDPVS

END CCSLcounter

Figure �� A counter class speci�cation in CCSL

val�below�max
d�� p�� � �GM� �� bool	

LAMBDA
x � GM�� � � �
 max
d�
p���
x� AND

� �
 val
d�
p���
x� AND

val
d�
p���
x� �
 max
d�
p���
x�

Proving this formally amounts to proving the following lemma�

val�below�max�inv � LEMMA

invariant�
d�
p���
val�below�max
d�� p���

in which invariant� is a predicate which is generated by the LOOP tool� It
is not hard to prove this result� since most of the work is done via automatic
rewriting�

��	 A Java implementation satisfying a CCSL class speci
cation

The introduction of this paper describes how the LOOP tool accepts both class
speci�cations �in a language called CCSL� see 	���� and class implementations
�in Java� as input� An obvious question arises� can one formulate a class speci�
�cation in CCSL� and a class implementation in Java� and then show that the
�translated� Java class forms a model �or implementation� of the �translated�
CCSL class speci�cation� The answer is yes� We shall brie�y indicate how this
is done� by �re�considering the Java counter class in Figure �� A speci�cation of
such a counter �modulo max� is presented in Figure �� It is written in CCSL 	����
and this language is hopefully self�explanatory�

We shall concentrate on the �validity of the� assertions�
� The LOOP tool
translates the CCSL counter speci�cation into a series of PVS theories� In one
of these theories� the assertions in Figure � are combined into a single predicate
CCSLcounterAssert� on a CCSLcounter coalgebra

c � �Self �� CCSLcounterIFace�Self		

�
In principle� the creation conditions for constructors are handled similarly�

��

which combines the methods of the CCSL counter class in a single function�
In order to show that the Java implementation forms a model of this CCSL
speci�cation we �rst have to transform a coalgebra describing the Java class
into a coalgebra for this CCSL class� and then show that the assertions of the
CCSL class are satis�ed� In PVS these steps are as follows�

p� � VAR nat

d� � VAR �p� � nat ��
CounterAssert�
p���	

counter
d�� p�� � �GM� �� CCSLcounterIFace�GM�		

LAMBDA
x� � GM�� �

�

max �
 res�
max
d�
p���
x����

val �
 res�
val
d�
p���
x����

next �
 ns�
next
d�
p���
x����

clear �
 ns�
clear
d�
p���
x���

��

CCSLcounter�JavaImplementation � LEMMA

CCSLcounterAssert�
counter
d�� p���

The latter lemma is proved automatically by rewriting��� This establishes the
desired implementation result�

��� Component classes and casting

Classes can form components of other classes� if MyClass is already de�ned�
then one can declare a �eld MyClass mc in some other class �or even in MyClass

itself�� Once mc is properly initialised� methods from MyClass can be applied to
mc� But also� mc can be cast to superclasses of MyClass� see 	
� Subsection �������
or 	�� Section ����� This creates substantial di�culties for the translation to
PVS� which we can currently only handle �by hand�� That is� we know how to
translate such casting� but LOOP does not���

Casting in Java introduces a di�erence between �elds and methods �see 	
�
Section ��
��� suppose B is a subclass of A� and both A and B have a �eld f and
a method m �of the same type�� Thus f from A is �hidden� in B and m from A

is �overridden� in B� Let b be of type B� and consider its cast a � �A�b to A�
Then a�f is f in A� whereas a�m is m in B� This di�erence is highly relevant for
reasoning about casting���

� Conclusions and further work

We have sketched the essential ingredients of a �partial� translation of Java
classes into the higher order logic of PVS� as performed by the LOOP tool� Also

��The de�nition of the counter function also generates several obligations ��tcc�s�� to prove
that the Java methods terminate normally� so that their result res� or resulting normal state
ns� can be accessed� Also these obligations are handled by automatic rewriting�

��The reason is that in order to perform the translation of a cast from class A to class
B we need to know both A and B� This information can only be obtained by letting LOOP
typecheck Java programs� because casting is often done implicitly� And Java typechecking is
not incorporated in LOOP yet�

��Our translation �by hand� handles this di�erence by letting a look at b with an adapted
coalgebra� This can also be expressed in terms of �two references� to a� see �	� page ��
� �one
reference as its actual class and the other as its superclass��

��

we have shown how this allows us to prove some elementary properties about
Java programs in PVS� This may be seen as applied semantics of programming
languages� Space restrictions prevent us from describing all details here� but
more will be presented in future work�

It may be clear that this project is far from �nished� We will continue
to extend the translation to aspects of Java which are currently not covered�
Being able to reason about threads is a long�term goal� which will �rst require a
fundamental study of the semantics of threads in Java �see also 	��� within the
coalgebraic approach underlying the LOOP tool� Major applications are not
foreseen in the near future�

References

�� M� Abadi and L� Cardelli� A Theory of Objects� Monographs in Comp� Sci�
Springer� �����

� M� Abadi and K�R�M� Leino� A logic of object	oriented programs� In M� Bidoit
and M� Dauchet� editors� TAPSOFT���� Theory and Practice of Software Devel�

opment� number �
�� in Lect� Notes Comp� Sci�� pages ��
����� Springer� Berlin�
�����

�� K�R� Apt and E�	R� Olderog� Veri�cation of Sequential and Concurrent Programs�
Springer� �����

�� K� Arnold and J� Gosling� The Java Programming Language� Addison	Wesley�

nd edition� �����
�� J�W� de Bakker and E� Vink� Control Flow Semantics� The MIT Press� Cambridge�

MA� �����
�� V�A� Carre�no and P�S� Miner� Speci�cation of the IEEE	��� �oating	

point standard in HOL and PVS� In E�Th� Schubert� Ph�J� Wind	
ley� and J� Alves	Foss� editors� Higher Order Logic Theorem Proving

and Its Applications� ����� Category B Proceedings� available at URL
http���lal�cs�byu�edu�lal�hol ��Bprocs�indexB�html�

�� P� Cenciarelli� A� Knapp� B� Reus� and M� Wirsing� From sequential to multi	
threaded Java� An event	based operational semantics� In M� Johnson� editor� Al�
gebraic Methodology and Software Technology� number ���� in Lect� Notes Comp�
Sci�� pages ������ Springer� Berlin� �����

�� J� Gosling� B� Jay� and G� Steele� The Java Language Speci�cation� Addison	
Wesley� �����

�� D� Gries� The Science of Programming� Springer� �����
��� C�A� Gunter� Semantics of Programming Languages� Structures and Techniques�

The MIT Press� Cambridge� MA� ���
�
��� U� Hensel� M� Huisman� B� Jacobs� and H� Tews� Reasoning about classes in

object	oriented languages� Logical models and tools� In Ch� Hankin� editor� Euro�
pean Symposium on Programming� number ���� in Lect� Notes Comp� Sci�� pages
�����
�� Springer� Berlin� �����

�
� C� Hermida and B� Jacobs� Structural induction and coinduction in a �brational
setting� Inf� � Comp�� to appear� �����

��� B� Jacobs� Objects and classes� co	algebraically� In B� Freitag� C�B� Jones�
C� Lengauer� and H�	J� Schek� editors� Object�Orientation with Parallelism and

Persistence� pages ������� Kluwer Acad� Publ�� �����
��� B� Jacobs� Invariants� bisimulations and the correctness of coalgebraic re�nements�

In M� Johnson� editor� Algebraic Methodology and Software Technology� number
���� in Lect� Notes Comp� Sci�� pages
���
��� Springer� Berlin� �����

��� B� Jacobs and J� Rutten� A tutorial on
co�algebras and
co�induction� EATCS

Bulletin� �
�

�
��� �����

��

��� X� Leroy� The Objective Caml system	 Documentation and user�s guide
 Release

���
� ����� Available at URL http���pauillac�inria�fr�ocaml�htmlman�
��� J� Loeckx and K� Sieber� The Foundations of Program Veri�cation� Wiley� �����
��� S� Owre� J�M� Rushby� N� Shankar� and F� von Henke� Formal veri�cation for

fault	tolerant architectures� Prolegomena to the design of PVS� IEEE Trans� on

Softw� Eng��
�

�������
�� �����
��� H� Reichel� An approach to object semantics based on terminal co	algebras� Math�

Struct� in Comp� Sci�� ���
����
� �����

�� D� R�emy and J� Vouillon� Objective ML� An e�ective object	oriented extension of

ML� Theory � Practice of Object Systems� ����� to appear�

��

