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Chapter 1

General introduction

1.1 Refixation eye-movements: saccades and vergence

Since this thesis deals mainly with the question of how eye movements are con-
trolled, some remarks on why they are made are in order. There are different
types of eye movements, with different functions, but all have in common that
they allow us to see better. The interest here will be confined to refixation eye
movements whose origin is related to the evolution of retinal specialization. In
man and monkey, the retina is subdivided into a small central area of high visual
resolution, the fovea, and a large peripheral area of lower resolution. This prop-
erty necessitates refixation eye movements, which serve to foveate the target, so
that it is projected on the area with the highest resolution. When the peripheral
retina signals an object, which is selected as target for closer examination, the
extraocular muscles rotate the eyes to get the target projected on the foveas.
When scanning distant objects, the fixation points of both eyes are displaced in
the same direction and by the same amount by conjugate rapid eye movements.
These eye movements, known as saccades, are characterized by a very stereo-
typed velocity-amplitude relationship. In daily life, foveation of a target often
requires also a change in binocular alignment known as a vergence movement,
which typically occurs in conjunction with saccades. Various cues such as retinal
disparity, blur, and perspective may serve to initiate vergence movements.

Primates can also execute smooth pursuit eye movements, which serve to keep
the fovea of both eyes on a moving target, and vestibularly driven eye movements
to prevent image slip as a result of head movements (Carpenter, 1988). This thesis
focuses on refixation eye-movements.

Since it is commonly thought that refixation eye movements come about by
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Figure 1.1 Decomposition of binocular eye positions in vergence and
direction as used in this thesis (after van Laan, 1994). This figure shows
eye position coordinates of the left (L) and right (R) eve, fixating at lo-
cation F in the horizontal plane. The position of F fully determines the
horizontal angular position ay and ag of each eye, once the interocular
distance is known. From these positions, one can derive binocular coor-
dinates (see Koenderink, 1992). Direction: a = §(ag + ar). Vergence:
v = (ar — apr). The circle in the figure reflects all isovergence points.
The cyclopean eye (C) is assumed to be located on this circle through
the nodal points of L and R and through F.

the cooperation of a conjugate saccadic system and a disconjugate vergence sys-
tem, it is useful to decompose them in conjugate (version) and disconjugate (ver-
gence) contributions. For a target at a given azimuth, elevation and distance, the
required version and vergence signals are uniquely determined once the interocu-
lar distance is known. Figure 1.1 shows the representations of eye movements in
direction and depth as used in this thesis.



1.2 Neurophysiology of refixation eye movements

Apart from the main distinction (disconjugate versus conjugate), vergence and
saccades show different behavioural characteristics. Pure vergence eye movements
are considerably slower than saccadic movements. The performance of vergence
in the dark is worse, compared to saccades: Erkelens et al. (1989) found that
only two out of four subjects produced any vergence responses when trying to
track an imaginary hand-fixed target when they moved their arm in depth. They
concluded that visual depth cues are required for effective vergence.

In fact, saccades and vergence are not totally independent. The presence of
a saccade facilitates the vergence component: this component is faster compared
to pure vergence (Enright 1984). In this thesis we consider only metrical aspects
of movements, so this aspect will not be discussed further.

1.2 Neurophysiology of refixation eye movements

Visual input from the retina, used to produce eye movements, will activate vari-
ous pathways in the brain, which are depicted in Figure 1.2. The retina projects
via LGN (lateral geniculate nucleus) in the thalamus, and subsequently via the
primary visual cortex to the parietal cortex and frontal cortex. Both the parietal
cortex and the frontal cortex project, directly or indirectly via the basal ganglia
(substantia nigra), to the deeper layers of the superior colliculus located in the
midbrain. Besides these projections, the retinas project also directly to the su-
perior colliculus. The superior colliculus projects to burst cells (premotor cells)
which in turn project to the various pools of motoneurons which then finally ac-
tivate the six eye muscles of each eye. In the following, the electrical activity of
these oculomotor areas will be described in more detail.

The firing frequency of the motoneurons is related to eye position and eye
velocity. This signal is qualitatively the same for all eye movements, so that
there are no specialized motoneurons for different types of eye movements. During
saccades, the motoneurons, responsible for direct activation of the eye muscles,
show a pulse-step characteristic in their firing frequency. The pulse is related to
velocity. The step is related to eye position, serving to keep the eyes on their new
position, and is thought to originate from the so-called neural integrators. The
pulse is provided by so-called medium lead burst cells which fire a high-frequency
burst of action potentials during saccades. The burst cells responsible for the
horizontal components of saccades are found in the pontine paramedian reticular
formation and have either a right or a left on-direction. It is thought that they
also provide the step signal in motoneurons by activating a parallel neural circuit
known as the neural integrator. The horizontal integrator has been localized in
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Supplementary Posterior
eye fields ) » Parietal
Frontal Cortex
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Colliculus
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Figure 1.2 Areas in the monkey brain involved in the control of eye
movements. Besides a direct projection from retina to superior collicu-
lus, the visual signal reaches the deeper layers of the superior colliculus
indirectly via pathways from striate cortex and posterior parietal cortex.
In addition, there is an indirect projection to the superior colliculus via
the frontal cortex. Adapted from Wurtz, 1996.

the Prepositus Hypoglossus nucleus/vestibular nucleus complex. Premotor cells
responsible for the vertical component of saccades have been found in the rostral
interstitial nucleus of the MLF. The vertical integrator is embodied by the nucleus
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of Cajal. Saccadic premotor burst cells are not active during pure vergence eye
movements. Instead, a class of neurons has been described that fires with changes
in vergence but not with saccades (Mays et al, 1986).

Another type of saccade-related neurons at the level of the brainstem are
the so-called omni-pause neurons. These cells are involved in saccade initiation.
Pause cells inhibit the circuit of bursters in the brainstem. Mays and Gamlin
(1995) found that electrical stimulation of the omnipause cells slows vergence
movements, so that pause cells may also be involved in vergence initiation.

The superior colliculus, located in the midbrain, is subdivided in superficial
layers, intermediate layers, and deeper layers. At the level of the superior collicu-
lus there is a clear topographically coded map, wherein the location of activity
determines the desired eye displacement vector. Electrical stimulation of the
deeper layers of the superior colliculus, while the animal is sitting in the dark,
yields saccades with a certain size and direction, dependent on the activated lo-
cation in the topographically coded map, but virtually independent of the initial
eye position. This desired eye movement is translated into a temporally-coded
signal proportional to desired eye velocity, found in medium-lead burst neurons.
As Figure 1.2 shows, two important cortical areas projecting to the superior col-
liculus are the posterior parietal cortex and the frontal cortex. According to
Gaymard (1990) the posterior parietal cortex seems mainly involved with the
triggering of visually-guided saccades. The lateral intraparietal area LIP in the
posterior parietal cortex is also active during memory-guided saccade prepara-
tion. The frontal cortex (FEF, area 46) is involved in the generation of cognitive
saccades, such as those requiring signals from short-term memory.

1.3 Control of saccades by internal feedback

In general, saccades are very accurate movements, and the question arises how
this is possible. It is known that accurate movements can be generated by sensory
feedback. In the case of eye movements, this type of feedback would require
measurement of target position on the retina with respect to the fovea, throughout
the eye movement. The visual system would report this change in eye position
to the brain, and when the target arrives on the fovea, the system is stopped
by this external feedback. A similar principle is applied in slow arm movements.
The problem for saccades is that the visual system is much too slow to play
this role in the case of such fast movements. The transport of information from
retina via cortex to the superior colliculus takes about 60 ms. Therefore, it was
thought earlier that a saccade must be ballistic in the sense that its commands
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are fully specified before it is started, without possibility of midflight correction.
The idea of ballistic movements was also inspired by the stereotyped dynamic
characteristics of saccadic movements (main sequence). It was further supported
by the observation of stereotyped saccades elicited by electrical stimulation of
the deeper layers of the superior colliculus (Carpenter, 1988). However, the idea
that saccades are ballistic movements had to be revised when it became clear that
saccades use efference copy information (without use of retinal information). The
evidence for this concept will be described further below.

1.3.1 Experimental evidence for nonretinal feedback

In the laboratory, nonretinal feedback can be studied by using a memory-saccade
paradigm (saccades to remembered visual targets). In the double-saccade or
double-step paradigm, a sequence of two peripheral targets is flashed briefly,
while the subject is fixating a visual stimulus. After the stimuli have vanished, the
subject has to fixate on the location of the remembered position of the first stim-
ulus, and subsequently the remembered position of the second stimulus. When
programming the saccade necessary to fixate the second target, the stored corre-
sponding retinal error signal is no longer appropriate, and a correction has to be
made for the change of eye position caused by the first eye movement. Because the
first eye movement was made in the dark, feedback cannot be externally derived
via new visual input on the retinas. Hallett and Lightstone (1976) were the first
to use this type of experiment to provide evidence for nonretinal feedback. They
flashed the second target while the first eye-movement had just started. They
argued that, since ultimately the second target could be fixated, the previous
movement to the first target (after the flash of the second target) must have been
detected and incorporated in the calculation of the second movement. Because
the previous movement occurred in the dark, the putative feedback signal must
be nonretinal.

Since then, similar experiments have demonstrated that also nonretinal feed-
back from smooth pursuit eye movements can be used in programming a saccadic
eye movement (Schlag et al.,, 1990; Gellman and Fletcher, 1992). It should be
noted that the performance in these experiments was not perfect, indicating that
the compensation for the first movement was only partial.

Active pause cells inhibit burst cells conveying the motor error from the su-
perior colliculus to the motoneurons of the eye muscles. Electrical stimulation
of pause cells during a saccade to a remembered visual target stops the saccade.
After the electrical stimulation, a second eye movement completes the desired
saccade. Information about the first eye movement, made before the electrical
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stimulation, must have been used in making the second (Keller, 1996).

In theory, nonretinal feedback could be implemented in the brain in various
ways. One possibility for detecting changes in eye position would be to use
signals from muscle spindles located in the eye muscles. An alternative way to
implement nonretinal feedback in the brain is to rely on internal feedback, using
efference copy signals. Hereby, information about the position of the eyes in the
head can be derived inside the brain, for instance from the neural integrators
representing eye position in the brain stem. In principle, internal feedback could
also be derived from an efference copy of the displacement command at the level
of burst cells or the superior colliculus. In the saccadic system, Guthrie et al.
(1983) found that monkeys deprived of muscle spindle signals of the eyes still
have access to nonretinal feedback. So, eye muscle spindles are not (the only)
source of eye position information, and internal feedback based on efference copy
(internal feedback, for short) is the most likely possibility.

An important brain area involved in the generation of saccades is the superior
colliculus. Electrical stimulation of the superior colliculus yields saccades whose
size and direction depend on the location in the topographically coded map. A
way to disturb the equivalence between motor error and retinal error normally
occurring in eye movements, is by applying electrical stimulation shortly after
a visual target was presented as a flash to the monkey that was preparing an
eye movement to it in darkness. In this situation, the remembered target co-
ordinates are no longer valid because of the intermediate eye movement caused
by the electrical stimulation. Yet, Sparks and Porter (1983) found that, after
the intermediate eye movement due to electrical stimulation, a proper saccade
was made to fixate the remembered location of the visual target. Because this
was done in the dark, their conclusion was that nonretinal feedback can be used
for programming saccades, and that this must occur at or before the superior
colliculus.

Lesion experiments indicate a possible role for the posterior parietal cortex
in the proper execution of the double step task (the second step), and a role of
the (IML) thalamus in the use of eye position information in nonretinal feedback.
Duhamel et al. (1992) described a patient with a fronto-parietal lesion who could
not perform the second step of the double step task. Later, Heide et al. (1995)
compared two groups of patients, among others in their ability to perform double
steps, to make a distinction between the role of two cortical areas: the prefrontal
cortex and the posterior parietal cortex. Patients with only a prefrontal lesion
could still perform the second step of the double saccade. On the other hand,
patients with only a lesion in the posterior parietal cortex could not perform the
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second part of the double step response, while they could still make the first step
response, (single saccades), although less precisely. One possible interpretation
is that the posterior parietal cortex is involved in nonretinal feedback.

Another experiment by Gaymard et al. (1994) seems relevant for the process-
ing of extra-retinal information about eye displacement in nonretinal feedback
in double steps. They found that humans with a small central thalamic lesion
involving the Internal Medullary Lamina (IML), may have an impairment in
extra-retinal eye position signals for use in nonretinal feedback. This was con-
cluded from the lack of saccade accuracy in experiments that displaced the initial
eye position in the dark, i.e. the double step paradigm, or eye displacements
caused by smooth pursuit eye movements. On the other hand, memory (visual)
saccades showed normal accuracy.

Although the role of IML in the central thalamus is far from clear, Schlag-
Rey and Schlag (1989) have proposed that IML plays a role in the coding of
eye position information (or extra-retinal information about eye displacement)
at a central level, which could be used in nonretinal feedback. IML receives af-
ferent tracts from cerebellum, the nucleus prepositus hypoglossi (which contains
eye position signals), the substantia nigra, and the deeper layers of the supe-
rior colliculus. IML projects to various cortical areas related to eye movements
(parietal and frontal cortex). Besides for nonretinal feedback, eye position may
also be used for the coordinate transformations (for instance from retinal to head

or body coordinates), supposed to be performed in the posterior parietal cortex
(Andersen, 1989).

Under some circumstances -in the presence of a constant visual stimulus -
nonretinal feedback in saccades is probably not the only way to correct for changes
in eye position between target generation and initiation of the eye movement.
This is indicated by experiments performed by Dassonville et al. (1995) and Pelz
and Hayhoe (1995). They have proposed that localization of a remembered visual
target is based on a combination of exocentric cues and egocentric cues. This type
of correction uses a reference frame external to the body to represent the location
of other - stationary - stimuli in the visual image (exocentric coordinates), while
internal feedback uses a reference frame in body centered coordinates (egocentric
coordinates).

Dassonville et al. (1995) have demonstrated the use of exocentric coordinates
by instructing subjects to localize a remembered visual stimulus both in the
presence and in the absence of an extra visual stimulus. The remembered stimulus
was presented at the beginning of the saccade when nonretinal feedback is known
to be most inaccurate (Schlag and Schlag-Rey, 1995). They found that in the
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presence of the visual stimulus, remembered saccades were more accurate, and
concluded that an exocentric reference frame contributes to the precision of the
localization.

Pelz and Hayhoe (1995) performed perceptual measurements involving a com-
bination of egocentric and exocentric reference frames. They measured the move-
ment perception of afterimages in darkness, while the subject subconsciously
made small eye movements in the absence of a visual reference. This was com-
pared with the perception of movement of large afterimages in the presence of a
visible reference. In the first case, the afterimage seemed to move with the eye,
indicating the use of an internal reference frame. In the second case, the visible
reference seems to move (opposite to the eye) relative to the stationary perceived
afterimage, indicating that now this afterimage was used as reference frame. It
seems that the brain uses all available cues. This intelligent system chooses a
large reference frame as a reference, if present. To avoid this complexity, the
experiments in this thesis were performed in darkness, without visual reference
information.

1.3.2 Nonretinal-feedback models

The first model of the saccadic system incorporating nonretinal feedback was
proposed by Robinson (1975). Figure 1.3 shows the Robinson model. When a
target is chosen, the eye movement needed to direct the fovea on the target has
to be calculated. In the model, the goal for the eye movement is specified in
head coordinates (Tgr ) by adding the location of the target on the retina to eye
position at the moment of target generation. Burst cells, which actually generate
the saccade, are driven by the difference between desired eye position (Tg ) and
estimated eye position from the neural integrator. Normally, the burst cells are
suppressed by pause cells so that a saccade can only be made if the pause cell veto
is lifted. Once this occurs, by briefly inhibiting the pause cells, the burst cells
start firing, thereby driving the motoneurons and charging the neural integrator
until estimated eye position matches desired eye position so that the net driving
signal (motor error) becomes zero and the bursters cease firing. As long as the
burst cells are active, they suppress the pause cells but, once the burst cells fall
silent, the pause cells resume their steady firing rate and shut off the system.
It should be noted that the Robinson scheme has two internal feedback loops:
a short loop from the neural integrator which determines the burst cell activity
online on a moment-to-moment basis, and a long loop, working in intermittent
fashion, to the Ty computation stage. The term ’short loop’ refers to the short
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time constant of less than 10 ms that is needed to get a stable on-line feedback
(Van Gisbergen et al., 1981). The Robinson model was developed mainly to define
the role of bursters, motoneurons, integrator and pause cells in single saccades.

A problem with this scheme is that Ty has not been found in the brain at
the single neuron level. Furthermore, it does not assign a specific role to the
superior colliculus, which codes a desired eye displacement signal M rather than
a desired eye position Ty . One of the main inputs to the bursters is provided
by the deeper layers of the superior colliculus, coding desired displacement.

Inspired by these physiological facts, a second type of proposals for nonretinal
feedback, the so-called displacement models, has been developed. The model of
Jirgens et al. (1981), shown in Figure 1.4, features a resettable integrator in
the fast loop which integrates the burst-cell velocity signal during the saccade to
keep track of the change in eye position during the ongoing eye movement. In
this scheme, burst cells are driven by the difference between the initial desired
displacement signal and the fast loop signal. When the two signals match, motor
error becomes zero, and the burst cells cease firing. Before a new saccade can be
made, the local feedback integrator has to be reset to zero. It should be noted
that the model contains only the fast loop proposed in Robinson’s model. It was
not intended to account for double-step experiment results.

Scudder formulated an alternative to the model of Jiirgens et al. (1981) which
gets rid of the resettable integrator but retains the idea of a fast feedback loop.
His model incorporates the superior colliculus and assigns a role to long lead
bursteells (positioned between SC and short lead burst cells) which integrate the
difference between a (phasic) collicular signal and velocity feedback from short
lead bursters.

Waitzman et al. (1991) suggested a scheme where the fast loop operates at the
level of the superior colliculus. Like Scudder’s model, this scheme has abandoned
the notion of a resettable integrator.

As described earlier, when the SC is electrically stimulated just before the
start of a natural saccade to a remembered visual target, the natural saccade is
interrupted or preceded by the electrically-induced saccade (Sparks and Mays,
1983). After the perturbation saccade, a corrective saccade is made to the re-
membered visual target. Sparks and Mays (1983) measured neural activity in the
deeper layers of the superior colliculus with the coordinates of the second natural
saccade. In general this phenomenon is known as 'remapping’. This remapping,
which can be seen as bookkeeping at a level where signals are spatially coded to
acount for the effect of a previous saccade, has also been found in the frontal eye
fields. To explain how remapping at more central levels in the brain may occur,
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JURGENS MODEL

bias

reset pursuit
vestibular

Figure 1.4 The Jiirgens model focusses on the fast-working internal
feedback loop, working during saccades. Bursters (B) and pause cells
(P) play the same roles as in the Robinson model (see also Figure 1.3
for abbreviations). The bursters generate a velocity command (Esac)
which is sent to the motoneurons (MN) both directly and and indirectly
via the hold integrator. To compute eye displacement (AE) the model
requires a resettable integrator in the feedback loop, fed by Eyqc from
the bursters. As soon as the desired displacement equals the actual

displacement (AE), the bursters become silent.

Goldberg and Bruce (1990) have extended the Jirgens et al (1981) displacement
model with a second loop (see Figure 1.5). This model explains the neural events
occurring in double-step experiments, using efference copy signals of the displace-
ment type. A characteristic of remapping is that it is based on a spatial code,
while Robinson’s model relied on temporal signals.

Also other groups have discussed the use of nonretinal feedback for saccadic
control at more than one level in the brain. Becker and Jirgens (1979) and Van
Gisbergen and Van Opstal (1989) have postulated that a short term feedback
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Figure 1.6 Experimental design to determine gain field properties. A.
The center of the visual receptive field (square in dotted circle) is stim-
ulated while the monkey looks at various locations on the screen. The
response of the neuron is recorded to characterize how the visual response
is modulated by eye position. B. Activity of the cell at nine different eye
positions. The arrow indicates the time of visual stimulus onset. Note
that the response depends strongly on eye position. The most vigorous
response occurs when the monkey looks up and to the left, and the cell
fires hardly, if at all, when he fixates a right-down position. The retinal
location of the stimulus was always the same. The gradient of this gain
field is oriented to the up-left direction, but may vary from cell to cell.
C. The outer circle represents the activity shown in B. The white annu-
lus is the resting activity in the dark for each eye position. Accordingly,
the black circle denotes the difference between the activity including the
visual stimulus and the resting activity without the visual stimulus.
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there is no clear topographical arrangement, but here, cells show some remark-
able characteristics, known as gain fields' (Andersen et al., 1985). Visual cells
of the familiar type show a response when a target is projected on a certain
corresponding location on the retina, defined as its receptive field. The signal
of the visual cel is independent of the eye position relative to the head, and is
identical as long as the target is projected on the receptive field. In contrast, cells
in area 7a show a new phenomenon: the visual cel will only respond to visual
stimuli in its receptive field, but the strength of that response depends on the
direction where the animal is looking. This modulation of the visual response
by eye position defines the so-called gain field of the cell. An illustration of the
experimental procedure to determine gain fields and an example of a gain field
is shown in Figure 1.6. The gradient of these gain-fields may have a horizontal,
vertical or oblique direction.

To explore the possible role of gain-field cells in coding stimulus location in a
head-coordinate system, Zipser and Andersen (1988) performed a neural network
study. The inputs eye position and retinal error, represented in the first layer,
were combined in a next (hidden) layer, that in turn was connected to an output
layer. The network was trained to generate a target-to-head representation in
the output layer. To do this, different input/output combinations, correspond-
ing to different retinal and eye position values, were presented to the network.
The desired target to head representation in the output layer, which equals the
summation of R and Ep presented on the input layers, was used as the teacher
signal. After each trial, the weights of the network were updated by back prop-
agation (Rumelhart et al., 1986) to obtain a better match of actual and desired
output signal. After training was completed, Zipser and Andersen investigated
the properties of the units in the hidden layer. They found that the hidden units
had gain fields, and concluded that this property can embody target in head
coding in a neural network.

From the perspective of saccadic control, a problem with the Zipser Andersen
model is that it does not incorporate the superior colliculus. In this thesis we have
developed a neural network which is partly based on the Robinson model and is
an extension of the Zipser and Andersen model in the sense that it includes the
superior colliculus. The model describes long-term feedback, occurring before the

‘In fact, in the brain in several areas in the cortex and midbrain, gain fields have been
measured: area Ta and LIP in the posterior parietal cortex (Andersen et al., 1990b; Barash et
al., 1991), area V3a in the visual cortex (Galetti and Battaglini, 1989), the internal medullary
lamina in the central thalamus (Schlag-Rey and Schlag, 1987), area 46 in the prefrontal cortex
(Goldman-Rakic, 1987) and in the deeper layers of the superior colliculus (Van Opstal et al,,
1995).
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colliculus, presumed to be active in multi-step experiments, between saccades.

1.4 Averaging in the saccadic system

Most behavioural studies of eye movements have used a simple visual scene with
a single target. In natural scenes several potential targets are usually present. It
appears that, in the case of two simultaneously presented visual targets, subjects
can make an averaging saccade, directed to an intermediate position between the
two targets. This characteristic of saccades is known as averaging. Averaging
may be functionally useful. Although the system seems imprecise in target se-
lection when a saccade is performed quickly after the stimulus presentation (and
averaging occurs), such a quick inaccurate averaging saccade -which brings poten-
tial targets closer to the fovea- followed by a correction saccade is generally more
precise than a single, delayed (non-averaging) saccade within the same amount
of time (Coéfté and O’Regan, 1987). Thus, the advantage of averaging saccades
may be one of efficiency: an average saccade will bring two objects of interest
closer to the fovea, where it can then be observed more precisely, so that a choice
can be made between the two targets, to fixate one of them.

Findlay (1982) has found that averaging is weighted with the intensity of each
visual target. Also the relative size of the two targets influences the weighted
averaging. On the other hand, averaging will only occur for a limited range of
distances between the two retinal targets (Ottes et al., 1984). For example, if the
angular separation is 90 deg, the (first) saccade is often directed to one of the
targets. The sum of many responses to such a combination of two retinal targets
will then result in two populations of endpoints that appear around these two
targets, indicating that the system is bistable.

The interesting question at which level in the brain mechanisms responsible
for averaging can be found, has led to various experiments. Several electrical
stimulation experiments have been done, wherein simultaneous electrical stim-
ulation was applied at two locations in the brain. Robinson (1972) obtained a
weighted-averaging saccadic response by stimulating two locations in the superior
colliculus. Fuchs and Robinson (1969) obtained a similar result by stimulating
two locations in the frontal eye fields. Averaging saccades can also be induced by
stimulating two different oculomotor areas in the brain simultaneously. Schiller
(1979) found averaging by stimulating simultaneously in the superior colliculus
and in the frontal eye fields.

Other experiments, seeking an answer to the question of at which level in the
brain neural correlates of averaging can be demonstrated, used single unit record-
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ing while the monkey made averaging saccades to visual double targets. Van
Opstal and Van Gisbergen (1990) and Glimcher and Sparks (1993) have recorded
the electrical activity of the deeper layers of the superior colliculus while averag-
ing saccades were made. They found that motor-related activity represented the
average motor error and concluded that visually induced averaging occurs in the
colliculus or at a more central level in the brain. In other words, it is possible
that initially, due to visual activity, two mountains of activity related to the two
retinal targets, are shortly visible on the deeper layers. If this double-peaked pat-
tern then evolves in time to generate one mountain of motor related activity on
the average location, it could be said that averaging occurs inside the colliculus.
It is also possible that averaging is performed at higher levels, for instance at the
level of LIP or FEF.

One interpretation of the experiment of Robinson (1972) is that his experi-
ment induces activity that averages at a postcollicular state. Although perhaps
less likely, the experiment of Robinson (1972) may also be compatible with intra-
collicular averaging, assuming that a third mountain on the colliculus develops,
caused by electrical stimulation of two other sites of the colliculus.

1.4.1 Models

By now, a variety of models has been proposed which are relevant for our un-
derstanding of saccade averaging. Several models have focussed on the superior
colliculus, and suggest that averaging is performed at this level. These models
include the ensemble model of the superior colliculus of Van Opstal and Van Gis-
bergen (1990), wherein two target representations enter the superior colliculus.
Averaging saccades are then generated as a result of lateral interactions and a
threshold, resulting in one mountain of collicular activity (intracollicular averag-
ing). Later, Van Opstal and Kappen (1993) and Droulez and Berthoz (1991) have
made detailed further proposals on how averaging may occur in the colliculus.
Arai et al. (1994) made a model of fast feedback which incorporated the supe-
rior colliculus. They found averaging as an emergent property. They modelled
the pathway from the superficial layers of the superior colliculus (containing two
targets) to the deeper layers of the superior colliculus (containing one average
target). They assumed that the pathway from superficial to deeper layers is in-
volved in the generation of saccades. This pathway is still under discussion in
the literature (Moschovakis et al. 1988; Ogasawa et al. 1984).

Kopecz and Schoner (1995) further elaborated the lateral interaction idea in
an interesting averaging model, which can also produce bistability, but they did
not specify the physiological basis of their model.
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In the above-mentioned models, precollicular averaging has not been studied.
In this thesis we considered an alternative: the possibility of precollicular aver-
aging, wherein averaging occurs at a stage before the superior colliculus. This
previous stage may be embodied in the parietal cortex. The result may then
be transmitted via the pathway from the posterior parietal cortex to the deeper
layers of the superior colliculus.

1.5 Neural network simulations

The elaboration of the slow feedback problem in this thesis (see section 1.3.2)
uses neural network techniques. The present section sketches the general ap-
proach behind the neural network simulation used in the thesis. Neural network
simulation is a tool to explore how the cell characteristics of the various brain ar-
eas may contribute to the overall signal processing in the total system, related to
a certain task. A neural network typically consists of many interconnected units.
Each unit represents a neuron in the brain. Its firing frequency is modeled by a
scalar representing the level of ’activity’. In this thesis activity is a real number
between zero and one. At zero, the neuron is at rest, while activity one symbol-
izes maximum firing frequency. This activity is determined through summation
of all activities of units impinging on the unit under consideration. In this sum-
mation, the activity from each input unit is weighted by a factor that represents
the strength and sign of the connection. On the receiving unit, the result of this
summation, called net input, is transformed into activity via a sigmoid, i.e. a
nonlinear, monotonous function. In this thesis, the units are arranged in layers,
with only feedforward connections between subsequent layers. Three kinds of
units (layers) are used: input units, with impose activity representing the input
pattern at that moment. These units are connected to a layer of hidden units,
whose activity is determined by the input activities and the weights of the con-
nections. The hidden units in turn are connected to output units, which in their
activity represent the outcome of the network. The parameters of a network are
its weights. They determine how the network transforms a given input to an out-
put. Different input patterns are transformed into their corresponding outputs,
using the same weights of the network. To obtain weights that transform the
input to the proper output pattern, a number of examples (input/desired output
combinations) is imposed by a teacher on the input units and the output units
during a learning phase. The weights are updated according to a learning rule,
each time that an example is imposed to the network. After each example, the
weights are updated with a small increment or decrement. After the presentation
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of many examples, the weights finally converge to a stable value with respect to
the change in weights due to a next example. After the learning stage, weights
are fixed. In the subsequent test stage, input patterns can be presented to the
network, which differ from the set of input patterns used in the learning stage,
in order to see how the network generalizes. In this thesis, to adapt the weights,
backpropagation was used as learning rule. Backpropagation tries to minimize
the error between the output provided by the teacher and the network’s output
in each unit.

1.6 Questions addressed in this thesis

The central theme of this thesis concerns (slow) internal feedback applied in se-
quences of saccades. It will be investigated whether this mechanism may also
play a role in vergence components. This will be tested in behavioural exper-
iments. In addition, neural network simulations were performed to develop an
alternative for the Robinson model by including gain fields and the deeper layers
of the superior colliculus.

Zee et al. (1992) were the first to propose that nonretinal feedback is used
in both vergence and saccadic eye movements. They recorded eye movements
during refixations to single-target steps that required a combined saccade and
vergence movement. These data led them to a model containing fast internal
feedback for both vergence and saccade movements. The model can account
for peak-velocity-amplitude relationships of eye movements. In this thesis, we
investigate whether slow internal feedback for vergence can be demonstrated in
behavioural experiments requiring sequences of eye movements. In chapter 2, we
describe to what extent subjects performing a double step task in direction and
depth were able to correct for errors in the first movement by adjustment of the
second movement.

In the introduction, several models of fast internal feedback were described,
wherein motor error during a saccade was updated on a moment-to-moment ba-
sis. Robinson proposed that efference copy, sampled at the moment of target
generation, may also be used at higher levels in the brain for target localiza-
tion (slow loop). Several later models (Scudder, Jurgens) concentrated on the
fast feedback loop, but Goldberg and Bruce reintroduced the slow feedback loop.
Their aim was to include spatial remapping, which keeps track of desired dis-
placement. This thesis investigates the use of slow internal feedback, at higher
levels in the brain, performed between saccades, in sequences of saccades. It pro-
poses to incorporate the gain field cells, occurring at higher levels of the brain, in
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Figure 1.7 Combination of slow and fast internal feedback. Slow feed-
back, supposed to occur before the superior colliculus, is active between
saccades in sequences of saccades. The slow feedback has been inspired
by the Robinson model. The result of slow feedback computations is fed
into the saccadic pulse generator under fast feedback control, at the level
of the brain stem. This figure shows the Jiirgens model implementation.
Slow and fast feedback operate on different moments in time: the first
one between saccades, the second one during saccades, so that they occur
sequentially rather than simultaneously. The behavioural experiments
and the model simulations in this thesis were performed to learn more
about the slow-feedback loop. Fast feedback will not concern us here.
Abbreviations: R = retinal error, Eo4 = eye position at the moment of
target generation, £ 4 = actual eye position, M = motor error, repre-
sented in the superior colliculus, v = eye velocity, A E = eye position
relative to the eye position at the beginning of the saccade.

the slow internal feedback system. According to Heide et al., 1995, the posterior
parietal cortex as higher center in the brain plays a role in the internal feedback
between saccades. Also gain fields are found in this cortical area. The general
idea behind the modeling approach described in the thesis, is shown in Figure 1.7.
This Figure shows a serial connection of a slow and a fast internal feedback. The
deeper layers of the superior colliculus represent the output of the slow feedback
and provide input to the fast feedback system.

As we have seen, there is a discussion whether the saccadic system is controlled
by desired eye position or by desired eye displacement signals. The possibility
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of a craniotopic coding of the saccadic goal originally proposed by Robinson has
been revived by the finding of gain field cells in the parietal cortex (Andersen
et al., 1985). In chapter 3, neural network simulations were done to investigate
how the notion of desired eye position, entailing a target in head input, can
be reconciled with motor error coding at the level of the topographically coded
superior colliculus and gain field cells in the parietal cortex.

Chapter 4 deals with coding properties of hidden units in these neural net-
works. It shows how craniocentric and oculocentric target representations can be
constructed by merging a retinotopically coded visual signal and a recruitment
coded eye position information. It explains the development of gain field cells.

The neural network model, described in chapter 3, suggested the possibility
that saccadic averaging may be due to supracollicular mechanism. In chapter 5 it
is shown that this averaging in the network is related to the coordinate transfor-
mation to target in head coding that occurred before the feedback, possibly used
in sequences of saccades (assuming that the model is valid). In the network, the
averaging is related to the vector coding of target in head, resulting in gain field
cells. Furthermore, chapter 5 describes a way to test the validity of the model by
electrical stimulation in the brain.






Chapter 2

Nonretinal feedback in
combined version-vergence eye
movements

Abstract

Recently, a quantitative model for the generation of rapid eye movements
in direction and depth was proposed. In this scheme, the saccadic and
the vergence system share a common initiation system and are controlled
by local feedback loops based on efference copy signals. We have used a
remembered-target double-step paradigm to test the idea that both subsys-
tems are guided by extraretinal signals. The subject was instructed to move
the binocular point of fixation to the remembered positions indicated by
a double-step movement of the target, in direction and depth. Since both
binocular refixations were made in complete darkness, correct execution of
this task requires information about both the stored visual coordinates of
the final target and the coordinates of the first movement. Binocular eye
movements from five subjects were compared with predictions from two feed-
forward models and a feedback model. Analysis of the pooled direction data
showed that the feedback model performed best and fitted well. Qualita-
tively the same result was obtained in the vergence component, but in this
case the goodness of fit was considerably less. These results, confirmed in
each individual subject, show that the saccadic and vergence subsystem can
use nonretinal information about a prior movement in direction and depth.
Further analysis showed that the gain of the direction response of the second
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movement was, on average, roughly correct. By contrast, the vergence com-
ponent of these responses was only about 60% of the required amplitude.
Since the fit procedure gave the same weighting factors to the second target
and to the first movement, we propose that the low vergence gain reflects
mechanisms operating after the calculation of the motor error signal, pos-
sibly at the execution stage. Finally, we discuss the possibility of a central
control stage keeping track of the ongoing movement sequence, based on a
comparison of desired and current eye position signals.

K.P. Krommenhoek and J.A.M. van Gisbergen. Evidence for nonretinal feedback in combined
version-vergence eye movements, Exp. Brain Res. 102 95-109, 1994.
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2.1 Introduction

As illustrated by Robinson’s (1975) model of the saccadic system, the fact that
saccades are too fast to be guided by direct visual feedback does not necessar-
ily imply that they must be ballistic. In his scheme, saccades are controlled by
the difference (motor error) between a desired eye position signal and an effer-
ence copy signal coding current eye position. This so-called local feedback model
has received considerable support from behavioral experiments showing that the
system can take into account an earlier movement when programming a new
saccade, even when direct visual feedback has been excluded (Hallett and Light-
stone, 1976; Gellman and Fletcher, 1992). In these experiments, a new target is
flashed while the eye is executing a saccade to a previous target. The corrective
movement, executed in full darkness, is not solely based on the retinal location
of the new target at the time when it was presented: at least to some degree, it
also takes into account the eye movement in response to the first stimulus. In
later variations on this experiment, a new target was flashed during an ongoing
smooth pursuit eye movement. Under certain conditions (Schlag et al., 1990;
Gellman and Fletcher, 1992), but not always (McKenzie and Lisberger, 1986), it
can be shown that the saccadic system can take into account the smooth pursuit
movement made after the flash.

Neurophysiological experiments have greatly strengthened the plausibility of
the general notion of internal feedback by providing information about the po-
sition of the superior colliculus and saccadic burst cells relative to the putative
feedback loop (Sparks and Porter, 1983; Sparks et al., 1987). A striking illustra-
tion of the capacity of the saccadic system to correct for perturbations without
the use of vision is provided by collicular electrical stimulation studies (Mays and
Sparks, 1980; Sparks and Mays, 1983). The electrical stimulus in these experi-
ments is timed to generate a wrong-direction saccade just at the time when the
animal is about to make a saccade to a remembered target. The experiments
show that the oculomotor system can correct for this perturbation with a sub-
sequent correction saccade, executed in full darkness, which brings the eyes near
the target. Programming the correction saccade requires information about the
perturbation saccade, which could be derived from an efference copy of the motor
command or from afferent input of the muscle spindles. Guthrie et al. (1983)
showed that the latter is not essential. After sectioning the ophthalmic branch of
the trigeminal nerve, which carries information from muscle receptors, the mon-
key was still able to correct for the collicular stimulation perturbation. Guthrie
and coworkers concluded that the saccadic system relies on internal feedback.
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Most gaze shifts require both saccadic and vergence contributions. Until
recently, these oculomotor subsystems were regarded as quite distinct and inde-
pendent. Studies of refixations in direction and depth, elicited by step changes
in target position (Erkelens et al., 1989; Maxwell and King, 1992 and Zee et al.,
1992), have modified this picture. One consistent finding, indicating a nonlinear
interaction between the two subsystems, is that vergence movements can be quite
fast when executed together with a saccadic movement. To explain their data,
Zee et al. (1992) proposed a model in which saccadic and vergence pulse gen-
erators with nonlinear characteristics are under the control of a common pause
cell initiation system and separate local feedback loops. They found that a fixed
nonlinearity in the vergence pulse generator can account quite reasonably for the
relation between peak vergence velocity and vergence amplitude.

So far, direct neurophysiological evidence supporting the feedback idea in the
vergence system is not available; nor have there been any systematic attempts
to test this notion in behavioral experiments. In the present paper, we investi-
gate the possibility of nonretinal feedback in the control of vergence by studying
double-step responses in direction and depth to briefly flashed stimuli. Prelimi-
nary results have been reported in Van Gisbergen and Krommenhoek (1994). Our
subjects were asked to make two subsequent movements of the bifoveal fixation
point in the dark to retrace the path in direction and depth that was indicated
by two light-emitted diodes (LEDs), which flashed after the fixation point was
extinguished. The main question to be answered is whether the system, in exe-
cuting the second movement, can appropriately take into account the metrics of
the first movement. To test to what extent this is the case, we explored three
different models for how these movements might be controlled. These will now
be briefly discussed.

2.1.1 Models

Subjects were asked to make two subsequent movements of the bifoveal fixation
point in the dark to retrace the path in direction and depth indicated by two LEDs
that were lit briefly after the fixation point was extinguished. Three models were
tested on their ability to predict the amplitude and size of the second movement,
both of the direction and of the vergence component. Two of these models are
based on preprogrammed control and will be denoted as the target vector model
and the target difference vector model, respectively. The third model, inspired by
the 1992 model of Zee et al. is denoted as the feedback model. The basic ideas
are illustrated schematically in Fig. 2.1, which shows that the various models
yield quite different predictions on the metric of the second movement in the
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double-step paradigm. For details on how the various parameters were extracted
from the data, we refer to the Methods section.

Model 1: Target vector model. According to this simple model, the sec-
ond movement (Mg ) is based exclusively on the biretinal coordinates (direction,
target vergence) of the second target (T ) in the fixation period preceding the
first movement (In the three models, @ denotes a diagonal matrix and ¢ denoted
a vector):

M2 e a.T2 +c (21)

In its most simple form, the model predicts that slope a in Eqn. (1) equals
one and that intercept ¢ is zero. In that case, task performance would be poor
(Fig. 2.1A). Proper execution of the double-step tracking task requires that the
first movement (M7 ) should be taken into account, along with T% , in program-
ming the second movement (see below).

Model 2: Target difference vector model. The basic proposal here is that
the brain bases the second movement on the difference vector between the bireti-
nal representations of the two targets (Th and T , respectively), disregarding
the first movement:

M2 - a(T2 — Tl) —}— C (2.2)

This strategy ensures better performance than the target vector model, but any
error in the first movement ( My # Tj ) will propagate into the execution of the
second movement.

Model 3: Feedback model. The feedback model solves the problem that, after
the first movement, T% is no longer appropriate for guiding the eyes to the final
target. The underlying idea is that current motor error is obtained by combining
T> and M according to:

M2 = a(T2 - M]_) —}— (&4 (23)

This system will operate perfectly, independent of whether the first movement
was correct, provided slope a is one and intercept ¢ is zero. The predictions of
the feedback and the target difference vector model are indistinguishable when
the first movement is accurate. However, the execution of the first movement in
our data showed considerable variability, so that it became possible to distinguish
between these two models.
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Figure 2.1 Models tested in this study. (Continuation of caption on
next page).
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(Figure 2.1 on previous page). The three models have different predic-
tions for the second movement, illustrated by an example where the first
movement was not precisely directed at the first target (1). Note that
only the feedback model can correct the second movement, to the final
target (2), for an error in the first movement. (Ty = first target posi-
tion; Ty = second target position; My =first movement; My =second
movement; F=fixation position during target presentation.)

2.2 Materials and methods

Eye movement recording
Movements from both eyes were recorded with the search coil technique in two
perpendicular alternating magnetic fields (Collewijn et al., 1975). The coil signals
were amplified, demodulated in PAR 128A lock-in amplifiers, low-pass filtered
with a fourth-order Bessel filter (-3 dB at 150 Hz), and then sampled at a rate of
500 Hz in each channel, with 12-bit resolution. The data were stored on disk on
a SUN-3/140 workstation and analyzed off line. The coil signal was calibrated
separately in each eye by covering the other eye and requiring the subject to fixate
five horizontal and five vertical LEDs from the straight-ahead direction for that
eye on a frontoparallel plane placed at 125 cm from the subject. Each fixation was
performed and measured twice. The resulting raw data were subjected to a linear
regression fit to calibrate these signals. Since we were interested in the movement
of the binocular point of fixation, we computed its horizontal (@) and vertical
(B) direction (the angular position of the cyclopean eye) by taking the mean of
the corresponding values in the left and right eye. The horizontal vergence angle
() was defined as the difference between the left horizontal (ay) and the right
horizontal signal () according to: v = ay — ap.

Experiments were carried out in five healthy male subjects (aged between
22 and 30 years) without any known neurological or oculomotor disorders. The
head was stabilized in a comfortable upright position with a chin rest and a strap
around the forehead. After the calibration experiment, vision was binocular in
the remaining part of the session. Sessions lasted up to about 45 min, and during
the experiments subjects were encouraged to fixate accurately and to refrain from
premature responses. Three subjects, who needed optical correction for good vi-
sion, wore their contact lenses during the experiment. Two subjects (PH and
BW) were not familiar with the purpose of this study.
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Figure 2.2 Stimulus array used in the double step paradigm. A. LEDs
were mounted at the crossing junctions of five iso-target vergence circles
with five equidirection lines Four additional LEDs were mounted at di-
rections 5 and 10 deg, at both the far and the near LED circle (see text).
B. Example of a double-step stimulus. In both panels, the two circles on

the horizontal axis denote the positions of the two eyes.

Horizontal LED array

After the calibration experiment, a board containing 29 LEDs was mounted hor-
izontally in front of the subject, just below the nose, so that his eyes were at
approximately 5 cm above the LED array (see Fig. 2.2A). Twenty-five of these
LEDs were mounted at the crossing junctions of five ’isotarget vergence’ curves
of 5, 10, 15, 20, and 25 deg with five ’equidirection’ lines of equal version at hor-
izontal directions of 0 deg (straight ahead), 15 and 30 deg, both left and right.
Additional LEDs were mounted at directions 5 and 10 deg on the left, at both the
far and the near LED curve (see Fig. 2.2A). To ensure good performance in the
direction/depth tracking task, our set-up allowed subjects to use any of the vari-
ous depth cues available (disparity, blur, luminance and angular size differences).

Binocular fixation control experiment

As a control, we asked the subject to fixate each of the 25 LEDs in the regular
grid when it lit up for 4 s. Data from such a control experiment are shown in
Fig. 2.3A. For comparison, Fig. 2.3B shows the expected direction and vergence
signals, computed from the position of the LED array, relative to the cyclopean
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Figure 2.3 Stimulus locations and fixation positions in oculomotor co-
ordinates. A. Actual fixation positions of subject AM when locking at
25 different LEDs on the array shown in Fig. 2.2A. B. Expected oculo-
motor signals, expressed in vergence angle (y-axis) and direction angle
(x-axis). C. The eight different first stimulus steps used in the various
stimulus sequences. D. The eleven different second stimulus steps used
in each stimulus sequence.

eye and the interocular distance of this subject. In general, the correspondence
is reasonable, but not precise. Therefore, in the analysis of later experiments
we used the actual binocular eye positions recorded in this control experiment,
rather than the predicted signals, to judge how close the eyes were to the target.

Double-step experiments in direction and depth

In the double-step paradigm, subjects were instructed to move their binocular
fixation point to the fixation LED when it lit up (for 800-1200 msec) and to
retrace the path of the fixation point indicated by two other LEDs that lit up
briefly subsequently (one after the other). They were asked to make the first
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Figure 2.4 Timing of double-step targets. Data acquisition (Data)
occurred during 4 sec and started 50 ms before the fixation LED (FIX)
went off. After the fixation LED went off, the first target LED (LEDI)
went on immediately for 100 ms. Between the offset of the first target
LED and the onset of the second target LED there was a gap of 100
ms. The second target LED (LED2) also had a duration of 100 ms. The
subject was instructed to fixate at FIX until LED2 offset.

movement all the way toward the remembered location of the first LED (LED1)
as soon as all stimuli were off and then, after a brief fixation, to execute the
movement to the final target (LED2). All eye movement data, from a time of
50 msec before fixation LED offset until 4 sec later, were stored in the data-
acquisition computer. The timing of the LED stimuli is shown in Fig. 2.4.

An example of the LEDs used in one trial is shown in Fig. 2.2B. Here, the
first stimulus step asks for a refixation with a convergence response and a zero
deg direction component. The second stimulus step in this example requires a
divergence component and a direction response to the left. The first stimulus
step (see Fig. 2.3C) was always directed at the same LED in the center of the
LED array (target vergence 15 deg; direction 0 deg relative to straight ahead) but
the initial fixation point was varied, in different sequences, both in depth (either
5 or 25 deg target vergence) and in direction (requiring either a 0, 5, 10 or 15
deg rightward movement). Thus, in a particular stimulus sequence, which had
11 trials, the first step was always the same: it required a 10 deg convergence or
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divergence movement and a direction response between 0 and 15 deg, depending
on the sequence. By contrast, the position of LED2, signaling the second step,
was different in each trial and was equally distributed over the remaining LEDs,
both in direction and in depth (see Fig. 2.3D). The same set of LED2 positions
was used in all sequences in a pseudo random order in the 11 trials. Typically,
each subject received a total of eight stimulus sequences. To avoid training effects,
subjects never received visual feedback about their performance: all movements
were executed in complete darkness. In the course of the experiments, after
subjects AM and MF had remarked that the LED stimuli created afterimages
that seemed to make the task more difficult, it was decided to use a lower intensity
level for the three remaining subjects.

2.2.1 Acceptance of trials

Our experimental paradigm and the instructions to the subjects aimed to ensure
that both the first and the second movement would be executed after all light
stimuli had been extinguished. Although the instruction to delay movements
until all stimuli had been presented was emphasized throughout the experiment,
the results show that it was nevertheless repeatedly violated. In these premature
responses, the first movement began before LED2 offset and often as early as
immediately after fixation point offset. The premature responses showed two dif-
ferent patterns that were treated differently in the data analysis. In the first type
of premature response, which occurred in 55 out of 429 trials, both the direction
response and the vergence response began before the final LED was off. Since
target presentation during the saccadic direction response may conceivably have
negative consequences for the precision of target localization, because of impaired
vision, we ignored these trials. The second type of response violating the timing
specified by the instruction was quite common in trials requiring initial fixation
at one of the near LEDs. In this mode of response, the vergence response starts
prematurely, but the direction response does not. Typical examples of such a
response are shown in Figs. 2.5C,D. Since these premature vergence responses
are quite slow, there is less reason to suspect that they will have interfered signif-
icantly with target localization. Therefore, we saw no need to discard responses
of this type. Typically, in these trials, a considerable part of the first movement
occurred after the final target was switched off. This situation is very similar to
that in several earlier experiments reported in the literature (Hallett and Light-
stone, 1976; McKenzie and Lisberger, 1986; Schlag et al., 1990; Gellman and
Fletcher, 1992). In all these studies, the final target is presented in the course of
an ongoing, visually guided movement to an earlier target. The first movement
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continues for a while after the new target has disappeared, and the question is
to what extent this final phase of the first movement is taken into account in
executing the second movement to the final target.

2.2.2 Determination of experimental parameters

The second movement of the double-step response was compared with the predic-
tions of the three models, explained earlier, using the SPSS statistical software
package. The experimental parameters used in the analyses of the three models
were defined as described below.

First and second movement

The first movement (Mj ), which occurred after the second target (LED2) was
switched off, was taken as the change in the binocular point of fixation toward
the first target (LEDI; see Fig. 2.5); any movement before that time was ignored.
The endpoint of M7 was taken as the position of the bifoveal fixation point at the
time when the direction response to LED2 started. Since the direction response
was saccadic, the latter point could be determined without difficulty. It should be
noted that, in the absence of a premature response (see above), M; was simply
the entire movement toward the first target, so that our definition applies to all
accepted trials. This definition of My assumes that the starting point of My is
also the endpoint of M7 . This means that any change in binocular eye position
after the final saccade to the first target was assigned to My . Inspection of
the data shows that, typically, the small changes in the binocular fixation point
between the offset of the final saccade to LED1 and the onset of the first saccade
to LED2 can be considered as the final phase of My , so that our criterion was
reasonable. The fact that the pre- and postsaccadic vergence segments assigned
to M (see next paragraph) had the same negative correlation with the vergence
component of My (see below) supports this.

The endpoint of the second movement (My ) was defined as the bifoveal fixation
point at the end of the trial when the subject was fixating the presumed position
of the previously presented final target. In cases where the subject broke fixation
earlier, by making a return movement to the point where the fixation point would
appear again in the next trial, we took the fixation position just before the return
saccade began.

Distinction between fast and slow movement segments
To characterize the nature of the first and second vergence movement, we have
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made a distinction into intra- and extrasaccadic movement segments. These fur-
ther distinctions allowed us to explore to what extent faster and slower parts of
My have equal access to the putative internal feedback loop proposed by the
feedback model.

Presaccadic segment. The presaccadic segment (M1"° ) was defined as the
part of the movement that occurred between the offset of LED2 and the onset
of the first saccade in the direction response. Thus, in Mj , the presaccadic
segment includes the slow vergence movement toward the first target, which was
observed in several trials before the first saccadic direction response began (see
Figs. 2.5C,D). This segment may also contain a slow drift signal in the direction
signal, but this contribution to the direction component of M; was on average
very small (see below). It should be noticed that M2 has no presaccadic segment,
because its onset was defined to coincide with the onset of its first saccade.

Saccadic segment. The saccadic segment (M7*¢ , M3*¢ ) was defined as the
segment in each movement of the double-step response (M1 and My , respec-
tively) that occurred between the onset of its first saccade and the offset of the
final correction saccade in the same direction. The vergence component of this
segment contains the fast vergence movements during these saccades as well as
the movement in the short intersaccadic intervals that intervened between them.
The direction component of this segment, again in both movements, was almost
entirely saccadic, since slow drifts in the intersaccadic intervals were mostly negli-
gible. In trials where there was no or only a small horizontal direction component
in the first movement, the vertical component was used to detect onset and offset.
The vertical component is a consequence of the fact that the subject looked down
upon the LED array; when moving gaze from a far to a near LED this led to a
further lowering of the line of sight.

Postsaccadic segment. The postsaccadic segment (MP* | MP' ) was de-
fined as the part of the movement (in My and M> , respectively) that occurred
between the end of the saccadic direction response and the end of the movement.
It contains postsaccadic changes in vergence as well as postsaccadic slow drifts
in the direction signal.

Target location parameters

Parameter Ty was the vectorial difference between the binocular fixation point at
the time of LED1 offset and the binocular eye position when LED1 was fixated
in the control trial (see examples in Fig. 2.5). Similarly, To was taken as the
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vectorial difference between the binocular fixation position at the time of LED2
offset and the fixation position of LED2 recorded in the control experiment.

2.3 Results

2.3.1 Task performance

While it is well established that the saccadic system can respond adequately to
remembered target stimuli, much less is known about the vergence response to
such stimuli. We found that all subjects were quite able to make binocular re-
fixations with a clear vergence component in the double-step paradigm, which
often required both direction and vergence responses (see Fig. 2.5). In the quan-
titative analysis presented below we determined the accuracy of these responses.
To do this, it was essential to identify the responses to the first and the second
step. This was done by studying the horizontal and vertical components of the
direction response as well as the vergence response (see Materials and Methods).

A useful way to portray the responses to the double-step stimuli is to plot the
direction and vergence responses, both as a function of time and as a function of
each other in a direction-vergence plot (see Fig. 2.5). These figures also show the
expected endpoints of the first and second movement if the task would be per-
formed perfectly. To give an impression of the various types of response elicited
in different trials, Fig. 2.5 shows examples where the first step requires a conver-
gence movement (Fig. 2.5A,B) and two trials where the first movement changed
fixation from a near to a far point (Fig. 2.5C,D). As can be seen, the vergence
response in the latter condition clearly started before the direction component in
the two trials. In Fig. 2.5C, the vergence response started even before LED2 was
switched off, at the time of the first vertical line. For reasons explained above,
this type of premature response was retained in the data pool for further analysis.
Figure 2.5 shows trials where the second movement had a vergence component
in the same (Fig. 2.5B,D) or in the opposite direction (Fig. 2.5A,C) as the first
movement. The vertical lines indicate time marks delimiting the various segments
defined above (see legend for further details). It shows that the endpoints of the
first and second movement were not precisely on target. An analysis of these
errors will be the subject of a statistical analysis to discriminate among the three
models outlined above.

To give an impression of the range of variability in the first movement, we
have plotted the first movement against the required response, both for direction
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Figure 2.5 Four examples of double-step responses.

caption on next page).



38

Nonretinal feedback in combined version-vergence eye movements

(Figure 2.5 on previous page). In each example (A-D) time course of
horizontal (H) and vertical (V) direction of conjugate gaze and horizontal
vergence are shown on the left. The six vertical lines in the left-hand
panels mark the following events (going from left to right): (1): offset
LED2; (2): onset of saccadic portion in My ; (3): offset of saccadic
portion in My ; (4): onset of saccadic portion in Mz ; (5): offset of
saccadic portion in My ; (6): offset of trial response. Horizontal vergence
is plotted against horizontal direction on the right. Direction of first-step
response is indicated by an arrow. The segments between 2-3 and 4-5
are combined saccadic-vergence segments. MY ¢ =2-1; M3$ee =3-2;
MPt =4-3; M§ec =5-4; ME°** =6-5. Circles in right-hand panels
indicate events 2-6. Plus symbols denote fixation positions for the two
targets in control experiment. Further explanation in text.

and vergence (Fig. 2.6). The mean gain of the first movement, defined as the ratio
of the size of the movement and the retinal coordinates of the first target, was
1.29 for the direction component and 0.97 for the vergence component. However,
the gain of the first response varied widely from trial to trial, thereby providing
ample material to compare models 2 and 3. The precision of the final bifoveal
fixation, reached at the end of the second movement, can be estimated from
Fig. 2.7A,B. In Fig. 2.7A we compare the direction of the bifoveal fixation point in
all remembered-target double-step trials with the corresponding fixations during
the control experiment in the light (see Materials and Methods). On average, the
direction of the final target and the direction of binocular gaze at the end of the
trial corresponded within about 10%. For the vergence component (Fig. 2.7B),
this relation was less tight but still highly significant. We found no correlation
between errors in vergence and direction in the second movement (Fig. 2.7C).
In conclusion, these data show that, although subjects made considerable errors,
their final binocular fixations had a clear relation with the location of the final
target.

The latency of the saccadic part in the first movement with respect to the
offset of the LED2 has a bimodal distribution. The first mode consists mainly of
responses to double-steps with no horizontal direction component in the first step
(mean latency 0.78 4 0.24 s). Responses with a horizontal direction component
in the first step had a longer latency (mean 1.05 = 0.24 s). The mean latency of
the second movement, measured with respect to the offset of LED2 was 1.59 +
0.32 s. The interval between the final saccade in My and the onset of My was
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(Figure 2.7 on previous page). The three graphs document the precision
of the final bifoveal fixation, reached at the end of the second move-
ment. A. Direction of the bifoveal fixation point in all remembered-target
double-step trials plotted against the corresponding fixations during the
control experiment in the light (see Methods). The correlation is very
good (r? = 0.966) and was fitted by a straight line with a slope of
1.09 (95% confidence limits: 1.07;1.11). B. Same comparison for ver-
gence component. Here, the best-fit line had a slope of 0.56 (95% confi-
dence limits 0.50;0.63) and an intercept of 3.94 (95% confidence limits:
3.03;4.84); r2 = 0.441. Note that, when target vergence was beyond 5
deg, the actual vergence response was, in general, too small. C. Plot of
direction error against vergence error in second movement.

Relative contribution of various movement segments

In the Materials and Methods section we have distinguished presaccadic, saccadic
and postsaccadic contributions to the responses elicited by the double steps. The
contribution of these segments, expressed as a percentage, gives some idea about
their relative importance in the vergence and the direction components of these
responses (see Table 1). The direction response was almost purely saccadic in
the first movement. Following the saccade in the second movement, postsaccadic
drift back to the mid line caused a sizeable opposite contribution. Typically, a
considerable proportion of the vergence response in both the first and the second
movement was executed simultaneously with the saccadic response (which may
include several corrective saccades) in a combined movement, which moved the bi-
foveal fixation point rapidly in direction and depth. Intrasaccadic vergence in the
pooled data amounted to 61% in the first movement and to 81% in the second, on
average. The relative amount of intrasaccadic vergence was variable from trial to
trial. Table 1 shows that all three segments contributed to the vergence response
to the first target. Note that also the second movement had a postsaccadic ver-
gence contribution. A similar analysis for the direction component showed that
it was mainly saccadic in the two movements. The postsaccadic contribution,
most noticeable in the second movement, was negative due to post saccadic drift
toward the straight-ahead direction. These data are based on averages and can,
therefore, only give a rough indication. A segment which contributes little on
average, may actually be quite large in a particular trial. That the relative con-
tribution of the three segmen ts is by no means stereotyped can be concluded
from the fact that the pre- and postsaccadic contributions in the first movement
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component | subject | MP™® | Mgec | MPt | Mgec | MEot
Direction RD 1 107 -7 113 -13
PH 7 90 3 104 -4
BW 5 90 5 105 -5
MF 1 106 -7 117 -17
AM 0 99 1 103 -3
pooled 3 98 -1 108 -8
Vergence RD 9 64 27 79 21
PH 30 57 13 82 18
BW 16 65 19 76 24
MF 17 63 20 81 19
AM 11 45 44 91 9
pooled 18 61 21 81 19
Table 2.1

Contribution of fast and slow movement segments to first and second step
responses. Numbers denote percentage contribution of various move-
ment segments (MP™® | M$ec | MP°" ) to the first movement and
to the second movement (M5%¢ , ME®*® ). To obtain them, the di-
rection signal and the vergence signal were subjected separately to a
linear regression of, e.g., MY"¢ = a.M; . The percentage in the table
equals 100a, for the pooled data and for each subject (RD, PH, BW,
MF and AM). Negative numbers denote contributions opposite to the
total movement. The data for MFP°** have limited reliability since the
correlation in the fit was sometimes quite low (r2 < 0.2). In subject
RD the first step always had a zero horizontal component. In this case,
the vertical direction component was taken to detect the segments of the
first movement.

show hardly any correlation. In addition, intersubject differences can also be
observed (see Table 1). Note that also the second movement had a postsaccadic
vergence contribution. A similar analysis for the direction component showed
that it was mainly saccadic in the two movements. The postsaccadic contribu-
tion, most noticeable in the second movement, was negative due to post saccadic
drift toward the straight-ahead direction. These data are based on averages and
can, therefore, only give a rough indication. A segment which contributes little
on average, may actually be quite large in a particular trial. That the relative
contribution of the three segmen ts is by no means stereotyped can be concluded
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from the fact that the pre- and postsaccadic contributions in the first movement
show hardly any correlation. In addition, intersubject differences can also be
observed (see Table 1).

Statistical analysis of model performance

To test the three models outlined in the Introduction, the pooled data from all
subjects and all trials were subjected to a linear regression analysis. The analysis
was performed separately for the vergence and the direction component of the
second movement. Accordingly, unlike the formulation in the Introduction, we
allowed the coefficients to be different for direction and vergence. For each set of
data we determined whether it could be described best as a function of the target
vector coordinates of the second target (model 1), as a function of the vector
from the first to the second visual target (model 2), or whether motor error after
the first movement is a better predictor (model 3). In these analyses, the first
movement (Mj ) was taken as the sum of all three segments distinguished in
the Materials and methods section. Similarly, the second movement (M2 ) was
the sum of intra- and postsaccadic contributions. The results of the regression
analysis for the vergence and direction component are shown in Fig. 2.8.

Figure 2.8A shows a poor correspondence between predicted and actual ver-
gence component in the second movement, the target vector model performed
badly; in fact the relation is not statistically significant (Table 2). By contrast,
although the fit is still far from perfect, the feedback model did much better
(Fig. 2.8C). It should be noticed that the slope of the relation is smaller than
expected: we found a slope of only 0.55 instead of the unity value predicted by
the model. Furthermore, constant ¢ in Eqn. 3 was not zero but had a value of
-2.15 degrees on average (Table 3), which may reflect drift to the dark vergence
position. The target difference vector model (model 2) clearly performed better
than the target vector model, but the fit is still poor and cannot rival the per-
formance of the feedback model (Fig. 2.8B). Leaving out constant ¢ in Eqs. 1-3
still yielded the same rank order in model performance.

For direction, the picture emerging from a similar analysis showed the same
rank order of performance among the three models (Fig. 2.8D-F, Table 3). Again
the target vector model gave the poorest fit, the target difference vector model
was better, and the feedback model was best based on the r2 criterion. A striking
quantitative difference with the vergence results is that all three models performed
considerably better in direction (higher 72 values). Furthermore, the slope of the
relation in all models was now close to 1.0 (Table 3).
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Figure 2.8 Actual direction and vergence component of the second
movement compared with model predictions. Predicted second move-
ment was defined as in Eqgs. (1-3). A: vergence, model 1; B: vergence,
model 2; C: vergence, model 3; D: direction, model 1; E: direction, model
2; F: direction, model 3. Notice that model 3 gives the best fit.
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component | model RD PH BW MF AM | pooled data
Direction 1 0.944 0.912 0.952 0.830 | 0.851 0.865

2 0.944 0.954 0.966 0.926 | 0.935 0.934

3 0.981 0.973 0.977 0.967 | 0.965 0.962
Vergence 1 0.004 (n.s.) | 0.009 (n.s.) | 0.028 (n.s.) | 0.176 | 0.478 0.04 5

2 0.414 0.388 0.392 0.244 | 0.227 0.313

3 0.798 0.586 0.538 0.456 | 0.667 0.575

Table 2.2

Model performance expressed by 72 values. Goodness of fit obtained in
application of equations 1, 2 and 3. 2 values are shown separately for
vergence and direction data, both for each subject and for the pooled
data. Note that the feedback model (3) yields consistently higher 72
values than model 2 in all subjects and in the pooled data. Overall,
model 1 has the poorest performance. We tested in which cases the
performance of model 3 was significantly better than the next best model
(Ferguson, 1971). The difference was highly significant (P<0.001) for
both the pooled vergence and the pooled direction data. For the data of
individual subjects, the significance level was at least P<0.05. (n.s. =
not significant).

We repeated the same vergence and direction analyses in each subject and
found qualitatively similar results as in the pooled data (Tables 2,3). In the
pooled data, trials requiring convergence or divergence in the first step were
present in about equal numbers. Since it is difficult to hold a convergent position
in the dark, especially when the subject becomes fatigued, we often saw premature
responses when the trial started with a near fixation. As shown in Table 3, the
best-fit parameters typically include a negative bias term, indicating that the
second movement contains a default divergent contribution. With this in mind,
we examined the performance of the feedback model separately for two subsets
of data subdivided depending on whether the first movement was convergent or
divergent. The goodness of fit in the feedback model was less in the pool of
trials where the first movement was divergent than when the first movement was
convergent (see Table 3). Still, in both cases, the feedback model did better than
any of the two other models.

The goodness of fit for the vergence component provided by the feedback
model also depended on the sign of the vergence component in the second move-
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component subject slope interval slope constant interval constant n
Direction RD 0.92 | < 0.88;0.95 > 0.84 < 0.11;1.56 > 59
PH 1.09 | <€ 1.05;1.13 > 0.10 (n.s.) 87
BW 1.03 | < 0.99;1.06 > -1.25 < —1.95; —0.56 > | 84
MF 1.14 | <« 1.10;1.19 > 0.90 (n.s.) 85
AM 1.22 | <€ 1.16;1.28 > 1.62 (n.s.) 59
pooled data | 1.09 | < 1.06;1.11 > -0.10 (n.s.) 374
Vergence RD 0.85 | < 0.74;0.96 > 1.62 < 0.43;2.81 > 59
PH 0.60 | < 0.49;0.71 > -2.57 < —3.21;-1.93 > | 87
BW 0.51 | < 0.41;0.61 > -1.65 < —2.20;-1.10 > | &4
MF 0.53 | < 0.41;0.66 > -2.62 < —3.37; —1.87 > | 85
AM 046 | < 0.37;0.54 > -3.18 < —3.81;—2.54 > | 59
pooled data | 0.55 | < 0.50;0.60 > -2.15 < —2.49;—-1.82 > | 374
1st step div | 046 | < 0.38;0.55 > -1.71 < —2.19;-1.23 > | 158
Ist step con | 0.58 | < 0.52;0.64 > -2.42 < —2.89; —-1.96 > | 216
2nd step div | 0.69 | < 0.61;0.78 > -1.03 < —1.67; —0.40 > | 207
2nd step con | 0.45 | < 0.31;0.59 > -2.74 < —3.49;—-1.99 > | 138

Table 2.3

Best-fit parameter values obtained for model 3. Results of statistical
analysis inspired by model 3 for each subject and for the pooled data,
both for vergence and for direction. Slope denotes value of coefficient
a; constant denotes intercept ¢ in Eqn. (3). Interval denotes 95% con-
fidence limits for each parameter, and n denotes number of trials used
in the analysis. Note that the best-fit slope value is close to 1.0 for di-
rection but consistently smaller for the vergence component. Note also
that constant typically has a negative value in the fit results of the ver-
gence component. The lower portion of the vergence Table shows best-fit
results from subsections of the pooled data. These were distinguished
depending on whether the first or second step were convergent (con)
or divergent (div). (n.s. = not significant; con = convergent; div =
divergent.)

ment. Again, of all models tested, the feedback model consistently showed the
best performance, when the second step required a divergent movement. In this
case we found that coeflicient a was closer to 1.0, which indicates that a second
divergent movement is easier to perform than a second convergent movement. As
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for trials with a convergent second movement, model 3 performed best only if one
particular type of trial was left out of consideration (Table 3). In this exceptional
trial, where LED2 had a target vergence of 25 deg (direction 0 deg), subjects
showed poor performance.

We conclude that it is fair to say that the feedback model provides the best
description of our data. When tested for each of the 11 trials types tested, the
feedback model performed best in 10 trials. For this reason, further analyses will
be inspired by this model. One of the points that will concern us is an exploration
of why the vergence component of the second movement is consistently too small.

2.3.2 Analysis of a three-parameter version of the feedback model

The previous analysis has shown that the vergence component of the second move-
ment was consistently too small (Table 3). According to the feedback model (see
Eqn. 3) we should have found a slope of 1, but the actual result (on average) was
only 0.55. One possible interpretation of this result is that the system computes
motor error by first subtracting My from T , but executes only part of the
required vergence movement (equivalent to a common scaling of both variables).
Another possibility is that, for some reason, My and Ty are scaled by different
factors. To test this, we used a three-parameter version of the feedback model
(in which a, b denoted diagonal matrices and ¢ denoted a vector):

M2 e a.T2 + b.M]_ +c (24)

If this model would yield clearly different best-fit parameters @ and b (apart from
sign), common scaling should be rejected. The results were quite clear: using
the three-parameter model did not result in a substantial improvement in the
goodness of fit. In the pooled data, 72 increased only from 0.575 (the value found
with equation 3) to 0.583. Inspection of the best-fit coeflicients explains why:
since we found a=0.53 and b = -0.58, the optimal values are nearly equal (ignoring
signs) and very similar to the slope we found earlier with the two-parameter model
(eq. 3). The 95% confidence limits for a (0.48;0.58) and b (-0.63;-0.52) further
substantiate this. When testing the three-parameter model (eq. 4) in separate
subjects, we found that the best-fit values of @ and b covered an appreciable
range across subjects. Interestingly, in each individual they were nearly identical
(Fig. 2.9). These results suggest that the low vergence gain in My may reflect a
common scaling of the two signals underlying its computation, thereby providing
a post hoc justification for Eqn. 3 in our previous analyses. Whether such a
common scaling is applied before or after the motor error computation cannot be
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Figure 2.9 Plot showing that coefficients @ and b in equation (4) have
roughly equal absolute values. Minus b is plotted against a for each
subject (r2=0.993, slope=1.08, intercept=0.89; significant at P<0.001
level).

determined. However, since a and b were found to be smaller in trials requiring
a convergent second movement, we tend to believe that the scaling may reflect
factors after the computation of motor error, possibly at the stage of movement
execution.

2.3.3 Access of fast- and slow-movement segments to nonretinal
feedback

In the analyses so far, the first movement was taken as the sum of all three seg-
ments contributing to M; that were distinguished in the Materials and methods
section. It is not a priori obvious that these segments have equal access to the
hypothetical extraretinal feedback loop. For example, vergence responses may
consist of a presaccadic, a saccadic and a postsaccadic contribution (see Fig. 2.5).
The same applies to the fast and slow changes in direction that constitute the
total direction component of the first movement.

To investigate this problem, a multiple regression analysis inspired by the
feedback model (Eqn. 3) was again performed, but now M;j contained only the
saccadic segment of the first movement. In this case, the fit was significantly less
good than when the My term represented the sum of all three segment contri-
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component | coefficient | value interval

direction a 1.09 <1.07; 1.11 >
b -1.05 | <«-1.11; -0.98>
c -1.40 | «<-1.83;-0.97 >
d -0.31 (n.s.)

vergence a 0.50 <0.45; 0.55 >
b -0.73 | <-0.80; -0.65>
c -0.31 | <-0.42;-0.19 >
d -1.73 | <«<-2.08;-1.37>

Table 2.4

Access of slow and fast My segments to non-retinal feedback. Pooled
data fitted with Eqn. (5). Goodness of fit for vergence: r2=0.610; for di-
rection: r2=0.963. Coefficients b and ¢ have a significant negative value,
indicating that fast- and slow-movement segments contribute to the pu-
tative feedback signal. Note that the 95 % confidence limits are entirely
in the negative range. Evaluation of these results requires a discussion
of the possibility that these parameter estimates have been degraded by
collinearity, which occurs when there is a high linear correlation among
individual variables. An indication that collinearity is not really a prob-
lem here comes from an analysis of eigenvalues computed from the data
matrix. The ratio of the largest and the smallest eigenvalue for vergence
was 9.16 (largest condition index 3.03) and for direction 6.38 (largest
condition index 2.53), which, in both cases, is indicative of only weak
dependencies (Belsley et al., 1980).

butions. The deterioration in the goodness of fit for the pooled data was very
modest but still significant (P<0.05) for direction (r? =0.958 instead of 0.962)
and very clear (P<0.001) for vergence (r2? = 0.382 instead of 0.575). When tested
in individual subjects, we found the same trends. These results indicate that the
slow-movement segments are also taken into account by the feedback mechanism.
We have investigated the access of each M; segment to the putative feedback
loop by applying a multiple regression analysis where fast- and slow-movement
segments were entered as separate variables. In this analysis, the regression equa-
tion took the following form:

M; = a.Ty + b.M$%¢ 4 c.Mo% + d (2.5)
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component | coefficient | value interval
vergence a 0.51 <0.43; 0.59 >
b -0.57 | <-0.71; -0.44>
c -0.51 | <-0.75; -0.26 >
d -2.72 | <-3.36; -2.08>

Table 2.5

Access of slow and fast vergence M, segments to non-retinal feedback
in responses with short second-step latency. Pooled data excluding long-
latency second-step responses (> 1.1 s) fitted with Eqn. (5). Goodness
of fit for vergence: r2=0.614. Notice that coefficients a, b, and ¢ have
roughly equal absolute values. In these data the ratio of the largest

and smallest eigenvalue was 9.91 (largest condition index 3.15); see also
Table 4.

where a, b, ¢ are diagonal matrices, d is a vector, and M$¢ and M v
(Mlsl"“’ =M?P"¢ + MY ost ) represent the fast- and slow segments that, together,
constitute movement My . The results for both vergence and direction, showing
that coefficients b and ¢ have a significant negative value (Table 4 4), confirm our
earlier conclusion that both fast- and slow-movement segments contribute to the
putative feedback signal. It should be noticed, however, that the contribution of
the slow-vergence segments (expressed in ¢) was much smaller than the saccadic
vergence contribution (b). Thus, although fast and slow movement segments
seem to have access to the nonretinal feedback loop, it cannot be ruled out that
the contribution of slow vergence in the prior movement may be more modest.
However, we feel that it would be premature to conclude from these data alone
that fast- and slow-movement segments of the vergence component do not have
equal access to the putative feedback loop. For example, we found no reliable
difference between b and ¢ when trials with long latency second-step responses
(> 1.1 s) were excluded (see Table 5).

Analysis of the pooled direction data (Table 4) shows that both fast and slow
segments of the first movement were taken into account. The 95% confidence
limits are similar, indicating that fast and slow segments of the direction response
have equal access to the putative nonretinal feedback loop.
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2.4 Discussion

2.4.1 Evidence for nonretinal feedback

We have used a remembered-target paradigm relying on double-step displace-
ments to investigate the proposal by Zee et al. (1992) that both the saccadic
and the vergence system guide movements by using internal feedback. All of
our subjects were quite able to make binocular refixations with a clear vergence
component in full darkness. Analysis of the data shows that the second move-
ment was not simply based on the biretinal coordinates of the final target when
it was presented. Hence the target vector model was rejected both for direction
and for vergence. A more sophisticated strategy to execute the second move-
ment would be to compute the amplitude and direction for the second movement
based on the relative locations of the two targets. This preprogrammed strategy
(model 2) might work if the first movement would be precise, but this was not
the case in our experimental conditions. Analysis of our data has shown that
the system performed better than could be expected, based on this strategy. We
found evidence for use of nonretinal feedback (model 3), both for direction and
for vergence. In particular, the average behavior of the direction component of
the movement, which was predominantly saccadic, was very well described by the
feedback model.

In the vergence component, the performance of model 3 was again better
than any of the other schemes tested but considerably poorer than for direction.
The vergence component in the second movement was, on average, too small by
some 40% (see Fig. 2.8 and Table 3). Thelow vergence gain was not observed in
the first movement. A closer analysis of the second movement of the double step,
based on a three-parameter version of model 3, has shown that the system applies
the same weighting factors to both signals (T> and M;j ) entering the putative
computation underlying the second movement. The result can be interpreted in
various ways. One possibility is that the computation of motor error is functioning
satisfactorily but that the input signals, perhaps because of memory storage, have
decayed. Another possibility is that the scaling is common to both, due to factors
at the level of motor error storage and/or movement execution. The fact that
the weighting factors for To and M; were nearly equal in individual subjects
and dependent upon whether the second movement was convergent or divergent
can be understood by assuming that these variations occur after computing the
motor error signal for vergence, obtained by nonretinal feedback.

Our experiments provide evidence that both fast- and slow-movement com-
ponents are taken into account by some kind of extraretinal feedback. Earlier,
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Schlag et al. (1990) found that the saccadic system can compensate for prior
smooth pursuit movements when computing the next saccade. Our direction
data extend this conclusion to slow involuntary drifts. As for vergence, our data
show that again both fast- and slow components are taken into account. Thus, in
summary, our results support the general notion behind the recent model by Zee
et al. (1992) that both version and vergence eye movements to target steps can be
controlled by extraretinal signals, derived from prior fast and/or slow movements.
We cannot claim that the two subsystems use internal feedback signals, since our
experiments cannot rule out other sources of information such as muscle-spindle
signals.

2.4.2 Head coordinate model versus displacement model

The model of Zee et al. (1992) assumes that the feedback is of the displacement
type. That is, the system is driven by the difference between a desired displace-
ment and the actual total change in eye position estimated from the feedback
signal. Interestingly, an earlier version of the model (Zee and Levy 1989) had a
stage where motor error was computed as the difference between a desired eye
position signal (target position in head coordinates) and current eye position,
again derived from a nonretinal feedback pathway (i.e., efference copy). No ex-
plicit reasons were given why this modification in favor of a displacement model
was made. It seems of interest to discuss the problem of whether our behavioral
data provide any reason for favoring either a displacement or a head coordinate
scheme. Before doing this, it is useful to briefly review the history of modeling in
the saccadic system, where this topic has received explicit attention and more is
known on underlying neurophysiological mechanisms. Early nonretinal feedback
models of the saccadic system started from the assumption that movements were
driven by the difference between a desired eye position and estimated current eye
position (Robinson, 1975; Van Gisbergen et al., 1981). The possibility of coding
target positions in head coordinates has received some indirect support from neu-
rophysiological studies in extrastriate cortical areas (Andersen et al., 1985) but
the recent surge in interest into collicular neurophysiology has made this notion
unpopular. The main reason is that head coordinate signals have not been found
in the superior colliculus where displacement signals are the rule. Although it
can be shown that coding in head coordinates at a cortical level is reconcilable
with displacement coding at the collicular level (Krommenhoek et al., 1993), the
question still remains why such a construct would be useful. Judged from the fact
that most recent saccadic control models work with displacement coding and do
not have a stage coding target position relative to the head (Droulez and Berthoz,
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1991; Goldberg and Bruce, 1990; Waitzman et al., 1991), such a double coding
system is mostly regarded as unnecessarily complex. We agree, as long as the
discussion is restricted to controlling a single saccadic movement at the level of
the superior colliculus or the frontal eye fields.

Our results with the double-step paradigm suggest that several movement
segments can be included in the feedback. First, many trials contained one or
more corrective saccades after the first rapid eye movement. This occurred be-
cause we asked subjects explicitly to make a complete movement all the way to
the remembered location of the first target. Second, we also required a vergence
response that could be executed in various ways: partly before the saccade in
some trials, during the saccades (with a relatively higher velocity), and partly
after the direction response. We found evidence that the slower drift signal in
direction is also included in the feedback loop. In this situation, keeping track of
all the movements occurring after the final target disappeared becomes complex,
so that control based exclusively on displacement coding loses much of the charm
due to its simplicity. Apart from this, it is not clear how a system like the supe-
rior colliculus could store the cumulative displacement signal if the response to
the first step contains a cascade of several saccades, since current displacement
models assume that the displacement signal in the feedback loop is erased after
each saccade. It seems a reasonable alternative hypothesis to assume that the
collicular representation of motor error concerns only the present saccade and has
nothing to do with how that movement fits into an entire movement sequence.
We suggest that keeping track of cumulative motor error in a sequence of several
movements, without storing information about prior movements, is a task better
left to a system higher in the hierarchy.

A possible indication that a system higher in the hierarchy than the col-
liculus, namely the parietal cortex, is involved in the execution of double-step
movements, in direction, was found by Duhamel et al. (1992). Patients with
a right frontoparietal lesion can still make single saccades. The patients could
also make double steps, when the first step was on the side of the lesion and
the second step was a contralateral direction. However, when the first step was
contralateral to the lesion and the second step was ipsilateral, only the first step
of the double step could be executed. The experiments by Duhamel et al. do not
prove extraretinal feedback at this level. Their data may still be compatible with
model 2.

There is some evidence that the control of vergence and saccadic eye move-
ments may be centrally coupled. Preliminary evidence indicates that, at the level
of area LIP in the parietal cortex, some cells may code signals related to the de-
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sired change in direction of the fixation point as well as the desired change in
depth (Gnadt, 1992). This suggests that, at a central level, commands for ver-
sion and vergence components of binocular gaze shifts may be represented in a
single system. At the level of area 17, there is evidence that the activity of single
neurons is not exclusively determined by visual factors, but may be affected by
the direction of gaze (Weyand and Malpeli, 1993) and by the distance of the
fixation point (Trotter et al., 1992).

Our experimental paradigm may be useful to gain more insight into the neu-
rophysiological mechanisms underlying the control of combined version-vergence
movements and the nature of the nonretinal feedback signals involved. For ex-
ample, it would be very interesting to see whether removing eye muscle spindle
afferent signals would interfere with the execution of the vergence component.
This operation does not affect the feedback loop for saccades (Guthrie et al.,
1983), indicating that internal feedback (based on efference copy) may be in-
volved. The latter mechanism has also been proposed by Zee et al. (1992) for
the vergence component, but this notion remains to be tested.
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Chapter 3

Remapping of neural activity
in the motor colliculus

Abstract

Neurophysiological studies have shown that the deeper layers of the Superior
Colliculus (SC) contain a topographical neural map representing the ocular
vectorial displacement required for foveation of the target (motor error). It
is known that the location of the active area in this neural map can be up-
dated, not only following changes in retinal error, but also by efference-copy
signals representing a change in eye position.

Since it can be shown that a two-layer feedforward network cannot perform
this task, we have simulated this system by training a three-layered neural
network with access to retinal error and efference copy information about
eye position. The network was taught to code motor error topographically
(as in the collicular motor map) by generating population activity at the ap-
propriate location in its output layer for different combinations of visual and
efference copy signals. After the network had learned the required remapping
transformation with sufficient precision (error of one deg over an 80x80 deg
working range), the properties of the trained network were analyzed. From
an investigation of the activity patterns of the hidden units in the trained
network it appeared that information about target location relative to the
head, implicitly present at the level of input signals, is no longer available
at the level of the hidden layer. More detailed inspection of the properties
of these units revealed that they code motor error. Their movement field is
a monotonic function of motor error amplitude, and shows broad direction
tuning specific for each unit.

Finally, simulations were made with a four layered network with an archi-
tecture and access to input signals closely mimicking Robinson’s model of
the saccadic system. Again, the network was trained to represent motor
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error topographically in its output layer. The model shows, for the first
time, how the computation of the topographical motor error map in the SC
from retinal and eye position signals may proceed in two steps, involving a
stage where target location is coded in a distributed fashion in craniotopic
coordinates and a subsequent supracollicular stage, where radial motor error
is represented in a firing-rate code in units with broad tuning characteris-
tics. These two stages in the model show interesting similarities with the
characteristics of neuron populations shown neurophysiologically in area 7a
and parietal region LIP, respectively.

K.P. Krommenhoek, A.J. van Opstal, C.C.A M. Gielen and J.A.M. van Gisbergen. Remap-
ping of neural activity in the motor colliculus: a neural network study, Vision Res. 33(9) 1287-
1298, 1993.
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3.1 Introduction

The SC is a layered structure involved in generating saccades. In its superficial
layers, visually-responsive neurons code the retinal location of the stimulus, while
neurons showing a motor-related discharge whenever the saccade falls in an ap-
propriate range of amplitudes and directions (movement field) have been found
in the deeper layers. The onset of the discharge leads the saccade by about 20
msec (Sparks, 1978). It is known from electrical stimulation studies (Robinson,
1972) and from single unit recordings (Schiller and Stryker, 1972) that the visual
map and the motor map in the SC are aligned with respect to each other (for
reviews, see Sparks, 1986; Sparks and Mays, 1990). Combined experimental and
theoretical work (Mecllwain, 1975; Ottes et al., 1986) has provided support for
the notion that the distribution of neuronal activity in the deeper layers has a
roughly gaussian profile with translation-invariant properties.

Recently, substantial experimental evidence has been provided that the locus
of population activity governing the coordinates of the saccade vector is updated,
not only subsequent to changes in retinal error, but also by motor signals repre-
senting a change in eye position. An early experiment (Hallett and Lightstone,
1976) demonstrated the use of eye position information by the saccadic system
by showing that a second visual target, flashed during a primary saccade, is able
to elicit an appropriate subsequent corrective saccade in complete darkness. Be-
cause eye position has changed after the flash, the retinal error signal alone cannot
specify the new target location and must therefore be combined with oculomotor
sighals to compute the required saccade coordinates.

The importance of internal feedback underlying the motor-error representa-
tion in the SC itself was shown by Sparks and coworkers. In their experimental
paradigm, a peripheral target (light spot) was flashed briefly. Then, in some trials
the eye was driven in a wrong direction by eliciting a disturbance saccade (D )
by collicular electrical stimulation just before the monkey was going to make the
originally required targeting saccade (T ). These experiments showed that the
saccadic system can generate the appropriate correction saccade (T - D ) even
though the use of visual information about target position has been excluded
(Mays and Sparks, 1980; Sparks and Mays, 1983; see Fig. 3.1).

Eye position information can be derived from eye muscle spindles (proprio-
ception) or from a copy of the motor command to the plant (efference copy). By
showing that section of the eye muscle spindle afferents does not interfere with
the execution of corrective saccades in the dark, Guthrie et al. (1983) were led
to conclude that the computation of motor error relies on efference copy signals.
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Figure 3.1 Demonstration that motor signals can be used to modify
programming of saccades (after Sparks and Mays, 1983). A. The visual
target trial. While the monkey fixates at the center, a flash of light
is presented briefly in the periphery. The monkey has been trained to
make a saccade to the remembered target location in complete darkness.
B. In certain trials, saccade D is elicited by electrical SC stimulation.
Subsequently, the monkey makes the required saccade T - D rather
than T which has now become inappropriate due to the intervening
disturbance.

Sparks and Porter (1983) showed that collicular cells discharge when the
motor-error coordinates of the correction saccade (T - D ) fall within the cell’s
movement field. They concluded that the SC is incorporated in an internal feed-
back loop subserving the computation of the saccade coordinates.

Further evidence supporting the notion that eye movement signals can update
the location of population activity in the collicular motor map has come from
neurophysiological experiments exploring the collicular role in guiding saccades
to acoustic targets, which are initially encoded in a head-centered coordinate
frame (Jay and Sparks, 1987). It was shown that, for a given fixed location of the
acoustic target in darkness, the activity in the collicular motor map depends on
current eye motor error, suggesting that eye position signals are used to update
motor error.



3.1 Introduction

In this paper we investigate how the collicular motor-error map can be created
by sensory and efference copy signals. Before the specifics of our approach are
described, we shall first review relevant existing models of the saccadic system.

3.1.1 Existing models of saccadic control

In the literature two types of models have been formulated to explain how motor
error (M ) is calculated from retinal error (R ) and efference-copy signals. The
first model, the craniocentric scheme of Robinson (1975), proposes a distinct
intermediate step where target location relative to the head (T ) is computed
first by adding R and eye position at the moment of target selection (Er )
(see Fig. 3.2A). Subsequently, motor error is obtained by subtracting actual eye
position (E4 ).

Except for the case of auditory targets, the existence of a stage represent-
ing Ty is controversial. While work in the SC has not yielded evidence for a
representation of target position relative to the head, recording studies in mon-
key parietal cortex have shown that the visual response of some cells shows eye
position dependence (Andersen et al., 1985). Zipser and Andersen (1988), have
performed a model simulation in order to interpret these "gain fields”. A network
was trained to generate the signal Ty in the output layer, from R and Er input.
It was found that the hidden units of the trained network exhibited gain fields
similar to those of neurons found in the parietal cortex. It should be noted that
neither the Robinson model nor the Zipser and Andersen model accounts for the
role of the SC. This raises the question whether the Ty coding stage can be
retained in a revised model which incorporates the SC.

In the second model for saccadic control, by contrast, absolute eye position
signals are not required, since this model proposes that only changes in eye po-
sition (A E ), not eye position per se, are taken into account (Jirgens et al.,
1981; Scudder, 1988; Goldberg and Bruce, 1990; Droulez and Berthoz, 1991;
see Fig. 3.2B). The physiological experiments described above do not distinguish
between these two models of saccadic control.

3.1.2 Neural network simulations

In several of the models outlined above, signals are represented by scalars denot-
ing firing rates. As briefly described above, however, part of the neural code is
carried by a population of cells whose location in a topographical map (rather
than their firing rate) determines the saccade coordinates. An interesting problem
is how a computational network, incorporating realistic neural features, can com-
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Figure 3.2 Two models of saccadic control. A. Craniocentric scheme.
In the first stage, target position relative to the head (Th ) is computed
by adding retinal error (R ) to eye position at the moment of target
selection (sampled and held in memory until a new target is chosen).
Motor error (M ) is computed in a subsequent stage by subtracting
actual eye position (a continuous signal) from Tg . B. Retinocentric
scheme. This model proposes that there is no representation of target
position relative to the head and that only changes in eye position are
taken into account to update motor error. Note that M equals R as
long as A E = 0.

pute motor error using these various signal types. Three requirements should be
considered in performing a neural network study of this problem: (1) simplicity,
(2) adequate task performance and (3) physiological realism.

In order to keep the model as simple as possible, the number of layers in the
network should be kept at a minimum. In the Appendix we demonstrate that
the computation of a topographically organized motor map from two independent
input variables cannot be performed by a two-layered feedforward network.

Assuming that a three layer network can perform the required transformation,
our third requirement implies that, after learning, the hidden units should have
physiologically interesting properties. It is by no means trivial that this will be
the case, since the activity patterns of the hidden units are not imposed directly
by the training procedure.

We have studied the ability of two neural networks (I and II), having access to
all three input signals specified in Robinson’s model, to account for the properties
of the collicular motor map. In model I, which was kept as simple as possible
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and which had only three layers, these signals all impinge at the same stage
(the hidden layer). Its basic structure is formally identical with the Zipser and
Andersen model. However, its interpretation is different, since it is not used to
address the problem of computing head-centered target position but to address
the problem of remapping (by adding an extra input to the network). As will
become clear in the results, this model solves the remapping problem, not by
reconstructing a Ty signal, but by deriving the change in eye position (A E )
from its eye position inputs. In this sense, this model emerges as an alternative
to the (A E ) models proposed earlier by several groups (see above).

The layout of model II (which has two hidden layers) follows the architecture
of the original Robinson model more closely. As will become clear, this network
develops a Ty coding stage with properties found in monkey parietal cortex
(Andersen et al., 1985) when it is trained to learn the remapping transformation.
We were interested, in addition, to see to what extent the hidden units in both
neural network models would show properties known from neurophysiology and
would be interpretable in terms of the cybernetic schemes of the saccadic system
outlined above. In particular, we checked the possibility that the hidden units
might have gain-field properties. Such a demonstration would be of interest
since our neural networks were only required to reconstruct an output signal that
has been amply demonstrated (the collicular motor map) whereas Zipser and
Andersen (1988) required their model to represent an output signal (coding T)
that has never been found physiologically.

3.2 Methods

3.2.1 Architecture of model 1

Simulations were made with a three-layer neural network (Fig. 3.3). In the input
layer, this network has access to information about retinal error (R ), eye position
at the moment of target selection (E7 ) and a continuous representation of actual
eye position (E4 ).

The coding formats of (R ) and both efference copy signals were similar to
those of Zipser and Andersen (1988). The two dimensional vector (R ), within a
range of -40 to 40 deg in each dimension, is converted into activity in a set of 8x8
units in the input layer, such that the profile of unit activity in the array (which
has a gaussian shape) codes retinal error topographically.

The eye position signals Er and E4 , in the same ranges as R , are coded in
a recruitment/firing rate format, as found in motoneurons and at the level of the
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Ep E4
Input layer:

hidden units

M
Output layer:

Figure 3.3 Architecture of model I. The input layer consists of three
sets of neurons coding retinal error (R ), eye position at the moment of
target selection (Eq ) and actual eye position (E4 ). Retinal error is
coded topographically by the location of a gaussian activity profile in an
array of 8x8 units representing the horizontal and vertical components of
the target position. The efference copy signals are represented by a set
of 8 units for each of the directions right, left, up and down. The activity
(S) of each unit can be written as S = a(E — @) if E > Fand S =0
elsewhere; a is the slope of the eye position/activity relationship, 8 is
the recruitment threshold and E represents eye position (Ex or E4 ).
The values of &« and 3 were different for each unit in the array of 8,
but identical in the sets coding Eq and E 4 . The output layer consists
of 8x8 neurons representing M topographically as a two dimensional
vector in an H — V plane, similar to the coding format in the R map.

neural integrator, with right, left, up and down on-directions. Every on-direction
is expressed in an array of 8 input units. In each unit, the activity increases
linearly (slope «) with eye position in the on-direction beyond a recruitment
threshold (3). For any eye position at or below 3, the activity equals zero. Each
of the 8 units assigned to each on-direction has its own unique combination of o
and 3 values (see legend of Table 6), but the same set of 8 parameter combinations
is used for all on-directions, both for Ery and E, .
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parameter value
learning rate(n): 0.2
activity of units RE, M E, hidden (S): [0,1]
activity of eye position units (S): [0,1.1]
width R gaussian profile: 15
width M gaussian profile: 15
eye-position parameter « (slope) [0.0125,0.033]
eye-position parameter 3 (threshold) [-40,40]
bias of hidden units (¢): 0

bias of output units (¢): 0
initial weights(aw) from input to hidden: [-0.15,0.15]
initial weights(aw) from hidden to output (model I): [-5.15,-4.85]
initial weights(w) from hidden to hidden (model II): | [-0.15,0.15]
initial weights(w) from hidden to output (model IT): | [-4.15,-3.85]

Table 3.6

List of parameters used for simulation of model I and model I1. In each
set of 8 units coding eye position in a certain on-direction, the follow-
ing pairs of threshold and slope parameters (8 and «, respectively)
were used: (-40.0,0.0125); (-28.6,0.0154); (-17.1,0.018); (-5.7,0.022);
(5.7,0.024); (17.1,0.027); (28.6,0.030); (40.0,0.033); The width of the
gaussian profiles and the parameter 3 are expressed in degrees. A dif-
ferent (lower) learning rate yielded the same results.

The input units project to a layer of 25 hidden units using an initially random
set of weights (see Table 6). In turn, the hidden units are randomly connected to
an 8x8 array of output units which are taught to represent motor error topograph-
ically. In the output layer, which represents the SC motor map, motor error is
coded in the same spatial coding format as retinal error. Between layers, every
unit has only feedforward connections to the next layer.

The activity S; of a hidden and output unit i is given by:

1
S; = 3.1
¢ 1+ e(_(zi w;;.S;+:)) (3.1)

where ¢; is the bias on the input to unit i, §; represents the activity of unit j in
the previous layer and wj;; is the connection strength between units j and i.
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3.2.2 Description of learning procedure

We used error backpropagation (Rumelhart et al., 1986) to train the network. We
were interested primarily in any network which can perform the required updating
transformation by efference copy signals and did not consider, at this stage, how
such a network could arise during development. We use backpropagation merely
as a fit procedure and do not claim, of course, that a similar method is used by
the brain to train the network, during development.

Backpropagation uses a desired signal of the output units, the teacher. The
activity S; in the output layer specified by equation (3.1) is compared with the
desired signal. Based upon this difference (d;, determined for each unit), the
weights w;; of the connections from unit j in the hidden layer to unit i in the
output layer are updated during the training phase according to:

Aw;j = n.0;.8;(1 — S;).5; (3.2)
where 7 is the learning rate. Indices i, j and k will be used to refer to units in

output, hidden and input layer, respectively. Updating the weights between the
input (unit k) and the hidden layer (unit j) was based on the following equation:

Awjp = 0.5,.5;(1 — ;). Y 6;.wij (3.3)
i

where Sy is activity of an input unit and S; is the activity of a hidden unit.
Table 6 lists all parameters used for simulations.

In the learning stage two types of trials were alternated. In visually guided
trials (VIS-trial) the eye had a random starting position. In each learning trial
the retinal error was chosen randomly. In these trials, the teacher required that
M was an identical copy of the R activity profile.

Remapping trials (REM-trial) mimicked the Sparks and Mays (1983) pertur-
bation experiment by changing E4 to a random new value while R and Ep of
the previous trial (VIS-trial) were maintained at their existing values. In these
trials, the teacher required that M = R + Ep - E4 .

subsectionSensitivity to parameter values Some remarks on our choice of pa-
rameter values need to be made. We obtained qualitatively similar results in
a series of simulations with a different number of hidden units (15, 40 or 100).
Also, changing the width of the gaussian activity profiles in input and output
maps (from 15 to 30 deg) had no major effects.

In an initial series of simulations we noticed that a relatively large proportion
of hidden units were either completely saturated or silent for all stimuli in all
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trials. By using a negative DC bias in the mean initial weights from hidden
layer to output layer (to compensate for the low mean activity of the teacher of
the output layer) together with a relatively small range of all initial weights (see
Table 6), this problem could be largely avoided and model performance improved.
It should be added, that even in simulations where these precautions were not
taken, the remaining hidden units still had qualitatively similar properties, as
reported in this paper.

3.3 Results

3.3.1 Performance of model 1

After some 30000 trials, the network successfully learned to represent the changes
in motor error due to changes in R (VIS-trial) and to changes in E4 (REM-trial).
The error in the performance of the network was expressed as the difference
between the center of gravity of the teacher signal and the center of gravity of
the activity in the output map. The trained network performed the task with
an accuracy of about 1 deg (1.2 & 0.8) over a working range of 80 degrees. As
required, it coded motor error by creating a distribution of activity of the correct
height and shape at the appropriate location in the collicular map. To illustrate
this, Fig. 3.4A represents the center of gravity of activity in the output map for
a large number of VIS trials where R was varied over a range of 40 deg in 1 deg
steps. As can be seen, there is an orderly topographical mapping of the resulting
motor error, represented by the corresponding location of the center of gravity. If
the output map really represents motor error, as required, a similar map should
result if M is modified by changing actual eye position E4 . Fig. 3.4B shows that
the resulting map shows a similar topographical order as the map in Fig. 3.4A.

3.3.2 Hidden unit properties in model I

An interesting question (see above) is to what extent the hidden units in model I
show clear signs of coding target position in head coordinates (Tg ), a possibility
suggested by Robinson’s model of the saccadic system. If this were the case, the
population activity pattern of the 25 hidden units should be identical for a given
location of the target relative to the head, irrespective of whether it is foveated
or imaged on the peripheral retina. Therefore, the possibility of Ty coding was
investigated by comparing the population activity pattern of the hidden units
for different sets of retinal error and eye position inputs compatible with a given
chosen Ty location of the target (Ty = R + Eg ). This test simulated a series
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Figure 3.4 Performance of model 1. A. The center of gravity of activity
in the output map for a large number of VIS trials where R was varied
over a range of 40 deg in 1 deg steps. As can be seen, there is an orderly
topographical mapping of the resulting motor error, represented by the
location of the center of gravity. Due to border effects, the mapping
becomes gradually more irregular towards the periphery of the output
map. B. If the output map really represents motor error, a similar output
map should result if M is modified by changing actual eye position E4 .
The graph shows that the resulting map shows a similar topographical
order as the map in A. The scale in A and B denotes the motor error
value imposed by the teacher signal.

of trials in which an animal is fixating at various initial locations (expressed in
E+ ) while the target stimulus is always presented at the same location in space.
Since no eye movement had yet occurred after target selection, E 4 was equal to
E7 in each particular trial. While Ep and R were different from trial to trial,
their vectorial sum (T ) was identical across trials. Thus, in this particular case,
the population activity patterns should be similar if there is a unique pattern of
hidden unit activity for each particular Ty value. As can be seen from Fig. 3.5A,
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Figure 3.5 Coding properties of hidden units (model I). Height of bars
represents activity of separate hidden units. Each of the 25 hidden units
corresponds to one column. Each row represents population activity of
the 25 units during a particular trial. A. Activity pattern of all hidden
units for a set of various R , Eq and E4 values corresponding to
an identical Ty location. Thus, in this particular case, the activity
patterns should be similar if the activity pattern of the hidden units
codes Ty uniquely. As can be seen, this in not the case. B. A similar
procedure for trials resulting in the same motor-error signal, by contrast,
shows a much clearer similarity in overall activity patterns.

this is not convincingly the case.

A similar procedure for trials resulting in the same M signal, by contrast,
showed a much clearer similarity in overall activity patterns (see Fig 3.5B). The
next step, therefore, was to investigate the possibility that the individual hidden
units might already code M in some manner. This possibility was tested by
measuring the activity of each individual hidden unit for a wide range of VIS
and REM-trials which created M signals in the output map over a 80 by 80 deg
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Figure 3.6 Hidden-unit movement fields, determined in VIS- and REM-
trials. A. Activity in five typical hidden units as a function of motor error
along the units’s on-direction. B. Activity in the same set of hidden units
for a constant amplitude of the motor-error vector to show direction
tuning. Note that the two curves, derived from VIS- and REM-trial
data, agree quite well in most units. The curve derived from VIS-trials
has been indicated by an intersectioned line.

range. If the hidden units code motor error, their activity for a given M vector
should not depend on the type of trial (combination of input values) used to
create it. Indeed, as shown in Fig. 3.6, it can be seen that the activity of most
units depends on the magnitude and the direction of the M vector but hardly
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at all on how this vector was obtained by manipulating the input signals.

As can be seen in Fig. 3.6A, a particular unit is most active for a large M am-
plitude in a certain direction (on-direction) and least for a large M amplitude in
the opposite direction. In between, there is a gradual but nonlinear, sigmoidally-
shaped transition in activity with M amplitude. The direction tuning of the
same hidden units is shown in Fig. 3.6B. The maximum in this curve denotes
the unit’s on-direction. It is of interest to know whether there is any directional
tuning (e.g. horizontal, vertical) preference in on-directions in the population of
hidden units. From a plot of on-directions (not shown) no indication for prefer-
ential direction tuning can be deduced, indicating that all directions are covered
about equally well.

3.3.3 Analysis of synaptic weights in model I

Once it was clear that the hidden units in model I code motor error, independent
of absolute eye position, we became interested in the question of how its con-
nectivity with the input layer allows each individual hidden unit in the trained
network to extract this information. As can be appreciated from the input-
weights of two hidden units with different on-directions (shown in Figs. 3.7A and
3.7B, respectively), several clear connectivity patterns are discernable:

1. There is an orderly arrangement of synaptic weights from the retinal in-
put map which is different for each hidden unit. Notice that there is a gradi-
ent of retinal connection strengths from negative to positive values, which has
a clearly different orientation in the two hidden units, matching their different
on-directions (upward and rightward, respectively). Comparison of the sign and
pattern of synaptic weights from the retina and from the efference copy signals
(see Fig. 3.7) indicates quite vividly why a given R vector (VIS-trial) or an op-
posite change in E4 (REM-trial) have equal effects on the activity of the hidden
unit under consideration. In summary, the hidden units in model I code motor
error in a wide but limited range without any clear sign of absolute eye position
dependence by having a balanced set of push-pull connections with the E and
E 4 neuron pools which are aligned with the gradient of retinal inputs.

2. Likewise, a clear amount of order is discernable in the weights from the eye
position coding inputs. Again, there is an obvious relation to the on-direction
of the hidden unit. For example, the hidden unit with an upward on-direction
(Fig. 3.7A) has mainly positive weights with E4 inputs coding eye positions in
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Figure 3.7 Analysis of synaptic weights for two typical hidden units
(model I). In both figures, filled black rectangles denote excitatory con-
nections; open rectangles represent inhibitory connections. Strength of
each connection is coded by size of rectangle. A. Size and sign of synap-
tic weights from R , Eq and E 4 -coding input units to a hidden unit
with an upward on-direction. The synaptic weights of this hidden unit
to the output map are also shown (right-hand side). B. Similar data for
a hidden unit with an on-direction to the right.

the down direction and mainly negative weights with those having the opposite
(upward) on-direction. The E4 inputs coding horizontal eye positions have less
distinct connections. As can be seen, the connectivity patterns with E4 and
Er tend to be mirror images of each other. Mutatis mutandis, the same type
of observations can be made in the weight patterns of the second hidden unit in
Fig. 3.7B. The analysis of input weights (see Fig. 3.7) indicates how the hidden
layer extracted only E4 - Er information (in other words, the change in eye po-
sition after target selection, equivalent to A E in the model shown in Fig. 3.2B).
The analysis illustrates that a (roughly) balanced set of push-pull connections
with the appropriate on-direction pools coding E7 and E4 allows the hidden
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units to be insensitive to the absolute value of these signals but to respond as
soon as a discrepancy arises between them when the eye starts to move after
target selection (causing E4 to change). Thus, the hidden units can transmit
the R vector presented in a VIS-trial to the M output map, undisturbed by the
simultaneous presence of E4 and Eg signals and independent of their actual
value.

3.4 Simulations with a four-layered neural network
(model II)

Although the network had access to all signals in the Robinson model, we found
that the hidden units in model I did not code Ty (see above). The network
solved the task by subtracting the two eye position inputs (E4 - Er ), so at the
end of training there are only two inputs: R and A E . These could be used
by the network to reconstruct M directly without the need for an intermediary
TH stage.

Model II receives the same input signals (R, Er ,E4 ) but its four-layer archi-
tecture (see Fig. 3.8) does more justice to the Robinson model. In this model,
only R and Eg are connected with the first hidden layer. Subsequently, the first
hidden layer and E4 are connected with a second hidden layer. Thus the two
hidden layers in neural network II correspond to the two summing junctions in
the Robinson scheme depicted in Fig. 3.2A. Just as in model I, we required that
the output map, representing the deeper layers of the SC, forms a topographically
ordered map of motor error. The parameters used in the present simulations were
identical to those of model I (see Table 6).

3.4.1 Performance of model 11

Model II successfully learned to compute the changes in motor error due to
changes in R (VIS-trials) or E4 (REM-trials). After 105 trials the network
performed the task with an accuracy of about 2 deg (1.5 £ 1.4), so that the
result is roughly comparable to the performance of model L.

3.4.2 Properties of hidden units in model II

The main interest in these simulations was to investigate whether the properties
of the hidden units can be interpreted in physiological terms and, particularly in
this model, whether there is any sign of Ty coding in the first hidden layer.
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Figure 3.8 Architecture of neural network model II. Same input pat-
terns and output patterns as in Fig. 3.3. Note the additional hidden layer

in this model which stores information about stimulus location specified
by R and Er .

A direct way to visualize how the units in the first hidden layer combine
R and Ep inputs is shown in Figs. 3.9A and B. The plots in Fig. 3.9A show
how the activity in 5 representative hidden units varies when the spatial location
of a stimulus is varied along the meridian where the unit is most responsive. In
the first test, the spatial location of the stimulus was varied while fixation was
maintained at the center location (Er at (0,0)) so that R was a direct replica of
stimulus eccentricity. The other curve shows how the unit’s activity varies when
the same set of spatial stimulus locations was foveated. Thus, in this case, R was
kept at (0,0) and unit activity reflects changes in the Ep input. Note that the
trend in the two curves is similar. Fig. 3.9B represents the directional tuning and
shows roughly similar directional tuning to spatial stimulus location in the two
tests. We conclude that these hidden units combine R and Er inputs such that
their activity is related to the location of the target in head coordinates (Tgr )
within a sector of space, specific for each unit.









































































































































































































































































































