ABSTRACT

A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20EeV with zenith angles up to 80° recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above 39EeV. The three alternative models are favored against isotropy with 2.7−3.2σ significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.

Keywords: astroparticle physics — cosmic rays — galaxies: active — galaxies: starburst — methods: data analysis

1. SEARCH FOR UHECR ANISOTROPIES

Identifying the sources of ultra-high-energy cosmic rays (UHECRs) has been a prime goal of particle astrophysics for decades. The challenge is great, because the flux falls rapidly with increasing energy, and because UHECRs have a mixed mass composition (Aab et al. 2014a, 2016a) so that some or all of them experience substantial magnetic deflections. Many scenarios have been proposed involving different populations of host galaxies. In this Letter, we investigate whether intermediate-scale\(^1\) anisotropies in UHECR arrival directions are associated with either or both of two prominent classes of extragalactic sources detected by Fermi-LAT — active galactic nuclei (AGNs) and starburst galaxies (SBGs) — using the gamma-ray luminosity or its surrogate (radio emission for SBGs) as a proxy for the relative luminosity of each source in UHECRs.

The rate of energy production of UHECRs determined from observations above 10\(^{18}\) eV is close to 10\(^{45}\) erg Mpc\(^{-3}\) yr\(^{-1}\) (Unger et al. 2015). Based on the Fermi-LAT survey, Dermer & Razzache (2010) argue that AGNs and SBGs match such rates in the gamma-ray band. Due to the low density of detected SBGs and AGNs, and the attenuation of UHECR flux with increasing distance (GZK effect, Greisen 1966; Zatsepin & Kuz’min 1966), a few objects would be expected to dominate the local flux, naturally producing an intermediate-scale anisotropy if these sources contribute a sufficient fraction of the UHECR flux.

The AGN and SBG populations are well-motivated physically. AGNs are favored source candidates because their jets and radio lobes satisfy the Hillas criterion for shock acceleration (Hillas 1984). SBGs – being loci of intense star formation – potentially have increased rates of extreme events associated with the deaths of short-lived, massive stars, such as gamma-ray bursts, hypernovae, and magnetars (see e.g. Biermann et al. 2016; Perley et al. 2016). Their winds have also been proposed as possible reacceleration sites (Anchordoqui et al. 1999).

The analysis presented here is an advance in several ways. First, Fermi-LAT observations of gamma rays from two extragalactic populations provide us with possible ansatzes for the relative UHECR fluxes from source candidates. That information makes the present analyses potentially more sensitive than previous studies based solely on the source di-
rection. Second, thanks to our improved knowledge of the energy-dependent composition, we can now account more accurately for the relative attenuation of fluxes from distant sources. Third, thanks to the significant increase in exposure of the Pierre Auger Observatory with respect to previous analyses, the data can reveal more subtle patterns.

2. UHECR DATASET

UHECRs are detected at the Pierre Auger Observatory (Argentina, latitude 35.2° S, longitude 69.5° W; Aab et al. 2015c) through the extensive air showers they induce in the atmosphere. Air showers are detected on the ground with an array of 1,600 water-Cherenkov detectors with a duty cycle of nearly 100%. Twenty-four fluorescence telescopes map, during dark nights (duty cycle of $\sim 15\%$), the longitudinal profile of each shower via the nitrogen fluorescence produced dominantly by the electromagnetic cascade. The combination of both techniques provides the array with an energy scale insensitive to primary mass assumptions and air-shower simulation uncertainties. The systematic uncertainty in the energy scale is estimated to be 14% (Verzi et al. 2013).

Events above 20EeV recorded between 2004 January 1 and 2017 April 30 are used in this analysis. Above 20EeV, both ‘vertical showers’ ($\theta \leq 60^\circ$, Abraham et al. 2010) and ‘inclined showers’ ($60^\circ \leq \theta \leq 80^\circ$, Aab et al. 2014b) trigger the array of detectors with 100% efficiency, the average angular resolution being below 1° and the statistical energy resolution being better than 12%.

Combining the vertical and inclined datasets, including unfolding correction factors as in Aab et al. (2015a), enables sky coverage over the declination range $-90^\circ < \delta < +45^\circ$. Using the same selection criteria as in Aab et al. (2015b), the total exposure for the period considered here is 89,720 km2 s yr.

3. SOURCE SELECTION & UHECR SKY MODELS

3.1. Extragalactic gamma-ray populations

We extract our list of gamma-ray AGNs (γAGNs hereafter) from the 2FHL catalog (Ackermann et al. 2016), which includes 360 sources detected by Fermi-LAT above 50 GeV. We study radio-loud objects within a 250 Mpc radius, yielding 17 blazars and radio galaxies. Their 50 GeV–2 TeV integral flux is used as a proxy for the UHECR flux. Given the distance of these objects, the gamma-ray absorption by the extragalactic background light (e.g. Domínguez et al. 2011) is small.

The detections of seven SBGs have been reported using Fermi-LAT data: NGC 253, M 82, NGC 4945, NGC 1068 (Ackermann et al. 2012), NGC 2146 (Tang et al. 2014), Arp 220 (Peng et al. 2016), and Circinus (Hayashida et al. 2013). Their gamma-ray luminosity has been shown to scale almost linearly with their continuum radio flux (Ackermann et al. 2012). We thus adopt as a proxy for the UHECR flux of SBGs their continuum emission at 1.4 GHz for which a larger census exists.

We select the 23 SBGs with a flux larger than 0.3 Jy among the 63 objects within 250 Mpc searched for gamma-ray emission by Ackermann et al. (2012). Due to possible incompleteness of that list near the Galactic plane ($|b| < 10^\circ$) and in the southern sky ($\delta < -35^\circ$), relevant SBGs could be missing from our selection. We checked however that our conclusions remain unchanged: a) using all 63 objects listed in Ackermann et al. (2012), b) using the catalog from Becker et al. (2009) with 32 SBGs above 0.3 Jy, c) adding the Circinus SBG absent from (a) and (b), d) using only the six SBGs reported in the 3FGL (NGC 253, M 82, NGC 4945, NGC 1068, Circinus, NGC 2146; Acero et al. 2015) and their 1–100 GeV integral flux as UHECR proxy.

3.2. X-ray and infrared samples

Following previous searches (Aab et al. 2015b), we additionally study two flux-limited samples: Swift-BAT sources up to 250 Mpc, above a flux of 1.3×10^{-12} erg cm$^{-2}$ s$^{-1}$, and sources from the 2MASS redshift survey (2MRS catalog, Huchra et al. 2012) beyond 1 Mpc, effectively taking out the Local Group as in Erdogdu et al. (2006). We use the 14–195 keV flux and K-band flux corrected for Galactic extinction as UHECR proxies for each of these surveys.

The X-ray sky observed by Swift-BAT is dominated in flux by the nearby Centaurus A, often considered as a prime UHECR source candidate (e.g. Romero et al. 1996; Wykes et al. 2017), with additional diffuse structures arising from both radio-loud and radio-quiet AGNs. This constitutes a different selection of AGNs from that performed for the γ-ray sample (radio-loud only), dominated by the radio galaxies Centaurus A and M 87 within 20 Mpc and by the blazars Mrk 421 and Mrk 501 within 200 Mpc.

The 2MRS infrared intensity traces the distribution of extragalactic matter, and includes both star-forming galaxies and AGNs. It is dominated by contributions from the nearby SBG NGC 253, close to the South Galactic pole, M 82, only observable from the Northern hemisphere, along with M 83 and NGC 4945, belonging to the same group of galaxies as Centaurus A. Strong emission from Centaurus A as well as cumulated emission from fainter objects, e.g. in the Virgo cluster, constitute distinctive features of the 2MRS sky model with respect to the SBG one.

3.3. Impact of attenuation

We account for attenuation of UHECRs from distant objects (GZK effect) using a data-driven scenario that reproduces the composition and spectral constraints obtained by the Observatory (Aab et al. 2017a). Assuming a homogeneous distribution of sources in the local Universe, it was shown that an interpretation of the air-shower data using the EPOS-LHC interaction model together with a hard injection index $\gamma = 1$ at the sources (scenario A) best matches the data, accounting for propagation effects (Aloisio et al. 2012; Alves Batista
et al. 2016). We also consider two other scenarios matching the data reasonably well: EPOS-LHC with $\gamma = 2$ (B) and Sibyll 2.1 with $\gamma = -1.5$ (C). These scenarios differ in the composition and maximum rigidities attainable at the sources. For each scenario and a chosen energy threshold, we evaluate the flux attenuation factor due to propagation for each source and correct its expected UHECR flux accordingly.

The two extragalactic gamma-ray populations under study and the relative weight of each source are provided in Table 2. The relative contributions accounting for the directional exposure of the Observatory are shown in the last column. Because SBGs are mostly nearby, attenuation from them is much less important than from the more distant blazars in the γAGN sample. Taking into account attenuation, $\sim 90\%$ of the accumulated flux from SBGs emerges from a $\sim 10\text{Mpc}$-radius region, while the radius goes up to $\sim 15\text{Mpc}$ for γAGNs. For both the 2MRS and Swift-BAT flux-limited samples, the 90% radius is $\sim 70\text{Mpc}$.

4. ANALYSIS AND RESULTS

4.1. Maximum-likelihood analysis

We build the UHECR sky model as the sum of an isotropic component plus the anisotropic contribution from the sources. For the anisotropic component, each source is modeled as a Fisher distribution (Fisher 1953), the equivalent of a Gaussian on the sphere. Its distribution is centered on the coordinates of the source, the integral being set by its flux attenuated above the chosen energy threshold, and the angular width – or search radius3 – being a free parameter common to all sources. No shift of the centroid position is considered, avoiding dependence on any particular model of the Galactic magnetic field in this exploratory study. After mixing the anisotropic map with a variable fraction of isotropy, as in Abreu et al. (2010), the model map is multiplied by the directional exposure of the array and its integral is normalized to the number of events.

The model map thus depends on two variables aimed at maximizing the degree of correlation with UHECR events: the fraction of all events due to the sources (anisotropic fraction) and the RMS angular separation between an event and its source (search radius) in the anisotropic fraction.

We perform an unbinned maximum-likelihood analysis, where the likelihood (L) is the product over the UHECR direction. The test statistic (TS) for deviation from isotropy is the likelihood ratio test between two nested hypotheses: the UHECR sky model and an isotropic model (null hypothesis). The TS is maximized as a function of two parameters: the search radius and the anisotropic fraction. We repeat the analysis for a sequence of energy thresholds.

For a given energy threshold, we confirmed with simulations that the TS for isotropy follows a χ^2 distribution with two degrees of freedom, as expected (Wilks 1938), directly accounting for the fit of two parameters of the model. As in Aab et al. (2015b), we penalize the minimum p-value for a scan in threshold energy, by steps of 1EeV up to 80EeV, estimating the penalty factor with Monte-Carlo simulations. The p-values are converted into significances assuming 1-sided Gaussian distributions.

4.2. Single population against isotropy

Previous anisotropy studies (e.g. Aab et al. 2015b) have considered a scan in energy threshold starting at 40EeV, where the observed flux reaches half the value expected from lower-energy extrapolations, but as shown in Fig. 1, there is a maximum in the significance close to this starting point. Therefore we have evaluated the TS down to 20EeV.

The TS is maximum for SBGs above 39EeV (894 events), with or without attenuation. For γAGNs, the TS is maximum above 60EeV (177 events) after accounting for attenuation. As shown in Fig. 1, left, attenuation mildly impacts SBGs which are nearby: we obtain TS=$24.9/25.5/25.7$ for scenarios A/B/C, respectively. The impact is more pronounced for

3 Inverse square root of Fisher’s concentration parameter.
γAGNs, a larger attenuation reducing contributions from distant blazars: we obtain a maximum TS of 15.2/9.4/11.9 for scenarios A/B/C. Shifting the energy scale within systematic uncertainties (±14%) affects the maximum TS by ±1 unit for γAGNs, ±0.3 for SBGs.

 Penalizing for the energy scan, the maximum TS obtained for SBGs and γAGNs within scenario A correspond to 4.0σ and 2.7σ deviations from isotropy, respectively. As shown in Fig. 2, left, the maximum deviation for γAGNs is found at an angular scale of 7° ± 0.5° and a 7 ± 4% fraction of anisotropic events. For SBGs, a stronger deviation from isotropy is uncovered at an intermediate angular scale of 13° ± 0.5° and an anisotropic fraction of 10 ± 4%. The systematic uncertainty induced by the energy scale and attenuation scenario is at the level of 0.3% for the anisotropic fraction and 0.5° for the search radius obtained with SBGs.

 For Swift-BAT and 2MRS sources attenuated within scenario A, we obtain maximum TS of 18.2 (3.2σ) above 39 EeV and 15.1 (2.7σ) above 38 EeV, respectively (see Fig. 1, right). These correspond to values of the best-fit parameters of 12.6° and 7.1° for Swift-BAT, 13.7° and 16.8° for 2MRS.

 The different degrees of anisotropy obtained from each catalog can be understood from Fig. 3, top, showing a UHECR hotspot in the direction of the Centaurus A / M 83 / NGC 4945 group. The γAGN model (> 60 EeV) and Swift-BAT model (> 39 EeV) are dominated by Centaurus A, which is 7° and 13° away from NGC 4945 and M 83, respectively. The starburst model additionally captures the UHECR excess close to the Galactic South pole, interpreted as contributions from NGC 1068 and NGC 253, yielding an increase in the anisotropy signal from ~3 to 4σ. Additional diffuse contributions from clustered sources in the 2MRS catalog are not favored by the data, resulting in the smaller deviation from isotropy.

4.3. Composite models against single populations

To compare the two distinct gamma-ray populations above their respective preferred thresholds, we investigate a composite model combining contributions from γAGNs and SBGs, adopting a single search radius and leaving the fraction of events from each population free. The TS in this case is the difference between the maximum likelihood of the combined model and that of the null hypothesis of a single population.
at the selected energy threshold. The parameter added to the
more complex model results in a χ^2 distribution with one de-
gree of freedom.

The best-fit anisotropic fractions obtained for the composite
model (free search radius) are shown in Fig. 2, right. Above
39 EeV, the γAGN-only model is disfavored by 3.7σ relative
to a combined model with a 9% contribution from SBGs and
1% contribution from γAGN. Above 60 EeV, the TS obtained
with the composite model is not significantly higher than what
is obtained by either model. This is illustrated in Fig. 2, right,
by the agreement at the 1σ level of a model including 0%
SBGs / 7% γAGNs with a model including 13% SBGs / 0%
γAGNs above 60 EeV.

As summarized in Table 1, composite models including
SBGs and either 2MRS or Swift-BAT sources best match the
data above 39 EeV for 9−7% fractions of events associated
to SBGs and 1−3% to the flux-limited samples. A 3.0−2.6σ
advantage is found for the composite models including SBGs
with respect to the 2MRS-only and Swift-BAT-only models.

5. DISCUSSION

We have compared the arrival directions of UHECRs de-
tected at the Pierre Auger Observatory with two distinct
gamma-ray samples and two flux-limited samples of extra-
galactic sources. Our comparison with SBGs shows that
isotropy of UHECRs is disfavored with 4.0σ confidence, ac-
counting for the two free parameters and including the penalty
for scanning over energy thresholds. This is the most signifi-
cant evidence found in this study for anisotropy of UHECRs
on an intermediate angular scale. It should be noted, how-
ever, that numerous anisotropy studies have been conducted
with data from the Observatory, not only those that have been
published by the Collaboration. There is no rigorous way to
evaluate a statistical penalty for other searches.

The pattern of UHECR arrival directions is best matched
by a model in which about 10% of those cosmic rays ar-
rive from directions that are clustered around the directions
of bright, nearby SBGs. We evaluated the possibility of ad-
ditional contributions from nearby γAGNs, such as Centau-
rus A, and from more distant sources through a comparison
with samples tracing the distribution of extragalactic matter.
We find that the contribution from SBGs to the indication of
anisotropy is larger than that of the alternative catalogs tested.
Nonetheless, caution is required in identifying SBGs as the
preferred sources prior to understanding the impact of bulk
magnetic deflections.

The sky maps used in this analysis are derived without in-
corporating any effects of the extragalactic or Galactic mag-
cnetic fields and winds (e.g. Pshirkov et al. 2011; Jansson &
Farrar 2012; Biermann et al. 2015). In particular, the arrival
directions of UHECRs from a given source are modeled by a
symmetric Fisher distribution centered on the source position.
We checked the plausibility of the best-fit search radius ob-
tained above 39 EeV by simulating sky maps passed through
the Galactic magnetic field from Jansson & Farrar (2012),
including a random component with a coherence length of 60 pc
as in Erdmann et al. (2016). For large deflections, UHECRs
from a given SBG can leak in the direction of a neighboring
source. The three composition scenarios discussed in Sec. 3.3
yield reconstructed search radii of 5−25°, bracketing the ob-
served radius of 13°. The agreement is considered satisfactory
given the uncertainties in our knowledge of the composition
above 39 EeV and of the deflections by the Galactic magnetic
field (Unger & Farrar 2017). Further studies aiming at possi-
bly improving the model maps including deflections are un-
derway.

It can be seen in Fig. 3, bottom, that M 82 is expected to
be one of the dominant sources in the full-sky starburst model
presented here. Its declination of \sim70° N is outside the expo-
sure of the Observatory but is covered in the Northern Hem-
isphere by the Telescope Array (Abu-Zayyad et al. 2012). As
noted e.g. by Fang et al. (2014) and He et al. (2016), the ex-

<table>
<thead>
<tr>
<th>Test hypothesis</th>
<th>Null hypothesis</th>
<th>Threshold energy</th>
<th>TS</th>
<th>Local p-value</th>
<th>Post-trial p-value</th>
<th>1-sided significance</th>
<th>AGN/other fraction</th>
<th>SBG fraction</th>
<th>Search radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBG + ISO</td>
<td>ISO</td>
<td>39 EeV</td>
<td>24.9</td>
<td>3.8×10^{-6}</td>
<td>3.6×10^{-3}</td>
<td>4.0 σ</td>
<td>N/A</td>
<td>9.7%</td>
<td>12.9°</td>
</tr>
<tr>
<td>γAGN + SBG + ISO</td>
<td>γAGN + ISO</td>
<td>39 EeV</td>
<td>14.7</td>
<td>N/A</td>
<td>1.3×10^{-4}</td>
<td>3.7 σ</td>
<td>0.7%</td>
<td>8.7%</td>
<td>12.5°</td>
</tr>
<tr>
<td>γAGN + ISO</td>
<td>ISO</td>
<td>60 EeV</td>
<td>15.2</td>
<td>5.1×10^{-4}</td>
<td>3.1×10^{-3}</td>
<td>2.7 σ</td>
<td>15.7%</td>
<td>N/A</td>
<td>6.9°</td>
</tr>
<tr>
<td>γAGN + SBG + ISO</td>
<td>SBG + ISO</td>
<td>60 EeV</td>
<td>3.0</td>
<td>N/A</td>
<td>0.08</td>
<td>1.4 σ</td>
<td>6.8%</td>
<td>0.0%</td>
<td>7.0°</td>
</tr>
<tr>
<td>γAGN + SG + ISO</td>
<td>Swift-BAT + ISO</td>
<td>39 EeV</td>
<td>18.2</td>
<td>1.1×10^{-4}</td>
<td>8.0×10^{-4}</td>
<td>3.2 σ</td>
<td>6.9%</td>
<td>N/A</td>
<td>12.3°</td>
</tr>
<tr>
<td>Swift-BAT + SBG + ISO</td>
<td>Swift-BAT + ISO</td>
<td>39 EeV</td>
<td>7.8</td>
<td>N/A</td>
<td>5.1×10^{-3}</td>
<td>2.6 σ</td>
<td>2.8%</td>
<td>7.1%</td>
<td>12.6°</td>
</tr>
<tr>
<td>2MRS + ISO</td>
<td>ISO</td>
<td>38 EeV</td>
<td>15.1</td>
<td>5.2×10^{-4}</td>
<td>3.3×10^{-3}</td>
<td>2.7 σ</td>
<td>15.8%</td>
<td>N/A</td>
<td>13.2°</td>
</tr>
<tr>
<td>2MRS + SBG + ISO</td>
<td>2MRS + ISO</td>
<td>39 EeV</td>
<td>10.4</td>
<td>N/A</td>
<td>1.3×10^{-3}</td>
<td>3.0 σ</td>
<td>1.1%</td>
<td>8.9%</td>
<td>12.6°</td>
</tr>
</tbody>
</table>

aFor composite model studies, no scan over the threshold energy is performed.

bMaximum TS reached at the boundary of the parameter space.

ISO: isotropic model.

Table 1. Results - Scenario A
cess of events observed at the Telescope Array (Abbasi et al. 2014) has some overlap with the position of M 82, as well as with the position of the blazar Mkn 421 that would be a bright Northern source in a low-attenuation scenario.

An analysis of full-sky data from the Pierre Auger Observatory and the Telescope Array may provide a more powerful test of the starburst and AGN models by probing all production regions of UHECRs. Combining the data is complicated, however, due to the spurious anisotropies that may be induced by possible mismatches in the relative exposures and/or systematic differences in the nominal energy scales used at each observatory. First attempts to conduct such surveys are being made (Di Matteo et al. 2017).

Additional exposure will bring better constraints on the brightest sources. At the same time, an instrumentation upgrade of the Observatory is being deployed on the water-Cherenkov detectors adding a planar plastic scintillator of nearly 100%. Excluding highly charged nuclei from the analysis could eliminate a quasi-isotropic background that may mask the signature of individual sources imprinted by protons and other low-charge nuclei.

Finally, a large-scale dipolar anisotropy has been discovered above 8EeV (Aab et al. 2017b). While a direct connection between the large and intermediate angular-scale patterns has not yet been identified, the emergence of anisotropies at ultra-high energy will certainly trigger further investigations of scenarios underlying the production of UHECRs.

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment from the technical and administrative staff in Malargüe, and the financial support from a number of funding agencies in the participating countries, listed at https://www.auger.org/index.php/about-us/funding-agencies.

REFERENCES

—. 2014b, J. Cosmology Astropart. Phys., 8, 019
—. 2015a, J. Cosmology Astropart. Phys., 8, 049
—. 2015c, Nucl. Instrum. Meth., A798, 172
—. 2016a, Physics Letters B, 762, 288
—. 2017a, J. Cosmology Astropart. Phys., 4, 038
—. 2017b, Science, 357, 1266
Erdmann, M., Müller, G., Urban, M., & Wirtz, M. 2016, Astroparticle Physics, 85, 54
Greisen, K. 1966, Physical Review Letters, 16, 748
Table 2. Populations investigated

<table>
<thead>
<tr>
<th>SBGs</th>
<th>l [°]</th>
<th>b [°]</th>
<th>Distancea [Mpc]</th>
<th>Flux weight [%]</th>
<th>Attenuated weight: A / B / C [%]</th>
<th>% contributionb: A / B / C [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 253</td>
<td>97.4</td>
<td>-88</td>
<td>2.7</td>
<td>13.6</td>
<td>20.7 / 18.0 / 16.6</td>
<td>35.9 / 32.2 / 30.2</td>
</tr>
<tr>
<td>M82</td>
<td>141.4</td>
<td>40.6</td>
<td>3.6</td>
<td>18.6</td>
<td>24.0 / 22.3 / 21.4</td>
<td>0.2 / 0.1 / 0.1</td>
</tr>
<tr>
<td>NGC 4945</td>
<td>305.3</td>
<td>13.3</td>
<td>4</td>
<td>16</td>
<td>19.2 / 18.3 / 17.9</td>
<td>39.0 / 38.4 / 38.3</td>
</tr>
<tr>
<td>M83</td>
<td>314.6</td>
<td>32</td>
<td>4</td>
<td>6.3</td>
<td>7.6 / 7.2 / 7.1</td>
<td>13.1 / 12.9 / 12.9</td>
</tr>
<tr>
<td>IC 342</td>
<td>138.2</td>
<td>10.6</td>
<td>4</td>
<td>5.5</td>
<td>6.6 / 6.3 / 6.1</td>
<td>0.1 / 0.0 / 0.0</td>
</tr>
<tr>
<td>NGC 6946</td>
<td>95.7</td>
<td>11.7</td>
<td>5.9</td>
<td>3.4</td>
<td>3.2 / 3.3 / 3.5</td>
<td>0.1 / 0.1 / 0.1</td>
</tr>
<tr>
<td>NGC 2903</td>
<td>208.7</td>
<td>44.5</td>
<td>6.6</td>
<td>1.1</td>
<td>0.9 / 1.0 / 1.1</td>
<td>0.6 / 0.7 / 0.7</td>
</tr>
<tr>
<td>NGC 5055</td>
<td>106</td>
<td>74.3</td>
<td>7.8</td>
<td>0.9</td>
<td>0.7 / 0.8 / 0.9</td>
<td>0.2 / 0.2 / 0.2</td>
</tr>
<tr>
<td>NGC 3628</td>
<td>240.9</td>
<td>64.8</td>
<td>8.1</td>
<td>1.3</td>
<td>1.0 / 1.1 / 1.2</td>
<td>0.8 / 0.9 / 1.1</td>
</tr>
<tr>
<td>NGC 3627</td>
<td>242</td>
<td>64.4</td>
<td>8.1</td>
<td>1.1</td>
<td>0.8 / 0.9 / 1.1</td>
<td>0.7 / 0.8 / 0.9</td>
</tr>
<tr>
<td>NGC 4631</td>
<td>142.8</td>
<td>84.2</td>
<td>8.7</td>
<td>2.9</td>
<td>2.1 / 2.4 / 2.7</td>
<td>0.8 / 0.9 / 1.1</td>
</tr>
<tr>
<td>M51</td>
<td>104.9</td>
<td>68.6</td>
<td>10.3</td>
<td>3.6</td>
<td>2.3 / 2.8 / 3.3</td>
<td>0.3 / 0.4 / 0.5</td>
</tr>
<tr>
<td>NGC 891</td>
<td>140.4</td>
<td>-17.4</td>
<td>11</td>
<td>1.7</td>
<td>1.1 / 1.3 / 1.5</td>
<td>0.2 / 0.3 / 0.3</td>
</tr>
<tr>
<td>NGC 3556</td>
<td>148.3</td>
<td>56.3</td>
<td>11.4</td>
<td>0.7</td>
<td>0.4 / 0.6 / 0.6</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
<tr>
<td>NGC 660</td>
<td>141.6</td>
<td>-47.4</td>
<td>15</td>
<td>0.9</td>
<td>0.5 / 0.6 / 0.8</td>
<td>0.4 / 0.5 / 0.6</td>
</tr>
<tr>
<td>NGC 2146</td>
<td>135.7</td>
<td>24.9</td>
<td>16.3</td>
<td>2.6</td>
<td>1.3 / 1.7 / 2.0</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
<tr>
<td>NGC 3079</td>
<td>157.8</td>
<td>48.4</td>
<td>17.4</td>
<td>2.1</td>
<td>1.0 / 1.4 / 1.5</td>
<td>0.1 / 0.1 / 0.1</td>
</tr>
<tr>
<td>NGC 1068</td>
<td>172.1</td>
<td>-51.9</td>
<td>17.9</td>
<td>12.1</td>
<td>5.6 / 7.9 / 9.0</td>
<td>6.4 / 9.4 / 10.9</td>
</tr>
<tr>
<td>NGC 1365</td>
<td>238</td>
<td>-54.6</td>
<td>22.3</td>
<td>1.3</td>
<td>0.5 / 0.8 / 0.8</td>
<td>0.9 / 1.5 / 1.6</td>
</tr>
<tr>
<td>Arp 299</td>
<td>141.9</td>
<td>55.4</td>
<td>46</td>
<td>1.6</td>
<td>0.4 / 0.7 / 0.6</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
<tr>
<td>Arp 220</td>
<td>36.6</td>
<td>53</td>
<td>80</td>
<td>0.8</td>
<td>0.1 / 0.3 / 0.2</td>
<td>0.0 / 0.2 / 0.1</td>
</tr>
<tr>
<td>NGC 6240</td>
<td>20.7</td>
<td>27.3</td>
<td>105</td>
<td>1</td>
<td>0.1 / 0.3 / 0.1</td>
<td>0.1 / 0.3 / 0.1</td>
</tr>
<tr>
<td>Mkn 231</td>
<td>121.6</td>
<td>60.2</td>
<td>183</td>
<td>0.8</td>
<td>0.0 / 0.1 / 0.0</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γAGNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cen A Core</td>
</tr>
<tr>
<td>M87</td>
</tr>
<tr>
<td>NGC 1275</td>
</tr>
<tr>
<td>IC 310</td>
</tr>
<tr>
<td>3C 264</td>
</tr>
<tr>
<td>TXS 0149+710</td>
</tr>
<tr>
<td>Mkn 421</td>
</tr>
<tr>
<td>PKS 0229-581</td>
</tr>
<tr>
<td>Mkn 501</td>
</tr>
<tr>
<td>IES 2344+514</td>
</tr>
<tr>
<td>Mkn 180</td>
</tr>
<tr>
<td>IES 1959+650</td>
</tr>
<tr>
<td>AP Librae</td>
</tr>
<tr>
<td>TXS 0210+515</td>
</tr>
<tr>
<td>GB6 J0601+5315</td>
</tr>
<tr>
<td>PKS 0625-35</td>
</tr>
<tr>
<td>I Zw 187</td>
</tr>
</tbody>
</table>

a A standard, flat ΛCDM model (h₀ = 0.7, ΩM₀ = 0.3) is assumed. Distances of SBGs are based on Ackermann et al. (2012), accounting for a small difference in h₀. Distances of γAGNs are based on their redshifts, except for the nearby Cen A (Tully et al. 2013).

b% contributions account for the directional exposure of the array.
Figure 3. **Top to Bottom:** Observed excess map - Model excess map - Residual map - Model flux map, for the best-fit parameters obtained with SBGs above 39EeV (Left) and γAGNs above 60EeV (Right). The excess maps (best-fit isotropic component subtracted) and residual maps (observed minus model) are smeared at the best-fit angular scale. The color scale indicates the number of events per smearing beam (see inset). The model flux map corresponds to a uniform full-sky exposure. The supergalactic plane is shown as a solid gray line. An orange dashed line delimits the field of view of the array.
AUTHORS

(The Pierre Auger Collaboration)

1Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
2Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Villa Martelli, Argentina
3Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
4IFIC, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
5Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina
6Instituto de Física de Rosario (IFIR) – CONICET/U.N.R. and Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina
7Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), and Universidad Tecnológica Nacional – Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina
8Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
9Observatorio Pierre Auger, Malargüe, Argentina
10Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
11Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina
12University of Adelaide, Adelaide, S.A., Australia
13Université Libre de Bruxelles (ULB), Brussels, Belgium
14Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brazil
15Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Nova Friburgo, Brazil
16Universidade de São Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil
17Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brazil
18Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
19Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
20Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
21Universidade Federal de Pelotas, Pelotas, RS, Brazil
22Universidade Federal do ABC, Santo André, SP, Brazil
23Universidade Federal do Paraná, Setor Palotina, Palotina, Brazil
24Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
25Universidade Federal do Rio de Janeiro (UFRJ), Observatório do Valongo, Rio de Janeiro, RJ, Brazil
26Universidade Federal Fluminense, EEMVR, Volta Redonda, RJ, Brazil
27Universidade Industrial de Santander, Bucaramanga, Colombia
28Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
29Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
30Palacky University, RCPTM, Olomouc, Czech Republic
31Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, Univ. Paris/Saclay, CNRS-IN2P3, Orsay, France
32Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
33Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
34Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany
35Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IKP), Karlsruhe, Germany
36Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany
37Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
38RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
39Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany
40Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Siegen, Germany
41Gran Sasso Science Institute (INFN), L’Aquila, Italy
42INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Palermo, Italy
43INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
44INFN, Sezione di Catania, Catania, Italy