INDICATION OF ANISOTROPY IN ARRIVAL DIRECTIONS OF ULTRA-HIGH-ENERGY COSMIC RAYS THROUGH COMPARISON TO THE FLUX PATTERN OF EXTRAGALACTIC GAMMA-RAY SOURCES

THE PIERRE AUGER COLLABORATION
see the end matter for the full list of authors.

(Published in ApJL as DOI:10.3847/2041-8213/aaa66d)

ABSTRACT

A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20EeV with zenith angles up to 80° recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above 39EeV. The three alternative models are favored against isotropy with 2.7–3.2σ significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.

Keywords: astroparticle physics — cosmic rays — galaxies: active — galaxies: starburst — methods: data analysis

1. SEARCH FOR UHECR ANISOTROPIES

Identifying the sources of ultra-high-energy cosmic rays (UHECRs) has been a prime goal of particle astrophysics for decades. The challenge is great, because the flux falls rapidly with increasing energy, and because UHECRs have a mixed mass composition (Aab et al. 2014a, 2016a) so that some or all of them experience substantial magnetic deflections. Many scenarios have been proposed involving different populations of host galaxies. In this Letter, we investigate whether intermediate-scale1 anisotropies in UHECR arrival directions are associated with either or both of two prominent classes of extragalactic sources detected by Fermi-LAT – active galactic nuclei (AGNs) and starburst galaxies (SBGs) – using the gamma-ray luminosity or its surrogate (radio emission for SBGs) as a proxy for the relative luminosity of each source in UHECRs.

The rate of energy production of UHECRs determined from observations above 10^{18} eV is close to 10^{45} erg Mpc^{-3} yr^{-1} (Unger et al. 2015). Based on the Fermi-LAT survey, Dermer & Razzaque (2010) argue that AGNs and SBGs match such rates in the gamma-ray band. Due to the low density of detected SBGs and AGNs, and the attenuation of UHECR flux with increasing distance (GZK effect, Greisen 1966; Zatsepin & Kuz’m’in 1966), a few objects would be expected to dominate the local flux, naturally producing an intermediate-scale anisotropy if these sources contribute a sufficient fraction of the UHECR flux.

The AGN and SBG populations are well-motivated physically. AGNs are favored source candidates because their jets and radio lobes satisfy the Hillas criterion for shock acceleration (Hillas 1984). SBGs – being loci of intense star formation – potentially have increased rates of extreme events associated with the deaths of short-lived, massive stars, such as gamma-ray bursts, hypernovae, and magnetars (see e.g. Biermann et al. 2016; Perley et al. 2016). Their winds have also been proposed as possible reacceleration sites (Anchordoqui et al. 1999).

The analysis presented here is an advance in several ways. First, Fermi-LAT observations of gamma rays from two extragalactic populations provide us with possible ansatzes for the relative UHECR fluxes from source candidates. That information makes the present analyses potentially more sensitive than previous studies based solely on the source di-

1 “Intermediate” denotes hereafter angular scales larger than the experimental resolution, \(\sim 1° \), and smaller than large-scale patterns, \(\gtrsim 45° \).
rection. Second, thanks to our improved knowledge of the energy-dependent composition, we can now account more accurately for the relative attenuation of fluxes from distant sources. Third, thanks to the significant increase in exposure of the Pierre Auger Observatory with respect to previous analyses, the data can reveal more subtle patterns.

2. UHECR DATASET

UHECRs are detected at the Pierre Auger Observatory (Argentina, latitude 35.2° S, longitude 69.5° W; Aab et al. 2015c) through the extensive air showers they induce in the atmosphere. Air showers are detected on the ground with an array of 1,600 water-Cherenkov detectors with a duty cycle of nearly 100%. Twenty-four fluorescence telescopes map, during dark nights (duty cycle of ~15%), the longitudinal profile of each shower via the nitrogen fluorescence produced dominantly by the electromagnetic cascade. The combination of both techniques provides the array with an energy scale insensitive to primary mass assumptions and air-shower simulation uncertainties. The systematic uncertainty in the energy scale is estimated to be 14% (Verzi et al. 2013).

Events above 20EeV recorded between 2004 January 1 and 2017 April 30 are used in this analysis. Above 20EeV, both ‘vertical showers’ (zenith angle $\theta < 60^\circ$, Abraham et al. 2010) and ‘inclined showers’ ($60^\circ \leq \theta < 80^\circ$, Aab et al. 2014b) trigger the array of detectors with 100% efficiency, the average angular resolution being below 1° and the statistical energy resolution being better than 12%.

Combining the vertical and inclined datasets, including unfolding correction factors as in Aab et al. (2015a), enables sky coverage over the declination range $-90^\circ < \delta < +45^\circ$. Using the same selection criteria as in Aab et al. (2015b), the total exposure for the period considered here is 89,720km²·s·yr.

3. SOURCE SELECTION & UHECR SKY MODELS

3.1. Extragalactic gamma-ray populations

We extract our list of gamma-ray AGNs (γAGNs hereafter) from the 2FHL catalog (Ackermann et al. 2016), which includes 360 sources detected by Fermi-LAT above 50GeV. We study radio-loud objects within a 250Mpc radius, yielding 17 blazars and radio galaxies. Their 50GeV–2TeV integral flux is used as a proxy for the UHECR flux. Given the distance of these objects, the gamma-ray absorption by the extragalactic background light (e.g. Domínguez et al. 2011) is small.

The detections of seven SBGs have been reported using Fermi-LAT data: NGC 253, M 82, NGC 4945, NGC 1068 (Ackermann et al. 2012), NGC 2146 (Tang et al. 2014), Arp 220 (Peng et al. 2016), and Circinus (Hayashida et al. 2013). Their gamma-ray luminosity has been shown to scale almost linearly with their continuum radio flux (Ackermann et al. 2012). We thus adopt as a proxy for the UHECR flux of SBGs their continuum emission at 1.4GHz for which a larger census exists.

We select the 23 SBGs with a flux larger than 0.3Jy among the 63 objects within 250Mpc searched for gamma-ray emission by Ackermann et al. (2012). Due to possible incompleteness of that list near the Galactic plane ($|b| < 10^\circ$) and in the southern sky ($\delta < -35^\circ$), relevant SBGs could be missing from our selection. We checked however that our conclusions remain unchanged: a) using all 63 objects listed in Ackermann et al. (2012), b) using the catalog from Becker et al. (2009) with 32 SBGs above 0.3Jy, c) adding the Circinus SBG absent from (a) and (b), d) using only the six SBGs reported in the 3FGL (NGC 253, M 82, NGC 4945, NGC 1068, Circinus, NGC 2146; Acero et al. 2015) and their $1–100$GeV integral flux as UHECR proxy.

3.2. X-ray and infrared samples

Following previous searches (Aab et al. 2015b), we additionally study two flux-limited samples: Swift-BAT sources up to 250Mpc, above a flux of 13.4×10^{-12}ergcm$^{-2}$s$^{-1}$, and sources from the 2MASS redshift survey (2MRS catalog, Huchra et al. 2012) beyond 1Mpc, effectively taking out the Local Group as in Erdoğan et al. (2006). We use the 14–195keV flux and K-band flux corrected for Galactic extinction as UHECR proxies for each of these surveys.

The X-ray sky observed by Swift-BAT is dominated in flux by the nearby Centaurus A, often considered as a prime UHECR source candidate (e.g. Romero et al. 1996; Wykes et al. 2017), with additional diffuse structures arising from both radio-loud and radio-quiet AGNs. This constitutes a different selection of AGNs from that performed for the γ-ray sample (radio-loud only), dominated by the radio galaxies Centaurus A and M 87 within 20Mpc and by the blazars Mrk 421 and Mrk 501 within 200Mpc.

The 2MRS infrared intensity traces the distribution of extragalactic matter, and includes both star-forming galaxies and AGNs. It is dominated by contributions from the nearby SBG NGC 253, close to the South Galactic pole, M 82, only observable from the Northern hemisphere, along with M 83 and NGC 4945, belonging to the same group of galaxies as Centaurus A. Strong emission from Centaurus A as well as cumulated emission from fainter objects, e.g. in the Virgo cluster, constitute distinctive features of the 2MRS sky model with respect to the SBG one.

3.3. Impact of attenuation

We account for attenuation of UHECRs from distant objects (GZK effect) using a data-driven scenario that reproduces the composition and spectral constraints obtained by the Observatory (Aab et al. 2017a). Assuming a homogeneous distribution of sources in the local Universe, it was shown that an interpretation of the air-shower data using the EPOS-LHC interaction model together with a hard injection index $\gamma = 1$ at the sources (scenario A) best matches the data, accounting for propagation effects (Aloiisio et al. 2012; Alves Batista

2 Test statistic for anisotropy within ±1 unit.
et al. 2016). We also consider two other scenarios matching the data reasonably well: EPOS-LHC with $\gamma = 2$ (B) and Sibyll 2.1 with $\gamma = -1.5$ (C). These scenarios differ in the composition and maximum rigidities attainable at the sources. For each scenario and a chosen energy threshold, we evaluate the flux attenuation factor due to propagation for each source and correct its expected UHECR flux accordingly.

The two extragalactic gamma-ray populations under study and the relative weight of each source are provided in Table 2. The relative contributions accounting for the directional exposure of the Observatory are shown in the last column. Because SBGs are mostly nearby, attenuation from them is much less important than from the more distant blazars in the γ-ray AGN sample. Taking into account attenuation, the shift of the centroid position is considered, avoiding dependence on any particular model of the Galactic magnetic field in this exploratory study. After mixing the anisotropic map with a variable fraction of isotropy, as in Abreu et al. (2010), the model map is multiplied by the directional exposure of the array and its integral is normalized to the number of events.

The two extragalactic gamma-ray populations under study and the relative weight of each source are provided in Table 2. The relative contributions accounting for the directional exposure of the Observatory are shown in the last column. Because SBGs are mostly nearby, attenuation from them is much less important than from the more distant blazars in the γ-ray AGN sample. Taking into account attenuation, the shift of the centroid position is considered, avoiding dependence on any particular model of the Galactic magnetic field in this exploratory study. After mixing the anisotropic map with a variable fraction of isotropy, as in Abreu et al. (2010), the model map is multiplied by the directional exposure of the array and its integral is normalized to the number of events.

The model map thus depends on two variables aimed at maximizing the degree of correlation with UHECR events: the fraction of all events due to the sources (anisotropic fraction) and the RMS angular separation between an event and its source (search radius) in the anisotropic fraction.

We perform an unbinned maximum-likelihood analysis, where the likelihood (L) is the product over the UHECR direction. The test statistic (TS) for deviation from isotropy is the likelihood ratio test between two nested hypotheses: the UHECR sky model and an isotropic model (null hypothesis). The TS is maximized as a function of two parameters: the search radius and the anisotropic fraction. We repeat the analysis for a sequence of energy thresholds.

For a given energy threshold, we confirmed with simulations that the TS for isotropy follows a χ^2 distribution with two degrees of freedom, as expected (Wilks 1938), directly accounting for the fit of two parameters of the model. As in Aab et al. (2015b), we penalize the minimum p-value for a scan in threshold energy, by steps of 1EeV up to 80EeV, estimating the penalty factor with Monte-Carlo simulations. The p-values are converted into significances assuming 1-sided Gaussian distributions.

4. ANALYSIS AND RESULTS

4.1. Maximum-likelihood analysis

We build the UHECR sky model as the sum of an isotropic component plus the anisotropic contribution from the sources. For the anisotropic component, each source is modeled as a Fisher distribution (Fisher 1953), the equivalent of a Gaussian on the sphere. Its distribution is centered on the coordinates of the source, the integral being set by its flux attenuated above the chosen energy threshold, and the angular width – or search radius3 – being a free parameter common to all sources. No shift of the centroid position is considered, avoiding dependence on any particular model of the Galactic magnetic field in this exploratory study. After mixing the anisotropic map with a variable fraction of isotropy, as in Abreu et al. (2010), the model map is multiplied by the directional exposure of the array and its integral is normalized to the number of events.

3 Inverse square root of Fisher’s concentration parameter.

Figure 1. TS scan over the threshold energy for SBGs and AGNs (Left) and Swift-BAT and 2MRS sources (Right), including attenuation (light-dashed lines) or not (darker-solid lines).
γAGNs, a larger attenuation reducing contributions from distant blazars: we obtain a maximum TS of 15.2/9.4/11.9 for scenarios A/B/C. Shifting the energy scale within systematic uncertainties (±14%) affects the maximum TS by ±1 unit for γAGNs, ±0.3 for SBGs.

Penalizing for the energy scan, the maximum TS obtained for SBGs and γAGNs within scenario A correspond to 4.0σ and 2.7σ deviations from isotropy, respectively. As shown in Fig. 2, left, the maximum deviation for γAGNs is found at an angular scale of 7°±1° and a 7 ± 4% fraction of anisotropic events. For SBGs, a stronger deviation from isotropy is uncovered at an intermediate angular scale of 13°±4° and an anisotropic fraction of 10 ± 4%. The systematic uncertainty induced by the energy scale and attenuation scenario is at the level of 0.3% for the anisotropic fraction and 0.5° for the search radius obtained with SBGs.

For Swift-BAT and 2MRS sources attenuated within scenario A, we obtain maximum TS of 18.2 (3.2σ) above 39 EeV and 15.1 (2.7σ) above 38 EeV, respectively (see Fig. 1, right). These correspond to values of the best-fit parameters of 12°60' and 7°31' for Swift-BAT, 13°37' and 16°8' for 2MRS.

The different degrees of anisotropy obtained from each catalog can be understood from Fig. 3, top, showing a UHECR hotspot in the direction of the Centaurus A / M 83 / NGC 4945 group. The γAGN model (> 39 EeV) and Swift-BAT model (> 39 EeV) are dominated by Centaurus A, which is 7° and 13° away from NGC 4945 and M 83, respectively. The starburst model additionally captures the UHECR excess close to the Galactic South pole, interpreted as contributions from NGC 1068 and NGC 253, yielding an increase in the anisotropy signal from ~3 to 4σ. Additional diffuse contributions from clustered sources in the 2MRS catalog are not favored by the data, resulting in the smaller deviation from isotropy.

4.3. Composite models against single populations

To compare the two distinct gamma-ray populations above their respective preferred thresholds, we investigate a composite model combining contributions from γAGNs and SBGs, adopting a single search radius and leaving the fraction of events from each population free. The TS in this case is the difference between the maximum likelihood of the combined model and that of the null hypothesis of a single population.
at the selected energy threshold. The parameter added to the more complex model results in a χ^2 distribution with one degree of freedom.

The best-fit anisotropic fractions obtained for the composite model (free search radius) are shown in Fig. 2, right. Above 39\,EeV, the γAGN-only model is disfavored by 3.7\,σ relative to a combined model with a 9\% contribution from SBGs and 1\% contribution from γAGN. Above 60\,EeV, the TS obtained with the composite model is not significantly higher than what is obtained by either model. This is illustrated in Fig. 2, right, by the agreement at the 1\,σ level of a model including 0\% SBGs / 7\% γAGNs with a model including 13\% SBGs / 0\% γAGNs above 60\,EeV.

As summarized in Table 1, composite models including SBGs and either 2MRS or Swift-BAT sources best match the data above 39\,EeV for 9−7\% fractions of events associated to SBGs and 1−3\% to the flux-limited samples. A 3.0−2.6\,σ advantage is found for the composite models including SBGs with respect to the 2MRS-only and Swift-BAT-only models.

5. DISCUSSION

We have compared the arrival directions of UHECRs detected at the Pierre Auger Observatory with two distinct gamma-ray samples and two flux-limited samples of extragalactic sources. Our comparison with SBGs shows that isotropy of UHECRs is disfavored with 4.0\,σ confidence, accounting for the two free parameters and including the penalty for scanning over energy thresholds. This is the most significant evidence found in this study for anisotropy of UHECRs on an intermediate angular scale. It should be noted, however, that numerous anisotropy studies have been conducted with data from the Observatory, not only those that have been published by the Collaboration. There is no rigorous way to evaluate a statistical penalty for other searches.

The pattern of UHECR arrival directions is best matched by a model in which about 10\% of those cosmic rays arise from directions that are clustered around the directions of bright, nearby SBGs. We evaluated the possibility of additional contributions from nearby γAGNs, such as Centaurus A, and from more distant sources through a comparison with samples tracing the distribution of extragalactic matter. We find that the contribution from SBGs to the indication of anisotropy is larger than that of the alternative catalogs tested. Nonetheless, caution is required in identifying SBGs as the preferred sources prior to understanding the impact of bulk magnetic deflections.

The sky maps used in this analysis are derived without incorporating any effects of the extragalactic or Galactic magnetic fields and winds (e.g. Pshirkov et al. 2011; Jansson & Farrar 2012; Biermann et al. 2015). In particular, the arrival directions of UHECRs from a given source are modeled by a symmetric Fisher distribution centered on the source position. We checked the plausibility of the best-fit search radius obtained above 39\,EeV by simulating sky maps passed through the Galactic magnetic field from Jansson & Farrar (2012), including a random component with a coherence length of 60\,pc as in Erdmann et al. (2016). For large deflections, UHECRs from a given SBG can leak in the direction of a neighboring source. The three composition scenarios discussed in Sec. 3.3 yield reconstructed search radii of 5−25°, bracketing the observed radius of 13°. The agreement is considered satisfactory given the uncertainties in our knowledge of the composition above 39\,EeV and of the deflections by the Galactic magnetic field (Unger & Farrar 2017). Further studies aiming at possibly improving the model maps including deflections are underway.

It can be seen in Fig. 3, bottom, that M 82 is expected to be one of the dominant sources in the full-sky starburst model presented here. Its declination of \sim70° is outside the exposure of the Observatory but is covered in the Northern Hemisphere by the Telescope Array (Abu-Zayyad et al. 2012). As noted e.g. by Fang et al. (2014) and He et al. (2016), the ex-

<table>
<thead>
<tr>
<th>Test hypothesis</th>
<th>Null hypothesis</th>
<th>Threshold energy</th>
<th>TS</th>
<th>Local p-value</th>
<th>Post-trial p-value</th>
<th>1-sided significance</th>
<th>AGN/other fraction</th>
<th>SBG fraction</th>
<th>Search radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBG + ISO</td>
<td>ISO</td>
<td>39,EeV</td>
<td>24.9</td>
<td>3.8×10^{-6}</td>
<td>3.6×10^{-5}</td>
<td>4.0,σ</td>
<td>N/A</td>
<td>9.7%</td>
<td>12.9°</td>
</tr>
<tr>
<td>γAGN + SBG + ISO</td>
<td>ISO</td>
<td>39,EeV</td>
<td>14.7</td>
<td>N/A</td>
<td>1.3×10^{-4}</td>
<td>3.7,σ</td>
<td>0.7%</td>
<td>8.7%</td>
<td>12.5°</td>
</tr>
<tr>
<td>γAGN + ISO</td>
<td>ISO</td>
<td>60,EeV</td>
<td>15.2</td>
<td>5.1×10^{-4}</td>
<td>3.1×10^{-3}</td>
<td>2.7,σ</td>
<td>6.7%</td>
<td>N/A</td>
<td>6.9°</td>
</tr>
<tr>
<td>γAGN + SBG + ISO</td>
<td>SBG + ISO</td>
<td>60,EeV</td>
<td>3.0</td>
<td>N/A</td>
<td>0.08</td>
<td>1.4,σ</td>
<td>6.8%</td>
<td>0.0%b</td>
<td>7.0°</td>
</tr>
<tr>
<td>Swift-BAT + ISO</td>
<td>ISO</td>
<td>39,EeV</td>
<td>18.2</td>
<td>1.1×10^{-4}</td>
<td>8.0×10^{-4}</td>
<td>3.2,σ</td>
<td>6.9%</td>
<td>N/A</td>
<td>12.3°</td>
</tr>
<tr>
<td>Swift-BAT + SBG + ISO</td>
<td>Swift-BAT + ISO</td>
<td>39,EeV</td>
<td>7.8</td>
<td>N/A</td>
<td>5.1×10^{-3}</td>
<td>2.6,σ</td>
<td>2.8%</td>
<td>7.1%</td>
<td>12.6°</td>
</tr>
<tr>
<td>2MRS + ISO</td>
<td>ISO</td>
<td>38,EeV</td>
<td>15.1</td>
<td>5.2×10^{-4}</td>
<td>3.3×10^{-3}</td>
<td>2.7,σ</td>
<td>15.8%</td>
<td>N/A</td>
<td>13.2°</td>
</tr>
<tr>
<td>2MRS + SBG + ISO</td>
<td>2MRS + ISO</td>
<td>39,EeV</td>
<td>10.4</td>
<td>N/A</td>
<td>1.3×10^{-3}</td>
<td>3.0,σ</td>
<td>1.1%</td>
<td>8.9%</td>
<td>12.6°</td>
</tr>
</tbody>
</table>

a For composite model studies, no scan over the threshold energy is performed.

b Maximum TS reached at the boundary of the parameter space.

ISO: isotropic model.
cess of events observed at the Telescope Array (Abbasi et al. 2014) has some overlap with the position of M 82, as well as with the position of the blazar Mkn 421 that would be a bright Northern source in a low-attenuation scenario.

An analysis of full-sky data from the Pierre Auger Observatory and the Telescope Array may provide a more powerful test of the starburst and AGN models by probing all production regions of UHECRs. Combining the data is complicated, however, due to the spurious anisotropies that may be induced by possible mismatches in the relative exposures and/or systematic differences in the nominal energy scales used at each observatory. First attempts to conduct such surveys are being made (Di Matteo et al. 2017).

Additional exposure will bring better constraints on the brightest sources. At the same time, an instrumentation upgrade of the Observatory is being deployed on the water-Cherenkov detectors adding a planar plastic scintillator of 4m² area to each of them (Aab et al. 2016b). The upgrade will provide mass-sensitive observables for each shower enabling charge-discriminated studies with a duty cycle of nearly 100%. Excluding highly charged nuclei from the analysis could eliminate a quasi-isotropic background that may mask the signature of individual sources imprinted by protons and other low-charge nuclei.

Finally, a large-scale dipolar anisotropy has been discovered above 8EeV (Aab et al. 2017b). While a direct connection between the large and intermediate angular-scale patterns has not yet been identified, the emergence of anisotropies at ultra-high energy will certainly trigger further investigations of scenarios underlying the production of UHECRs.

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment from the technical and administrative staff in Malargüe, and the financial support from a number of funding agencies in the participating countries, listed at https://www.auger.org/index.php/about-us/funding-agencies.

REFERENCES

—. 2014b, J. Cosmology Astropart. Phys., 8, 019
—. 2015a, J. Cosmology Astropart. Phys., 8, 049
—. 2015c, Nucl. Instrum. Meth., A798, 172
—. 2016a, Physics Letters B, 762, 288
—. 2017a, J. Cosmology Astropart. Phys., 4, 038
—. 2017b, Science, 357, 1266
Erdmann, M., Muller, G., Urban, M., & Wirtz, M. 2016, Astroparticle Physics, 85, 54
Greisen, K. 1966, Physical Review Letters, 16, 748
Table 2. Populations investigated

<table>
<thead>
<tr>
<th>SBGs</th>
<th>l [°]</th>
<th>b [°]</th>
<th>Distancea [Mpc]</th>
<th>Flux weight [%]</th>
<th>Attenuated weight: A / B / C [%]</th>
<th>% contributionb: A / B / C [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 253</td>
<td>97.4</td>
<td>-88</td>
<td>2.7</td>
<td>13.6</td>
<td>20.7 / 18.0 / 16.6</td>
<td>35.9 / 32.2 / 32.0</td>
</tr>
<tr>
<td>M82</td>
<td>141.4</td>
<td>40.6</td>
<td>36</td>
<td>18.6</td>
<td>24.0 / 22.0 / 21.4</td>
<td>0.2 / 0.1 / 0.1</td>
</tr>
<tr>
<td>NGC 4945</td>
<td>305.3</td>
<td>13.3</td>
<td>4</td>
<td>16</td>
<td>19.2 / 18.3 / 17.9</td>
<td>39.0 / 38.4 / 38.3</td>
</tr>
<tr>
<td>M83</td>
<td>314.6</td>
<td>32</td>
<td>4</td>
<td>6.3</td>
<td>7.6 / 7.2 / 7.1</td>
<td>13.1 / 12.9 / 12.9</td>
</tr>
<tr>
<td>IC 342</td>
<td>138.2</td>
<td>10.6</td>
<td>4</td>
<td>5.5</td>
<td>6.6 / 6.3 / 6.1</td>
<td>0.1 / 0.0 / 0.0</td>
</tr>
<tr>
<td>NGC 6946</td>
<td>95.7</td>
<td>11.7</td>
<td>59</td>
<td>3.4</td>
<td>3.2 / 3.3 / 3.5</td>
<td>0.1 / 0.1 / 0.1</td>
</tr>
<tr>
<td>NGC 2903</td>
<td>208.7</td>
<td>44.5</td>
<td>66</td>
<td>1.1</td>
<td>0.9 / 1.0 / 1.1</td>
<td>0.6 / 0.7 / 0.7</td>
</tr>
<tr>
<td>NGC 5055</td>
<td>106</td>
<td>74.3</td>
<td>7.8</td>
<td>9</td>
<td>0.7 / 0.8 / 0.8</td>
<td>0.2 / 0.2 / 0.2</td>
</tr>
<tr>
<td>NGC 3628</td>
<td>240.9</td>
<td>64.8</td>
<td>8.1</td>
<td>1.3</td>
<td>1.0 / 1.1 / 1.2</td>
<td>0.8 / 0.9 / 1.1</td>
</tr>
<tr>
<td>NGC 3627</td>
<td>242</td>
<td>64.4</td>
<td>8.1</td>
<td>1</td>
<td>0.8 / 0.9 / 1.1</td>
<td>0.7 / 0.8 / 0.9</td>
</tr>
<tr>
<td>NGC 4631</td>
<td>142.8</td>
<td>84.2</td>
<td>8.7</td>
<td>2.9</td>
<td>2.1 / 2.4 / 2.7</td>
<td>0.8 / 0.9 / 1.1</td>
</tr>
<tr>
<td>M51</td>
<td>104.9</td>
<td>68.6</td>
<td>10.3</td>
<td>3.6</td>
<td>2.3 / 2.8 / 3.3</td>
<td>0.3 / 0.4 / 0.5</td>
</tr>
<tr>
<td>NGC 891</td>
<td>140.4</td>
<td>-17.4</td>
<td>11</td>
<td>1.7</td>
<td>1.1 / 1.3 / 1.5</td>
<td>0.2 / 0.3 / 0.3</td>
</tr>
<tr>
<td>NGC 3556</td>
<td>148.3</td>
<td>56.3</td>
<td>11.4</td>
<td>0.7</td>
<td>0.4 / 0.6 / 0.6</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
<tr>
<td>NGC 660</td>
<td>141.6</td>
<td>-47.4</td>
<td>15</td>
<td>0.9</td>
<td>0.5 / 0.6 / 0.6</td>
<td>0.4 / 0.5 / 0.6</td>
</tr>
<tr>
<td>NGC 2146</td>
<td>135.7</td>
<td>24.9</td>
<td>16.3</td>
<td>2.6</td>
<td>1.3 / 1.7 / 2.0</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
<tr>
<td>NGC 3079</td>
<td>157.8</td>
<td>48.4</td>
<td>17.4</td>
<td>2.1</td>
<td>1.0 / 1.4 / 1.5</td>
<td>0.1 / 0.1 / 0.1</td>
</tr>
<tr>
<td>NGC 1068</td>
<td>172.1</td>
<td>-51.9</td>
<td>17.9</td>
<td>12.1</td>
<td>5.6 / 7.9 / 9.0</td>
<td>6.4 / 9.4 / 10.9</td>
</tr>
<tr>
<td>NGC 1365</td>
<td>238</td>
<td>-54.6</td>
<td>22.3</td>
<td>1.3</td>
<td>0.5 / 0.8 / 0.8</td>
<td>0.9 / 1.5 / 1.6</td>
</tr>
<tr>
<td>Arp 299</td>
<td>141.9</td>
<td>55.4</td>
<td>46</td>
<td>1.6</td>
<td>0.4 / 0.7 / 0.6</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
<tr>
<td>Arp 220</td>
<td>36.6</td>
<td>53</td>
<td>80</td>
<td>0.8</td>
<td>0.1 / 0.3 / 0.2</td>
<td>0.0 / 0.2 / 0.1</td>
</tr>
<tr>
<td>NGC 6240</td>
<td>20.7</td>
<td>27.3</td>
<td>105</td>
<td>1</td>
<td>0.1 / 0.3 / 0.1</td>
<td>0.1 / 0.3 / 0.1</td>
</tr>
<tr>
<td>Mkn 231</td>
<td>121.6</td>
<td>60.2</td>
<td>183</td>
<td>0.8</td>
<td>0.0 / 0.1 / 0.0</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γAGNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cen A Core</td>
</tr>
<tr>
<td>M87</td>
</tr>
<tr>
<td>NGC 1275</td>
</tr>
<tr>
<td>IC 310</td>
</tr>
<tr>
<td>3C 264</td>
</tr>
<tr>
<td>TXS 0149+710</td>
</tr>
<tr>
<td>Mkn 421</td>
</tr>
<tr>
<td>PKS 0229-581</td>
</tr>
<tr>
<td>Mkn 501</td>
</tr>
<tr>
<td>IES 2344+514</td>
</tr>
<tr>
<td>Mkn 180</td>
</tr>
<tr>
<td>IES 1959+650</td>
</tr>
<tr>
<td>AP Librae</td>
</tr>
<tr>
<td>TXS 0210+515</td>
</tr>
<tr>
<td>GB6 J0601+5315</td>
</tr>
<tr>
<td>PKS 0625-35</td>
</tr>
<tr>
<td>I Zw 187</td>
</tr>
</tbody>
</table>

a A standard, flat ΛCDM model (h₀ = 0.7, ΩM = 0.3) is assumed. Distances of SBGs are based on Ackermann et al. (2012), accounting for a small difference in h₀. Distances of γAGNs are based on their redshifts, except for the nearby Cen A (Tully et al. 2013).

b % contributions account for the directional exposure of the array.
Figure 3. Top to Bottom: Observed excess map - Model excess map - Residual map - Model flux map, for the best-fit parameters obtained with SBGs above 39EeV (Left) and γAGNs above 60EeV (Right). The excess maps (best-fit isotropic component subtracted) and residual maps (observed minus model) are smeared at the best-fit angular scale. The color scale indicates the number of events per smearing beam (see inset). The model flux map corresponds to a uniform full-sky exposure. The supergalactic plane is shown as a solid gray line. An orange dashed line delimits the field of view of the array.
AUTHORS

UHECRs and Extragalactic Gamma-Ray Sources

45 INFN, Sezione di Lecce, Lecce, Italy
46 INFN, Sezione di Milano, Milano, Italy
47 INFN, Sezione di Napoli, Napoli, Italy
48 INFN, Sezione di Roma “Tor Vergata”, Roma, Italy
49 INFN, Sezione di Torino, Torino, Italy
50 Osservatorio Astrofisico di Torino (INAF), Torino, Italy
51 Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Milano, Italy
52 Università del Salento, Dipartimento di Ingegneria, Lecce, Italy
53 Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy
54 Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy
55 Università di Catania, Dipartimento di Fisica e Astronomia, Catania, Italy
56 Università di Milano, Dipartimento di Fisica, Milano, Italy
57 Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
58 Università di Roma “Tor Vergata”, Dipartimento di Fisica, Roma, Italy
59 Università Torino, Dipartimento di Fisica, Torino, Italy
60 Benemérita Universidad Autónoma de Puebla, Puebla, México
61 Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), México, D.F., México
62 Universidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN), México, D.F., México
63 Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
64 Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
65 Universidad Nacional Autónoma de México, México, D.F., México
66 Institute of Nuclear Physics PAN, Krakow, Poland
67 University of Łódź, Faculty of Astrophysics, Łódź, Poland
68 University of Łódź, Faculty of High-Energy Astrophysics, Łódź, Poland
69 Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal
70 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
71 Institute of Space Science, Bucharest-Magurele, Romania
72 University Politehnica of Bucharest, Bucharest, Romania
73 Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia
74 Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia
75 Universidad de Granada and C.A.F.P.E., Granada, Spain
76 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
77 IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
78 KVI – Center for Advanced Radiation Technology, University of Groningen, Groningen, The Netherlands
79 Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands
80 Stichting Astronomisch Onderzoek in Nederland (ASTRON), Dwingeloo, The Netherlands
81 Case Western Reserve University, Cleveland, OH, USA
82 Colorado School of Mines, Golden, CO, USA
83 Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, USA
84 Louisiana State University, Baton Rouge, LA, USA
85 Michigan Technological University, Houghton, MI, USA
86 New York University, New York, NY, USA
87 Northeastern University, Boston, MA, USA
88 Ohio State University, Columbus, OH, USA
89 Pennsylvania State University, University Park, PA, USA
90 University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
91 University of Nebraska, Lincoln, NE, USA
1000 School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
1001 Max-Planck-Institut für Radioastronomie, Bonn, Germany
1002 also at Vrije Universiteit Brussels, Brussels, Belgium
1003 SUBATECH, École des Mines de Nantes, CNRS-IN2P3, Université de Nantes, France
1004 Fermi National Accelerator Laboratory, USA
1005 Colorado State University, Fort Collins, CO
† Deceased