GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

LIGO Scientific Collaboration and Virgo Collaboration

(See the end matter for the full list of authors.)

Received 2017 November 14; revised 2017 November 30; accepted 2017 December 2; published 2017 December 18

Abstract

On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of $12.0^{+7.2}_{-7.3} M_\odot$ and $7.1^{+5.5}_{-5.5} M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.

Key words: binaries: general – gravitational waves – stars: black holes

1. Introduction

The first detections of binary black hole mergers were made by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO; Aasi et al. 2015; Abbott et al. 2016a) during its first observing run (O1) in 2015 (Abbott et al. 2016b, 2016c, 2016d). Following a commissioning break, LIGO undertook a second observing run (O2) from 2016 November 30 to 2017 August 25, with the Advanced Virgo detector (Acernese et al. 2015) joining the run on 2017 August 1. Two binary black hole mergers (Abbott et al. 2017a, 2017b) and one binary neutron star merger (Abbott et al. 2017c) have been reported in O2 data. Here, we describe GW170608, a binary black hole merger with likely the lowest mass of any so far observed by LIGO.

GW170608 was first identified in data from the LIGO Livingston Observatory (LLO), which was in normal observing mode. The LIGO Hanford Observatory (LHO) was operating stably with a sensitivity typical for O2, but its data were not analyzed automatically as the detector was undergoing a routine angular control procedure (Section 2 and the Appendix). Matched-filter analysis of a segment of data around this time revealed a candidate with source parameters consistent between both LIGO detectors; further offline analyses of a longer period of data confirmed the presence of a gravitational-wave (GW) signal from the coalescence of a binary black hole system, with high statistical significance (Section 3).

The source’s parameters were estimated via coherent Bayesian analysis (Veitch et al. 2015; Abbott et al. 2016c). A degeneracy between the component masses $m_1$, $m_2$ prevents precise determination of their individual values, but the chirp mass $\mathcal{M} = (m_1 m_2)^{3/5}/(m_1 + m_2)^{1/5}$ is well measured and is the smallest so far observed for a merging black hole binary system, with the total mass $M = m_1 + m_2$ also likely the lowest so far observed (Section 4). Individual black hole spins are poorly constrained; however, we find a slight preference for a small positive net component of spin in the direction of the binary orbital angular momentum.

Similarly to GW151226 (Abbott et al. 2016c), this system’s black hole component masses are comparable to those of black holes found in X-ray binaries (Section 5) and below those seen in other LIGO–Virgo black hole binaries.

We also test the consistency of the observed GW signal with the predictions of general relativity (GR); we find no deviations from those predictions.

2. Detector Operation

The LIGO detectors measure GW strain using dual-recycled Michelson interferometers with Fabry–Perot arm cavities (Aasi et al. 2015; Abbott et al. 2016a). During O2, the horizon distance for systems with component masses similar to GW170608—the distance at which a binary merger optimally oriented with respect to a detector has an expected signal-to-noise ratio (S/N) of 8 (Allen et al. 2012; Chen et al. 2017)—peaked at $\sim 1$ Gpc for LLO and at $\sim 750$ Mpc for LHO.

At the time of GW170608, LLO was observing with a sensitivity close to its peak. LHO was operating in a stable configuration with a sensitivity of $\sim 650$ Mpc; a routine procedure to minimize angular noise coupling to the strain measurement was being performed (Kasprzack & Yu 2016). Although such times are in general not included in searches, it was determined that LHO strain data were unaffected by the procedure at frequencies above 30 Hz, and may thus be used to identify a GW source and measure its properties. More details on LHO data are given in the Appendix.

Similar procedures to those used in verifying previous GW detections (Abbott et al. 2017b) were followed and indicate that no disturbance registered by LIGO instrumental or environmental sensors (Effler et al. 2015) was strong enough to have caused the GW170608 signal.

Calibration of the LIGO detectors is performed by inducing test-mass motion using photon pressure from modulated auxiliary lasers (Karki et al. 2016; Abbott et al. 2017d; Cahillane et al. 2017). The maximum 1σ calibration uncertainties for strain data used in this analysis are 5% in amplitude and 3° in phase over the frequency range 20–1024 Hz.

The Advanced Virgo detector was, at the time of the event, in observation mode with a horizon distance for signals comparable to GW170608 of 60–70 Mpc. However, this was during an early
3. Search for Binary Merger Signals

3.1. Low-latency Identification of a Candidate Event

GW170608 was first identified as a loud (S/N ~ 9) event in LLO data, via visual inspection of single-detector events from a low-latency compact binary matched-filter (“template”) analysis (Usman et al. 2016; Nitz et al. 2017a, 2017b). Such events are displayed automatically to diagnose changes in detector operation and in populations of non-Gaussian transient noise artifacts (glitches; Abbott et al. 2016f). Low-latency templated searches (Cannon et al. 2015; Adams et al. 2016; Messick et al. 2017; Nitz et al. 2017b) did not detect the event with high significance because LHO data were not analyzed automatically. An initial investigation of the LLO event did not indicate that it was likely to be caused by an instrumental or environmental artifact (Abbott et al. 2016f; Zevin et al. 2017b). The morphology of the LLO event is consistent with a compact binary merger signal, as shown in Figure 1 (lower panel), but a noise origin could not be ruled out using LLO data alone.

Consequently, LHO data were investigated and were determined to be stable at frequencies above 30 Hz (see the Appendix). A segment of LHO data around the event time was then searched with a filter starting frequency of 30 Hz, using templates approximating the waveforms from compact binary systems with component spins aligned with the orbital angular momentum (Purrer 2016; Bohé et al. 2017). The fraction of S/N expected to be lost due to imposing the 30 Hz cutoff, as compared to the lower starting frequencies typically used in O2 data (Dal Canton & Harry 2017), is ~1% or less. An event was found having consistent template binary masses and spins, times of arrival, and S/Ns in LHO and LLO. Based on this two-detector coincident event an alert was issued to electromagnetic observing partners 13.5 hr after the event time, with a sky localization (Singer & Price 2016) covering 860 deg² (90% credible region). GRB Coordinates Network Circulars related to this event are archived at https://gcn.gsfc.nasa.gov/other/G288732.gcn3.

3.2. Offline Search

To establish the significance of this coincident event, a period between 2017 June 7 and 9 was identified for analysis during which both LIGO interferometers were operating in the same configuration as at the event time. Times at which commissioning activities at LHO produced severe or broadband disturbances in the strain data were excluded from the analysis. Standard offline data quality vetoes for known environmental or instrumental artifacts were also applied, resulting overall in 1.2 days of coincident LHO—LLO data searched.

Two matched-filter pipelines identified GW170608, with a network S/N of 13. A candidate event is assigned a ranking statistic value, in each pipeline, that represents its relative likelihood of originating from a GW signal versus noise. One pipeline estimates the noise background using time-shifted data (Usman et al. 2016) and limits the rate of occurrence of noise events ranked higher than GW170608 to less than 1 in 3000 years. This limit arises from the maximum background analysis time available from time shifts separated by 0.1 s and is expected to be conservative as indicated by previous studies (Was et al. 2010; Abbott et al. 2016c; Capano et al. 2017). The other pipeline uses different methods for ranking candidate events and for estimating the background.

4. Source Properties

4.1. Binary Parameters

The parameters of the GW source are inferred from a coherent Bayesian analysis (Veitch et al. 2015; Abbott et al. 2016d) using noise-subtracted data from the two LIGO observatories. Several continuously present sources of noise in the detectors’ GW strain channel are independently measured, and are then subtracted via Wiener filtering (Abbott et al. 2017b and references therein). This step increases the expected S/N of compact binary signals in LHO data typically by 25% (Driggers et al. 2017). The likelihood integration is performed starting at 30 Hz in LHO and 20 Hz in LLO, includes marginalization over strain calibration uncertainties (Farr et al. 2015), and uses the noise power spectral densities (Littenberg & Cornish 2015) at the time of the event.

Two different GW signal models calibrated to numerical relativity simulations of general relativistic binary black hole mergers (Mroué et al. 2013; Chu et al. 2016; Husa et al. 2016), building on the breakthrough reported in Pretorius (2005), Baker et al. (2006), and Campanelli et al. (2006), are used. One waveform family models the inspiral-merger-ringdown signal of precessing binary black holes (Hannam et al. 2014), which includes spin-induced orbital precession through a transformation of the aligned-spin waveform model of Husa et al. (2016) and Khan et al. (2016); we refer to this model as the effective precession model. The other waveform model describes binaries...
with spin angular momenta aligned with the orbital angular momentum (Pürrer 2016; Bohé et al. 2017), henceforth referred to as non-precessing. For their common parameters, both waveform models yield consistent parameter ranges.

A selection of inferred source parameters for GW170608 is given in Table 1; unless otherwise noted, we report median values and symmetric 90% credible intervals. The quoted parameter uncertainties include statistical and systematic errors from averaging posterior probability samples over the two waveform models. As in Abbott et al. (2017a), our estimates of the mass and spin of the final black hole, the total energy radiated in GWs, as well as peak luminosity are computed from fits to numerical relativity simulations (Hofmann et al. 2016; Healy & Lousto 2017; Jiménez-Forteza et al. 2017; Keitel et al. 2017).

The posterior probability distributions for the source-frame mass parameters of GW170608 are shown in Figure 2, together with those for GW151226 (Abbott et al. 2016c). The initial binary of GW170608 had source-frame component masses $m_1 = 12.7^{+2.7}_{-2.0} M_\odot$ and $m_2 = 7.2^{+2.2}_{-1.5} M_\odot$. As with previously reported binary merger GW signals, GW170608’s data are consistent with an equal-mass binary; the mass ratio is loosely constrained to $m_2/m_1 > 0.33$. Since neutron stars are expected to have masses below $\sim 3 M_\odot$ (Lattimer & Prakash 2016), both objects are most likely black holes.

Notably, we find this binary black hole system to be the least massive yet observed through GWs. The next lightest, GW151226 (Abbott et al. 2016c), has a chirp mass $M = 8.9^{+0.3}_{-0.3}$ and a total mass $M = 21.8^{+5.9}_{-1.7}$, compared to values of $M = 7.9^{+0.2}_{-0.2} M_\odot$ and $M = 19^{+3}_{-1} M_\odot$ for GW170608. The probability that GW170608’s total mass is smaller than GW151226’s is 0.89.

While the chirp mass is tightly constrained, spins have a more subtle effect on the GW signal. The effective inspiral spin $\chi_{\text{eff}}$, a mass-weighted combination of the spin components (anti-aligned) with the orbital angular momentum (Racine 2008; Ajith et al. 2011), predominantly affects the inspiral phase of the binary but also influences the merger. We infer that $\chi_{\text{eff}} = 0.07^{+0.23}_{-0.09}$, disfavoring large, anti-aligned spins on both black holes.

An independent parameter estimation method comparing LIGO strain data to hybridized numerical relativity simulations of binary black hole systems with non-precessing spins (Abbott et al. 2016b) yields estimates of component masses and $\chi_{\text{eff}}$ consistent with our model-waveform analysis.

Spin components orthogonal to the orbital angular momentum are the source of precession (Apostolatos et al. 1994; Kidder 1995) and may be parameterized by a single effective precession spin $\chi_p$ (Schmidt et al. 2015). For precessing binaries, component spin orientations evolve over time; we report results evolved to a reference GW frequency of 20 Hz. The spin prior assumed in this analysis is uniform in dimensionless spin magnitudes $\chi_i = c \epsilon_i / (G m_i^2)$ with $i = 1, 2$ between 0 and 0.89 and isotropic in their orientation; this prior on component spins maps to priors for the effective parameters $\chi_{\text{eff}}$ and $\chi_p$. The top panel of Figure 3 shows the prior and posterior probability distributions of $\chi_{\text{eff}}$ and $\chi_p$ obtained for the effective precession waveform model. While we gain some information about $\chi_{\text{eff}}$, the $\chi_p$ posterior is dominated by its prior, thus we cannot draw any strong conclusion on the size of spin components in the orbital plane. Previous GW events also yielded little information on in-plane spins (Abbott et al. 2016b, 2016c, 2017a); possible effects of prior choice on this inference were investigated in Vitale et al. (2017a). The inferred component spin magnitudes and orientations are shown in the bottom panel of Figure 3. We find the dimensionless spin magnitude of the primary black hole, $\chi_1$, to be less than 0.75.

### Table 1: Source Properties for GW170608

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chirp mass $\mathcal{M}$</td>
<td>$7.9^{+0.2}<em>{-0.3} M</em>\odot$</td>
</tr>
<tr>
<td>Total mass $M$</td>
<td>$19^{+5}<em>{-1} M</em>\odot$</td>
</tr>
<tr>
<td>Primary black hole mass $m_1$</td>
<td>$12^{+2}<em>{-2} M</em>\odot$</td>
</tr>
<tr>
<td>Secondary black hole mass $m_2$</td>
<td>$7^{+2}<em>{-1} M</em>\odot$</td>
</tr>
<tr>
<td>Lower bound on mass ratio $m_2/m_1$</td>
<td>0.33</td>
</tr>
<tr>
<td>Effective inspiral spin parameter $\chi_{\text{eff}}$</td>
<td>$0.07^{+0.23}_{-0.09}$</td>
</tr>
<tr>
<td>Final black hole mass $M_f$</td>
<td>$18.0^{+0.8}<em>{-0.9} M</em>\odot$</td>
</tr>
<tr>
<td>Final black hole spin $a_f$</td>
<td>$0.69^{+0.04}_{-0.03}$</td>
</tr>
<tr>
<td>Radiated energy $E_{\text{rad}}$</td>
<td>$0.85^{+0.07}<em>{-0.17} M</em>\odot c^2$</td>
</tr>
<tr>
<td>Peak luminosity $L_{\text{peak}}$</td>
<td>$3.4^{+0.5}_{-0.6} \times 10^{56}$ erg s$^{-1}$</td>
</tr>
<tr>
<td>Luminosity distance $D_L$</td>
<td>$340^{+140}_{-40}$ Mpc</td>
</tr>
<tr>
<td>Source redshift $z$</td>
<td>$0.07^{+0.01}_{-0.03}$</td>
</tr>
</tbody>
</table>

**Note.** We quote median values with 90% credible intervals (90% bound on mass ratio). Source-frame masses are quoted; to convert to detector frame, multiply by $(1+z)$ (Krolak & Schutz 1987). The redshift assumes a flat cosmology with Hubble parameter $H_0 = 67.9$ km s$^{-1}$ Mpc$^{-1}$ and matter density parameter $\Omega_m = 0.3065$ (Ade et al. 2016).
GW170608 is localized to a sky area of $\sim 520 \text{ deg}^2$ in the northern hemisphere (90% credible region), determined largely by the signal’s measured arrival time at LLO $\sim 7 \text{ ms}$ later than at LHO. This reduction in area relative to the low-latency map is partly attributable to the use of noise-subtracted data with offline calibration (Abbott et al. 2017b).

4.2. Consistency with General Relativity

To test whether GW170608 is consistent with the predictions of GR, we consider possible deviations of coefficients describing the binary inspiral part of the signal waveform from the values expected in GR, as was done for previous detections (Abbott et al. 2016d, 2016i, 2017a). Tests involving parameters describing the merger and ringdown do not yield informative results, since the merger happens at relatively high frequency where the LIGO detectors are less sensitive. As in Abbott et al. (2017b), we also allow a sub-leading phase contribution at effective $-1\text{PN}$ order, i.e., with a frequency dependence of $f^{-7/3}$, which is absent in GR. The GR predicted value is contained within the 90% credible interval of the posterior distribution for all parameters tested.

Assuming that gravitons are dispersed in vacuum similarly to massive particles, we also obtained an upper bound on the mass of the graviton comparable to the constraints previously obtained (Abbott et al. 2016b, 2016i, 2017a). Possible violations of local Lorentz invariance, manifested via modifications to the GW dispersion relation, were investigated (Abbott et al. 2017a), again finding upper bounds comparable to previous results.

5. Astrophysical Implications

The low mass of GW170608’s source binary, in comparison to other binary black hole systems observed by LIGO and Virgo, has potential implications for the binary’s progenitor environment. High-metallicity progenitors are expected to experience substantial mass loss through strong stellar winds, while less mass loss is exhibited for low-metallicity progenitors (Belczynski et al. 2010; Spera et al. 2015). Thus, unlike more massive black hole binaries, GW170608’s low component masses do not necessarily require formation at low metallicity. Further discussion of the relationship between black hole masses and metallicity can be found in Abbott et al. (2016j).

We may compare GW170608’s relatively low-mass black hole binary components to black holes found in X-ray binaries. X-ray binary systems contain either a black hole or neutron star that accretes matter from a companion donor star. Low-mass X-ray binaries (LMXBs) are X-ray binaries with a low-mass donor star that transfer mass through Roche lobe overflow (Charles & Coe 2003). The inferred component masses of GW170608 are consistent with dynamically measured masses of black holes found in LMXBs, typically less than $10 \, M_\odot$. (Ozel et al. 2010; Farr et al. 2011; Corral-Santana et al. 2016).

Binary black holes may form through many different channels, including, but not limited to, dynamical interaction (Mapelli 2016; O’Leary et al. 2016; Rodriguez et al. 2016) and isolated binary evolution (Belczynski et al. 2016; Eldridge &Stanway 2016; Lipunov et al. 2017; Stevenson et al. 2017b). While the inferred masses and tilt measurements of GW170608 are not sufficiently constrained to favor a formation channel, future measurements of binary black hole systems may hint at the formation histories of such systems (Abbott et al. 2017a, 2016) and references therein. It may be possible to determine the relative proportion of binaries originating in each canonical formation channel following O(100)

The detection of GW170608 is consistent with the merger populations considered in Abbott et al. (2016k, 2016d), for which a rate of 12–213 Gpc$^{-3}$ yr$^{-1}$ was estimated in Abbott et al. (2017a).

6. Outlook

LIGO’s detection of GW170608 extends the mass range of known stellar-mass binary black hole systems and hints at connections with other known astrophysical systems containing black holes. The O2 run ended on 2017 August 25; a full catalog of binary merger GW events for this run is in preparation, including candidate signals with lower significance and systems other than stellar-mass black hole binaries (Abbott et al. 2017c). Estimates of the merger rate and mass distribution for the emerging compact binary population will also be updated.

With expected increases in detector sensitivity in the third advanced detector network observing run, projected for late 2018 (Abbott et al. 2016i), detection of black hole binaries will be a routine occurrence; studying this population will eventually answer many questions about these systems’ origins and evolution.

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidencia i Conselleria d’Innovació Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació Investigació Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources.

Appendix

Angular Coupling Minimization

GW170608 was observed during a routine instrumental procedure at LHO that minimizes the coupling of angular control of the test masses to noise in the GW strain measurement. To maintain resonant power in the arms, the pitch and yaw angular degrees of freedom of the four suspended cavity test masses at each detector (Abbott et al. 2016a) must be controlled. This is achieved by actuating on the second stage of the LIGO quadruple suspensions. A feed-forward control is employed in order to leave the beam position of the main laser on the test mass unchanged while this actuation is applied. However, if this position differs from the actuation point, the angular control can affect the differential arm length, thus introducing additional noise in the strain measurement (Kasprzack & Yu 2016). As the beam position can drift over periods of hours or days, the angular feed-forward control must be periodically adjusted in order to minimize the coupling to strain.

During this procedure, high amplitude pitch and yaw excitations are applied to the test masses via actuation of the suspensions. Each of the 8 angular degrees of freedom is excited at a distinct frequency; the resulting length signals are observed via demodulation at each excitation frequency, revealing how strongly the corresponding degree of freedom couples to differential arm length. The feed-forward gain settings are stepped at intervals of approximately 45 s and the global minimum of angular control coupling to strain is determined from the resulting measurements. The frequencies of angular excitations are equally spaced between ∼19 Hz and ∼23 Hz, generating excess power in the differential arm motion, and thus in the measured strain around these frequencies. This procedure covers from ∼2 minutes before to ∼14 minutes after GW170608, shown in Figure 4 (left). During the period from ∼2 to 2 minutes, substantial excess noise is visible at frequencies around 20 Hz. To characterize this noise we show amplitude spectral densities derived from 240 s of data both before the onset of the angular excitations and during the excitations around the event time in Figure 4 (right). No effect on the spectrum is visible above 30 Hz.

During the procedure, angular control gain settings are stepped abruptly; inspection of all such transition times shows no evidence for transient excess noise in the strain data outside the 19–23 Hz excitation band. The closest transition to the event time was 10 s before the binary merger; thus, any transient noise associated with this transition could not have affected the matched-filter output at the event time (template waveforms for GW170608-like signals have a duration between 2 and 3 s). Furthermore, the output of a matched-filter search analyzing LHO data from periods when this procedure was performed shows a distribution of $S/N$s similar to that obtained from other times. Thus, we find no evidence that the angular coupling minimization affected the recorded strain data at LHO around the event time at frequencies above 30 Hz.
Figure 4. Left: spectrogram of strain data from LHO around the time of GW170608. This plot shows variations in the noise spectrum of the detector over periods on the scale of minutes; unlike Figure 1, it is not designed to show short-duration transient events. The strain amplitude is normalized to the interval between (−6, 2) minutes in the left panel, and for data before the start of the angular coupling minimization at LHO, (−6, −2) minutes. Excess noise is clearly visible around 20 Hz but data above 30 Hz are unaffected.

Figure 5. Right: amplitude spectral density of strain data at both LIGO observatories for 240 s around the event time, (−2, 2) minutes in the left panel, and for data before the start of the angular coupling minimization at LHO, (−6, −2) minutes. Excess noise is clearly visible around 20 Hz but data above 30 Hz are unaffected.

102 Montana State University, Bozeman, MT 59717, USA
103 Universitat de les Illes Balears, IAC—IEEC, E-07122 Palma de Mallorca, Spain
104 The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
105 Bellevue College, Bellevue, WA 98007, USA
106 Institute for Plasma Research, Bhat, Gandhinagar 382428, India
107 The University of Sheffield, Sheffield S10 2TN, UK
108 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
109 INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
110 California State University, Los Angeles, 5151 State University Dr, Los Angeles, CA 90032, USA
111 Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
112 Montclair State University, Montclair, NJ 07043, USA
113 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
114 Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain
115 School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK
116 University and Institute of Advanced Research, Koba Institutional Area, Gandhinagar Gujarat 382007, India
117 IISER-TVM, CET Campus, Trivandum Kerala 695016, India
118 University of Szeged, Dóm tér 9, Szeged 6720, Hungary
119 University of Michigan, Ann Arbor, MI 48109, USA
120 Tata Institute of Fundamental Research, Mumbai 400005, India
121 INAF, Osservatorio Astronomico di Capodimonte, I-80131, Napoli, Italy
122 Università degli Studi di Urbino “Carlo Bo,” I-61029 Urbino, Italy
123 INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
124 Physik-Institut, University of Zurich, Winterthurstrasse 190, 8057 Zurich, Switzerland
125 American University, Washington, DC 20016, USA
126 University of Bialystok, 15-424 Bialystok, Poland
127 University of Southampton, Southampton SO17 1BJ, UK
128 University of Washington Bothell, 18115 Campus Way NE, Bothell, WA 98011, USA
129 Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
130 Korea Astronomy and Space Science Institute, Daejeon 34055, Korea
131 Inje University Ginnae, South Gyeongsang 50834, Korea
132 National Institute for Mathematical Sciences, Daejeon 34047, Korea
133 NCBJ, 05-400 Świerk-Otowo, Poland
134 Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
135 Hillsdale College, Hillsdale, MI 49242, USA
136 Hanyang University, Seoul 04763, Korea
137 Seoul National University, Seoul 08826, Korea
138 NASA Marshall Space Flight Center, Huntsville, AL 35811, USA
139 ESPCI, CNRS, F-75005 Paris, France
140 Southern University and A&M College, Baton Rouge, LA 70813, USA
141 College of William and Mary, Williamsburg, VA 23187, USA
142 Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco
143 Indian Institute of Technology Madras, Chennai 600036, India
144 ISER-Kolkata, Mohanpur, West Bengal 741252, India
145 Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
146 Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
147 Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
148 Université de Lyon, F-69361 Lyon, France
149 Hobart and William Smith Colleges, Geneva, NY 14456, USA
150 OzGrav, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
151 Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland
152 University of Washington, Seattle, WA 98195, USA
153 King’s College London, University of London, London WC2R 2LS, UK
154 Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India
155 Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana 502285, India
156 International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil
157 Andrews University, Berrien Springs, MI 49104, USA
158 Università di Siena, I-53100 Siena, Italy
159 Trinity University, San Antonio, TX 78212, USA
160 Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
161 Abilene Christian University, Abilene, TX 79699, USA
162 Colorado State University, Fort Collins, CO 80523, USA
163 Deceased, 2017 February.
164 Deceased, 2016 December.