Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of *Tshz1* Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes

Introduction

The amygdala is a diverse collection of nuclei located in the lateral base of the telencephalon involved in the regulation of emotions (Zola-Morgan et al., 1991; Phelps and LeDoux, 2005). Projections from the prefrontal cortex (PFC) transmit signals encoding emotionally relevant stimuli to amygdalar inputs in the lateral amygdala (LA) (Iwata et al., 1986; Mascagni et al., 1993; Vertes, 2004; Gabbott et al., 2005; Likhtik et al., 2005). Signals are subse-
A PRL-regulated developmental switch in parvalbumin-positive interneurons at puberty

Tyszó et al., 2010

Materials and Methods

Animals

Animal protocols were conducted in accordance with guidelines set forth by the Cincinnati Children’s Hospital Medical Center Institutional Animal Care and Use Committee and the National Institutes of Health. All mice used in this study were maintained on an outbred background. Dlx1-Cre mice (RRID:MRRRC_056076-UCD) were obtained from GenSAT (Gong et al., 2007; Gerfen et al., 2013) and were genotyped with the following primers: Dlx1-Cre5 (5'-ATGCAAAGACCGCCACAAAT-3') and Dlx1-Cre3 (5'-GGCAAGCGACAGAGCAGT-3'). Sp8-GFP BAC (RRID:MRRRC_034608-UCD) mice were obtained from GenSAT (Gong et al., 2003) and genotyped with the primers GFP5-5' (5'-AGCCACCCCAAGGAAAGC-3') and GFP5-3' (5'-CCAAACAGATGGCCTGGAC-3'). Tshz1^{FLox} mice (Ranganokova et al., 2014) were genotyped with either of the following two primer pairs: Tshz1^{FLox}5' (5'-GTGGAGGGCCCTTGTGAACC-3') and Tshz1^{FLox}GFP (5'-AAAGTGCTGCTGTCATG-3') or EGFP5' (5'-GAGTAAACGGCCCAAGGTC-3') and EGFP3' (5'-CTTCACTGGTGACCTCTTCA-3').

Fish

Fish were genotyped with the primers: Tshz1^{FLox}5' (5'-GTGGAGGGCCCTTGTGAACC-3') and Tshz1^{FLox}GFP (5'-AAAGTGCTGCTGTCATG-3') or EGFP5' (5'-GAGTAAACGGCCCAAGGTC-3') and EGFP3' (5'-CTTCACTGGTGACCTCTTCA-3').

In situ hybridization

The animals used for the in situ hybridization study were obtained from the Institute for Mouse Genetics (IMSG, JAX:003724) and were genotyped with either of the following two primer pairs: Tshz1^{FLox}GFP5 (5'-AGCCTGGCTCCATGAT-3') and Tshz1^{FLox}GFP3 (5'-ATGGCTGGCAAC-3').

Immunohistochemistry

The mice used for immunohistochemistry were obtained from ICR (AB_513447), rabbit anti-Foxp2 (1:5000, Abcam, RRID:AB_2341188), guinea pig anti-doublecortin (1:3000, Millipore, RRID:AB_1268914), rabbit anti-ERβ1 (1:1000) (Zhu et al., 1995), rabbit anti-Foxp1 (1:5000, Abcam, RRID:AB_732428), rabbit anti-Foxp2 (1:5000, Abcam, RRID:AB_2107107), goat anti-Foxp2 (1:1000, Abcam, RRID:AB_1268914), chicken anti-GFP (1:1000, Aves Laboratories, RRID:AB_10000240), rabbit anti-Grox2 (1:5000) (Toressen et al., 2000), rabbit anti-Ki67 (1:1000, Novacastra, RRID:AB_442102), rabbit anti-Mef2c (1:2000, Proteintech, RRID:AB_513447), rabbit anti-Meis2 (1:500, Atlas Antibodies, RRID:AB_611953), rabbit anti-Pax6 (1:1000, Biolegend, RRID:AB_291612), and goat anti-Sp8 (1:5000, Santa Cruz Biotechnology, RRID:AB_2194626). Secondary antibodies used were as follows: donkey anti-chicken conjugated with Alexa-488 (1:400, Jackson ImmunoResearch Laboratories, RRID:AB_2340375); donkey anti-goat

Intracerebroventricular injection

Intracerebroventricular injection was performed using a Hamilton syringe with a 27-gauge needle. The injection volume was 0.5 μl per side.

Electrophysiology

Electrophysiological recordings were performed using a CWE 3700e micromanipulator with a tungsten electrode (FHC, RRID:AB_2334075) and a tungsten electrode (FHC, RRID:AB_2334075) as the reference. The extracellular signal was amplified using a Pajitow MK3 amplifier (Pajitow, RRID:AB_2334075) and recorded using a SigmaPlot software (Systat Software, RRID:AB_2334075).

Statistical analysis

Data were analyzed using one-way ANOVA followed by Tukey’s post-hoc test. Significance level was set at p < 0.05.
conjugated with Alexa-594 (1:400, Jackson ImmunoResearch Laboratories, RRID:AB_2340434); donkey anti-guinea pig conjugated with Alexa-594 (1:400, Jackson ImmunoResearch Laboratories, RRID:AB_2340475); and donkey anti-rabbit conjugated with Alexa-594, Cy3, or Alexa-647 (1:400, Jackson ImmunoResearch Laboratories, RRID:AB_2340622, RRID:AB_2307443, and AB_2306452, respectively). Donkey anti-chicken conjugated with biotin (1:200, Jackson ImmunoResearch Laboratories, RRID:AB_2340355) followed by ABC HRP kit (both reagents 1:200, Vector).

SSP-18 was used for immunohistochemistry.

Digital micrographs of immunohistochemical stains were acquired with a Nikon 90i upright microscope. For fluorescent stains, Z stacks were acquired with either a Nikon AIR LUN-V laser scanning inverted confocal microscope or a Nikon A1 L-A laser scanning inverted confocal microscope. Z stacks were converted into maximum intensity projections using NIS-elements software. Brightness and contrast or color adjustments were made equally to both control and mutant images using either GIMP 2 or Adobe Photoshop CS6 software.

In situ hybridization

In situ hybridization was performed at 65°C on 12 µm cryosections as described by Toresson et al. (1999). Tshz1 coding domain antisense probe was generated using the primer pair Tshz15′-GCATCAAGGAGACGAGGAGG-3′ and Tshz13′-TACACGGAAGAAGGAGACCTTGGA-3′. Adora2a antisense probe was generated by the primer pair Adora2a5′-GGTTGTGATTGGGTACACGGG-3′ and T3-Adora2a3′-TATAACCTCCAATAGGGAGAGCAGTGTGATGTGGGCGGG-3′. Cyp26b1 antisense probe was generated with the primer pair Cyp26b15′-GGTTGTGAAGGAGCCAGGATTCTT CC-3′ and T3-Cyp26b13′-TATAACCTTACAAAGGGCGAGACACACGAGGACG-3′). Digital micrographs were obtained with a Nikon 90i Upright microscope. To generate overlays, in situ images were pseudocolored red using Adobe Photoshop CS6 software and superimposed onto micrographs of GFP immunohistochemical staining (pseudocolored green) from immediately adjacent sections. Images were rotated and resized to align the two images using the hippocampus and edge of the cortex as landmarks.

RNA sequencing

E16.5 Embryos were harvested and stored on ice while tail tissue samples were used for genotyping. Brains from Tshz1GFP/+ or Tshz1GFP/- embryos were dissected, quickly embedded in low melting agarose at 36°C, and hardened on ice. Brains were cut into 700 µm coronal sections using a vibratome. The ventrolateral portions of caudal telencephalic sections (H9262) were collected in 350 l l buffer RLT (QIAGEN) with 1% (v/v) 2-mercaptoethanol, and RNA was isolated using the QIAGEN RNeasy Micro Kit. Double-stranded cDNA was generated and amplified with the NuGEN Ovation RNA-Seq System version 2. The Nextera XT DNA Sample Preparation Kit was used to create DNA library templates from the double-stranded cDNA. The size of the libraries for each sample was measured using the Agilent HS DNA chip. The samples were placed in a pool, and the concentration of the pool was optimized to acquire at least 30–35 million reads per sample. Paired 75 bp reads were obtained with the Illumina HiSeq 2500 platform. Sequencing data have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are accessible through GEO Series accession number GSE99164 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99164). Reads were mapped to the mm10 transcriptome using RSEM (Li and Dewey, 2011).

Behavioral testing procedures

Male mice were weaned at postnatal day 28 and housed with littermates. Behavioral testing was performed between 9:00 A.M. and 3:00 P.M. by an experimenter who was blind to genotype. All mice were sequentially tested in the behaviors listed below during the light phase of the light/dark cycle with a 3 d intertest interval between each test.

Elevated zero maze test

Mice were placed in the maze consisting of two open quadrants and two closed quadrants elevated 24 inches off the floor and left undisturbed for 5 min. Mice were video recorded for the duration of testing. Time spent in the open quadrants and number of entries into the open quadrants were measured by a trained observer blind to experimental groups (Zarrindast et al., 2012).

Social interaction test. The social interaction test was performed as described by Spencer et al. (2011). Briefly, individual mice were housed for 2 d and 2 nights in one side of a partitioned cage divided in half by a clear perforated (0.6 cm diameter holes) partition with a partner mouse of either the same or different genotype. On the following day (10:00 A.M. to 2:00 P.M.), the partition was removed and mice were acclimated for 5 min before interaction was video recorded for the next 10 min. Social behavior was later scored using the video recordings by an observer (Spencer et al., 2011). Scored behaviors were grouped into three main categories: (I) active social behavior, which is any behavior initiated by the experimental mouse toward the partner mouse (categorized as either investigative or aggressive), including the following: (1) anogenital sniffing, (2) nonanogenital sniffing, (3) direct aggressive attacks, (4) lateral threats, (5) tail rattling, (6) chasing, (7) aggressive grooming, and (8) wrestling/boxing; (II) passive social behavior, defined as behavior of the experimental mouse responding to behavior initiated by the partner mouse, including (1) freezing, (2) fleeing, (3) defeat postures, (4) acceptance of the partner mouse investigation without defensive behavior, and (5) active defense; and (III) nonsocial behaviors, including (1) cage exploration, (2) rest, (3) self-grooming, and (4) eating.

Forced swim tests (FST). As previously described (Boyle et al., 2005), mice were placed in a 2 L beaker with 1.3 L of water (18°C–20°C). The level of the water prevented the animals from escaping or from reaching the bottom of the container. Mice were continuously monitored for immobility behavior from 1 to 6 min of a 6 min trial. Immobility was defined as the lack of all motion, except respiration, and the minimal movement required to keep the mouse afloat. At the end of the trial, the mouse was removed from the water, dried, and returned to its home cage.

Open field test. Following the above described test battery, mice were assessed in an automated locomotor activity chamber (Photobeam Activity System, San Diego Instruments) for 1 h as described by Stottmann et al. (2017). Activity chambers were 41 cm (width) × 41 cm (depth) × 38 cm (height) with 16 photobeams spaced 2.5 cm apart in the x and y planes.

Fear conditioning and extinction. A separate cohort of male mice, between 6 and 11 months of age, was used for fear conditioning and extinction and did not undergo the above behavioral test battery. Testing was conducted over 5 d. Mice were placed in 25 × 25 cm conditioned fear boxes (San Diego Instruments) with grid floors, speakers, and light mounted in the ceiling, and infrared photocells in the x and y planes. On day 1, mice were habituated to the arena for 20 min. On day 2, conditioning consisted of a 3 min habituation followed by 6 tone/light (conditioned stimuli [CS])-footshock (unconditioned stimulus [US]) pairings. The tone (82 dB, 2 Hz) and light were on for 8 s followed by a footshock that lasted 2 s (1 mA) through the grid floor. There was a 100 s intertrial interval between pairings. On day 3, contextual fear was tested by placing mice in the same chamber for 6 min with no CS present. On day 4, cued fear and extinction were tested by placing mice in a different chamber (black triangular boxes with solid floor), with no tone for the first 3 min followed by light and tone for another 3 min. This sequence was then repeated 20 times to extinguish the CS-US association. On day 5, the extinction sequence was repeated 11 times as a test of extinction recall.

Experimental design and statistical analysis

Both male and female mice were included in all anatomical analyses. For observations not accompanied by cell counts, at least 3 mice/embryos were analyzed for each condition and time point described. For cell counts, all cells expressing the indicated markers within the indicated areas of interest were counted from three consecutive sections from 3 or 4 mice/embryos (n values, ages, and regions of interest indicated in figures and figure legends) using either Imaris or ImageJ (Schneider et al., 2012) software. Statistics comparing cell numbers or percentage coexpression between controls and mutants were performed using a two-tailed t test (Microsoft Excel) with the variance parameter determined by...
the result of an F test. Marker coexpression between three distinct regions (see Fig. 3F) were compared using a single-factor ANOVA. Significance was set at \(p \leq 0.05 \). Bar graphs represent mean ± SEM. Bar graphs depicting cell numbers indicate total cells counted across three sections.

Four mice of each genotype were sequenced for RNA-Seq experiments. Differential expression and significance testing were determined by pairwise comparison of controls and mutants from each litter using the GLM functionality of the EdgeR package following TMM normalization (Robinson et al., 2010). Multiple hypothesis-corrected significance measures were obtained using the Benjamini–Hochberg method, and significance threshold was set at false discovery rate \(\leq 0.1 \) (Benjamini and Hochberg, 1995). Gene ontology (GO) and KEGG pathway gene sets were obtained from Bioconductor, and enrichment within our dataset was determined by paired analysis in the GAGE R package with the same.dir argument set to FALSE (Luo et al., 2009). Pathways and GO terms were considered significant if the \(q \) value following Benjamini–Hochberg adjustment was \(< 0.05 \). To analyze differential expression of olfactory bulb \(Tshz1 \) targets, microarray data from E18.5 embryo olfactory bulbs were obtained from GEO (accession no. GSE51761), and enrichment of genes differentially expressed at \(p \leq 0.01 \) was analyzed with EdgeR’s “camera” function.

Male mice were used for all behavioral studies. One cohort of mice aged \(6–7 \) months in age underwent the following tests in order: elevated zero maze, social interaction test, FST, open field test. A second cohort of mice between 6 and 11 months was analyzed for fear conditioning and extinction. The number of mice analyzed for each assay are indicated in the figure legends. Significance for all behavioral tests was set at \(p \leq 0.05 \). All fold changes reported are calculated as (mutant value – control value)/control value.

In the elevated zero maze, differences in the amount of time spent in the open quadrants between controls and mutants were compared with a two-tailed \(t \) test assuming equal variance, whereas differences in the number of entries into the open quadrants were compared using a two-tailed \(t \) test assuming unequal variance. In the FST, differences between control and mutant mice in the percentage time spent immobile were compared with a two-tailed \(t \) test assuming unequal variance.

Four groups of mice were tested in the social interaction test: controls paired with control partners, mutants paired with control partners, controls paired with mutant partners, and mutants paired with mutant partners. Dependent measures were latency to enter partner’s portion of the cage, time engaged in active social behavior, and numbers of aggressive, investigative, passive, and nonsocial behaviors. The effects of subject phenotype, partner genotype, and the interaction of the two were modeled with a two-way ANOVA, and \(p \) values for between-group comparisons were calculated with post hoc Tukey HSD tests.

In the open field test, dependent measures were the total number of infrared photobeam interruptions (beam breaks) and the number of beam breaks in the peripheral and central regions of the apparatus, as well as repetitive breaks of the same photocell beam as an index of fine motor movement. Measures were recorded across twelve 5 min intervals. Effects of genotype, interval, and genotype \(\times \) interval interaction on distance traveled and time spent in the central region were analyzed using mixed linear factor ANOVA where interval was a repeated-measures factor. Degrees of freedom were calculated using the Kenward–Roger method. Significance was set at \(p \leq 0.05 \).

In fear conditioning and extinction experiments, the dependent measure was the number of infrared photobeam interruptions (inverse of freezing). Effects of genotype, test interval, and genotype \(\times \) interval interaction were analyzed for each day using mixed linear ANOVA models (SAS Proc Mixed, SAS Institute, version 9.3 TS Level 1M2) with an autoregressive-1 covariance structure and interval as a repeated-measures factor. Kenward–Rogers first-order degrees of freedom were used. Significant interactions were analyzed using slice-effect ANOVAs at each level of the repeated-measures factor. The effect of extinction training was tested by comparing the first cued interval on day 5 (extinction testing) to the first cued interval on day 4 (extinction training) using one-tailed paired \(t \) tests.

Results

Tshz1 expression characterization

Previous studies have described \(Tshz1 \) gene expression in the dLGE and intercalated cell masses of the amygdala as well as in the LMS linking these structures during development (Caubit et al., 2005; Carney et al., 2009; Cocos et al., 2011). To analyze further this \(Tshz1 \)-expressing population of cells, we investigated the timing and location of GFP expression in \(Tshz1^{GFP/+} \) mice, in which one allele coding for \(Tshz1 \) protein was replaced with a GFP-encoding cassette (Ragancokova et al., 2014). Immunostaining for GFP protein (Fig. 1E) recapitulated the expression pattern of the \(Tshz1 \) gene (Fig. 1A) within the ventrolateral region of the telencephalon. GFP protein was detectable at E13.5 in cells emerging from the LGE and migrating laterally toward the basolateral mantle region (Fig. 1B). Two gestational days later (i.e., E15.5), \(Tshz1 \) expression in the subventricular zone (SVZ) had become restricted to the dLGE, and robust staining was observed in the LMS as well as in clusters in the forming amygdalar complex (Fig. 1C).

By E18.5, several distinct clusters of GFP \(^+\) cells were observed to surround the basolateral amygdalar complex as well as in the main IA (Fig. 1D,F–H). GFP \(^+\) cells coexpressed the forkhead transcription factor Foxp2, a previously described ITC marker (Fig. 1F) (Takahashi et al., 2008; Koaru et al., 2010; Waclaw et al., 2010). These cell clusters encapsulated the BLA, marked by Er81, and the LA as labeled by Mef2c (Fig. 1G,H) (Stenman et al., 2003b; Waclaw et al., 2010). GFP \(^+\) cells were largely absent from the LA, BLA, or CeA.

The dLGE cells contain representing distinct lineages and at different stages of maturity. To understand further the \(Tshz1 \)-expressing subpopulation of dLGE cells, we contained \(Tshz1^{GFP/+} \)-embryo brains for GFP and known markers of previously characterized populations. GFP-expressing cells were distinct from cells expressing the proliferation marker Ki67 (Gerdès et al., 1984) (Fig. 2A,B) and the dorsally enriched LGE progenitor marker Gsx2 (Yun et al., 2001; Waclaw et al., 2009) (Fig. 2C,D). The GFP \(^+\) cells in the dLGE showed limited colabeling with the transcription factor Sp8, which marks the SVZ of the dLGE (Waclaw et al., 2006) (Fig. 2E,F). Moreover, \(Tshz1 \)-driven GFP showed no coexpression with Pax6, which marks another, largely distinct population of dLGE cells (Yun et al., 2001; Stenman et al., 2003b; Waclaw et al., 2006) (Fig. 2G,H). In the LMS and amygdala, GFP \(^+\) cells highly coexpressed the migratory neuroblast marker, doublecortin (Francis et al., 1999) (Fig. 2I,J) as well as the ITC marker Foxp2 (Fig. 2K,L). Previous work has shown reduced ITC numbers in Gsx2 and Sp8 mutants (Waclaw et al., 2010). Consistent with this, we observed a 40% reduction in the total number of GFP-labeled cells in the amygdala (4.07, \(p = 0.015 \) in Gsx2-null mutants containing the \(Tshz1^{GFP} \) allele compared with Gsx2 heterozygous controls (Fig. 2M,N,Q). Further examination revealed that this reduction was largely driven by a loss of cells in the lateral paracapsular clusters (4.33, \(p = 0.012 \)) and IA (3.10, \(p = 0.036 \)), whereas the number of cells in the medial paracapsular clusters was not significantly altered (4.44, \(p = 0.68 \)). To support further the dLGE origin of ITCs, we used E16.5 Sp8- GFP BAC transgenic mice from GENSAT (Gong et al., 2003) to label dLGE progenitors as well as their neuronal offspring (e.g., ITCs). We found that the Sp8-driven GFP signal persists in the ITCs, many of which are marked by Foxp2 (Fig. 2O,P) despite the fact that few of the \(Tshz1 \) GFP \(^+\) ITCs express Sp8 protein, suggesting that these cells are derived from Sp8-expressing progenitors (Fig. 2E).
We next assessed GFP expression in Tshz1^{GFP}/^{+/+} mice at postnatal time points. GFP protein was found to label ITCs at both rostral (Fig. 3A–D) and caudal (Fig. 3E) portions of the amygdala. As expected, mature Tshz1 GFP⁺ ITCs in postnatal mice were largely immunopositive for Foxp2 and another ITC marker, Meis2 (Fig. 3A–C) (Stenman et al., 2003b; Takahashi et al., 2008; Kaoru et al., 2010; Waclaw et al., 2010). Among all GFP cells occupying the medial and lateral paracapsular ITC clusters and the IA, 84.0% coexpressed Meis and Foxp2, 12.3% coexpressed Foxp2 only, and 2.2% were negative for Foxp2 and Meis only. No significant differences were observed in the proportion of cells coexpressing any of these combinations of markers between the lateral paracapsular clusters, medial paracapsular clusters, and IA. Tshz1^{GFP} gene expression in the LGE, LMS (arrow), and ITC clusters. Solid arrowhead indicates lateral. Open arrowhead indicates medial. Open arrowhead indicates lateral. Immunohistology for GFP (green) in E13.5 Tshz1^{GFP}/^{+/+} mice shows GFP protein extending from the dLGE SVZ to the mantle zone. C, D, At E15.5 (C) and E18.5 (D), GFP protein expression refines to a distinct stream (arrow) emerging from the dLGE and several contiguous clusters in the amygdala comprising the lateral paracapsular clusters (solid arrowheads), medial paracapsular clusters (open arrowheads), and IA. E, F, Immunohistological staining recapitulates the Tshz1 expression pattern (A). F, Amygdalar GFP staining colocalizes with the ITC marker Foxp2. G, H, GFP-labeled cells in the amygdala surround cells expressing the BLA marker Er81 (G) and the LA marker Mef2c (H). BM, Basomedial amygdala; Ctx, cortex; HPC, hippocampus; LGE, lateral ganglionic eminence; MA, medial amygdala; MGE, medial ganglionic eminence; Stm, striatum; TH, thalamus. Scale bars: A–E, 500 μm; F–H, 100 μm.

Figure 1. Tshz1^{GFP} drives GFP in the LGE and ITC clusters. A, In situ hybridization showing Tshz1 gene expression in the LGE, LMS (arrow), and ITC clusters. Solid arrowhead indicates lateral. Open arrowhead indicates medial. B, Immunohistology for GFP (green) in E13.5 Tshz1^{GFP}/^{+/+} mice shows GFP protein extending from the dLGE SVZ to the mantle zone. C, D, At E15.5 (C) and E18.5 (D), GFP protein expression refines to a distinct stream (arrow) emerging from the dLGE and several contiguous clusters in the amygdala comprising the lateral paracapsular clusters (solid arrowheads), medial paracapsular clusters (open arrowheads), and IA. E, F, Immunohistological staining recapitulates the Tshz1 expression pattern (A). F, Amygdalar GFP staining colocalizes with the ITC marker Foxp2. G, H, GFP-labeled cells in the amygdala surround cells expressing the BLA marker Er81 (G) and the LA marker Mef2c (H). BM, Basomedial amygdala; Ctx, cortex; HPC, hippocampus; LGE, lateral ganglionic eminence; MA, medial amygdala; MGE, medial ganglionic eminence; Stm, striatum; TH, thalamus. Scale bars: A–E, 500 μm; F–H, 100 μm.

Together, our observations led us to propose the ITC differentiation model depicted in Figure 3G in which Gsx2-positive dLGE progenitors give rise to Sp8-positive secondary (i.e., SVZ) progenitors. Sp8 is subsequently downregulated as these progenitors enter the LMS, upregulating Tshz1 and subsequently Foxp2 and μOR in the differentiating ITCs that settle in the amygdala.

ITC abnormalities in Tshz1 mutants

Previous research has demonstrated a requirement for Tshz1 in a subpopulation of olfactory bulb bound neuroblasts that fail to migrate radially once they reach the bulb (Ragancokova et al., 2014). However, no function has been attributed to Tshz1 during development of the other dLGE neuronal subtype (i.e., the ITCs). To determine whether Tshz1 is required for proper ITC development, we first analyzed germline Tshz1^{−/−} mutants at E18.5 by crossing Tshz1^{GFP}/^{+/+} mice with mice containing a Tshz1-null allele (Tshz1^{RRA}) to generate Tshz1^{−/−} mutants (i.e., Tshz1^{GFP/RRA}). Examination of the Tshz1^{GFP/RRA} mice revealed a complete disruption of the GFP⁺ ITC distribution pattern with an 82.9% reduction in the number of cells located in the lateral paracapsular clusters (t₄ = 4.95, p = 0.039) and an 82.2% reduction in number of cells located in the IA (t₄ = 10.2, p = 5.19 × 10^{−4}; Fig. 4A–E). There was no change in the expression of the LA/BLA markers Er81 and Mef2c in Tshz1^{GFP/RRA} embryos. On the medial side, a large cluster of GFP-labeled cells was observed next to the IA (compare Fig. 4C,D with Fig. 4A,B), although no significant alteration in the total number of cells along the medial boundary of the basolateral complex was detected (t₄ = −1.81, p = 0.14).
Figure 2. Characterization of ITC lineage progression. A–D, G, H, GFP \(^+\) cells in Tshz1\(^{GFP/+}\) embryos do not express Ki67 (A, B), Gsx2 (C, D), or Pax6 (G, H). E, F, GFP \(^+\) cells show partial overlap with Sp8. I–L, GFP \(^+\) cells highly express doublecortin (I, J) and Foxp2 (K, L). M, N, Gsx2 mutants (M) show reduced amygdala GFP staining compared with heterozygous controls (L). O, P, Sp8-GFP drives robust GFP expression in Foxp2-labeled ITCs. Q, Quantification of amygdalar GFP \(^+\) cells in Gsx2 mutants (\(n = 3\)) and controls (\(n = 3\)). Arrows indicate LMS. Solid arrowheads indicate lateral paracapsular intercalated cell clusters. Open arrowheads indicate medial paracapsular intercalated cell clusters. LGE, Lateral ganglionic eminence; LPCs, lateral paracapsular clusters; MPCs, medial paracapsular clusters. Quantifications are displayed as mean ± SEM. *\(p \leq 0.05\). Scale bars: A, C, E, G, I, K, M, O, 200 \(\mu\)m; B, D, F, H, J, L, P, 20 \(\mu\)m.
Further analysis of this population revealed that many of the mutant GFP-expressing cells aberrantly coexpressed Sp8 (compare Fig. 4 H, I with Fig. 4 F, G; see also Fig. 2 E, F). An average of 57.7% of GFP-labeled cells in the amygdala of mutants were observed to coexpress Sp8, whereas only 8.4% of GFP+ cells in the control amygdala expressed Sp8 (t(4) = −8.21, p = 1.20 × 10−3; Fig. 4 F–J). Moreover, GFP+ Tshz1 mutants ITCs frequently failed to coexpress Foxp2, with only 62.4% colocalization in contrast to controls in which 95.0% of ITCs were Foxp2-positive (t(4) = 7.46, p = 1.72 × 10−3; Fig. 4 K–O). Thus, in the absence of Tshz1, ITCs appear to undergo altered migration and inappropriate differentiation at embryonic stages.

Tshz1 germline mutants have been shown to die within 24 h of birth (Coré et al., 2007; Ragancokova et al., 2014). To follow the development of Tshz1-null ITCs at postnatal time points, we generated ventral forebrain-specific Tshz1 cKOs. Previous work has shown Dlx2 expression in subpallial germinal zones, and these subpallial regions contribute to the LMS (Panganiban and Rubenstein, 2002; Carney et al., 2006). This expression is governed by a set of shared enhancers located in the intergenic region between Dlx1 and Dlx2 (Ghanem et al., 2003; Park et al., 2004). We obtained a Dlx1-cre BAC transgenic line from GENSAT, reasoning that this intergenic region may be sufficient to drive Cre expression in ITC precursors while sparing Tshz1-expressing populations outside of the basal forebrain (Gong et al., 2007; Gerfen et al., 2013). Indeed, Dlx1-creTshz1GFP/Flox (i.e., ventral forebrain-specific Tshz1 cKO) mice were viable into adulthood and at P21 displayed nearly complete loss of Tshz1 coding mRNA in the dLGE and amygdala, whereas Tshz1 expression in the dorsal thalamus remained largely intact (compare Fig. 5 C with Fig. 5 A).

Analysis of postnatal Tshz1 cKOs revealed an amygdalar phenotype reminiscent of that seen in the E18.5 germline Tshz1 mutants. Specifically, at P3, Tshz1 cKO mutants displayed a nearly complete loss of ITCs in the lateral paracapsular clusters (83.4% reduction, t(4) = 17.63, p = 6.08 × 10−3) and IA (84.1% reduction, t(2) = 5.89, p = 0.028), and the presence of ectopically located GFP+ cells clustered off the medial border of the lateral amygdala. In contrast to our findings in E18.5 embryos, however, P3 conditional mutants also displayed a 53% reduction in the number of cells observed medial to the basolateral complex compared with controls (t(4) = 12.8, p = 2.12 × 10−4), suggesting a loss of GFP-labeled cells between E18.5 and P3 (Fig. 5 B, D, E).

Again, in agreement with the findings at E18.5 (Fig. 4), the clustered mutant GFP+ cells exhibited ectopic Sp8 expression (compare Fig. 5 H, I with Fig. 5 F, G) with 32.1% of cells observed to coexpress Sp8 in mutants compared with 2.4% of control cells (t(4) = −5.25, p = 0.034; Fig. 5 J) and loss of Foxp2 (compare Fig. 5 M, N with Fig. 5 K, L) with only 60.3% of mutant cells expressing Foxp2 compared with 90.5% of control cells (t(4) = 5.15, p = 6.74 × 10−3; Fig. 5 O). Additionally, 19.8% of GFP-labeled cells in cKOs coexpressed Foxp1, a marker of striatal projection neurons (Tamura et al., 2004; Precious et al., 2016) that we only observed in 3.0 × 10−7% of control ITCs. We interpreted this atypical gene expression pattern as an indication that Tshz1-null ITC precursors become stalled in an intermediate, molecularly abnormal, state and fail to differentiate properly into mature ITCs.

GFP-expressing cells were abnormally distributed within the olfactory bulb in a manner similar to that previously reported.
cated in the lateral paracapsular clusters (region (4)). We quantified ITC numbers in Tshz1 mutant and control regions. Figure 4. Disrupted localization and gene expression in Tshz1 mutant ITCs. A, B, GFP+ ITCs are concentrated in the IA and distributed as clusters along the entire extent of the lateral (solid arrowheads) and medial (open arrowheads) borders of the BLA marked by Er81 (A) and LA marked by Metf2c (B) of control embryos (Tshz1\textit{GFP/+}). C, D, Tshz1 mutants (Tshz1\textit{GFP/RA}) display a large cluster (open arrowheads) of cells lying dorsal to the BLA (C) and medial to the LA (D), a striking reduction in IA density, and a nearly complete absence of lateral ITCs (solid arrowheads). E, Quantification of ITC numbers in Tshz1 mutants (n = 3) and controls (n = 3). F–I, Mutant ITCs (H, I) show increased Sp8 expression compared with controls (F, G). J, Quantification of the percentage of total GFP+ cells in the amygdala that also coexpress Sp8 (n = 3 for controls and mutants). K–N, Mutant ITCs (M, N) show reduced Foxp2 expression compared with heterozygous controls (M, N). D, Quantification of the percentage of total GFP+ cells in the amygdala that also coexpress Foxp2 (n = 3 for controls and mutants). LPCs, Lateral paracapsular clusters; MPCs, medial paracapsular clusters; Stm, striatum. Quantifications are displayed as mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Scale bars: A–D, F, G, K, M, 100 μm; G, I, L, N, 20 μm.

Specifically, GFP+ cells were more prominent within the RMS and were reduced in number in the granule cell layer and glomerular layer (data not shown). Examination of the striosomes by staining for GFP and μOR revealed no alteration in size, morphology, or number (data not shown). Nissl staining revealed no alterations in non–Tshz1-expressing regions known to participate in ITC-containing circuits, such as the LA, BLA, CeA, or mPFC.

Examination of the amygdala in P21 Tshz1 conditional mutants using GFP, Er81, and Metf2c expression revealed a pattern of GFP labeling around the LA/BLA similar to that observed at perinatal stages and suggestive of a perinatal loss of mutant ITCs (compare Fig. 5W,X with Fig. 5U,V). Specifically, mutants exhibited a 46.7% reduction in cells located in the medial paracapsular region \(t_{14} = 4.48, p = 0.011 \), an 89.8% reduction in cells located in the lateral paracapsular clusters \(t_{14} = 5.88, p = 0.028 \), and a 70.4% reduction in cells observed in the IA \(t_{14} = 5.89, p = 4.17 \times 10^{-5} \). Indeed, immunolabeling of P0.5 brains with the apoptosis marker, cleaved Caspase-3, revealed a dramatically increased number of apoptotic cells among the GFP-labeled cKO ITCs relative to controls (compare Fig. 6D–F with Fig. 6A–C). Within the LMS and amygdala of mutant animals, we observed a 1.3-fold increase in cleaved Caspase-3-positive cells compared with controls, indicating that the conditional mutant ITCs are dying already at early postnatal time points \(t_{14} = -10.5, p = 4.72 \times 10^{-4} \) (Fig. 6G). Apoptotic cells appeared to be concentrated within the clusters of GFP cells located medial to the basolateral complex, suggesting that cell death may underlie the reduction in GFP+ cells in this region between E18.5 (Fig. 4) and P3 (Fig. 5). In total, our results suggest that mutant ITCs in Tshz1 cKOs fail to properly migrate and differentiate and largely undergo apoptosis within the first postnatal week.

We next performed gene-expression profiling of Tshz1 controls and germline mutants to identify perturbations in transcriptional regulation resulting from loss of Tshz1 activity. We chose to collect material from E16.5 embryos because the LMS was most prominent at that time point. The caudal portion of the ventrolateral telencephalon of Tshz1\textit{GFP/+} mice and Tshz1\textit{GFP/RA} mice was dissected, pooled based on genotype, and dissociated for each of four litters. Because GFP+ cells comprise a minority of cells in this region of the brain, we enriched our sample for ITC precursors via FACS isolation of GFP+ cells before library preparation and sequencing (Fig. 7A). Comparison of transcript abundance identified 131 genes upregulated and 85 genes downregulated (Benjamini–Hochberg corrected false discovery rate \(q ≤ 0.1 \)) in Tshz1 mutants compared with controls (Fig. 7B). The list of downregulated genes included known regulators of neuronal migration ErbB4, Prokr2, and Dcc (Hamasaki et al., 2001; Anton,...
Figure 5. Altered ITCs in postnatal Tshz1 conditional mutants. A, C, In situ hybridization for the coding region of Tshz1 mRNA. Dlx1-Cre efficiently recombines Tshz1 in the LGE (arrows) and ITCs (solid arrowheads indicate lateral paracapsular clusters; open arrowheads indicate medial paracapsular clusters) while sparing Tshz1 in the thalamus of conditional knock-outs. B, D, GFP expression is maintained in the LGE of Tshz1 cKOs and can be seen in a cluster (open arrowhead) of cells medial to the LA and dorsal to the BLA of cKOs. cKOs display a nearly complete loss of GFP-labeled cells in the lateral paracapsular clusters (solid arrowheads). E, Quantification of GFP-labeled ITCs in P3 controls (n = 3) and cKOs (n = 3). F–I, Clustered cells in P3 Tshz1 mutants (H, I) show increased Sp8 expression compared with controls (F, G, J. Quantification of the percentage of total GFP+ cells in the amygdala that also coexpress Sp8 in P3 mice (n = 3 for controls and mutants). K–N, Clustered cells in P3 Tshz1 mutants (M, N) show reduced Foxp2 expression compared with controls (K, L). O, Quantification of the percentage of total GFP+ cells in the amygdala that also coexpress Foxp2 in P3 mice (n = 3 for controls and mutants). P–S, Tshz1 mutant ITCs (R, S) show ectopic Foxp1 expression compared with controls (P, Q, T. Quantification of the percentage of total GFP+ cells in the amygdala that also coexpress Foxp1 in P3 mice (n = 3 for controls and mutants). U–X, In P21 mutants (W, X), ITC numbers are severely reduced compared with controls (U, V), and ITCs are scattered along the medial border of the LA and BLA. Y, Quantification of GFP-labeled ITCs in P21 controls (n = 3) and cKOs (n = 3). HPC, Hippocampus; LPCs, lateral paracapsular clusters; MPCs, medial paracapsular clusters; Stm, striatum; TH, thalamus. Quantifications are displayed as mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Scale bars: A–D, 250 μm; F, H, K, M, P, R, 100 μm; G, I, L, N, Q, S, 25 μm; U–X, 200 μm.
in cells located in the BLA and CeA of wild-type embryos (Fig. 7K) (Abu-Abed et al., 2002). In situ hybridization confirmed robust upregulation in Cyp26b1 in GFP+ Tshz1 mutant ITCs (Fig. 7L). Adora2a is an adenosine receptor that robustly marks the indirect pathway in the striatum of wild-types (Fig. 7M) (Lobo et al., 2006; Heiman et al., 2008), and in situ hybridization demonstrated ectopic Adora2a expression in the mislocated GFP+ ITCs of Tshz1 mutants (Fig. 7N). The ectopic expression of markers of multiple distinct telencephalic regions in Tshz1 mutant ITCs is suggestive of a confused state in these maturing neurons. Indeed, the aberrant expression of markers in mutant ITCs is likely an effect of abnormal responses to local differentiation signals possibly stemming from perturbed Tshz1-dependent receptor expression, which ultimately leads to cell death.

Impaired ITC survival in Foxp2 mutant ITCs

Foxp2 has been shown to play a role in cortical neurogenesis and heterozygous mutations are implicated in human speech disorders (Lai et al., 2001; Fisher and Scharff, 2009; Tsui et al., 2013). Moreover, Foxp2 expression was found to be reduced, whereas Foxp1 expression was increased, consistent with immunostaining results presented above.

We performed GO analysis to identify biological processes associated with the altered transcriptional profiles of Tshz1 mutants (Fig. 7C). Among the most significant processes altered in Tshz1 mutants were processes associated with G-protein–coupled receptor signaling, biological adhesion, response to external stimuli, and regulation of locomotion. A similar analysis of differential gene abundance trends associated with molecular functions identified only one altered term, GO:0038023: signaling receptor activity (q = 2.1 × 10−7). Geneset enrichment analysis of KEGG pathways identified only mmu04080: striatum of wild-types (Fig. 7D). An analysis of the amygdala of E18.5 Foxp2S321X/S321X; Tshz1GFP/+ mice revealed no apparent difference in GFP+ ITC number or distribution compared with Foxp2S321X/S321X; Tshz1GFP+ controls (Fig. 8A–D). By P12, however, Foxp2S321X/S321X; Tshz1GFP+ ITC mice exhibited a 34.2% reduction in the number of ITCs compared with controls (t(8) = 3.32, p = 0.0105; Fig. 8E–I), suggestive of a critical role of Foxp2 downstream of Tshz1 for the postnatal survival of ITCs.

Tshz1 mutant behavioral abnormalities

Prior studies have associated TIC immunotoxic ablation in rats (Likhitik et al., 2008) or inhibition of excitatory inputs to the ITCs in mice (Jüngling et al., 2008) with an impaired ability to extinguish conditioned fear responses. To assess whether disrupted ITC development results in similar deficits, mice were trained in a fear conditioning paradigm (Laxmi et al., 2003), and movement (as an unbiased assessment of freezing) was measured to assess response to the CS (Jablonski et al., 2017). To simplify our breeding scheme, Dlx1-cre; Tshz1Flox/+ (cKOs) were compared with Dlx1-cre; Tshz1Flox/+ (controls). Twenty-four hours following habituation, mice were reintroduced to the chamber for 6 min of exploration, followed by six CS-US pairings analyzed in 3 min intervals. A genotype × interval ANOVA showed no effect of genotype and a significant effect of interval (F(3,75,α) = 40.46, p = 0.0001) that reflected the decrease in movement on intervals 3...
and 4 following CS-US pairing and showing that Tshz1 cKOs fear condition similarly to controls. There was also a genotype × interval interaction ($F_{(3,75.6)} = 5.78, p < 0.0013$). Slice-effect ANOVAs on each interval showed a significant effect of genotype on interval 1 (i.e., pre-stim) ($F_{(1,55.2)} = 7.41, p = 0.0087$) but not thereafter. During interval 1, Tshz1 cKO mice explored less than control mice (Fig. 9A). Twenty-four hours after conditioning, contextual response was assessed over two 3 min intervals in the

Figure 7. Gene expression profile of Tshz1 mutants. A, Caudal regions of the ventrolateral telencephalon of control (n = 4) and Tshz1 mutant (n = 4) embryos were dissected and GFP + ITCs were enriched by FACS sorting before RNA extraction and library preparation. B, Volcano plot illustrating global alterations in gene expression in Tshz1 mutants compared with controls with notable genes annotated. C, Significantly disrupted biological process gene ontology terms in Tshz1 mutants (if gene membership of two terms overlapped by 75% or more, only the more significant term is shown). D, Gene set enrichment analysis showed upregulation of genes previously shown to be upregulated in Tshz1 mutant olfactory bulbs and downregulation of genes previously shown to be downregulated in Tshz1 mutant olfactory bulbs. E–J, Immunofluorescence for Erbb4 showed reduced expression in Tshz1 mutant ITCs (F–J) compared with controls (E–G). K, L, Cyp26b1 in situ hybridization and GFP immunohistology pseudocolored and overlaid showing ectopic Cyp26b1 expression in Tshz1 mutant ITCs (L) compared with controls (K). M, N, Adora2a in situ hybridization and GFP immunohistochemistry pseudocolored and overlaid showing ectopic Cyp26b1 expression in Tshz1 mutant ITCs (N) compared with controls (M). Scale bars: E, H, K–N, 100 μm; G, F, I, J, 25 μm.
Figure 8. Impaired ITC survival in homozygous Foxp2 mutants carrying the Tshz1GFP allele. A–D, Immunofluorescence analysis of embryonic Foxp2 homozygote mutants (compare C with A) showed loss of Foxp2 and apparently normal numbers of GFP+ ITCs (compare B with D) encapsulating the Er81-positive BLA. E–G, Analysis of postnatal mutants also showed ITCs lacking Foxp2 protein (compare G with B) and revealed a 12% reduction in ITC number in homozygous Foxp2 mutants (H) compared with heterozygous controls (G). I, Quantification of GFP+ ITC numbers in Foxp2 mutants (n = 3) and controls (n = 3). Solid arrowheads indicate lateral paracapsular intercalated cell clusters. Open arrowheads indicate medial paracapsular intercalated cell clusters. Stm, Striatum. Quantifications are displayed as mean ± SEM. Scale bars: A–D, 100 μm; E–I, 200 μm. *p ≤ 0.05.

Figure 9. Reduced fear extinction recall in Tshz1 cKOs. A, On day 2, Tshz1 cKOs (n = 16) exhibited reduced exploratory behavior before stimulus exposure compared with controls (n = 14). Following paired CS-US exposure, both controls and mutants exhibited reduced movement. B, In a novel environment on day 4, Tshz1 cKOs exhibited reduced exploratory behavior before CS exposure. Both Tshz1 cKOs and controls showed reduced movement following CS exposure. C, On day 5, following the initial CS exposure, control mice activity rate was significantly elevated compared with the first CS exposure on day 4, indicative of an extinguished fear response. Tshz1 cKOs moved less than controls in response to the CS and did not exhibit a significantly different response than they did on day 4, suggesting impaired expression of fear extinction. Data are mean ± SEM. *p ≤ 0.05 (ANOVA). †p ≤ 0.05 (one-tailed paired t test).

geneotype × interval (F_{41,10025} = 1.48, p = 0.027; Fig. 9B). Slic-effect ANOVAs on each interval showed an effect on the first non-CS interval (F_{0.027} = 4.80, p = 0.0288), again with the Tshz1 cKO exploring less, but no effects thereafter (Fig. 9B; cued intervals shown are representative). On day 5, we assessed extinction recall over 11 repeated CS-on/CS-off trials. A genotype × interval ANOVA showed no effect of genotype and significant effects of interval (F_{21,521} = 3.66, p = 0.0001) and genotype × interval (F_{21,521} = 1.68, p = 0.03). Slic-effect ANOVAs on each interval showed an effect on the first CS interval (F_{1,486} = 119.8 vs day 5: 1415.7, p = 0.0001) and on the first cued interval compared with the same interval on the previous day (day 4: 1137 ± 119.8 vs day 5: 1415.7 ± 81.0; t₁₂ = 2.08, p = 0.03), indicating that they extinguished the fear response (Fig. 9B, C). However, the Tshz1 cKO’s response was not different between the days (day 4: 1071.7 ± 80.6 vs day 5: 1111.5 ± 69.2; t₁₄ = 1.0, not significant). Thus, as is the case.
in adult rodents (Jüngling et al., 2008; Likhtik et al., 2008), lack of functional ITC signaling in Tshz1 cKOs results in impaired expression of fear extinction.

In addition to fear, the PPC-amygda circuit, in which ITCs play an integral function, has been shown to play an important role in regulating anxiety and depression (Jüngling et al., 2008; Price and Drevets, 2010; Palomares-Castillo et al., 2012; Duvarcı and Pare, 2014). To determine whether cellular alterations in Tshz1 cKOs lead to abnormalities in these functions, we performed a number of additional behavioral assays on Tshz1 cKOs and controls. We first assessed anxiety-like behavior using the elevated zero maze (Kulkarni et al., 2007). These experiments revealed no significant difference between the Tshz1 cKOs and controls either in the amount of time spent in the open quadrants of the maze (A) or in the number of entries into the open quadrants (B, C, D). During the open field test, Tshz1 cKOs (n = 18) traveled a greater total distance compared with controls (n = 25) and spent less time in the center of the chamber (D). In the FST, Tshz1 cKOs (n = 36) spent significantly more time floating compared with controls (n = 29), suggestive of a depression-like phenotype. Data are mean ± SEM. *p ≤ 0.05 (mixed linear factorial ANOVA). **p ≤ 0.01 (mixed linear factorial ANOVA). †††p ≤ 0.001 (two-tailed t test).

Figure 10. Anxiety and depression-like behaviors examined in Tshz1 cKOs. A, B. In the elevated zero maze, no significant differences were observed between controls (n = 36) and cKOs (n = 29) in either the amount of time spent in the open quadrants of the maze (A) or in the number of entries into the open quadrants (B). During the open field test, Tshz1 cKOs (n = 18) traveled a greater total distance compared with controls (n = 25; C) and spent less time in the center of the chamber (D). E. In the FST, Tshz1 cKOs (n = 36) spent significantly more time floating compared with controls (n = 29), suggestive of a depression-like phenotype. Data are mean ± SEM. *p ≤ 0.05 (mixed linear factorial ANOVA). **p ≤ 0.01 (mixed linear factorial ANOVA). †††p ≤ 0.001 (two-tailed t test).

with the reduced exploratory behavior of the Tshz1 cKOs observed in the fear conditioning paradigm (see Fig. 9A, B); however, the environments in which movement was measured were different; and in the case of the open field test, mice underwent stressful tests (i.e., FST and social interaction) before testing. Tshz1 mutants also displayed a 31.0% reduction in the time spent in the center of the open field chamber compared with the edges, which has been suggested to indicate an anxiety-like phenotype (F(1,36) = 10.13, p = 0.002; Fig. 10D). We observed no effect of interval (F(1,1420) = 0.79, p = 0.65) or genotype-interval interaction (F(1,426) = 1.24, p = 0.25) on preference for the center versus periphery (data not shown). Depression-like behavior was evaluated with the forced swim test (FST), a routine assay for behavioral despair, in which mice exhibiting depression-like conditions tend to float rather than struggle (Porsolt et al., 1977). Tshz1 cKOs showed an 86% increase in the amount of time spent immobile (i.e., floating) in the FST compared with controls (t(47) = −7.54, p = 1.28 × 10⁻⁸; Fig. 10E). Although these tests provide conflicting findings regarding anxiety phenotypes in Tshz1 cKOs, they indicate that these mutants exhibit a depression-like phenotype, which is possibly due to the loss of ITCs in these animals.

Amygdalar circuits have also been implicated in the regulation of social behavior in humans and mice (Adolphs, 2001; Phelps and LeDoux, 2005; Felix-Ortiz and Tye, 2014; Felix-Ortiz et al., 2016). Furthermore, humans with major depressive disorder frequently exhibit impaired social function (Kupperberg et al., 2016), as an inability to perform normal social roles can develop from an underlying depression (Hirschfeld et al., 2000). To determine whether Tshz1 loss perturbs social behavior, Tshz1 cKO mice were analyzed via the direct social interaction test (Spencer et al., 2011). Each mouse was observed for 10 min as it interacted with either a control or cKO partner. For the latency of the mouse (subject) to enter its partner’s portion of the cage (Fig. 11A), we detected significant effects of genotype (F(1,73) = 111.37, p = 2.1 × 10⁻¹²), partner’s genotype (F(1,42) = 35.17, p = 9.5 × 10⁻⁷), and the interaction between-subject genotype and partner genotype (F(1,42) = 30.44, p = 3.3 × 10⁻⁶). Regardless of partner, cKOs exhibited significantly longer latency to enter the partner’s portion of the cage (fold change = 7.57, p = 1.9 × 10⁻¹³ for control partners; fold change = 3.40, p = 1.3 × 10⁻⁷ for mutant partners). However, this latency was reduced by 60.4% when the cKO was partnered with another cKO rather than a control (p = 1.7 × 10⁻¹²). We also detected effects on the amount of time engaged in active social behavior (Fig. 11B) of subject genotype (F(1,36) = 91.87, p = 1.9 × 10⁻¹¹), partner’s genotype (F(1,42) = 17.70, p = 1.64 × 10⁻⁴), and the subject genotype-partner genotype interaction (F(1,36) = 17.89, p = 1.5 × 10⁻⁴). Conditional mutants spent a significantly shorter portion of the trial engaging in active social behaviors with the partner mouse, regardless of the partner’s genotype (67.6% reduction, p = 8.1 × 10⁻⁴ for control partner; 83.5% reduction, p = 2.0 × 10⁻¹ⁱ for cKO partners). Interestingly, both control and mutant behavior patterns were highly dependent on the genotype of the partner mouse. Control mice spent 95.0% more time engaging in active social behavior with cKO partners than with control partners (p = 4.5 × 10⁻⁶). Close examination of the types of behaviors exhibited revealed significant effects of subject genotype (F(1,36) = 11.10, p = 2.0 × 10⁻³), partner genotype (F(1,42) = 10.57, p = 2.4 × 10⁻³), and subject genotype-partner genotype interaction (F(1,42) = 12.14, p = 1.3 × 10⁻³) on the number of aggressive behaviors, such as biting or chasing, that the subject engaged in (Fig. 11C). When paired with cKOs, control mice exhibited a 3.17-fold increase in aggressive behaviors (p = 1.8 × 10⁻⁴). The
with cKO partners ($p = 1.0 \times 10^{-15}$). Subject genotype ($F_{(1,36)} = 4.97$, $p = 0.032$), partner genotype ($F_{(1,36)} = 4.57$, $p = 0.039$), and subject genotype-partner genotype interaction ($F_{(1,36)} = 27.71$, $p = 6.7 \times 10^{-7}$) also significantly affected the likelihood of mice engaging in nonsocial behaviors, such as digging, cage exploration, or self-grooming (Fig. 11F). cKOs paired with other cKOs engaged in 3.61-fold more nonsocial activities ($p = 4.2 \times 10^{-7}$). Together, these results suggest impaired social interactions on the part of Tshz1 cKOs compared with controls. Conditional mutants rarely engaged in active social behavior. When paired with socially active controls, cKOs tended to respond to their partner’s approaches passively. When paired with cKO partners, cKOs showed a preference for nonsocial behavior. Overall, we interpret these findings to indicate that the Tshz1 mutants are exceptionally passive in social situations. Interestingly, the passivity displayed by Tshz1 cKO partners appeared to elicit a significant increase in both aggressive (Fig. 11C) and investigative (Fig. 11D) interactions on the part of control mice, suggesting a complete disinterest by Tshz1 cKOs in establishing a position within the social hierarchy or even self-defense.

Discussion

In this study, we have further characterized the molecular cascade that occurs in the lineage of ITCs from their origin as dLGE progenitors, through the LMS, and ultimately within the amygdalar complex. Moreover, we have established that Tshz1^{Cond} mice are a useful tool to mark ITC development as well as placed Tshz1 within the ITC lineage, showing that it first appears as cells leave the dLGE and enter the LMS and remains expressed in mature ITCs of the amygdala. We further established critical roles for Tshz1 and Foxp2 during ITC development. Loss of Tshz1 results in abnormal ITC migration and maturation, leading to impaired neuronal survival at early postnatal time points. The ITC death phenotype is likely mediated, at least in part, by loss of Foxp2, which was consistently reduced in Tshz1 mutant ITCs. ITCs are known to modulate PFC-amygdalar circuitry (Paré et al., 2004; Sotres-Bayon and Quirk, 2010), and these circuits have been implicated in fear, anxiety, and depression (Wellman et al., 2007; Vialou et al., 2014; Tovote et al., 2015). In line with this, we identified behavioral alterations in Tshz1 mutants, which include predicted defects in fear extinction as well as novel phenotypes indicative of depression and impaired social interactions.

Our findings suggest that Tshz1 regulates the molecular code of maturing ITC precursors as evidenced by the maintained expression of the dLGE marker Sp8 in the mutant ITCs within the
amygdala. Because Tshz factors are thought to function as repressors (Alexandre et al., 1996; Waltzer et al., 2001; Manfroid et al., 2004), the upregulation of Tshz1 in dLGE cells entering the LMS may be required to downregulate dLGE progenitor identity (i.e., Sp8), allowing for proper migration to the amygdala and differentiation into ITCs. In addition, it appears that the mutant ITCs lose their normal molecular identity (e.g., loss of Foxp2) and become molecularly misspecified. Among the top differentially regulated GO processes from our RNA-Seq analysis of Tshz1 mutant ITCs were G-protein-coupled receptor signaling, biological adhesion, and response to external stimuli. Dysregulation of any of these processes could lead to abnormalities in ITC migration as well as a confused molecular identity. Accordingly, we found a number of genes downregulated that participate in neuronal migration, including ErbB4, Prokr2, and Dcx (Hamasaki et al., 2001; Anton et al., 2004; Ng et al., 2005; Prosser et al., 2007; Li et al., 2012; Ragancokova et al., 2014). Finally, the ultimate fate of Tshz1 mutant ITCs is death, perhaps as a result of altering their ability to interact with the extracellular environment and/or the loss of ITC-specific factors, such as Foxp2, which may more directly regulate cell survival as evidenced by the loss of ITCs in Foxp2 homozygous mutant mice.

It is interesting to note that two separate, but molecularly similar, neuronal populations commonly arise from Gsx2 (i.e., VZ)-Sp8 (i.e., SVZ) progenitors in the dLGE: One is the olfactory bulb interneurons that migrate rostrally to the bulb (Stenman et al., 2003a; Waclaw et al., 2006, 2009), and the other is the ITCs that migrate laterally through the LMS (Carney et al., 2009; Waclaw et al., 2010; Cocos et al., 2011). Both neuronal subtypes are dependent of Gsx2 and Sp8 for their normal development (Corbin et al., 2000; Toresson and Campbell, 2001; Yun et al., 2001, 2003; Waclaw et al., 2009, 2010). However, it is currently unknown whether these two neuronal subtypes originate from a common or distinct pool of dLGE progenitors. The migration of dLGE-derived cells toward the ventrolateral telencephalon, including the amygdala, occurs in association with a dense radial glial palisade (Carney et al., 2006). However, Carney et al. (2006) suggested that these neurons undergo chain migration similar to their dLGE counterparts that migrate within the rostral migratory stream to the olfactory bulb (Lois and Alvarez-Buylla, 1994; Wichterle et al., 1999). Ragancokova et al. (2014) showed that migration of olfactory bulb interneuron progenitors within the rostral migratory stream of Tshz1 mutants is largely intact. However, the transition from chain to radial migration, within the bulb, is markedly impaired in Tshz1 mutants. Thus, it may be that, for the normal distribution of ITCs (i.e., lateral and medial clusters), a transition from a chain migration mode to a radial glial-associated migratory mode is required to occur at the apex of the lateral amygdala.

The major function of ITCs relates to their role in the normal expression of fear extinction (Jungling et al., 2008; Lihtik et al., 2008). While these neurons are not required for the fear conditioning response itself, they play a crucial role in extinguishing a conditioned fear response after multiple nonreinforced presentations of the feared conditioned stimulus. Our findings indicate that Tshz1 cKOs undergo fear conditioning similar to the controls but, unlike the controls, do not extinguish the fear response after extinction training. This is in line with the fact that Tshz1 mutants show severe reductions in ITCs. Importantly, these mutants are compromised in their ITC population from embryonic stages; thus, our results suggest that these neurons are required for the fear extinction learning process from birth. It has been suggested that defects in fear extinction could lead to increased anxiety; thus, ITCs may represent a target for anxiolytic therapies (Jungling et al., 2008; Lihtik et al., 2008). Indeed, Jungling et al. (2008) showed that neuropeptide S is able to increase activity of medial ITC clusters and that its application in the amygdala produces anxiolytic effects as demonstrated by a tendency to venture into the center of the testing chamber in the open field test (Beling and Berton, 1997). Our findings provided mixed results regarding anxiety in Tshz1 mutants. Although they did not show any significant effects in the elevated zero maze, mutants did avoid the center of the open field chamber, compared with controls. It is worth noting, however, that the open field test was performed after the FST and social interaction tests, which are stressful behavioral paradigms.

Despite the above-mentioned requirement for ITCs in conditioned fear responses and anxiety, no role has been attributed to them in the regulation of mood or social behavior. Indeed, ITCs are known to modulate circuits that link the PFC and the amygdala, two structures that play critical roles in depression (Price and Drevets, 2010). To address this, we used the FST, a well-established readout of depressive-like behavior as measured by the time a rodent spends immobile (i.e., floating) (Porsolt et al., 1977). We show here that Tshz1 cKO mice exhibit a significant increase in the time spent immobile in the FST. Interestingly, Andolina et al. (2013) speculated that increased ITC activity may underlie an observed reduction in floating time in the FST following suppression of 5-HT-dependent PFC projections to the BLA. Thus, the severe loss of ITCs observed in the Tshz1 mutants would be consistent with their hypothesis, which would predict an increased floating time in a mouse model lacking ITCs. This depressive-like behavior suggests an interesting parallel between Tshz1 mutant mice and human patients with distal 18q deletions, including the Tshz1 locus who have been reported to frequently suffer from major depressive disorders and abnormal social interactions (Daviss et al., 2013).

Human patients with major depressive disorders frequently show abnormal social function (Kupferberg et al., 2016). Despite this, no link between ITCs and social behavior has been postulated. In this respect, Felix-Ortiz et al. (2016) have demonstrated that BLA projections to the PFC and ventral hippocampus (Felix-Ortiz and Tye, 2014) are able to modify social behaviors. Because lateral ITCs modulate the activity of BLA neurons (Marowsky et al., 2005), the loss of these neurons in the Tshz1 mutants may account for the altered social behavior observed. It bears mentioning, however, that Tshz1 mutants have previously been shown to exhibit olfactory deficits (Ragancokova et al., 2014), and we have observed similar olfactory bulb defects in Tshz1 cKOs generated with Dlx1-cre. Thus, aspects of the social interaction phenotypes observed here (i.e., reduced investigative behavior) could be due to olfactory bulb defects. However, it is unlikely that the observed immobility in the FST and lack of self-defense in the social interaction are due to olfactory deficits but more likely as a result of the fear extinction defects for which the ITC phenotype is central.

In conclusion, our findings show that Tshz1 is essential for the correct development of ITCs; and in its absence, ITC precursors migrate abnormally within the amygdaloid complex and ultimately die in the early postnatal period. This leaves the PFC-amygdala circuit without ITCs to modulate either the cortical input to the basolateral complex or the output from the basolateral complex. This anatomical phenotype correlates well with the observed defects in expression of fear extinction as well as the appearance of depression-like and social interaction behaviors in the Tshz1 cKOs, suggesting that ITCs play a role in modulating
these behaviors. Future studies using chemogenetic manipulations (i.e., designer receptor exclusively activated by designer drugs-DREADDs) (Roth, 2016) of ITC neuronal activity in wild-type animals, may help to uncover the specific role of ITCs in the depressive and social behavioral abnormalities observed in Tshz1 mutants.

References

Hamasaki T, Goto S, Nishikawa S, Usui Y (2001) A role of Netrin-1 in the
Stemman J, Toresson H, Campbell K (2003a) Identification of two distinct
Kuerbitz et al. • Tshz1 Regulates Development of ITCs

