Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration

E-mail: atlas.publications@cern.ch

ABSTRACT: A search for pair production of a scalar partner of the top quark in events with four or more jets plus missing transverse momentum is presented. An analysis of 36.1 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions collected using the ATLAS detector at the LHC yields no significant excess over the expected Standard Model background. To interpret the results a simplified supersymmetric model is used where the top squark is assumed to decay via $\tilde{t}_1 \rightarrow t \tilde{\chi}^0_1$ and $\tilde{t}_1 \rightarrow b \tilde{\chi}^\pm_1 \rightarrow bW^{(*)}\tilde{\chi}^0_1$, where $\tilde{\chi}^0_1$ ($\tilde{\chi}^\pm_1$) denotes the lightest neutralino (chargino). Exclusion limits are placed in terms of the top-squark and neutralino masses. Assuming a branching ratio of 100% to $t\tilde{\chi}^0_1$, top-squark masses in the range 450–1000 GeV are excluded for $\tilde{\chi}^0_1$ masses below 160 GeV. In the case where $m_{\tilde{t}_1} \sim m_t + m_{\tilde{\chi}^0_1}$, top-squark masses in the range 235–590 GeV are excluded.

KEYWORDS: Hadron-Hadron scattering (experiments)

ArXiv ePrint: 1709.04183
Contents

1 Introduction .. 1
2 ATLAS detector .. 3
3 Trigger and data collection 4
4 Simulated event samples and signal modelling 4
5 Event reconstruction ... 5
6 Signal region definitions 7
7 Background estimation 12
8 Systematic uncertainties 19
9 Results and interpretation 22
10 Conclusions .. 28

The ATLAS collaboration 39

1 Introduction

Supersymmetry (SUSY) [1–6] is an extension of the Standard Model (SM) that can resolve, for example, the gauge hierarchy problem [7–10] by introducing supersymmetric partners of the known bosons and fermions. The SUSY partner to the top quark, the top squark (\(\tilde{t}\)), plays an important role in cancelling potentially large top-quark loop corrections in the Higgs boson mass. The superpartners of the left- and right-handed top quarks, \(\tilde{t}_L\) and \(\tilde{t}_R\), mix to form the two mass eigenstates \(\tilde{t}_1\) and \(\tilde{t}_2\), where \(\tilde{t}_1\) is the lighter one. Throughout this paper it is assumed that the analysis is only sensitive to \(\tilde{t}_1\).

In \(R\)-parity-conserving SUSY models [11], the supersymmetric partners are produced in pairs. Top squarks are produced by strong interactions through quark-antiquark (\(q\bar{q}\)) annihilation or gluon-gluon fusion, and the cross section of direct top-squark pair production is largely decoupled from the specific choice of SUSY model parameters [12–15]. The decay of the top squark depends on the mixing of the superpartners of left- and right-handed top quarks, the masses of the top superpartner, and the mixing parameters of the fermionic partners of the electroweak and Higgs bosons. The mass eigenstates of the partners of electroweak gauge and Higgs bosons (binos, winos, higgsinos) are collectively known as charginos, \(\tilde{\chi}_i^\pm\), \(i = 1, 2\), and neutralinos, \(\tilde{\chi}_i^0\), \(i = 1, \ldots, 4\), where \(\tilde{\chi}_1^0\) is assumed
to be the lightest supersymmetric particle (LSP) which is stable and a dark-matter candidate [16, 17]. For the models considered, either $\tilde{\chi}^0_2$ or $\tilde{\chi}^\pm_1$ is assumed to be the next lightest supersymmetric particle (NLSP). Three different decay scenarios are considered in this search: (a) both top squarks decay via $\tilde{t}_1 \to t^{(*)} \tilde{\chi}^0_1$, (b) at least one of the top squarks decays via $\tilde{t}_1 \to b^{(*)} \tilde{\chi}^\pm_1 \rightarrow bW^{(*)} \tilde{\chi}^0_1$, with various hypotheses for $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\chi}^\pm_1}$, and (c) where $m_{\tilde{\chi}^0_2}$ is small enough for at least one top squark to decay via $\tilde{t}_1 \to t\tilde{\chi}^0_2 \rightarrow h/Z \tilde{\chi}^0_1$, where h is the SM-like Higgs boson with a mass of 125 GeV, as illustrated in figure 1(a)–(c), respectively. The interpretation of the results uses simplified models [18–20] where only one or two decay steps are allowed. In the case with two allowed decays, referred to later in this paper as a natural SUSY-inspired mixed grid, the mass splitting between the $\tilde{\chi}^\pm_1$ and the $\tilde{\chi}^0_1$, $\Delta m(\tilde{\chi}^\pm_1, \tilde{\chi}^0_1)$, is assumed to be 1 GeV. A grid of signal samples is generated across the plane of the top-squark and $\tilde{\chi}^0_1$ masses with a grid spacing of 50 GeV across most of the plane, assuming maximal mixing between the partners of the left- and right-handed top quarks. In both the one- and two-step decay scenarios the LSP is considered to be a pure bino state. Additionally, results are interpreted in two slices of phenomenological MSSM (pMSSM) [21, 22] models, referred to as wino-NLSP and well-tempered neutralino pMSSM models in the remainder of this paper. The pMSSM models are based on the more general MSSM [23, 24] but with the additional requirements of no new sources of CP violation and flavour-changing neutral currents, as well as first- and second-generation sfermion mass and trilinear coupling degeneracy. Finally, results are also interpreted in a simplified model which is inspired by the pMSSM and is referred to as non-asymptotic higgsino. Details of the models that are used in the various interpretations are given in section 9.

In addition to direct pair production, top squarks can be produced indirectly through gluino decays, as shown in figure 1(d). This search considers models where the mass difference between the top squark and the neutralino is small, i.e. $\Delta m(\tilde{t}_1, \tilde{\chi}^0_1) = 5$ GeV. In this scenario, the jets originating from the \tilde{t}_1 decays have momenta below the experimental acceptance, resulting in a signature nearly identical to that of $\tilde{t}_1 \to t\tilde{\chi}^0_1$ signal models (figure 1(a)).

This paper presents the search for top-squark pair production using a time-integrated luminosity of 36.1 fb$^{-1}$ of proton-proton (pp) collisions data provided by the Large Hadron Collider (LHC) at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data were collected by the ATLAS detector in 2015 and 2016. All-hadronic final states with at least four jets and large missing transverse momentum\(^1\) (p_T^{miss}, whose magnitude is referred to as E_T^{miss}) are considered, and the results are interpreted according to a variety of signal models as described above. Signal regions are defined to maximize the experimental sensitivity over a large region of kinematic phase space. Sensitivity to high top-squark masses ~ 1000 GeV (as in figure 1(a)) and top squarks produced through gluino decays (as in figure 1(d))

\(^1\)ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$. Angular distance is measured in units of $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$. The transverse momentum is the momentum component in the transverse plane.
Figure 1. The decay topologies of the signal models considered with experimental signatures of four or more jets plus missing transverse momentum. Decay products that have transverse momenta below detector thresholds are designated by the term “soft”.

is achieved by exploiting techniques designed to reconstruct top quarks that are Lorentz-boosted in the lab frame. The dominant SM background process for this kinematic region is $Z \rightarrow \nu \bar{\nu}$ produced in association with jets initiated by heavy-flavour quarks (heavy-flavour jets). The sensitivity to the decay into $b\tilde{\chi}^\pm_1$ is enhanced by vetoing events containing hadronically decaying top-quark candidates to reduce the $t\bar{t}$ background, leaving $Z \rightarrow \nu \bar{\nu}$ as the largest SM background. Sensitivity to the region where $m_{\tilde{t}1} - m_{\tilde{\chi}^0_1} \sim m_t$, which typically has relatively low-p_T final-state jets and low E_T^{miss}, is achieved by exploiting events in which high-p_T jets from initial-state radiation (ISR) boosts the di-top-squark system in the transverse plane. For this regime, $t\bar{t}$ production gives the dominant background contribution. Similar searches based on $\sqrt{s} = 8$ TeV and $\sqrt{s} = 13$ TeV data collected at the LHC have been performed by both the ATLAS [25–28] and CMS [29–33] collaborations.

2 ATLAS detector

The ATLAS experiment [34] at the LHC is a multi-purpose particle detector with a cylindrical forward-backward and ϕ-symmetric geometry and an approximate 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range $|\eta| < 2.5$. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. The newly installed innermost layer of pixel sensors [35, 36] was operational for the first time during the 2015 data-taking. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A hadron
(steel/scintillator-tile) calorimeter covers the central pseudorapidity range ($|\eta| < 1.7$). The end-cap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to $|\eta| = 4.9$. The muon spectrometer surrounds the calorimeters and features three large air-core toroidal superconducting magnets with eight coils each, providing coverage up to $|\eta| = 2.7$. The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. It includes a system of precision tracking chambers and fast detectors for triggering.

3 Trigger and data collection

The data were collected from August to November 2015 and April to October 2016 at a pp centre-of-mass energy of 13 TeV with 25 ns bunch spacing. A two-level trigger system [37] is used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the event rate to at most 100 kHz. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz for offline storage.

In all search regions, a missing transverse momentum trigger, which is fully efficient for offline calibrated $E_T^{\text{miss}} > 250 \text{ GeV}$ in signal events, was used to collect data events. Data samples enriched in the major sources of background were collected with electron or muon triggers. The electron trigger selects events based on the presence of clusters of energy in the electromagnetic calorimeter, with a shower shape consistent with that expected for an electron, and a matching track in the tracking system. The muon trigger selects events containing one or more muon candidates based on tracks identified in the muon spectrometer and inner detector. The electron and muon triggers used are more than 99% efficient for isolated electrons and muons with p_T above 28 GeV.

Triggers based on the presence of high-p_T jets were used to collect data samples for the estimation of the multijet and all-hadronic $t\bar{t}$ background. The jet p_T thresholds ranged from 20 to 400 GeV. In order to stay within the bandwidth limits of the trigger system, only a fraction of the events passing these triggers was recorded to permanent storage.

4 Simulated event samples and signal modelling

Simulated events are used to model the SUSY signal and to aid in the description of the background processes. Signal models were all generated with MG5_aMC@NLO 2.2-2.4 [38] interfaced to PYTHIA8 [39] for the parton showering (PS) and hadronization and with EvtGen 1.2.0 [40] for the b- and c-hadron decays. The matrix element (ME) calculation was performed at tree level and includes the emission of up to two additional partons for all signal samples. The parton distribution function (PDF) set used for the generation of the signal samples is NNPDF2.3LO [41] with the A14 [42] set of tuned underlying-event and shower parameters (UE tune). The ME-PS matching was performed with the CKKW-L [43] prescription, with a matching scale set to one quarter of the mass of the \tilde{t}_1, or \tilde{g} for the gluino pair production model. All signal cross sections were calculated to next-to-leading order in the strong coupling constant, adding the resummation of soft-gluon emission at next-to-leading-logarithm accuracy (NLO+NLL) [12–14]. The nominal
cross section and the uncertainty were taken from an envelope of cross-section predictions using different PDF sets and factorization and renormalization scales, as described in ref. [15]. For pMSSM models, the sparticle mass spectra were calculated with Softsusy 3.7.3 [44, 45] while the decays of each sparticle were performed by HDECAY 3.4 [46] and SDECAY 1.5/1.5a [47].

SM background samples were generated with different MC event generators depending on the process. The background sources of $Z + \text{jets}$ and $W + \text{jets}$ events were generated with SHERPA 2.2.1 [48] using the NNPDF3.0NNLO [41] PDF set and the UE tune provided by SHERPA. Top-quark pair production where at least one of the top quarks decays semileptonically and single-top production were simulated with Powheg-Box 2 [49] and interfaced to PYTHIA6 [50] for PS and hadronization, with the CT10 [51] PDF set and using the PERUGIA2012 [52] set of tuned shower and underlying-event parameters. MG5_AMC@NLO interfaced to PYTHIA8 for PS and hadronization was used to generate the $t\bar{t}+V$ (where V is a W or Z boson) and $t\bar{t}+\gamma$ samples at NLO with the NNPDF3.0NLO PDF set. The underlying-event tune used is A14 with the NNPDF2.3LO PDF set. Diboson production was generated with SHERPA 2.2.1 using the CT10 PDF set. Finally, $V\gamma$ processes were generated with SHERPA 2.1 using the CT10 PDF set. Additional information can be found in refs. [53–57].

The detector simulation [58] was performed using either GEANT4 [59] or a fast simulation framework where the showers in the electromagnetic and hadronic calorimeters are simulated with a parameterized description [60] and the rest of the detector is simulated with GEANT4. The fast simulation was validated against full GEANT4 simulation for several selected signal samples and subsequently used for all signal samples because of the large number of signal grid points needed for interpretation. All SM background samples used the GEANT4 set-up. All MC samples were produced with a varying number of simulated minimum-bias interactions overlaid on the hard-scattering event to account for multiple pp interactions in the same or nearby bunch crossing (pile-up). These events were produced using PYTHIA8 with the A2 tune [61] and MSTW 2008 PDF set [62]. The simulated events were reweighted to match the distribution of the number of pp interactions per bunch crossing in data. Corrections were applied to the simulated events to correct for differences between data and simulation for the lepton-trigger and reconstruction efficiencies, momentum scale, energy resolution, isolation, and for the efficiency of identifying jets containing b-hadrons, together with the probability for mis-tagging jets containing only light-flavour and charm hadrons.

5 Event reconstruction

Events are required to have a primary vertex [63] reconstructed from at least two tracks with $p_T > 400$ MeV. Among the vertices found, the vertex with the largest summed p_T^2 of the associated tracks is chosen.

Jets are reconstructed from three-dimensional topological clusters of noise-suppressed calorimeter cells [64] using the anti-k_t jet algorithm [65, 66] with a radius parameter $R = 0.4$. An area-based correction is applied to account for energy from additional pp col-
lisions based on an estimate of the pile-up activity in a given event \[67\]. Calibrated \[68\] jet candidates are required to have $p_T > 20 \text{ GeV}$ and $|\eta| < 2.8$. Events containing jets arising from non-collision sources or detector noise \[69\] are removed (“no bad jets” requirement). Additional selections based on track information are applied to jets with $p_T < 60 \text{ GeV}$ and $|\eta| < 2.4$ to reject jets that originate from pile-up interactions \[70\].

Jets containing b-hadrons and which are within the inner detector acceptance ($|\eta| < 2.5$) are identified (as b-tagged jets) with a multivariate algorithm that exploits the impact parameters of the charged-particle tracks, the presence of secondary vertices, and the reconstructed flight paths of b- and c-hadrons inside the jet \[71-73\]. The output of the multivariate algorithm is a single b-tagging weight which signifies the likelihood of a jet containing b-hadrons. The average identification efficiency of jets containing b-hadrons is 77% as determined in simulated $t\bar{t}$ events. A rejection factor of approximately 130 is reached for jets initiated by light quarks and gluons and 6 for jets initiated by charm quarks.

Electron candidates are reconstructed from clusters of energy deposits in the electromagnetic calorimeter that are matched to a track in the inner detector. They are required to have $p_T < 60 \text{ GeV}$ and $|\eta| < 2.47$, $p_T > 7 \text{ GeV}$ and must pass a variant of the “very loose” likelihood-based selection \[74, 75\]. The electromagnetic shower of an electron can also form a jet such that a procedure is required to resolve this ambiguity. In the case where the separation between an electron candidate and a non-b-tagged (b-tagged) jet is $\Delta R < 0.2$, the candidate is considered to be an electron (b-tagged jet). If the separation between an electron candidate and any jet satisfies $0.2 < \Delta R < 0.4$, the candidate is considered to be a jet, and the electron candidate is removed.

Muons are reconstructed by matching tracks in the inner detector to tracks in the muon spectrometer and are required to have $|\eta| < 2.7$ and $p_T > 6 \text{ GeV}$. If the separation between a muon and any jet is $\Delta R < 0.4$, the muon is omitted. Events containing muons identified as originating from cosmic rays ($|d_0| > 0.2 \text{ mm}$ and $|z_0| > 1 \text{ mm}$) or as poorly reconstructed ($\sigma(q/p)/|(q/p)| > 0.2$) are removed (“cosmic and bad muon” requirement). Here, d_0 is the transverse impact parameter of a track with respect to the primary vertex, z_0 is the distance of this point from the primary vertex projected onto the z-axis, and $\sigma(q/p)/|(q/p)|$ provides a measure of the momentum uncertainty for a particle with charge q.

The p_T^{miss} vector is the negative vector sum of the p_T of all selected and calibrated electrons, muons, and jets in the event. An extra term is added to account for small energy depositions in the event that are not associated with any of the selected objects. This “soft” term is calculated from inner detector tracks with $p_T > 400 \text{ MeV}$ matched to the primary vertex, to make it resilient to pile-up contamination, not associated with physics objects \[76\]. The missing transverse momentum from the tracking system (denoted by $p_T^{\text{miss,track}}$, with magnitude $E_T^{\text{miss,track}}$) is computed from the vector sum of the reconstructed inner detector tracks with $p_T > 400 \text{ MeV}$, $|\eta| < 2.5$, that are associated with the primary vertex in the event. The $p_T^{\text{miss,track}}$ and $E_T^{\text{miss,track}}$ are used to reject events with large calorimeter-based E_T^{miss} due to pile-up contamination or jet energy mismeasurements.

\footnote{For the overlap removal, rapidity, defined as $\frac{1}{2} \ln \frac{E+p_z}{E-p_z}$, is used instead of pseudorapidity in the ΔR definition.}
These events, where the $p_T^{\text{miss,track}}$ tends to not be aligned with the p_T^{miss} and the E_T^{miss} tends to be much larger than the $E_T^{\text{miss,track}}$, are rejected by requiring that the $\Delta \phi$ between the p_T^{miss} and $p_T^{\text{miss,track}}$ is less than $\pi/3$ and that the $E_T^{\text{miss,track}} > 30 \text{ GeV}$.

The requirements on electrons and muons are tightened for the selection of events in background control regions (described in section 7) containing leptons. Electron and muon candidates are required to have $p_T > 20 \text{ GeV}$ ($p_T > 28 \text{ GeV}$) for regions using the E_T^{miss} (lepton) triggers and to satisfy p_T-dependent track- and calorimeter-based isolation criteria. The calorimeter-based isolation is determined by taking the ratio of the sum of energy deposits in a cone of $R = 0.2$ around the electron or muon candidate and the energy deposits associated with the electron and muon. The track-based isolation is estimated in a similar way but using a variable cone size with a maximum value of $R = 0.2$ for electrons and $R = 0.3$ for muons. An isolation requirement is made that is 95% efficient for electron or muon candidates with $p_T = 25 \text{ GeV}$ and 99% for candidates with $p_T = 60 \text{ GeV}$.

Electron candidates are required to pass a “tight” likelihood-based selection [74]. The impact parameter of the electron in the transverse plane with respect to the reconstructed event primary vertex is required to be less than five times the impact parameter uncertainty (σ_{d_0}). The impact parameter along the beam direction, $|z_0 \times \sin \theta|$, is required to be less than 0.5 mm. Further selection criteria are also imposed on reconstructed muons: muon candidates are required to pass a “medium” quality selection [77]. In addition, the requirements $|d_0| < 3 \sigma_{d_0}$ and $|z_0 \times \sin \theta| < 0.5 \text{ mm}$ are imposed for muon candidates.

6 Signal region definitions

The main experimental signature for all signal topologies is the presence of multiple jets (two of which are b-tagged), no muons or electrons, and significant missing transverse momentum.

Five sets of signal regions (SRA-E) are defined to target each topology and kinematic regime. SRA (SRB) is sensitive to production of high-mass \tilde{t}_1 pairs with large (intermediate) $\Delta m(\tilde{t}_1, \tilde{\chi}^0_1)$. Both SRA and SRB employ top-mass reconstruction techniques to reject background. SRC is designed for the highly compressed region with $\Delta m(\tilde{t}_1, \tilde{\chi}^0_1) \sim m_t$. In this signal region, initial-state radiation (ISR) is used to improve sensitivity to these decays. SRD is targeted at $\tilde{t}_1 \rightarrow b \tilde{\chi}^0_1$ decays, where no top-quark candidates are reconstructed. SRE is optimized for scenarios with highly boosted top quarks that can occur in gluino-mediated top-squark production.

A common preselection is defined for all signal regions. At least four jets are required, of which at least one must be b-tagged. The four leading jets (ordered in p_T) must satisfy $p_T^{\text{j}} > 80, 80, 40, 40 \text{ GeV}$ due to the tendency for signal events to have more energetic jets than background. Events containing reconstructed electrons or muons are vetoed. The E_T^{miss} trigger threshold motivates the requirement $E_T^{\text{miss}} > 250 \text{ GeV}$ and rejects most of the background from multijet and all-hadronic $t\bar{t}$ events. In order to reject events with mismeasured E_T^{miss} originating from multijet and hadronic $t\bar{t}$ decays, an angular separation between the azimuthal angle of the two highest-p_T jets and the p_T^{miss} is required: $|\Delta \phi (\text{jet}^{0,1}, p_T^{\text{miss}})| > 0.4$. Further rejection of such events is achieved by requiring the
p_T^{\text{miss,track}} to be aligned in φ with respect to the p_T^{\text{miss}} calculated from the calorimeter system: E_T^{\text{miss,track}} > 30\text{ GeV} and |\Delta \phi \left(p_T^{\text{miss}}, p_T^{\text{miss,track}} \right) | < \pi/3.

Signal regions A and B. SRA and SRB are targeted at direct top-squark pair production where the top squarks decay via $t_1 \rightarrow t \tilde{\chi}^0_1$ with $\Delta m(t_1, \tilde{\chi}^0_1) > m_t$. SRA is optimized for $m_{t_1} = 1000\text{ GeV}$ and $m_{\tilde{\chi}^0_1} = 1\text{ GeV}$, while SRB is optimized for $m_{t_1} = 600\text{ GeV}$, $m_{\tilde{\chi}^0_1} = 300\text{ GeV}$. At least two b-tagged jets ($N_{b\text{-jet}} \geq 2$) are required and an additional requirement on the $\Delta \phi$ of the three leading jets and p_T^{miss} of $|\Delta \phi \left(\text{jet}^{0,1,2}, p_T^{\text{miss}} \right) | > 0.4$ is made.

The decay products of the $t\bar{t}$ system in the all-hadronic decay mode can often be reconstructed as six distinct $R = 0.4$ jets. The transverse shape of these jets is typically circular with a radius equal to this radius parameter, but when two of the jets are less than $2R$ apart in η-ϕ space, the one-to-one correspondence of a jet with a top-quark daughter may no longer hold. Thus, the two hadronic top candidates are reconstructed by applying the anti-k_t clustering algorithm [65] to the $R = 0.4$ jets, using reclustered radius parameters of $R = 0.8$ and $R = 1.2$. Two $R = 1.2$ reclustered jets are required; the mass of the highest-p_T $R = 1.2$ reclustered jet is shown in figure 2(a). The events are divided into three categories based on the resulting $R = 1.2$ reclustered jet masses ordered in p_T, as illustrated in figure 3: the “TT” category includes events with two top candidates, i.e. with masses $m_{\text{jet},R=1.2}^0 > 120\text{ GeV}$ and $m_{\text{jet},R=1.2}^1 > 120\text{ GeV}$; the “TW” category contains events with one top candidate and a W candidate, i.e. where $m_{\text{jet},R=1.2}^0 > 120\text{ GeV}$ and $60 < m_{\text{jet},R=1.2}^1 < 120\text{ GeV}$; and the “T0” category represents events with only one top
candidate, i.e. where \(m^0_{\text{jet}, R=1.2} > 120 \text{ GeV} \) and \(m^1_{\text{jet}, R=1.2} < 60 \text{ GeV} \). Since the signal-to-background ratio is different in each of these categories, they are optimized individually for SRA and SRB.

The most powerful discriminating variable against SM \(tt \) production is the \(E_T^{\text{miss}} \) value, which for the signal results from the undetected \(\tilde{\chi}^0_1 \) neutralinos. Substantial \(tt \) background rejection is provided by additional requirements that reject events in which one \(W \) boson decays via a charged lepton plus neutrino. The first requirement is that the transverse mass (\(m_T \)) calculated from the \(E_T^{\text{miss}} \) and the \(b \)-tagged jet with minimum distance in \(\phi \) to the \(p_T^{\text{miss}} \) direction is above 200 GeV:

\[
m_{T}^{b, \text{min}} = \sqrt{2 p_T^b E_T^{\text{miss}} [1 - \cos \Delta \phi(p_T^b, p_T^{\text{miss}})]} > 200 \text{ GeV},
\]

since its upper bound (ideally, without consideration of resolution effects) is below the top-quark mass for the \(tt \) background, as illustrated in figure 2(b). An additional requirement is made on the mass of the leading (in \(p_T \)) \(R = 0.8 \) reclustered jet to be consistent with a \(W \) candidate: \(m^0_{\text{jet}, R=0.8} > 60 \text{ GeV} \). Additionally, requirements on the stransverse mass (\(m_{T2}^\chi^2 \)) [78, 79] are made which are especially powerful in the T0 category where a \(\chi^2 \) method is applied to reconstruct top quarks with lower momenta where reclustering was suboptimal. The \(m_{T2}^\chi^2 \) variable is constructed from the direction and magnitude of the \(p_T^{\text{miss}} \) vector in the transverse plane as well as the direction of two top-quark candidates reconstructed using a \(\chi^2 \) method. The minimization in this method is done in terms of a \(\chi^2 \)-like penalty function, \(\chi^2 = (m_{\text{cand}} - m_{\text{true}})^2/m_{\text{true}}, \) where \(m_{\text{cand}} \) is the candidate mass and \(m_{\text{true}} \) is set to 80.4 GeV for \(W \) candidates and 173.2 GeV for top candidates. Initially, single or pairs of \(R = 0.4 \) jets form \(W \) candidates which are then combined with additional
b-tagged jets in the event to construct top candidates. The top candidates selected by the χ^2 method are only used for the momenta in m_{T2} while the mass hypotheses for the top quarks and the invisible particles are set to 173.2 GeV and 0 GeV, respectively. Finally, a “τ-veto” requirement is applied to reject semi-hadronically decaying τ-lepton candidates likely to have originated from a $W \rightarrow \tau \nu$ decay. Here, events that contain a non-b-tagged jet within $|\eta| < 2.5$ with fewer than four associated charged-particle tracks with $p_T > 500$ MeV, and where the $\Delta \phi$ between the jet and the p_T^{miss} is less than $\pi/5$, are vetoed. The systematic uncertainties for this requirement are found to be negligible [25].

In SRB, additional discrimination is provided by $m_{T}^{b,\text{max}}$ and $\Delta R(b,b)$. The former quantity is analogous to $m_{T}^{b,\text{min}}$ except that the transverse mass is computed with the b-tagged jet that has the largest $\Delta \phi$ with respect to the p_T^{miss} direction. The latter quantity provides additional discrimination against background where the two jets with highest b-tagging weights originate from a gluon splitting. Table 1 summarizes the selection criteria that are used in these two signal regions. The categories are statistically combined within SRA and SRB to maximize the sensitivity to signal.

Signal regions C. SRC is optimized for direct top-squark pair production where $\Delta m(\tilde{t}_1, \tilde{\chi}^0_1) \approx m_t$, a regime in which the signal topology is similar to SM $t\bar{t}$ production. In the presence of high-momentum ISR, which can be reconstructed as multiple jets forming an ISR system, the di-top-squark system is boosted in the transverse plane. The ratio of the E_T^{miss} to the p_T of the ISR system in the centre-of-mass (CM) frame of the entire (ISR plus di-top-squark) system (p_T^{ISR}), defined as R_{ISR}, is proportional to the ratio of the $\tilde{\chi}^0_1$
and \tilde{t}_1 masses \cite{80, 81}:

\[R_{\text{ISR}} \equiv \frac{E_{\text{T}}^{\text{miss}}}{p_{\text{T}}^{\text{ISR}}} \sim \frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{t}_1}}. \]

A “recursive jigsaw reconstruction technique”, as described in ref. \cite{82}, is used to divide each event into an ISR hemisphere and a sparticle hemisphere, where the latter consists of the pair of candidate top squarks, each of which decays via a top quark and a $\tilde{\chi}_1^0$. Objects are grouped together based on their proximity in the lab frame’s transverse plane by minimizing the reconstructed transverse masses of the ISR system and sparticle system simultaneously over all choices of object assignment. Kinematic variables are then defined based on this assignment of objects to either the ISR system or the sparticle system. This method is equivalent to grouping the event objects according to the axis of maximum back-to-back p_T in the event’s CM frame where the p_T of all accepted objects sums vectorially to zero. In events with a high-p_T ISR gluon, the axis of maximum back-to-back p_T, also known as the thrust axis, approximates the direction of the ISR and sparticles’ back-to-back recoil.

The selection criteria for this signal region are summarized in table 2. The events are divided into five windows (SRC1-5) defined by non-overlapping ranges of the reconstructed R_{ISR}, which target different top-squark and $\tilde{\chi}_1^0$ masses: e.g., SRC2 is optimized for $m_{\tilde{t}_1} = 300$ GeV and $m_{\tilde{\chi}_1^0} = 127$ GeV, and SRC4 is optimized for $m_{\tilde{t}_1} = 500$ GeV and $m_{\tilde{\chi}_1^0} = 327$ GeV. At least five jets must be assigned to the sparticle hemisphere of the event ($N_{\text{S-jet}}^S$), and at least one of those jets ($N_{\text{b-jet}}^S$) must be b-tagged. Transverse-momentum requirements on $p_{\text{T}}^{\text{ISR}}$, the highest-$p_T$ b-jet in the sparticle hemisphere ($p_{\text{T}}^{0\text{S},b}$), and the fourth-highest-p_T jet in the sparticle hemisphere ($p_{\text{T}}^{4\text{S}}$) are applied. The transverse mass formed by the sparticle system and the $E_{\text{T}}^{\text{miss}}$, defined as m_S, is required to be > 300 GeV. The ISR system is also required to be separated in azimuth from the $p_{\text{T}}^{\text{miss}}$ in the CM frame; this variable is defined as $\Delta \phi(\text{ISR}, p_{\text{T}}^{\text{miss}})$. Similarly to the categories defined for SRA and SRB, the individual SRCs are statistically combined to improve signal sensitivity.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SRC1</th>
<th>SRC2</th>
<th>SRC3</th>
<th>SRC4</th>
<th>SRC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{\text{b-jet}}$</td>
<td>≥ 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{\text{b-jet}}^S$</td>
<td>≥ 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{jett}^S</td>
<td>≥ 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{\text{T},b}^{0\text{S}}$</td>
<td>> 40 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_S</td>
<td>> 300 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi(\text{ISR}, p_{\text{T}}^{\text{miss}})$</td>
<td>> 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{\text{T}}^{\text{ISR}}$</td>
<td>> 400 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{\text{T}}^{4\text{S}}$</td>
<td>> 50 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ISR}</td>
<td>0.30–0.40</td>
<td>0.40–0.50</td>
<td>0.50–0.60</td>
<td>0.60–0.70</td>
<td>0.70–0.80</td>
</tr>
</tbody>
</table>

Table 2. Selection criteria for SRC, in addition to the common preselection requirements described in the text. The signal regions are separated into windows based on ranges of R_{ISR}.

\[R_{\text{ISR}} \equiv \frac{E_{\text{T}}^{\text{miss}}}{p_{\text{T}}^{\text{ISR}}} \sim \frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{t}_1}}. \]
Table 3. Selection criteria for SRD, in addition to the common preselection requirements described in the text.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SRD-low</th>
<th>SRD-high</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\Delta\phi (\text{jet}^{0,1,2}, p_T^{\text{miss}})</td>
<td>$</td>
</tr>
<tr>
<td>$N_{b\text{-jet}}$</td>
<td>≥2</td>
<td></td>
</tr>
<tr>
<td>$\Delta R (b, b)$</td>
<td>> 0.8</td>
<td></td>
</tr>
<tr>
<td>$p_T^{0,b} + p_T^{1,b}$</td>
<td>> 300 GeV</td>
<td>> 400 GeV</td>
</tr>
<tr>
<td>τ-veto</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>p_T^1</td>
<td>> 150 GeV</td>
<td></td>
</tr>
<tr>
<td>p_T^3</td>
<td>> 100 GeV</td>
<td>> 80 GeV</td>
</tr>
<tr>
<td>p_T^4</td>
<td>> 60 GeV</td>
<td></td>
</tr>
<tr>
<td>$m_T^{b_{\text{min}}}$</td>
<td>> 250 GeV</td>
<td>> 350 GeV</td>
</tr>
<tr>
<td>$m_T^{b_{\text{max}}}$</td>
<td>> 300 GeV</td>
<td>> 450 GeV</td>
</tr>
</tbody>
</table>

Signal regions D. SRD is optimized for direct top-squark pair production where both top squarks decay via $\tilde{t}_1 \to b\tilde{\chi}^+_1$ where $m_{\tilde{\chi}_1^+} = 2m_{\tilde{\chi}_1^0}$. In this signal region, at least five jets are required, two of which must be b-tagged. The scalar sum of the transverse momenta of the two jets with the highest b-tagging weights ($p_T^{0,b} + p_T^{1,b}$) as well as the second (p_T^1), fourth (p_T^3), and fifth (p_T^4) jet transverse momenta are used for additional background rejection. Subregions SRD-low and SRD-high are optimized for $m_{\tilde{t}_1} = 400$ GeV with $m_{\tilde{\chi}_1^0} = 50$ GeV, and $m_{\tilde{t}_1} = 700$ GeV with $m_{\tilde{\chi}_1^0} = 100$ GeV, respectively. Tighter leading and sub-leading jet p_T requirements are made for SRD-high, as summarized in table 3.

Signal region E. SRE is designed for models which have highly boosted top quarks. Such signatures can arise from direct pair production of high-mass top partners, or from the gluino-mediated compressed \tilde{t}_1 scenario with large $\Delta m(\tilde{g}, \tilde{t}_1)$. In this regime, reclustered jets with $R = 0.8$ are utilized to optimize the experimental sensitivity to these highly boosted top quarks. In this signal region, at least two jets out of the four or more required jets must be b-tagged. Additional discrimination is provided by the E_T^{miss} significance: $E_T^{\text{miss}}/\sqrt{H_T}$, where H_T is the scalar sum of the p_T of all reconstructed $R = 0.4$ jets in an event. The selection criteria for SRE, optimized for $m_{\tilde{g}} = 1700$ GeV, $m_{\tilde{t}_1} = 400$ GeV, and $m_{\tilde{\chi}_1^0} = 395$ GeV, are summarized in table 4.

7 Background estimation

The main SM background process in SRA, SRB, SRD, and SRE is $Z \to \nu\bar{\nu}$ production in association with heavy-flavour jets. The second most significant background is $t\bar{t}$ production where one W boson decays via a lepton and neutrino and the lepton (particularly a hadronically decaying τ lepton) is either not identified or is reconstructed as a jet. This process gives the major background contribution in SRC and an important background
<table>
<thead>
<tr>
<th>Variable</th>
<th>SRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \phi (\text{jet}^{0,1,2}, \mathbf{p}_{\text{T}}^{\text{miss}})$</td>
<td>> 0.4</td>
</tr>
<tr>
<td>$N_{b\text{-jet}}$</td>
<td>≥ 2</td>
</tr>
<tr>
<td>$m_{\text{jet}, R=0.8}^{0}$</td>
<td>> 120 GeV</td>
</tr>
<tr>
<td>$m_{\text{jet}, R=0.8}^{1}$</td>
<td>> 80 GeV</td>
</tr>
<tr>
<td>m_{min}^{b}</td>
<td>> 200 GeV</td>
</tr>
<tr>
<td>$E_{\text{T}}^{\text{miss}}$</td>
<td>> 550 GeV</td>
</tr>
<tr>
<td>H_{T}</td>
<td>> 800 GeV</td>
</tr>
<tr>
<td>$E_{\text{T}}^{\text{miss}} / \sqrt{H_{\text{T}}}$</td>
<td>> 18 GeV</td>
</tr>
</tbody>
</table>

Table 4. Selection criteria for SRE in addition to the common preselection requirements described in the text.

in SRB, SRD and SRE as well. Other important background processes are $W \rightarrow \ell \nu$ plus heavy-flavour jets, single top quark, and the irreducible background from $t\bar{t} + Z$, where the Z boson decays into two neutrinos.

The main background contributions are estimated primarily from comparisons between data and simulation outside the signal regions. Control regions (CRs) are designed to enhance a particular background process, and are orthogonal to the SRs while probing a similar event topology. The CRs are used to normalize the simulation to data, but extrapolation from the CR to the SR is taken from simulation. Sufficient data are needed to avoid large statistical uncertainties in the background estimates, and the CR definitions are chosen to be kinematically as close as possible to all SRs, to minimize the systematic uncertainties associated with extrapolating the background yield from the CR to the SR. Where CR definitions are farther from the SR definition, validation regions are employed to cross-check the extrapolation. In addition, control-region selection criteria are chosen to minimize potential contamination from signal that could shadow contributions in the signal regions. The signal contamination is below 8% in all CRs for all signal points that have not been excluded by previous ATLAS searches. No significant difference in the background estimates was found between the case where only SM backgrounds were considered and when signal is included in the estimation. As the CRs are not 100% pure in the process of interest, the cross-contamination between CRs from other processes is estimated. The normalization factors and the cross-contamination are determined simultaneously for all regions using a fit described below.

Detailed CR definitions are given in tables 5, 6, and 7. They are used for the Z (CRZs), $t\bar{t}$ (CRTs), W (CRW), single top (CRST), and $t\bar{t} + Z$ (CRTTGamma) background estimation. The $\Delta \phi (\text{jet}^{0,1,2}, \mathbf{p}_{\text{T}}^{\text{miss}})$ and $m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}})$ requirements are designed to reduce contamination from SM multijet processes. The number of leptons (from this point on, lepton is used to mean electron or muon) is indicated by N_{ℓ} and the transverse momentum of the lepton is indicated by p_{T}^{ℓ}. In all one-lepton CRs, once the trigger and minimum p_{T}^{ℓ} selection are applied, the lepton is treated as a non-b-tagged jet (to emulate the hadronic τ...
decays in the SRs) in the computation of all jet-related variables. In the two-lepton CRZs, a lepton-p_T requirement of at least 28 GeV is made to ensure the trigger selection is fully efficient. The invariant mass of the two oppositely charged leptons, denoted by $m_{\ell\ell}$, must be consistent with the leptons having originated from a Z boson. The transverse momenta of these leptons are then vectorially added to the p_T^{miss} to mimic the $Z \rightarrow \nu \bar{\nu}$ decays in the SRs, forming the quantity E_T^{miss}. Quantities that depend on the E_T^{miss} are recalculated in the CRZs using E_T^{miss}' and identified by the addition of a prime (e.g. $m^{b,\text{min}}$ and $m^{b,\text{max}}$).

Requirements such as the maximum $m_T^{(\ell,E_T^{\text{miss}})}$ and the minimum ΔR between the two highest-weight b-tagged jets and the lepton, $\Delta R(b,\ell)_{\text{min}}$, are used to enforce orthogonality between CRT, CRW, and CRST. In CRST, the requirement on the ΔR between the two highest-weight b-tagged jets, $\Delta R(b,b)$, is used to reject $t\bar{t}$ contamination from the control region enriched in single-top events. Finally, the normalization of the $t\bar{t}+W/Z$ background in the signal region, which is completely dominated by $t\bar{t}+Z(\rightarrow \nu \nu)$, is estimated with a $t\bar{t}+\gamma$ control region in a way similar to the method described in ref. [27]. The same lepton triggers and lepton-p_T requirements are used for the $t\bar{t}+\gamma$ control region as in the CRZs. Additionally, the presence of an isolated photon with $p_T > 150$ GeV is required and it is used to model the Z decay in the signal regions because of the similarity between the diagrams for photon and Z production. Similarly to the Z control region, the photon is used in the estimation of E_T^{miss}-related variables.

<table>
<thead>
<tr>
<th>Selection</th>
<th>CRZAB-TT-TW</th>
<th>CRZAB-T0</th>
<th>CRZD</th>
<th>CRZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>electron or muon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_ℓ</td>
<td>2, opposite charge, same flavour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_T^{ℓ}</td>
<td>> 28 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{\ell\ell}$</td>
<td>[86,96] GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{jet}</td>
<td>≥ 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T^0, p_T^1, p_T^2, p_T^3$</td>
<td>80, 80, 40, 40 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>< 50 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_T^{miss}'</td>
<td>> 100 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{b-\text{jet}}$</td>
<td>≥ 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{\text{jet}, R=1.2}^0$</td>
<td>> 120 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{\text{jet}, R=1.2}^1$</td>
<td>> 60 GeV < 60 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_T^{b,\text{min}}$</td>
<td>< 200 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_T^{b,\text{max}}$</td>
<td>> 200 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_T</td>
<td>> 500 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Selection criteria for the $Z + \text{ jets}$ control regions used to estimate the $Z + \text{ jets}$ background contributions in the signal regions.
Table 6. Selection criteria for the $t\bar{t}$ control regions used to estimate the $t\bar{t}$ background contributions in the signal regions.

<table>
<thead>
<tr>
<th>Selection</th>
<th>CRTA-TT</th>
<th>CRTA-TW</th>
<th>CRTA-T0</th>
<th>CRTB-TT</th>
<th>CRTB-TW</th>
<th>CRTB-T0</th>
<th>CRTC</th>
<th>CRTL</th>
<th>CRTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>E_{T}^{miss}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{jet}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{T}^1</td>
<td></td>
<td></td>
<td>> 20 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{T}^2, p_{T}^3, p_{T}^4</td>
<td>80, 80, 40, 40 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{\text{jet}} \geq 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi (\text{jet}^{1,2}, p_{T}^{\text{miss}})$</td>
<td></td>
<td></td>
<td>> 0.4</td>
<td>< 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi (\text{jet}^{1,2,3}, p_{T}^{\text{miss}})$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 0.4</td>
<td>> 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{T}(\ell, E_{T}^{miss})$</td>
<td>[30, 100] GeV</td>
<td>< 100 GeV</td>
<td></td>
<td>[30, 100] GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{T}^{min}</td>
<td>> 100 GeV</td>
<td></td>
<td></td>
<td>> 100 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta R(b, \ell)_{\text{min}}$</td>
<td>< 1.5</td>
<td>< 2.0</td>
<td>< 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_{\text{jet}, R=1.2}^{b, b}$</td>
<td>> 120 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_{\text{jet}, R=0.8}^{b, b}$</td>
<td>> 60 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{T}^{miss}</td>
<td>> 250 GeV</td>
<td>> 300 GeV</td>
<td>> 350 GeV</td>
<td></td>
<td>> 250 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta R(b, b)$</td>
<td>> 1.0</td>
<td>> 1.2</td>
<td>> 1.2</td>
<td>> 0.8</td>
<td>> 1.0</td>
<td>> 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{T}^{max}</td>
<td></td>
<td>> 200 GeV</td>
<td></td>
<td>> 100 GeV</td>
<td>< 150 GeV</td>
<td>> 150 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{T}^1</td>
<td></td>
<td></td>
<td>> 80 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{T}^{0.8}$</td>
<td></td>
<td></td>
<td></td>
<td>> 300 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{T}^{1.5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 40 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_{T}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 500 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To estimate the $Z + \text{jets}$ and $t\bar{t}$ background in the different kinematic regions of the signal regions, individual control regions are designed for all signal regions where possible. Only if the statistical power of control regions is low, are they merged to form one control region for multiple signal regions. In the case of CRT, CRWR, and CRTTGamma, this results in the use of one common CR for all signal regions. Distributions from the $Z + \text{jets}$, $t\bar{t}$, $W + \text{jets}$, single top, and $t\bar{t}\gamma$ control regions are shown in figure 4.

Contributions from all-hadronic $t\bar{t}$ and multijet production are found to be negligible. These are estimated from data using a procedure described in ref. [83]. The procedure determines the jet response from simulated dijet events, and then uses this response function to smear the jet response in low-E_{T}^{miss} events. The jet response is cross-checked with data where the E_{T}^{miss} can be unambiguously attributed to the mismeasurement of one of the jets. Diboson production, which is also subdominant, is estimated directly from simulation.
Figure 4. Distributions of (a) m_{T^2} in CRZAB-T0, (b) E_T^{miss} in CRZE, (c) R_{ISR} in CRTC, (d) $m_{T_2}^{b,\text{max}}$ in CRW, (e) the transverse momentum of the second-leading-p_T jet in CRST, and (f) the photon p_T in CRTTGamma. The stacked histograms show the SM prediction, normalized using scale factors derived from the simultaneous fit to all backgrounds. The “Data/SM” plots show the ratio of data events to the total SM prediction. The hatched uncertainty band around the SM prediction and in the ratio plot illustrates the combination of MC statistical and detector-related systematic uncertainties. The rightmost bin includes overflow events.
Table 7. Selection criteria for the common \(W + \) jets, single-top, and \(tt + \gamma \) control-region definitions.

<table>
<thead>
<tr>
<th>Selection</th>
<th>CRW</th>
<th>CRST</th>
<th>CRTTGamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>(E_T^{\text{miss}})</td>
<td>electron or muon</td>
<td></td>
</tr>
<tr>
<td>(N_\ell)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\not{p}_T)</td>
<td>(> 20) GeV</td>
<td>(> 28) GeV</td>
<td></td>
</tr>
<tr>
<td>(N_\gamma)</td>
<td>(1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\not{p}_T^\gamma)</td>
<td>(> 150) GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_{\text{jet}})</td>
<td>(\geq 4) (including electron or muon)</td>
<td>(\geq 4)</td>
<td></td>
</tr>
<tr>
<td>(p_T^{\text{lo}}, p_T^{\text{hi}}, p_T^{\gamma})</td>
<td>80, 80, 40, 40 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_{b_{-\text{jet}}})</td>
<td>1</td>
<td>(\geq 2)</td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>\Delta \phi (\text{jet}^{0,1}, \mathbf{p}_T^{\text{miss}})</td>
<td>)</td>
<td>(\geq 0.4)</td>
</tr>
<tr>
<td>(m_T (\ell, E_T^{\text{miss}}))</td>
<td>[30, 100] GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta R (b, \ell))</td>
<td>(\geq 2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_T^{\text{miss}})</td>
<td>(> 250) GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta R (b, b))</td>
<td>(\geq 1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m_{\text{jet,R=1.2}}^{0})</td>
<td>(< 60) GeV</td>
<td>(> 120) GeV</td>
<td></td>
</tr>
<tr>
<td>(m_{\text{b,min}}^{0})</td>
<td>(> 200) GeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simultaneous fit to determine SM background. The observed numbers of events in the various control regions are included in a binned profile likelihood fit [84] to determine the SM background estimates for \(Z, tt, W, \) single top, and \(tt + Z \) in each signal region. The normalizations of these backgrounds are determined simultaneously to best match the observed data in each control region, taking contributions from all backgrounds into account. A likelihood function is built as the product of Poisson probability density functions, describing the observed and expected numbers of events in the control regions [85]. This procedure takes common systematic uncertainties (discussed in section 8) between the control and signal regions and their correlations into account as they are treated as nuisance parameters in the fit and are modelled by Gaussian probability density functions. The contributions from all other background processes (dibosons and multijets) are fixed at the values expected from the simulation, using the most accurate theoretical cross sections available, as described in section 4, while their uncertainties are used as nuisance parameters in the fit.

Zero-lepton VRs (VRZAB, VRZD, VRZE) are designed to validate the background estimate for \(Z + \) jets in the signal regions. No VRZ is designed for SRC due to the negligible contribution of the \(Z \) background in this region. The definitions of the VRZs, after the common zero-lepton preselection discussed in section 6 is applied, are shown in table 8. To provide orthogonality to the signal regions, the requirement on one or more of the following variables is inverted: \(\Delta R (b, b), m_{\text{jet,R=1.2}}^{0}, m_{\text{jet,R=0.8}}^{0} \).
Table 8. Selection criteria for the Z validation regions used to validate the Z background estimates in the signal regions.

<table>
<thead>
<tr>
<th>Selection</th>
<th>VRZAB</th>
<th>VRZD</th>
<th>VRZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet p_T^b, p_T^t</td>
<td>$> 80, > 80$ GeV</td>
<td>$> 150, > 80$ GeV</td>
<td>$> 80, > 80$ GeV</td>
</tr>
<tr>
<td>N_{jet}</td>
<td>≥ 4</td>
<td>≥ 5</td>
<td>≥ 4</td>
</tr>
<tr>
<td>$N_{\overline{b}-\text{jet}}$</td>
<td>≥ 2</td>
<td>≥ 2</td>
<td>≥ 2</td>
</tr>
<tr>
<td>τ-veto</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>$m_T^{b,\text{min}}$</td>
<td>> 200 GeV</td>
<td>> 200 GeV</td>
<td>> 200 GeV</td>
</tr>
<tr>
<td>$m_{\text{jet}, R=1.2}^0$</td>
<td>< 120 GeV</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\Delta R(b, b)$</td>
<td>< 1.0</td>
<td>< 0.8</td>
<td>< 1.0</td>
</tr>
<tr>
<td>$m_T^{b,\text{max}}$</td>
<td>$-$</td>
<td>> 200 GeV</td>
<td>$-$</td>
</tr>
<tr>
<td>H_T</td>
<td>$-$</td>
<td>> 500 GeV</td>
<td>$-$</td>
</tr>
<tr>
<td>$E_T^{\text{miss}} / \sqrt{H_T}$</td>
<td>$-$</td>
<td>$> 14 \sqrt{\text{GeV}}$</td>
<td>$-$</td>
</tr>
<tr>
<td>$m_{\text{jet}, R=0.8}^0$</td>
<td>$-$</td>
<td>< 120 GeV</td>
<td>$-$</td>
</tr>
</tbody>
</table>

To validate the $t\bar{t}$ background, zero-lepton VRs sharing the same common preselection of the signal regions and which are close to the SRA and SRB definitions are designed for each of the categories (VRTA-TT, VRTA-TW, VRTA-T0, VRTB-TT, VRTB-TW, VRTB-T0). To avoid overlap with the signal regions the $m_T^{b,\text{min}}$ requirement is inverted in all validation regions. In VRTA, SRA requirements remain unchanged except for m_T^{2} not being applied, 100 < $m_T^{b,\text{min}}$ < 200 GeV, and the E_T^{miss} requirement being reduced by 100 GeV. For VRTB, all requirements in the VRs are the same as in the SRs except for $m_T^{b,\text{min}}$, which is 100 < $m_T^{b,\text{min}}$ < 200 GeV for VRTB-TT, 140 < $m_T^{b,\text{min}}$ < 200 GeV for VRTB-TW, and 160 < $m_T^{b,\text{min}}$ < 200 GeV for VRTB-T0. For SRC, the same requirements are used when defining the validation region (VRTC) except for the looser requirements of $m_S > 100$ GeV, $p_T^{4S} > 40$ GeV and $N_S^{4S} > 4$. The $\Delta \phi(\text{ISR}, \vec{p}_T^{\text{miss}})$ requirement is inverted and $m_V/m_S < 0.6$, where m_V is the transverse mass defined by the visible objects of the sparticle system and the E_T^{miss}, is applied in addition to the existing selection. The validation region to validate the background estimates in SRD (VRTD) is formed by applying the following requirements: 100 < $m_T^{b,\text{min}}$ < 200 GeV, $p_T^{0,b} + p_T^{1,b} > 300$ GeV, $p_T^{1,b} > 80$ GeV, and $m_T^{b,\text{max}} > 300$ GeV. All other requirements are applied exactly as in SRD-low except for the requirement on p_T^{4} which is dropped. Finally, the validation region defined for SRE (VRTE) applies only the same requirements on the number of b-jets, $m_{\text{jet}, R=0.8}^0$, and $m_{\text{jet}, R=0.8}^1$, and inverts the $m_T^{b,\text{min}}$ requirement to 100 < $m_T^{b,\text{min}}$ < 200 GeV. No other requirement is applied to VRTE.

A one-lepton validation region for the $W + \text{jets}$ background (VRW) is used to test the W background estimates in all SRs. In this case the validation region is designed based on the definition of CRW. Compared to CRW, the requirement that differs is $\Delta R(b_0,1,\ell)_{\text{min}}$, which is greater than 1.8 for the validation region. Two additional requirements are included in the definition of VRW, namely $m_T^{b,\text{min}} > 150$ GeV and $m_{\text{jet}, R=1.2}^0 < 70$ GeV.
Figure 5. Yields for all validation regions after the likelihood fit. The stacked histograms show the SM prediction and the hatched uncertainty band around the SM prediction shows the total uncertainty, which consists of the MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties in the extrapolation from CR to VR.

Signal contamination in all the validation regions for all considered signals that have not yet been excluded was also checked. The largest contamination found is \(\sim 25\% \) and occurs in the VRTs for top-squark masses below 350 GeV and in VRZD and VRZE near top-squark masses of 700 GeV. The result of the simultaneous fit procedure, which is repeated with the VRs used as test signal regions, for each VR is shown in figure 5, which displays agreement between data and MC predictions.

8 Systematic uncertainties

Experimental and theoretical systematic uncertainties in the SM predictions and signal predictions are included in the profile likelihood fit described in section 7.

Statistical uncertainties dominate the total uncertainties of the background predictions in all SRs except SRB. The dominant systematic uncertainties for SRA and SRB are shown in table 9 while the systematic uncertainties for the remaining SRs are shown in table 10. The uncertainties are shown as a relative uncertainty to the total background estimate. The main sources of detector-related systematic uncertainty in the SM background estimates are the jet energy scale (JES) and jet energy resolution (JER), \(b \)-tagging efficiency, \(E_T^{\text{miss}} \) soft term, and pile-up. The effect of the JES and JER uncertainties on the background estimates in the signal regions can reach 17\%. The uncertainty in the \(b \)-tagging efficiency is nowhere more than 9\%. All jet- and lepton-related uncertainties are propagated to
Table 9. Dominant systematic uncertainties (greater than 1% for at least one SR) for SRA and SRB in percent relative to the total background estimates. The uncertainties due to the normalization from a control region for a given signal region and background are indicated by $\mu_{t\bar{t}}$, $\mu_{t\bar{t}+V}$, μ_{Z}, μ_{W}, and $\mu_{\text{single top}}$. The theory uncertainties are the total uncertainties for a given background. Additionally, the uncertainty due to the number of MC events in the background samples is shown as “MC statistical”.

<table>
<thead>
<tr>
<th>Source</th>
<th>SRA-TT</th>
<th>SRA-TW</th>
<th>SRA-T0</th>
<th>SRB-TT</th>
<th>SRB-TW</th>
<th>SRB-T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$ theory</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>$t\bar{t}+V$ theory</td>
<td>2</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Z theory</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td><1</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Single top theory</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Diboson theory</td>
<td><1</td>
<td>2</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>$\mu_{t\bar{t}}$</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$\mu_{t\bar{t}+Z}$</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>μ_{Z}</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>μ_{W}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$\mu_{\text{single top}}$</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>JER</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>JES</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>b-tagging</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>E_T^{miss} soft term</td>
<td>2</td>
<td>2</td>
<td><1</td>
<td>1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Multijet estimate</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>2</td>
<td><1</td>
</tr>
<tr>
<td>Pileup</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

The uncertainty in the combined 2015+2016 integrated luminosity is 3.2%. It is derived, following a methodology similar to that detailed in ref. [86], from a preliminary calibration of the luminosity scale using $x-y$ beam-separation scans performed in August 2015 and May 2016.

Theoretical uncertainties in the modelling of the SM background are estimated. For the $W/Z +$ jets background processes, the modelling uncertainties are estimated using SHERPA samples by varying the renormalization and factorization scales, and the merging and resummation scales (each varied up and down by a factor of two). PDF uncertainties were found to have a negligible impact. The resulting impact on the total background yields from the $Z +$ jets theoretical uncertainties is up to 3% while the uncertainties from the $W +$ jets sample variations are less than 3%.
Table 10. Dominant systematic uncertainties (greater than 1% for at least one SR) for SRC, SRD, and SRE in percent relative to the total background estimates. The uncertainty due to the normalization from a control region for a given signal region and background are indicated by $t \bar{t}$, $t \bar{t}+V$, Z, W, and single top. The theory uncertainties are the total uncertainties for a given background. Additionally, the uncertainty due to the number of MC events in the background samples is shown as “MC statistical”.

For the $t \bar{t}$ background, uncertainties are estimated from the comparison of different matrix-element calculations, the choice of parton-showering model and the emission of additional partons in the initial and final states (comparing Powheg-Box+PYTHIA vs HERWIG++ and SHERPA). More details are given in ref. [55]. The largest impact of the $t \bar{t}$ theory systematic uncertainties on the total background yields arises for SRC and it varies from 11% to 71% by tightening the R_{ISR} requirement. For the $t \bar{t}+W/Z$ background, the theoretical uncertainty is estimated through variations, in both $t \bar{t}+W/Z$ and $t \bar{t}+b$ MC simulation, including the choice of renormalization and factorization scales (each varied up and down by a factor of two), the choice of PDF, as well as a comparison between MC@NLO and OpenLoops+SHERPA generators, resulting in a maximum uncertainty of 2% in SRA-TT. The single-top background is dominated by the Wt subprocess. Uncertainties are estimated for the choice of parton-showering model (PYTHIA vs HERWIG++) and for the emission of additional partons in the initial- and final-state radiation. A 30% uncertainty is assigned to the single-top background estimate to account for the effect of interference between single-top-quark and $t \bar{t}$ production. This uncertainty is estimated by comparing yields in the signal and control regions for a sample that includes resonant and non-resonant $WW+bb$ production with the sum of the yields of resonant $t \bar{t}$ and single-top+b production. The final single-top uncertainty relative to the total background estimate is

<table>
<thead>
<tr>
<th>SRC1</th>
<th>SRC2</th>
<th>SRC3</th>
<th>SRC4</th>
<th>SRC5</th>
<th>SRD-low</th>
<th>SRD-high</th>
<th>SRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total syst. unc.</td>
<td>31</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>80</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>$t \bar{t}$ theory</td>
<td>27</td>
<td>11</td>
<td>14</td>
<td>11</td>
<td>71</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>$t \bar{t}+V$ theory</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Z theory</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>W theory</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Single top theory</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td><1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>$\mu_{t \bar{t}}$</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\mu_{t \bar{t}+Z}$</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>μ_{W}</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$\mu_{single,,top}$</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>JER</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>JES</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>17</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>b-tagging</td>
<td>2</td>
<td>2</td>
<td><1</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>E_{T}^{miss} soft term</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>15</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Multijet estimate</td>
<td>12</td>
<td>3</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pileup</td>
<td><1</td>
<td>1</td>
<td><1</td>
<td>2</td>
<td>14</td>
<td>9</td>
<td><1</td>
</tr>
</tbody>
</table>
up to 12%. The detector systematic uncertainties are also applied to the signal samples used for interpretation. Theoretical uncertainties in the signal cross section as described in section 4 are treated separately and limits on top-squark and neutralino masses are given for the ±1σ values as well as the central cross section.

Signal systematic uncertainties due to detector and acceptance effects are taken into account. The main sources of these uncertainties are the JER, ranging from 3% to 6%, the JES, ranging from 2% to 5.7%, pile-up, ranging from 0.5% to 5.5% and from b-tagging efficiency, ranging from 3% to 5.5%. Uncertainties in the acceptance due to theoretical variations are taken into consideration. Those originate from variations of the QCD coupling constant αs, the variations of the renormalization and factorization scales, the CKKW matching scale at which the parton-shower description and the matrix-element description are separate and the parton-shower tune variations (each varied up and down by a factor of two). These uncertainties range across the SRs between 10% and 25% for the \(t_1 \rightarrow t^{(*)} \tilde{\chi}_1^0 \) grid, the mixed grid, the non-asymptotic higgsino grid, and the \(\tilde{g} \rightarrow t\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0 \) soft grid. For the wino-NLSP model, they range from 15% to 20%, and for the well-tempered neutralino pMSSM model they range from 10% to 35%. Finally, the uncertainty in the estimated number of signal events which arises from the cross-section uncertainties for the various processes is taken into account by calculating two additional limits considering a ±1σ change in cross section. The cross-section uncertainty is ~15–20% for direct top-squark production and ~15–30% for gluino production [12–15] depending on the top-squark and gluino masses.

9 Results and interpretation

The observed event yields are compared to the expected total number of background events in tables 11, 12, 13, and figure 6. The total background estimate is determined from a simultaneous fit to all control regions, based on a procedure described in section 7 but including the corresponding signal regions as well as control regions. Figure 7 shows the distribution of \(E_{\text{miss}} \), \(m_{T_2} \), \(m_{T_{\text{max}}} \), \(m_T \), \(R_{\text{ISR}} \), and \(H_T \) for the various signal regions, with \(R_{\text{ISR}} \) being shown combining SRC1-5. In these distributions, the background predictions are scaled to the values determined from the simultaneous fit.

No significant excess above the SM prediction is observed in any of the signal regions. The smallest p-values, which express the probability that the background fluctuates to the data or above, are 27%, 27%, and 29% for SRB-T0, SRD-high, and SRA-TT, respectively. The largest deficit in the data can be found in SRC4 where one event is observed while 7.7 background events were expected. The 95% confidence level (CL) upper limits on the number of beyond-the-SM (BSM) events in each signal region are derived using the CLs prescription [87, 88] and calculated from asymptotic formulae [84]. Model-independent limits on the visible BSM cross sections, defined as \(\sigma_{\text{vis}} = S_{95}^{\text{obs}} / \mathcal{L} dt \), where \(S_{95}^{\text{obs}} \) is the 95% CL upper limit on the number of signal events, are reported in table 14.

The detector acceptance multiplied by the efficiency \((A \cdot \epsilon) \) is calculated for several signal regions and their benchmark points. The \(A \cdot \epsilon \) values for signal regions aimed at high-energy final states, SRA and SRE, are 9% and 6% for their respective signal bench-
mark points of \(m_{\tilde{t}_1} = 1000 \text{ GeV} \), \(m_{\chi_1^0} = 1 \text{ GeV} \), and \(m_{\tilde{g}} = 1700 \text{ GeV} \), \(m_{\tilde{t}_1} = 400 \text{ GeV} \), \(m_{\chi_1^0} = 395 \text{ GeV} \). SRB, SRD-low, and SRD-high have \(A \cdot \epsilon \) of \(1.4 \% \), \(0.05 \% \), and \(0.5 \% \) for \(m_{\tilde{t}_1} = 600 \text{ GeV} \), \(m_{\chi_0^0} = 300 \text{ GeV} \); \(m_{\tilde{t}_1} = 400 \text{ GeV} \), \(m_{\chi_\pm}^0 = 100 \text{ GeV} \), \(m_{\chi_0^0} = 50 \text{ GeV} \); and \(m_{\tilde{t}_1} = 700 \text{ GeV} \), \(m_{\chi_+^0} = 200 \text{ GeV} \), \(m_{\chi_0^0} = 100 \text{ GeV} \) where the branching ratio, \(B(\tilde{t}_1 \rightarrow b\chi_1^\pm) = 100 \% \) is assumed for the SRD samples, respectively. Finally, SRC1-5 (combining the \(R_{\text{ISR}} \) windows) has an \(A \cdot \epsilon \) of \(0.08 \% \) for \(m_{\tilde{t}_1} = 400 \text{ GeV} \), \(m_{\chi_1^0} = 227 \text{ GeV} \).

The profile-likelihood-ratio test statistic is used to set limits on direct pair production of top squarks. The signal strength parameter is allowed to float in the fit [85], and any signal contamination in the CRs is taken into account. Again, limits are derived using the \(\text{CL}_s \) prescription and calculated from asymptotic formulae. Orthogonal signal subregions, such as SRA-TT, SRA-TW, and SRA-T0, are statistically combined by multiplying their likelihood functions. A similar procedure is performed for the signal subregions in SRB and SRC. For the overlapping signal regions defined for SRD (SRD-low and SRD-high), the signal region with the smallest expected \(\text{CL}_s \) value is chosen for each signal model. Once the signal subregions are combined or chosen, the signal region with the smallest expected \(\text{CL}_s \) is chosen for each signal model in the \(\tilde{t}_1 \rightarrow \chi_1^0 \) signal grid. The nominal event yield in each SR is set to the mean background expectation to determine the expected limits; contours that correspond to \(\pm 1 \sigma \) uncertainties in the background estimates (\(\sigma_{\exp} \)) are also

<table>
<thead>
<tr>
<th></th>
<th>SRA-TT</th>
<th>SRA-TW</th>
<th>SRA-T0</th>
<th>SRB-TT</th>
<th>SRB-TW</th>
<th>SRB-T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>11</td>
<td>9</td>
<td>18</td>
<td>38</td>
<td>53</td>
<td>206</td>
</tr>
<tr>
<td>Fitted background events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total SM</td>
<td>8.6 ± 2.1</td>
<td>9.3 ± 2.2</td>
<td>18.7 ± 2.7</td>
<td>39.3 ± 7.6</td>
<td>52.4 ± 7.4</td>
<td>179 ± 26</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>0.71 ± 0.91</td>
<td>0.51 ± 0.65</td>
<td>1.31 ± 0.64</td>
<td>7.3 ± 4.3</td>
<td>12.4 ± 5.9</td>
<td>43 ± 22</td>
</tr>
<tr>
<td>W + jets</td>
<td>0.82 ± 0.15</td>
<td>0.89 ± 0.56</td>
<td>2.00 ± 0.83</td>
<td>7.8 ± 2.8</td>
<td>4.8 ± 1.2</td>
<td>25.8 ± 8.8</td>
</tr>
<tr>
<td>Z + jets</td>
<td>2.5 ± 1.3</td>
<td>4.9 ± 1.9</td>
<td>9.8 ± 1.6</td>
<td>9.0 ± 2.8</td>
<td>16.8 ± 4.1</td>
<td>60.7 ± 9.6</td>
</tr>
<tr>
<td>(t\bar{t}+W/Z)</td>
<td>3.16 ± 0.66</td>
<td>1.84 ± 0.39</td>
<td>2.60 ± 0.53</td>
<td>9.3 ± 1.7</td>
<td>10.8 ± 1.6</td>
<td>20.5 ± 3.2</td>
</tr>
<tr>
<td>Single top</td>
<td>1.20 ± 0.81</td>
<td>0.70 ± 0.42</td>
<td>2.9 ± 1.5</td>
<td>4.2 ± 2.2</td>
<td>5.9 ± 2.8</td>
<td>26 ± 13</td>
</tr>
<tr>
<td>Dibosons</td>
<td>--</td>
<td>0.35 ± 0.26</td>
<td>--</td>
<td>0.13 ± 0.07</td>
<td>0.60 ± 0.43</td>
<td>1.04 ± 0.73</td>
</tr>
<tr>
<td>Multijets</td>
<td>0.21 ± 0.10</td>
<td>0.14 ± 0.09</td>
<td>0.12 ± 0.07</td>
<td>1.54 ± 0.64</td>
<td>1.01 ± 0.88</td>
<td>1.8 ± 1.5</td>
</tr>
<tr>
<td>Expected events before fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total SM</td>
<td>7.1</td>
<td>7.9</td>
<td>16.3</td>
<td>32.4</td>
<td>46.1</td>
<td>162</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>0.60</td>
<td>0.45</td>
<td>1.45</td>
<td>6.1</td>
<td>12.8</td>
<td>47</td>
</tr>
<tr>
<td>W + jets</td>
<td>0.65</td>
<td>0.70</td>
<td>1.58</td>
<td>6.1</td>
<td>3.83</td>
<td>20.4</td>
</tr>
<tr>
<td>Z + jets</td>
<td>2.15</td>
<td>4.2</td>
<td>8.63</td>
<td>7.7</td>
<td>14.4</td>
<td>53.6</td>
</tr>
<tr>
<td>(t\bar{t}+W/Z)</td>
<td>2.46</td>
<td>1.43</td>
<td>2.02</td>
<td>7.3</td>
<td>8.4</td>
<td>15.9</td>
</tr>
<tr>
<td>Single top</td>
<td>1.03</td>
<td>0.60</td>
<td>2.5</td>
<td>3.6</td>
<td>5.1</td>
<td>22.4</td>
</tr>
<tr>
<td>Dibosons</td>
<td>--</td>
<td>0.35</td>
<td>--</td>
<td>0.13</td>
<td>0.60</td>
<td>1.03</td>
</tr>
<tr>
<td>Multijets</td>
<td>0.21</td>
<td>0.14</td>
<td>0.12</td>
<td>1.54</td>
<td>1.01</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table 11. Observed and expected yields, before and after the fit, for SRA and SRB. The uncertainties include MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties in the extrapolation from CR to SR.
Table 12. Observed and expected yields, before and after the fit. The uncertainties include MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties in the extrapolation from CR to SR.

<table>
<thead>
<tr>
<th></th>
<th>SRC1</th>
<th>SRC2</th>
<th>SRC3</th>
<th>SRC4</th>
<th>SRC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fitted background events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total SM</td>
<td>20.6 ± 6.5</td>
<td>27.6 ± 4.9</td>
<td>18.9 ± 3.4</td>
<td>7.7 ± 1.2</td>
<td>0.91 ± 0.73</td>
</tr>
<tr>
<td>tt</td>
<td>12.9 ± 5.9</td>
<td>22.1 ± 4.3</td>
<td>14.6 ± 3.2</td>
<td>4.91 ± 0.97</td>
<td>0.63 ± 0.70 ± 0.63</td>
</tr>
<tr>
<td>W + jets</td>
<td>0.80 ± 0.37</td>
<td>1.93 ± 0.49</td>
<td>1.91 ± 0.62</td>
<td>1.93 ± 0.46</td>
<td>0.21 ± 0.12</td>
</tr>
<tr>
<td>Z + jets</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>tt+W/Z</td>
<td>0.29 ± 0.16</td>
<td>0.59 ± 0.38</td>
<td>0.56 ± 0.31</td>
<td>0.08 ± 0.08</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td>Single top</td>
<td>1.7 ± 1.3</td>
<td>1.2 1.4 1.2</td>
<td>1.22 ± 0.69</td>
<td>0.72 ± 0.37</td>
<td>--</td>
</tr>
<tr>
<td>Dibosons</td>
<td>0.39 ± 0.33</td>
<td>0.21 ± 0.23</td>
<td>0.28 ± 0.18</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Multijets</td>
<td>4.6 ± 2.4</td>
<td>1.58 ± 0.77</td>
<td>0.32 ± 0.17</td>
<td>0.04 ± 0.02</td>
<td>--</td>
</tr>
<tr>
<td>Expected events before fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total SM</td>
<td>25.4</td>
<td>36.0</td>
<td>24.2</td>
<td>9.2</td>
<td>1.1</td>
</tr>
<tr>
<td>tt</td>
<td>18.2</td>
<td>31.2</td>
<td>20.6</td>
<td>7.0</td>
<td>0.89</td>
</tr>
<tr>
<td>W + jets</td>
<td>0.64</td>
<td>1.53</td>
<td>1.51</td>
<td>1.53</td>
<td>0.17</td>
</tr>
<tr>
<td>Z + jets</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>tt+W/Z</td>
<td>0.22</td>
<td>0.46</td>
<td>0.44</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Single top</td>
<td>1.44</td>
<td>1.0</td>
<td>1.04</td>
<td>0.62</td>
<td>--</td>
</tr>
<tr>
<td>Dibosons</td>
<td>0.39</td>
<td>0.21</td>
<td>0.28</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Multijets</td>
<td>4.6</td>
<td>1.58</td>
<td>0.32</td>
<td>0.04</td>
<td>--</td>
</tr>
</tbody>
</table>

Figure 8 shows the observed (solid red line) and expected (solid blue line) exclusion contours at 95% CL in the $t\bar{t}-\tilde{\chi}_1^0$ mass plane for 36.1 fb$^{-1}$. The data excludes top-squark masses between 450 and 1000 GeV for $\tilde{\chi}_1^0$ masses below 160 GeV, extending Run-1 limits from the combination of zero- and one-lepton channels by 260 GeV. Additional constraints are set in the case where $m_{\tilde{t}_1} \approx m_t + m_{\tilde{\chi}_1^0}$, for which top-squark masses in the range 235–590 GeV are excluded. The limits in this region of the exclusion are new compared to the 8 TeV results and come from the inclusion of SRC, which takes advantage of an ISR system to discriminate between signal and the dominant $t\bar{t}$ background.

For signal models also considering top-squark decays into $b\tilde{\chi}_1^\pm$ or into additional massive neutralinos, four interpretations are considered:
Table 13. Observed and expected yields, before and after the fit, for SRD and SRE. The uncertainties include MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties in the extrapolation from CR to SR.

Natural SUSY-inspired mixed grid: a simplified model [89] where \(m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 1\) GeV with only two decay modes, \(\tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm\) and \(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0\), and only on-shell top-quark decays are considered. The same maximal mixing between the partners of the left- and right-handed top quarks and nature of the \(\chi_1^0\) (pure bino) as for the \(B(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0) = 100\%\) case is assumed. The branching ratio to \(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0\) is set to 0\%, 25\%, 50\%, and 75\% and yield the limits shown in figure 9.

Non-asymptotic higgsino: a pMSSM-inspired simplified model with a higgsino LSP, \(m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5\) GeV, and \(m_{\tilde{\chi}_2^\pm} = m_{\tilde{\chi}_1^0} + 10\) GeV, assumes three sets of branching ratios for the considered decays of \(\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm\) [89]. A set of branching ratios with \(B(\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm) = 33\%, 33\%, 33\%\) is considered, which is equivalent to a pMSSM model with the lightest top squark mostly consisting of the superpartner of left-handed top quark and \(\tan\beta = 60\) (ratio of vacuum expectation values of the two Higgs doublets). Additionally, \(B(\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm) = 45\%, 10\%, 45\%\) and \(B(\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm) = 25\%, 50\%, 25\%\) are assumed, which correspond to scenarios with \(m_{q_{L3}} < m_{t_{LR}}\) (regardless of the choice
Figure 6. Yields for all signal regions after the likelihood fit. The stacked histograms show the SM prediction and the hatched uncertainty band around the SM prediction shows total uncertainty, which consists of the MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties in the extrapolation from CR to SR.

of $\tan\beta$ and $m_{t_R} < m_{q L_3}$ with $\tan\beta = 20$, respectively. Here $m_{q L_3}$ represents the left-handed third-generation mass parameter and m_{t_R} is the mass parameter of the superpartner to the right-handed top-quark. Limits in the $m_{\tilde{t}_1}$ and $m_{\chi^0_1}$ plane are shown in figure 10.

Wino-NLSP pMSSM: a pMSSM model where the LSP is bino-like and has mass M_1 and where the NLSP is wino-like with mass M_2, while $M_2 = 2M_1$ and $m_{\tilde{t}_1} > M_1$ [89]. Limits are set for both positive and negative μ (the higgsino mass parameter) as a function of the \tilde{t}_1 and $\tilde{\chi}^0_1$ masses which can be translated to different M_1 and $m_{q L_3}$, and are shown in figure 11. Only bottom and top-squark production are considered in this interpretation. Allowed decays in the top-squark production scenario are $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_2 \rightarrow h/Z\tilde{\chi}^0_1$, at a maximum branching ratio of 33%, and $\tilde{t}_1 \rightarrow b\tilde{\chi}^+_1$. Whether the $\tilde{\chi}^0_2$ dominantly decays into a h or Z is determined by the sign of μ. Along the diagonal region, the $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ decay with 100% branching ratio is also considered. The equivalent decays in bottom-squark production are $\tilde{b} \rightarrow t\tilde{\chi}^0_1$ and $\tilde{b} \rightarrow b\tilde{\chi}^0_2$. The remaining pMSSM parameters have the following values: $M_3 = 2.2$ TeV (gluino mass parameter), $M_S = \sqrt{m_{t_1}m_{t_2}} = 1.2$ TeV (geometric mean of top-squark masses), $X_t/M_S = \sqrt{6}$ (mixing parameter between the superpartners of left- and right-handed states, where $X_t = A_t - \mu/\tan\beta$ and A_t is the trilinear coupling parameter in the top-quark sector), and $\tan\beta = 20$. All other pMSSM masses are set to >3 TeV.
Figure 7. Distributions of \(E_T^{\text{miss}} \) for SRA-TT, \(m_{R_2}^2 \) for SRA-T0, \(m_{R_2}^{k, \text{max}} \) for SRB-TW, \(R_{\text{ISR}} \) for SRC1-5, \(m_{\tilde{t}}^{2, \text{max}} \) for SRD-high and \(H_T \) for SRE after the likelihood fit. The stacked histograms show the SM prediction and the hatched uncertainty band around the SM prediction shows the MC statistical and detector-related systematic uncertainties. For each variable, the distribution for a representative signal point is shown.

Well-tempered neutralino pMSSM: a pMSSM model in which three light neutralinos and a light chargino, which are mixtures of bino and higgsino states, are considered with masses within 50 GeV of the lightest state \([90, 91]\). The model is designed to satisfy the SM Higgs boson mass and the dark-matter relic density \((0.10 < \Omega h^2 < 0.12,\)
Table 14. Left to right: 95% CL upper limits on the average visible cross section \((\sigma A\epsilon)^{95}_{\text{obs}}\) where the average comes from possibly multiple production channels and on the number of signal events \(S^{95}_{\text{obs}}\). The third column \(S^{95}_{\text{exp}}\) shows the 95% CL upper limit on the number of signal events, given the expected number (and \(\pm 1\sigma\) excursions of the expected number) of background events. The two last columns indicate the CL\(_B\) value, i.e. the confidence level observed for the background-only hypothesis, and the discovery \(p\)-value \((p)\) and the corresponding significance \((z)\).

<table>
<thead>
<tr>
<th>Signal channel</th>
<th>(\langle \sigma A\epsilon \rangle^{95}_{\text{obs}}) [fb]</th>
<th>(S^{95}_{\text{obs}})</th>
<th>(S^{95}_{\text{exp}})</th>
<th>CL(_B)</th>
<th>(p) (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRA-TT</td>
<td>0.30</td>
<td>11.0</td>
<td>8.7(^{+3.0}_{-1.4})</td>
<td>0.78</td>
<td>0.23 (0.74)</td>
</tr>
<tr>
<td>SRA-TW</td>
<td>0.27</td>
<td>9.6</td>
<td>9.6(^{+2.8}_{-2.1})</td>
<td>0.50</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRA-T0</td>
<td>0.31</td>
<td>11.2</td>
<td>11.5(^{+3.6}_{-2.0})</td>
<td>0.46</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRB-TT</td>
<td>0.54</td>
<td>19.6</td>
<td>20.0(^{+6.5}_{-1.9})</td>
<td>0.46</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRB-TW</td>
<td>0.60</td>
<td>21.7</td>
<td>21.0(^{+7.3}_{-4.3})</td>
<td>0.54</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRB-T0</td>
<td>2.19</td>
<td>80</td>
<td>58(^{+33}_{-17})</td>
<td>0.83</td>
<td>0.13 (1.15)</td>
</tr>
<tr>
<td>SRC1</td>
<td>0.42</td>
<td>15.1</td>
<td>15.8(^{+4.8}_{-3.5})</td>
<td>0.48</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRC2</td>
<td>0.31</td>
<td>11.2</td>
<td>13.9(^{+5.9}_{-3.6})</td>
<td>0.24</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRC3</td>
<td>0.42</td>
<td>15.3</td>
<td>12.3(^{+4.7}_{-3.4})</td>
<td>0.73</td>
<td>0.27 (0.62)</td>
</tr>
<tr>
<td>SRC4</td>
<td>0.10</td>
<td>3.5</td>
<td>6.7(^{+2.8}_{-1.8})</td>
<td>0.00</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRC5</td>
<td>0.09</td>
<td>3.2</td>
<td>3.0(^{+1.1}_{-0.1})</td>
<td>0.23</td>
<td>0.23 (0.74)</td>
</tr>
<tr>
<td>SRD-low</td>
<td>0.50</td>
<td>17.9</td>
<td>16.4(^{+6.3}_{-4.0})</td>
<td>0.62</td>
<td>0.36 (0.35)</td>
</tr>
<tr>
<td>SRD-high</td>
<td>0.30</td>
<td>10.9</td>
<td>8.0(^{+3.4}_{-1.3})</td>
<td>0.79</td>
<td>0.21 (0.79)</td>
</tr>
<tr>
<td>SRE</td>
<td>0.17</td>
<td>6.1</td>
<td>6.4(^{+1.4}_{-2.4})</td>
<td>0.42</td>
<td>0.50 (0.00)</td>
</tr>
</tbody>
</table>

where \(\Omega\) is energy density parameter and \(h\) is the Planck constant [92]) with pMSSM parameters: \(M_1 = -(\mu + \delta)\) where \(\delta = 20-50\) GeV, \(M_2 = 2.0\) TeV, \(M_3 = 1.8\) TeV, \(M_S = 0.8-1.2\) TeV, \(X_t/M_S \sim \sqrt{6}\), and \(\tan \beta = 20\). For this model, limits are shown in figure 12. Only bottom- and top-squark production are considered in this interpretation. The signal grid points were produced in two planes, \(\mu\) vs \(m_{\tilde{t}_R}\) and \(\mu\) vs \(m_{\tilde{q}_{L,3}}\), and then projected to the corresponding \(\tilde{t}_1\) and \(\tilde{\chi}_1^0\) masses. All other pMSSM masses are set to \(>3\) TeV.

The SRE results are interpreted for indirect top-squark production through gluino decays in terms of the \(\tilde{t}_1\) vs \(\tilde{g}\) mass plane with \(\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) = 5\) GeV. Gluino masses up to \(m_{\tilde{g}} = 1800\) GeV with \(m_{\tilde{t}_1} < 800\) GeV are excluded as shown in figure 13.

10 Conclusions

Results from a search for top squark pair production based on an integrated luminosity of 36.1 fb\(^{-1}\) of \(\sqrt{s} = 13\) TeV \(pp\) collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016 are presented. Top squarks are searched for in final states with
Figure 8. Observed (red solid line) and expected (blue solid line) exclusion contours at 95% CL as a function of \tilde{t}_1 and $\tilde{\chi}_1^0$ masses in the scenario where both top squarks decay via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$. Masses that are within the contours are excluded. Uncertainty bands corresponding to the $\pm 1\sigma$ variation of the expected limit (yellow band) and the sensitivity of the observed limit to $\pm 1\sigma$ variations of the signal theoretical uncertainties (red dotted lines) are also indicated. Observed limits from all third-generation Run-1 searches [26] at $\sqrt{s} = 8$ TeV overlaid for comparison in blue.

In this paper, direct top squark production is studied assuming top squarks decay via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with large or small mass differences between the top squark and the neutralino $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0)$ and via $\tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm$, where $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0} + 1$ GeV. Additionally, gluino-mediated \tilde{t}_1 production is studied, in which gluinos decay via $\tilde{g} \rightarrow t\tilde{\chi}_1^0$, with a small $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0)$.

No significant excess above the expected SM background is observed. Exclusion limits at 95% confidence level in the plane of the top-squark and LSP masses are derived, resulting in the exclusion of top-squark masses in the range 450–1000 GeV for $\tilde{\chi}_1^0$ masses below 160 GeV. For the case where $m_{\tilde{t}_1} \sim m_t + m_{\tilde{\chi}_1^0}$, top-squark masses in the range 235–590 GeV are excluded. In addition, model-independent limits and p-values for each signal region are reported. Limits that take into account an additional decay of $\tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm$ are also set with an exclusion of top-squark masses between 450 and 850 GeV for $m_{\tilde{\chi}_1^0} < 240$ GeV and $B(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0) = 50\%$ for $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0} + 1$ GeV. Limits are also derived in two pMSSM models, where one model assumes a wino-like NLSP and the other model is constrained by the dark-matter relic density. In addition to limits in pMSSM slices, limits are set in terms of one
Figure 9. Observed (solid line) and expected (dashed line) exclusion contours at 95% CL as a function of \tilde{t}_1 and $\tilde{\chi}_1^0$ masses and branching ratio to $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$ in the natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 1$ GeV.

pMSSM-inspired simplified model where $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5$ GeV and $m_{\tilde{\chi}_0^0} = m_{\tilde{\chi}_1^0} + 10$ GeV. Finally, exclusion contours are reported for gluino production where $m_{\tilde{g}} = m_{\tilde{\chi}_1^0} + 5$ GeV, resulting in gluino masses being constrained to be above 1800 GeV for \tilde{t}_1 masses below 800 GeV.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DSNRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South
Figure 10. Observed (solid line) and expected (dashed line) exclusion contours at 95% CL as a function of \(m_{\tilde{t}_1}\) and \(m_{\tilde{\chi}_1^0}\) for the pMSSM-inspired non-asymptotic higgsino simplified model for a small \(\tan\beta\) with \(B(\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^+) = 45\%, 10\%, 45\%\) (blue), a large \(\tan\beta\) with \(B(\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^+) = 33\%, 33\%, 33\%\) (red), and a small \(\tilde{t}_R\) with \(B(\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^+) = 25\%, 50\%, 25\%\) (green) assumption. Uncertainty bands correspond to the ±1\(\sigma\) variation of the expected limit.

Figure 11. Observed (solid line) and expected (dashed line) exclusion contours at 95% CL as a function of \(\tilde{t}_1\) and \(\tilde{\chi}_1^0\) masses for the Wino NLSP pMSSM model for both positive (blue) and negative (red) values of \(\mu\). Uncertainty bands correspond to the ±1\(\sigma\) variation of the expected limit.
Figure 12. Observed (solid line) and expected (dashed line) exclusion contours at 95% CL as a function of t_1 and $\tilde{\chi}^0_1$ masses for the \tilde{t}_L scan (red) as well as for the \tilde{t}_R scan (blue) in the well-tempered pMSSM model. Uncertainty bands correspond to the $\pm 1\sigma$ variation of the expected limit.

Figure 13. Observed (red solid line) and expected (blue solid line) exclusion contours at 95% CL as a function of \tilde{g} and \tilde{t}_1 masses in the scenario where both gluinos decay via $\tilde{g} \rightarrow \tilde{t}_1 \rightarrow t\tilde{\chi}^0_1 + \text{soft}$ and $\Delta m(\tilde{t}_1, \tilde{\chi}^0_1) = 5\text{ GeV}$. Uncertainty bands corresponding to the $\pm 1\sigma$ variation of the expected limit (yellow band) and the sensitivity of the observed limit to $\pm 1\sigma$ variations of the signal theoretical uncertainties (red dotted lines) are also indicated. Observed limits from previous searches with the ATLAS detector at $\sqrt{s} = 8$ and $\sqrt{s} = 13\text{ TeV}$ are overlaid in grey and blue [27, 93, 94].
Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristelis programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [95].

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[34] ATLAS collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, 2008 JINST **3** S08003 [inSPIRE].

Q. Wang115, R. Wang6, S.M. Wang153, T. Wang38, W. Wang153,ar, W. Wang36a,ar, Z. Wang36c, C. Wanotayaroj118, A. Warburton90, C.P. Ward30, D.R. Wardrobe81, A. Washbrook49, P.M. Watkins19, A.T. Watson19, M.F. Watson19, G. Watts140, S. Watts87, B.M. Waugh81, A.F. Webb11, S. Webb86, M.S. Weber18, S.W. Weber177, S.A. Weber31, J.S. Webster6, A.R. Weidberg122, B. Weinert64, J. Weingarten57, M. Weirich68, C. Weiser51, H. Weits109, P.S. Wells32, T. Wenaus27, T. Wengler32, S. Wernig22, M.D. Werner67, P. Werninger32, M. Wessels60a, K. Whalen118, N.L. Whallon140, A.M. Wharton75, A.S. White92, A. White8, M.J. White1, R. White34b, D. Whiteson166, B.W. Whitmore75, F.J. Wickens133, W. Wiedemann176, M. Wielers433, C. Wignesworth39, L.A.M. Wiik-Fuchs51, A. Wildauer103, F. Wilk87, H.G. Wilkens32, H.H. Williams124, S. Williams109, C. Williams93, S. Willocq69, J.A. Wilson19, I. Wingenter-Seez5, E. Winkels151, F. Winklermeier118, O.J. Winston151, B.T. Winter23, M. Wittgen145, M. Wobisch82a, T.M.H. Wolf109, R. Wolf88, M.W. Wolter42, H. Wolters128a,128c, V.W.S. Wong171, S.D. Worn19, B.K. Wosiek42, J. Wotschack32, K.W. Wozniak42, M. Wu33, S.L. Wu176, X. Wu52, Y. Wu92, T.R. Wyatt87, B.M. Wynne49, S. Xella39, Z. Xie92, L. Xia35c, D. Xu35a, L. Xu27, T. Xu138, B. Yabsley152, S. Yacooob174a, D. Yamaguchi159, Y. Yamaguchi120, A. Yamamoto69, S. Yamamoto157, T. Yamakawa157, M. Yamatan157, K. Yamachi105, Y. Yamazaki70, Z. Yan24, H. Yang36c, H. Yang16, Y. Yang153, Z. Yang15, W.-M. Yao16, Y.C. Yap83, Y. Yasui69, E. Yatsenko9, K.H. Yao93, J. Ye43, S. Ye27, I. Yeletskikh68, E. Yigitbasi24, E. Yildirim151, K. Yorita174, Y. Yoshitaka124, C. Young145, C.J.S. Young32, J. Yu8, J. Yu67, S.P.Y. Yuen23, I. Yusu30,ay, B. Zabinski42, G. Zacharlis10, R. Zaidan13, A.M. Zaitsev132,af, N. Zakharov45, J. Zalich15, A. Zaman150, S. Zambito59, D. Zanzi91, C. Zei178, G. Zemaitie122, A. Zemla41a, J.C. Zeng169, Q. Zeng145, O. Zenin132, T. Zeni146a, D. Zerwas119, D. Zhang92, F. Zhang176, G. Zhang36a,ar, H. Zhang35b, J. Zhang6, L. Zhang51, L. Zhang36a, M. Zhang169, P. Zhang35b, R. Zhang23, R. Zhang36a,av, X. Zhang36b, Y. Zhang35a, Z. Zhang119, X. Zhao43, Y. Zhao36b,ax, Z. Zhao36a, A. Zhemchugov68, B. Zhou92, C. Zhou176, L. Zhou43, M. Zhou35a, M. Zhou150, N. Zhou35c, C.G. Zhu36b, H. Zhu35a, J. Zhu92, Y. Zhu36a, X. Zhuang35a, K. Zhukov36c, A. Zibell177, D. Ziems61, N.I. Zimmer68, C. Zimmermann86, S. Zimmermann51, Z. Zinovete103, M. Zinser86, M. Ziolkowski143, L. Živković14, G. Zobernig176, A. Zoccoli22a,22b, R. Zou33, M. zur Nedden47, L. Zwalinski32

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, Young University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
(a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (d) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
Centre de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
Physikalisches Institut, University of Bonn, Bonn, Germany
Department of Physics, Boston University, Boston MA, United States of America
Department of Physics, Brandeis University, Waltham MA, United States of America
(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
(a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania
Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa ON, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China
(a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP), China
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
(a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas TX, United States of America
Physics Department, University of Texas at Dallas, Richardson TX, United States of America
DESY, Hamburg and Zeuthen, Germany
Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham NC, United States of America
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN e Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
E. Andronikashvili Institute of Physics, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
(a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Department of Physics, National Tsing Hua University, Taiwan, Taiwan
Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada