Inferences on Mass Composition and Tests of Hadronic Interactions from 0.3 to 100 EeV using the water-Cherenkov Detectors of the Pierre Auger Observatory

1IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
2Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal
3Osservatorio Astrofisico di Torino (INAF), Torino, Italy
4INFN, Sezione di Torino, Torino, Italy
5Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
6Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
7Centro Atómico Bariolche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
8Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
9Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina
10Universidad Nacional Autónoma de México, México, D.F., México
11Universidad de Santiago de Compostela, Santiago de Compostela, Spain
12Gran Sasso Science Institute (INFN), L’Aquila, Italy
13INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
14Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, USA
15INFN, Sezione di Napoli, Napoli, Italy
16Universidad Complutense de Madrid, Madrid, Spain
17Institute of Space Science, Bucharest-Magurele, Romania
18Universidad Industrial de Santander, Bucaramanga, Colombia
19Observatorio Pierre Auger, Malargüe, Argentina
20Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
21University Politehnica of Bucharest, Bucharest, Romania
22“Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
23Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
24Ohio State University, Columbus, OH, USA
25Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany
26University of Adelaide, Adelaide, S.A., Australia
27Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
28Università Torino, Dipartimento di Fisica, Torino, Italy
29Max-Planck-Institut für Radioastronomie, Bonn, Germany
30Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, Univ. Paris/Saclay, CNRS-IN2P3, Orsay, France
31Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
32Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy
33INFN, Sezione di Lecce, Lecce, Italy
34now at Deutsches Elektronen-Synchrotron (DESY), Zeuthen, Germany
35Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
36Institute of Nuclear Physics PAN, Krakow, Poland
37Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany
38Colorado State University, Fort Collins, CO, USA
39RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
40Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Siegen, Germany
41Universidad de Granada and C.A.F.P.E., Granada, Spain
42Università di Catania, Dipartimento di Fisica e Astronomia, Catania, Italy
43INFN, Sezione di Catania, Catania, Italy
44Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
45Università di Milano, Dipartimento di Fisica, Milano, Italy
46Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
47Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
48Pennsylvania State University, University Park, PA, USA
I. INTRODUCTION

Our understanding of the properties of the highest-energy cosmic rays has grown enormously over the last 12 years with the advent of data from the Pierre Auger Observatory and the Telescope Array. These devices have been used to study the energy spectrum, the mass composition and the distribution of arrival directions of cosmic rays from 0.3 EeV to energies beyond 100 EeV. While the features of the energy spectrum and of the arrival directions have been well-characterised up to ∼100 EeV, the situation with regard to the mass spectrum is less satisfactory because of the reliance on models of the hadronic physics. This state of affairs arises for two reasons. Firstly, the method that provides the best resolution, and therefore is the most potent for measuring a mass-sensitive feature of extensive air-showers, is the fluorescence technique. It has been exploited on an event-by-event basis to determine the depth of shower maximum, i.e. the depth in the atmosphere at which the energy deposition in the shower is greatest, but, as observations are restricted to clear moonless-nights, the number of events is limited. For example, in the Auger data so far reported (up to 31 December 2012) there are 227 events above 16 EeV [1]. For the same energy range, the event number from the Telescope Array is smaller, 25 [2]. Secondly, to interpret the data sets from the water-Cherenkov detectors and the fluorescence telescopes, one must use the predictions of features of hadronic interactions, such as the cross-sections for proton and pion interactions, the multiplicity and the inelasticity, at centre-of-mass energies up to ∼300 TeV, well-beyond what is accessible at the LHC [3].

To overcome the limitations imposed by the relatively small number of events accumulated with the fluorescence technique at the highest energies, use can be made of data recorded with the water-Cherenkov detectors of the Observatory which are operational nearly 100% of the time and thus yield substantially more events at a given energy. In this paper, we describe a new method for extracting information about the development of air showers from the time profiles of the signals from the water-Cherenkov detectors.

Our method allows a comparison of the data with predictions from models of parameters inferred directly from these detectors in which a signal from a mix of the muon and electromagnetic components of air-showers is available. This approach follows the line opened in four recent studies. From comparisons of Auger observations with hadronic models it is argued that the latter are inadequate to describe the various measurements [4–7]. As in the earlier work, we find that there are inconsistencies between the models and the data: this is established over a greater energy range and with more events than before.

The method also enables us to infer the depth of shower maximum (a dominantly electromagnetic measurement) by calibrating the new parameter with measurements from the fluorescence telescopes. We have determined X_{max} for about three times more events than available from these telescopes alone over the range from ∼0.3 EeV to beyond 70 EeV: specifically for the two surface detector configurations, the 750 and 1500 m arrays [8], there are 27553 and 54022 events recorded respectively for which estimates of X_{max} have been possible. Of those, 49 events are in the range beyond 70 EeV, and 1586 above 20 EeV.

The structure of the paper is as follows. In section II features of the Pierre Auger Observatory are briefly outlined. The measurement of the risetime of signals from the water-Cherenkov detectors is described in section III and the new parameter for studying the depth of shower maximum is introduced in section IV. A comparison of the new parameter with predictions from hadronic models is discussed in section V. Section VI presents the results on the measurement of average X_{max} from 0.3 EeV to beyond 70 EeV. A summary of the

PACS numbers: 96.50.S-, 96.50.sb, 96.50.sd, 98.70.Sa
conclusions is given in section VII.

II. THE PIERRE AUGER OBSERVATORY

The Pierre Auger Observatory is located near the city of Malargüe in the Province of Mendoza, Argentina. It is a hybrid system, being a combination of a large array of surface detectors and a set of fluorescence detectors, used to study cosmic rays with energies above 0.1 EeV. Full details of the instrumentation and the methods used for event reconstruction are given in [8].

The work presented here is based on data gathered from 1 Jan 2004 to 31 Dec 2014 from the surface-detector array (SD), which covers an area of over 3000 km². The array contains 1660 water-Cherenkov detectors, 1600 of which are deployed on a hexagonal grid with 1500 m spacing with the remainder on a lattice of 750 m covering 23.5 km². We refer to these configurations as the 1500 m and 750 m arrays. The water-Cherenkov detectors are used to sample the electromagnetic and muonic components of extensive air-showers. Each detector contains 12 tonnes of ultra-pure water in a cylindrical container, lined with Tyvec, 1.2 m deep and of 10 m² area. The water is viewed by three 9”-photomultiplier tubes (PMTs). Signals from the anode and an amplified signal from the last dynode of each PMT are digitised using 40 MHz 10-bit Flash Analog to Digital Converters (FADCs); these are called the ‘high-gain’ and ‘low-gain’ channels in what follows. The responses of the detectors are calibrated in units of the signal produced by a muon traversing the water vertically at the center of the station: this unit is termed the “Vertical Equivalent Muon” or VEM [9]. Air showers are identified using a 3-fold coincidence, satisfied when a triangle of neighbouring stations is triggered [10]. Using the six FADCs, 768 samples (over 19.2 µs) are recorded at each triggered station. For the present analysis events are used that are confined within the array so that an accurate reconstruction is ensured. This requires that all six stations of the hexagon surrounding the detector with the highest signal are operational and is known as the 6T5 condition. The arrival directions are found from the relative arrival times of the shower front at the triggered stations. The angular resolution is 0.8° for energies above 3 EeV for the 1500 m array and 1° for the 750 m-configuration [8].

The estimator of the primary energy is the signal reconstructed at 1000 m (1500 m array) or 450 m (750 m array) from the shower core, denoted by $S(1000)$ and $S(450)$ respectively. These estimators are determined, together with the core position, through a fit of the recorded signals (converted to units of VEM after integration of the FADC traces) to a lateral distribution function that describes the average rate of fall-off of the signals as a function of the distance from the shower core. For $S(1000) > 20$ VEM (corresponding to an energy of ∼3 EeV) showers are recorded with full efficiency over the whole area of the array. For the 750 m array, the corresponding value of $S(450)$ for full efficiency is ∼60 VEM (∼0.5 EeV). The accuracy of the core location in lateral distance is ∼50 m (35 m) for the two configurations. The uncertainty of $S(1000)$, which is insensitive to the lateral distribution function [11], is 12% (3%) at 3 EeV (10 EeV) and for $S(450)$ the corresponding figure is 30% at 0.5 EeV.

The conversions from $S(450)$ and $S(1000)$ to energy are derived using subsets of showers that trigger the fluorescence detector and the surface array independently (‘hybrid events’) using well-established methods [12]. The statistical uncertainty in the energy determination is about 16% (12%) for the two reference energies of the 1500 m array and 15% at 0.5 EeV for the 750 m array. The absolute energy scale, determined using the fluorescence detector, has a systematic uncertainty of 14% [13].

Twenty-four telescopes (each with a field of view of $30° \times 30°$) form the Fluorescence Detector (FD). They are distributed in sets of six at four observation sites. The FD overlooks the SD array and collects the fluorescence light produced as the shower develops in the atmosphere. Its duty cycle amounts to ∼15% since it operates exclusively on clear moonless nights. The 750 m array is overlooked from one observation site by three high-elevation telescopes (HEAT) with a field of view covering elevations from 30° to 60°, thus allowing the study of lower energy showers. Those low energy showers are detected closer to the detector; therefore we need a higher elevation field of view to contain also this kind of events.

III. THE RISETIME AND ITS MEASUREMENT

A. Overview of the risetime concept

In the study described below, we use the risetime of the signals from the water-Cherenkov detectors to extract information about the development of showers. A single parameter, namely the time for the signal to increase from 10% to 50% of the final magnitude of the integrated signal, $t_{1/2}$, is used to characterize the signal at each station. This parameter was used for the first demonstration of the existence of between-shower fluctuations in an early attempt to get information about the mass of the cosmic rays at ∼1 EeV [14]. That work was carried out using data from the Haverah Park array in England where the water-Cherenkov detectors were of 1.2 m deep (identical to those of the Auger Observatory) and of area 34 m².

The choice of this parameter is based on the experimental work by Linsley and Scarsi [15]. They showed that at distances of more than about 100 m from the shower core, the early part of the shower signal is dominated by muons. Direct measurements of muons using magnetic spectrographs established that the mean mo-
account of the fact that a detector that is struck early in the passage of the shower across the array will have a slower risetime than one that is struck later, even if the two detectors are at the same axial distance from the shower core. This asymmetry arises from a complex combination of attenuation of the electromagnetic component as the shower develops and because of the different part of the angular distribution of muons (more strictly of the parent pions) that is sampled at different positions across the array. The attenuation of the electromagnetic component of a shower across an array was first discussed by Greisen [17]. A detailed description of the asymmetry that is observed, and of its power for testing hadronic interaction models, has been given recently [6]. For the present study, the asymmetry is taken into account by referencing each risetime to that which would be recorded at a hypothetical detector situated at 90° with respect to the direction of the shower axis projected onto the ground, and at the same axial distance from the shower core, as the station at which a measurement is made. The amplitude of the asymmetry is a function of zenith angle, axial distance and energy: at 40°, 750 m and 10 EeV it is ∼15%.

The magnitudes of the risetimes that are measured in a particular shower depend upon the development of the shower. As the energy increases, the mean position of the point of maximum development of the shower moves deeper into the atmosphere and thus the risetimes will, on average, be slower than for a lower energy event. Because muons dominate the shower to an increasing extent at large zenith angles, because the electromagnetic component suffers increased attenuation, the risetimes are expected to be faster at a detector that is at the same distance from the axis of the shower but in the vertical direction. The magnitude of the energy, distance and zenith angle effects that can be inferred qualitatively from Fig. 1 are evident in the data shown in Fig. 2.

From these considerations, it follows that studying the risetimes of showers provides a method of measuring the shower development and thus of deducing the mass composition. Details of the study are presented below where the risetime properties are also compared with predictions from Monte Carlo calculations using different hadronic models.

B. Determination of the accuracy of measurements of $t_{1/2}$

The uncertainty in a measurement of $t_{1/2}$ is found empirically from the data and will be described in some detail as it plays an essential role in the determination of the new parameter, introduced in section IV, used to characterize shower development. The uncertainty can be obtained by using sets of detectors placed 11 m apart (known as ‘twins’) and also by using detectors that lie at similar distances from the shower core (‘pairs’). Measurements made using twins and pairs cover different
Figure 2: (Top left) The risetime as a function of distance to the shower core for two different intervals of sec θ in the energy range $19.0 < \log \left(\frac{E}{eV} \right) < 19.2$. (Top right) The risetime as a function of distance for two different energy bands in the angular range $1.20 < \sec \theta < 1.30$. (Bottom left) Illustration of the spread in the risetimes as a function of distance for events in the energy range $19.1 < \log \left(\frac{E}{eV} \right) < 19.2$. (Bottom right) Illustration of the variation of risetime with zenith angle for events in the energy range $19.1 < \log \left(\frac{E}{eV} \right) < 19.2$. All plots are based on experimental data.

distance ranges. With twins we can parameterize the uncertainty with a sufficient number of events only between 300 m and 1200 m from the shower core. With pairs we can cover distances from 600 m to 1800 m. It is then natural to combine both sets of measurements to avoid as much as possible relying on extrapolations when estimating the uncertainty in the measurement of $t_{1/2}$.

The twin detectors give two independent measurements of the risetime at what is effectively a single point in the shower plane. Differences in the values of $t_{1/2}$ at the twins arise from the limitations set by the sampling of the shower front by a detector of finite size (10 m²) and from the measurement uncertainties intrinsic to the FADC system. For the more-numerous pairs there are the additional complications that arise from the asymmetry effect and from the difference in distance of the pairs from the shower core.
1. Assessment of measurement uncertainty using twin detectors

In the surface-detector array there are 14 sets of twins and seven sets of triplets (three detectors on a triangular grid each separated by 11 m): the triplets are also referred to as ‘twins’. We parameterize the uncertainty by splitting the data in different bins of distance to the core, zenith angle and detector signal. This implies that a precise parameterization of the uncertainty demands a large amount of data. To cope with this requirement we must combine all twin measurements that belong to events reconstructed at either of the arrays. A total of ~83 000 twin measurements are available from the two arrays for zenith angles below 60° and above energies of 0.3 EeV and 1 EeV for events that trigger the two arrays. The cuts on energy and zenith angle are very loose to enhance the number of events available for analysis. Likewise the criteria applied at detector level and detailed in Table I are mild to keep the selection efficiency as high as possible. We discard detectors that recorded a small number of particles or located far from the core to avoid biases in the signal measurement. For very large signals, the risetime measurements approach the instrumental resolution and therefore are discarded. The cut on $|S_1 - S_{\text{mean}}|$ in Table I is made to deal with cases where one signal is typically around 5 VEM and the other, possibly because of an upward fluctuation, is relatively large. Such twins are rejected.

The average uncertainty in a risetime measurement, $\sigma_{1/2}$, is given by

$$\sigma_{1/2} = \frac{\sqrt{\pi}}{2} \left(|t_1^{1/2} - t_2^{1/2}| \right)$$

where the superscripts define each member of the twin. As twin detectors are only 11 m apart no correction is necessary for the azimuthal asymmetry.

The data have been divided into seven sec θ intervals (of width 0.1) and six distance ranges (see Fig. 3 left). The mean values of $\sigma_{1/2}$ as a function of signal size, S, are fitted with the function

$$\sigma_{1/2} = \sqrt{\frac{J(r, \theta)}{\sqrt{S}}} + \frac{25 \text{ ns}}{\sqrt{12}}$$

The first term in this function represents the differences seen between the two detectors while the second term arises from the digitisation of the signal in time intervals of 25 ns.

J is found from a linear function, $J(r, \theta) = p_0(\theta) + p_1(\theta)$, and the fitted values of p_0 and p_1 as functions of sec θ are

$$p_0(\theta) = (-447 \pm 30) + (224 \pm 20) \text{ sec } \theta$$
$$p_1(\theta) = (0.94 \pm 0.03) + (-0.44 \pm 0.01) \text{ sec } \theta$$

where p_0 units are (ns VEM$^{1/2}$) and p_1 units are (ns VEM$^{1/2}$ m$^{-1}$).

Figure 3: (Left) Uncertainty obtained with pair detectors as a function of the station signal for vertical events (1.00 < sec θ < 1.10). Each line is the result of the fits performed for different distance ranges. Each point represents the average measurements of at least 10 pair detectors. (Right) The parameter $J(r, \theta)$ as a function of the distance to the core for the same zenith angle range.

2. Assessment of measurement uncertainty using pairs of detectors

For the purposes of this study, a pair of detectors is defined as any two detectors in the same shower where the difference in distance from the shower core, $(|r_2 - r_1|)$ is less than 100 m, irrespective of azimuth angle. After applying the cuts previously discussed, there are ~50% more pair measurements than there are measurements from twins. This sample is large enough to allow us to limit this study to pairs of detectors from the 1500 m array only. However, corrections have to be made for the asymmetry and, because of the array spacing, there are no data below 600 m. Additionally a correction must be made because the risetimes are at different axial distances: for a 100 m separation this difference is ~30 ns, assuming a linear dependence of risetime with distance (see Fig. 2). Before applying this correction the mean time difference for pairs was (14.750 ± 0.002) ns: after correction the average difference was (0.140 ± 0.002) ns.

From a similar analysis to that described for the twin detectors, the fits for p_0 and p_1 have the parameterisations

$$p_0(\theta) = (-447 \pm 30) + (224 \pm 20) \text{ sec } \theta$$
$$p_1(\theta) = (1.12 \pm 0.03) + (-0.51 \pm 0.02) \text{ sec } \theta$$

The variation of J with distance is also shown in Fig. 3.

The differences in the values of p_0 and p_1 from the two analyses arise because they cover different distance ranges and different energy ranges. To optimize the determination of $\sigma_{1/2}$ for the risetimes measured at each station, we adopt the following parameterisations for p_0 and p_1 for different core ranges.
Table I: Selection of twin detectors used to assess the risetime uncertainty.

<table>
<thead>
<tr>
<th>Cuts</th>
<th>Number of twins</th>
<th>Efficiency</th>
<th>Number of twins</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-twin selection</td>
<td>41 100</td>
<td>1.00</td>
<td>41 934</td>
<td>1.00</td>
</tr>
<tr>
<td>5 < S/VEM < 800</td>
<td>34 461</td>
<td>0.84</td>
<td>35 704</td>
<td>0.85</td>
</tr>
<tr>
<td>r < 2000 m</td>
<td>34 459</td>
<td>0.83</td>
<td>35 620</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>28 466</td>
<td>0.69</td>
<td>29 832</td>
<td>0.71</td>
</tr>
</tbody>
</table>

\[
p_0(\theta) = \begin{cases}
(-340 \pm 30) + (186 \pm 20) \sec \theta, & r \leq 650 \text{ m} \\
(-447 \pm 30) + (224 \pm 20) \sec \theta, & r > 650 \text{ m}
\end{cases}
\]

\[
p_1(\theta) = \begin{cases}
(0.94 \pm 0.03) + (-0.44 \pm 0.01) \sec \theta, & r \leq 650 \text{ m} \\
(1.12 \pm 0.03) + (-0.51 \pm 0.02) \sec \theta, & r > 650 \text{ m}
\end{cases}
\]

We have set the break point at 650 m because at this distance the uncertainties given by the two parameterizations agree within their statistical uncertainties (2-3 ns).

IV. THE NEW PARAMETER Δ_s AND ITS DETERMINATION FOR INDIVIDUAL AIR-SHowerS

A. Introduction to the Delta method

When a large number of risetimes is recorded in an event, it is possible to characterize that event by a single time just as the size of an event is designated by S(1000), the signal size at 1000 m from the shower axis. This approach is only practical at high energies, as several measurements are needed to estimate the risetime at 1000 m by extrapolation [18]. Here, to obtain a large sample of data over a wide range of energies, an alternative method of using risetime measurements is introduced. We have determined for the two arrays independent relationships that describe the risetimes as a function of distance in a narrow range of energy (see section IV C). We call these functions ‘benchmarks’, and risetimes at particular stations, after correction for the asymmetry effect, are compared with the relevant times from the benchmark, t_{bench}, in units of the accuracy with which they are determined. The approach is illustrated in Fig. 4: the benchmarks are, of course, zenith-angle dependent (see Fig. 2). We use the term ‘Delta method’ to refer to this approach in what follows.

Thus for each measurement of $t_{1/2}$ at a single detector, i, an estimate of $\Delta_i = \left(t_{1/2} - t_{\text{bench}} \right) / \sigma_{1/2}$ is made. Each shower is then characterised by Δ_s, the average of these estimates for the N selected stations.

\[
\Delta_s = \frac{1}{N} \sum_\text{stations} \Delta_i
\]
Table II: Quality cuts applied to the events of the 750 m and the 1500 m arrays. \(\epsilon \) stands for the overall efficiency. The explanation for the different cuts can be found in the text.

<table>
<thead>
<tr>
<th>750 m array</th>
<th>1500 m array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality cuts</td>
<td>Events (\epsilon) (%)</td>
</tr>
<tr>
<td>(17.5 < \log (E/eV) < 18.5)</td>
<td>159 795 100.0</td>
</tr>
<tr>
<td>(\sec \theta < 1.30)</td>
<td>72 907 45.6</td>
</tr>
<tr>
<td>6T5 trigger</td>
<td>29 848 18.7</td>
</tr>
<tr>
<td>Reject bad periods</td>
<td>28 773 18.0</td>
</tr>
<tr>
<td>(\geq 3) selected stations</td>
<td>27 553 17.2</td>
</tr>
</tbody>
</table>

The determination of the benchmarks, which define the average behaviour of the risetimes as a function of distance and zenith angle, is fundamental to the success of the technique. Essentially the same procedures have been adopted for both arrays. For each detector two time traces are recorded on high-gain and low-gain channels. The risetime of a detector is computed according to the following procedure: in the case where no saturation occurs, the risetime is obtained from the trace corresponding to the high-gain channel. If this channel is saturated, we use the trace from the low-gain channel to compute the risetime. If the low-gain signal is saturated as well, which can occur for stations close to the core in high-energy events, that station is not selected for this analysis. Further details of the recording procedures are given in [8].

In computing the benchmarks, account must be taken of the fact that the risetimes measured for a station in the two channels are not identical, as illustrated in Fig. 5. During the digitization process, a threshold is imposed that removes very small signals. The net effect of this threshold affects the low-gain traces much more, since their signals are smaller due to the lower signal-to-noise ratio when compared to the one associated to high-gain traces. The influence of tails in the determination of the integrated signal is therefore reduced for low-gain signals and as a consequence the risetime measurement is affected. This instrumental effect makes it necessary to obtain benchmarks for the high-gain and the low-gain traces independently.

As shown in Table II the energy ranges covered by the two arrays are \(17.5 < \log (E/eV) < 18.5 \) (750 m spacing) and \(\log (E/eV) > 18.5 \) (1500 m spacing). The energy bins...
chosen for the benchmarks of the 750 and 1500 m arrays are $17.7 < \log (E/eV) < 17.8$ and $19.1 < \log (E/eV) < 19.2$ respectively. The choices for the benchmarks are most effective in dealing with the high-gain/low-gain problem just discussed. They guarantee that we reject a reduced number of detectors where the low and the high-gain channels are simultaneously saturated and therefore allow a definition of the benchmark over a broad distance range. In addition, this implies that the distance intervals used to fit the behaviour of the risetimes computed either with the low or the high-gain traces are sufficiently long to avoid compromising the quality of the fit.

A fit is first made to the data from the low-gain channels using the relation

$$t_{1/2}^{\text{low-gain trace}} = 40 \text{ ns} + \sqrt{A(\theta)^2 + B(\theta) r^2} - A(\theta)$$ \hspace{1cm} (7)

where A and B are free parameters. The reason for adopting 40 ns as a limit was explained in section III A. Other functions were tested: this one gave consistently lower values of reduced χ^2 over the range of angles and energies used for the two arrays.

Having used low-gain traces to evaluate A and B, the signals from high-gain traces are now fitted with the function

$$t_{1/2}^{\text{high-gain trace}} = 40 \text{ ns} + N(\theta) \left(\sqrt{A(\theta)^2 + B(\theta) r^2} - A(\theta) \right)$$ \hspace{1cm} (8)

in which there is one free parameter, $N(\theta)$, that describes the shift between the measurements in the two channels. Examples of the quality of the fits of these functions to the data are shown in Fig. 8 and Fig. 7 for two angular ranges for each of the two arrays.

In the right-hand plots of each pair, the mean and RMS deviations of the fits are seen to be consistent with 0 and 1, as expected for pull distributions [17]. The uncertainty in the axial distance has not been included in the fits as it is only around 2% for the distances in question.

Fits were made for A, B and $N(\theta)$ in six intervals of sec θ ranges 1.0 – 1.30 and 1.0 – 1.45 for the 750 m and 1500 m arrays respectively. In all six cases the χ^2-values of the fits are between 1 and 1.2. To obtain the final parameterization of A, B and N as a function of θ fits have been made using the following functions

$$A(\theta) = a_0 + a_1 (\sec \theta)^{-4}$$
$$B(\theta) = b_0 + b_1 (\sec \theta)^{-4}$$
$$N(\theta) = n_0 + n_1 (\sec \theta)^2 + n_2 e^{\sec \theta}$$ \hspace{1cm} (9)

where the seven coefficients, a_0, a_1 etc., are determined for the two arrays. This set of functions has been empirically chosen. It guarantees that, for the energy bins for which the benchmarks are defined, the mean value of Δs shows a flat behaviour as function of sec θ. This naturally follows from the definition of $t_{1/2}^{\text{bench}}$. Since it embodies the dependence on sec θ, the numerator in the definition of Δs has to be independent of the zenith angle.

We may thus define the benchmarks in terms of A, B and N as a function of sec θ, enabling an appropriate benchmark to be defined for the zenith angle of the event under study. Thus Δs can be found for every station that satisfies the selection criterion and the corresponding value of Δs can be found for every selected event.

V. EVOLUTION OF $\langle \Delta s \rangle$ WITH ENERGY AND COMPARISON WITH MODEL PREDICTIONS

We now describe the observed variation of $\langle \Delta s \rangle$, the mean of Δs for a set of events, as a function of energy. The selection criteria for this analysis were presented in Table II. The variation of $\langle \Delta s \rangle$ with energy for the two arrays is shown in Fig. 8. Note that at the benchmark energies, indicated by the vertical bands, $\langle \Delta s \rangle$ is zero, as expected by definition.

The results shown in Fig. 8 were obtained using the whole data set. We produce similar plots but this time splitting data in different bands of sec θ. This exercise gives results that are consistent with the ones displayed in Fig. 8. Searches for anomalous behaviour of the largest, the second largest and the smallest signals separately have also been made: none was found.

To test the validity of hadronic models we can use $\langle \Delta s \rangle$. In previous works [4–7] strong evidence has been
found that the models do not adequately describe the data and that the problem lies with the predictions of the muon content of showers. As the risetime is dominated by muons, $\langle \Delta s \rangle$ is expected to provide a further investigation of this problem that will be useful because of the higher number of events and the extension to lower energies.

Libraries of simulations for the QGSJETII-04 [19] and EPOS-LHC [20] models and proton and iron primaries for zenith angles $< 45^\circ$ and $17.5 < \log (E/\text{eV}) < 20$ have been created. In making comparisons with data it is necessary to choose which benchmarks to adopt. For consistency in what follows we use the benchmarks determined from data (section IV). Different choices of benchmarks would simply give shifts in the values of $\langle \Delta s \rangle$, which would be the same for each data set.

For this study, the uncertainties in the risetimes have been found from simulations and adopting the ‘twins’ approach described in section III. The results are shown in Fig. 9 where it is seen that the uncertainties from the data are in good agreement with simulations using the QGSJETII-04 model at the benchmark energy.

A comparison of the evolution of $\langle \Delta s \rangle$ with energy from the data with those from models is shown in Fig. 10.

The main sources that contribute to the systematic uncertainty are: a seasonal effect found when data are grouped according to the season of the year. It amounts to 0.03 for the 1500 m data and it is due to the variable conditions of pressure and temperature found in the atmosphere through the year. The UTC time at which the data were recorded also introduces a small uncertainty in our determination of $\langle \Delta s \rangle$. Splitting data into periods corresponding to day and night, we obtain a value of this uncertainty of 0.01 for the 1500 m array data.

Our observable also exhibits dependence with the ageing effects of surface detectors. We take as a systematic uncertainty the difference in $\langle \Delta s \rangle$ found after grouping our data into two samples, one running from 2004 to 2010 and the other one from the years 2012 to 2014. For the 1500 m array, the difference amounts to 0.04. A small dependence of $\langle \Delta s \rangle$ with $\sec \theta$ is taken as source of systematics, its value being 0.02. Finally the systematic uncertainty associated to the energy scale ($\pm 14\%$) results in a systematic uncertainty on $\langle \Delta s \rangle$ that amounts to 0.1. Adding all these contributions in quadrature, the overall systematic uncertainty in $\langle \Delta s \rangle$ is 0.11 for the 1500 m array. A similar study for the 750 m array gives an overall systematic uncertainty in $\langle \Delta s \rangle$ of 0.07. According to simulations, this is about 10% of the separation between proton and iron nuclei. It is evident, independent of which model is adopted, that the measurements suggest an increase of the mean mass with energy above ~ 2.5 EeV if the hadronic models are correct.

Assuming the superposition model is valid and since $\langle \Delta s \rangle$ is proportional to the logarithm of the energy (Fig. 8), the mean value of the natural logarithm of A (the atomic weight of an element) can be found from the following equation

$$\langle \ln A \rangle = \ln 56 \frac{\langle \Delta s \rangle_p - \langle \Delta s \rangle_{\text{data}}}{\langle \Delta s \rangle_p - \langle \Delta s \rangle_{\text{Fe}}} \quad (10)$$

The results of this transformation for two models are shown in Fig. 11 and are compared with the Auger measurements of X_{max} made with the FD [21]. While the absolute values of $\langle \ln A \rangle$ for the Delta method and the FD X_{max} differ from each other, the trend in $\langle \ln A \rangle$ with energy is very similar. The observed difference arises because of the inadequate description of the muon component in the models used to get the $\langle \ln A \rangle$ values. Notice that the electromagnetic cascade dominates the FD measurement whereas the Delta method is of a parameter that is a mixture of muons and the electromagnetic component. With substantially more events than in previous studies, we observe that the inconsistency between data and model predictions extends over a greater energy range than what was probed in past works.

In Fig. 12, the Delta results are also compared with the results of the analysis made using the asymmetry method [6] and with those from the study of the depth of muon production [4].

For EPOS-LHC the results from the asymmetry analysis, which is also based on risetimes and consequently on signals which are a mixture of the muon and the electromagnetic component, are in good agreement.
with the Delta results, albeit within the rather large statistical uncertainties. By contrast, the results from the MPD analysis, in which only muons are studied, give much larger (and astrophysically unexpected) values of \langle \ln A \rangle. This once more indicates that the mechanisms of muon production in extensive air-showers are not properly described in current hadronic models.

VI. CORRELATION OF \(\Delta s\) WITH THE DEPTH OF SHOWER MAXIMUM

We now address the correlation of \(\Delta s\) with the depth of shower maximum, \(X_{\text{max}}\). As remarked earlier, we would not expect a 1:1 correlation between these parameters because the muon/electromagnetic mix incident on the water-Cherenkov detectors changes in a complex, but well-understood, manner with zenith angle, energy and distance. An idea of the correlation to be expected can be gained through Monte Carlo studies.

Values of \(\Delta s\) and \(X_{\text{max}}\) have been obtained from simulations of 1000 proton and 1000 iron nuclei showers made using the QGSJETII-04 model for the benchmark bin of the 1500 m array. The results are shown for three stations in Fig. 13. The fact that the Pearson’s correlation is less strong for Fe-nuclei than for protons, reflects the enhanced dominance of muons in showers initiated by Fe-primaries. The simulations give an indication of what is to be expected when the measurements of \(\Delta s\) are compared with the \(X_{\text{max}}\) values in the hybrid events for which the reconstruction of both observables is possible.

To exploit the correlation using data, and hence extend the energy range and the statistical significance of the elongation rate determined with the FD, it is necessary to create empirical correlations using events in which both \(\Delta s\) and \(X_{\text{max}}\) have been measured in the same events. For this study we used the data discussed...
Figure 10: $\langle \Delta \rangle$ as a function of the energy for the two surface arrays. Brackets correspond to the systematic uncertainties. Data are compared to the predictions obtained from simulations.

Figure 11: $\langle \ln A \rangle$ as a function of energy for methods and for X_{max} measurements done with the FD. QGSJetII-04 and EPOS-LHC have been used as the reference hadronic models. Statistical uncertainties are shown as bars. Brackets and shaded areas correspond to the systematic uncertainties associated with the measurements done with the SD and FD data, respectively.

Figure 12: $\langle \ln A \rangle$ as a function of the energy for analyses using FD data and SD data from the 1500 m array. QGSJetII-04 and EPOS-LHC have been used as the reference hadronic models. The results of the Delta method are compared with those arising from the asymmetry analysis [6] (top panels) and from the Muon Production Depth analysis [4] (bottom panels). Brackets correspond to the systematic uncertainties.

in [1] for the 1500 m array for the events with energies > 3 EeV and a similar set of data from the 750 m array [21] for events of lower energy. The selection of events is shown in Table III.

The Δ_FD and X_{max} of the events selected for the purposes of calibration are shown for the two arrays in Fig. 14. There are 252 and 885 events for the 750 m and 1500 m arrays respectively available for calibration of which 161 have energies > 10 EeV. The small number for the 750 m array reflects the shorter period of operation and the relatively small area (23.5 km2) of the array. We have checked that the sample of events selected is unbiased by comparing the elongation rate determined from the full data set (from HEAT and standard fluorescence telescopes) with that found from the 252 and 885 events alone.
Table III: Set of cuts used to select events simultaneously reconstructed by the fluorescence and surface detectors. These events are used for calibration purposes. ϵ stands for the overall efficiency. HEAT data are obtained with a set of three fluorescence detectors that point to the higher zenith angles appropriate to the lower energies.

<table>
<thead>
<tr>
<th>Quality cuts</th>
<th>Events ϵ (%)</th>
<th>Quality cuts</th>
<th>Events ϵ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAT data</td>
<td>12 003</td>
<td>FD data</td>
<td>19 759</td>
</tr>
<tr>
<td>FD & SD recon</td>
<td>2 461</td>
<td>sec $\theta < 1.30$</td>
<td>9 927</td>
</tr>
<tr>
<td>sec $\theta < 1.45$</td>
<td>2 007</td>
<td>6T5 trigger</td>
<td>7 361</td>
</tr>
<tr>
<td>6T5 trigger</td>
<td>714</td>
<td>≥ 3 selected stations</td>
<td>660</td>
</tr>
<tr>
<td>$\log (E/eV) \geq 17.5$</td>
<td>252</td>
<td>$\log (E/eV) \geq 18.5$</td>
<td>885</td>
</tr>
</tbody>
</table>

Table IV: Coefficients obtained from the calibration of Δ_s and X_{max}.

<table>
<thead>
<tr>
<th>Calibration parameters</th>
<th>Value (g cm$^{-2}$)</th>
<th>Value (g cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>636 ± 20</td>
<td>699 ± 12</td>
</tr>
<tr>
<td>b</td>
<td>96 ± 10</td>
<td>56 ± 3</td>
</tr>
<tr>
<td>c</td>
<td>2.9 ± 1.2</td>
<td>3.6 ± 0.7</td>
</tr>
</tbody>
</table>

For the calibration we fit functions of the form

$$X_{\text{max}} = a + b\Delta_s + c \log (E/eV)$$

(11)

to the two data sets. The term ‘b’ is dominant in the fit. The term ‘c’ is included to accommodate the energy dependence of both variables. A fit including a quadratic term in $\log (E/eV)$ does not modify our results. The uncertainties in X_{max} are taken from [1]. We have used the maximum likelihood method to make the fits which give the coefficients listed in Table IV. The three coefficients are not independent. Their Pearson’s correlations are $\rho_{ab}=-0.2$, $\rho_{ac}=-0.97$ and $\rho_{bc}=0.34$. These correlations are taken into account when evaluating the systematic uncertainty associated with the calibration procedure.

We have also evaluated the systematic uncertainties associated with the measurements of X_{max} deduced from the surface detectors. These include the seasonal, diurnal, ageing and θ dependence already discussed for $\langle \Delta_s \rangle$ in section V that X_{max} propagate to our measurement. Now two further sources of systematic arise. One is related to the uncertainty in the calibration parameters. We have propagated this uncertainty taking into account the correlation of the parameters a, b and c. For the 1500 m array, the differences in X_{max} span from 3 g cm$^{-2}$ at the lowest energies to 5 g cm$^{-2}$ at the upper end of the energy spectrum. We quote conservatively as a systematic uncertainty the largest value found and consider it constant for the whole energy range.
range. A similar procedure for the 750 m array data results on a systematic uncertainty of 10 g cm$^{-2}$. The systematic uncertainty obtained in the measurement of X_{max} with the FD detector propagates directly into the values obtained with the SD data. In [1] the systematic uncertainty is given as a function of the energy. In this analysis, the average of those values is quoted a systematic uncertainty that is constant with energy. The values are shown for each effect and for each array in Table V.

The systematic uncertainties have been added in quadrature to give 14 and 11 g cm$^{-2}$ for the 750 and 1500 m arrays respectively.

The values of X_{max} found from this analysis are shown as a function of energy in Fig. 15. The resolution in the measurement of X_{max} with the surface detector data is 45 g cm$^{-2}$.

In Fig. 16 measurements in the region of overlap between the two arrays are shown. The agreement is satisfactory.

In Fig. 17 the data of Fig. 15 are compared with measurements made with the fluorescence detectors [21].

The agreement is good: the results from the surface detector alone are statistically stronger and extend to higher energies.

A. Interpretation of the measurements in terms of average mass

A comparison with hadronic models allows the expression of the average depth of shower maxima in terms of the natural logarithm of the atomic mass $\langle \ln A \rangle$, following the procedure discussed in section V. The evolution of $\langle \ln A \rangle$ as a function of energy is shown in Fig. 18. In the energy range where the FD and SD measurements coincide, the agreement is good. For both hadronic models the evolution of $\langle \ln A \rangle$ with energy is similar. However the EPOS-LHC model suggests a heavier average composition. SD measurements have been used to confirm, with a larger data set, what has already been observed with FD measurements, namely that the primary flux of particles is predominantly composed of light particles at around 2 EeV and that the average mass increases up to ~40 EeV. Above this energy, the SD measurements can be used to draw inferences about mass composition with good statistical power. The last two bins indicate a possible change in the dependence of X_{max} with energy above 50 EeV, with the final point lying ~3 sigma above the elongation rate fitted to data above 3 EeV. It is, therefore, possible that the increase of the primary mass with energy is slowing at the highest energies but we need to reduce statistical and systematic uncertainties further before strong conclusions can be drawn. AugerPrime, the upgrade of the surface-detector array of the Pierre Auger Observatory [22], will significantly improve our capability to elucidate mass composition on an event-by-event basis in the energy range of the flux suppression.

VII. SUMMARY AND CONCLUSIONS

We have described a new method for extracting relevant information from the time profiles of the signals from the water-Cherenkov detectors of the Pierre Auger...
Table V: Breakdown of the systematic uncertainties of X_{max} for the 750 m and 1500 m arrays. The systematic uncertainty obtained in the measurement of X_{max} with the FD and HEAT detectors propagates directly into the values obtained with the SD data. The rest of systematic uncertainties quoted in this table are intrinsic to the Delta method.

<table>
<thead>
<tr>
<th>Source</th>
<th>750 m array Systematic uncertainty (g cm$^{-2}$)</th>
<th>1500 m array Systematic uncertainty (g cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncertainty on calibration</td>
<td>10.0</td>
<td>Uncertainty on calibration</td>
</tr>
<tr>
<td>Seasonal effect</td>
<td>2.0</td>
<td>Seasonal effect</td>
</tr>
<tr>
<td>Diurnal dependence</td>
<td>1.0</td>
<td>Diurnal dependence</td>
</tr>
<tr>
<td>Ageing</td>
<td>3.0</td>
<td>Ageing</td>
</tr>
<tr>
<td>HEAT systematic uncertainty</td>
<td>8.5</td>
<td>FD systematic uncertainty</td>
</tr>
<tr>
<td>Angular dependence</td>
<td><1.0</td>
<td>Angular dependence</td>
</tr>
<tr>
<td>Total</td>
<td>14.0</td>
<td>Total</td>
</tr>
</tbody>
</table>

Figure 15: Mean values of the X_{max} distributions obtained with the data of the 750 m and 1500 m surface arrays as a function of the energy. The shaded area indicates the systematic uncertainties. Data are compared to the predictions from simulations of protons and iron nuclei for two different hadronic models. The number of selected events in each energy bin is indicated.

Observatory. With it, we have been able to obtain information on the evolution of the mean depth of shower maximum with energy over a larger energy range than has been studied previously using over 81,000 events of which 123 are of energy >50 EeV. We have also been able to expand the discussions of the mismatch between data and predictions from models based on extrapolations of hadronic interactions from LHC energies. Specifically we have reported the following:

1. The comparison of the risetime data with fluorescence measurements reinforces the conclusions reported previously [4–7] that the modelling of showers provides an inadequate description of air-shower data. The deductions are made over a larger energy range and with smaller statistical uncertainties than hitherto (Fig. 11 and Fig. 12).

2. The depth of shower maximum has been measured from 0.3 EeV to 100 EeV using data of the Surface Detector (Fig. 15).

3. Data from the 750 m array of the Observatory have been used to derive mass information for the first time.

4. The mean measurements of X_{max} have been compared with predictions from the EPOS-LHC and QGSJetII04 models and estimates of $\langle \ln A \rangle$ extracted (Fig. 18). While the EPOS-LHC model leads to larger values of $\langle \ln A \rangle$ than are found with the other model, both show the general trend of the mean mass becoming smaller as the energy increases up to \sim2 EeV, after which it rises slowly with energy up to about 50 EeV where this rise seems to stop.
Figure 16: Same as Fig. 15 including additional X_{max} measurements from the surface detectors above and below 3 EeV. (Inset) Three energy bins have been included below 3 EeV using the data of the 1500 m array and two measurements added above 3 EeV use the data of the 750 m array. There is good agreement between measurements in the overlap region. The brackets correspond to systematic uncertainties.

Figure 17: Evolution of $\langle X_{\text{max}} \rangle$ as a function of energy. The figure compares the mean values of the X_{max} distributions measured by the fluorescence and surface detectors of the Pierre Auger Observatory. In most cases the uncertainties are smaller than the size of the symbols.

Acknowledgments

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support:

Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in
Appendix A: Data Tables

Table A1: Values of $\langle \Delta s \rangle$ for the 750 m array. The fourth column shows the statistical uncertainty. For all measurements the systematic uncertainty amounts to 0.07.

<table>
<thead>
<tr>
<th>Log (E/eV) range</th>
<th>$\langle \Delta s \rangle$</th>
<th>$\sigma_{stat}(\langle \Delta s \rangle)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[17.6,17.7)</td>
<td>17.65</td>
<td>-0.064</td>
</tr>
<tr>
<td>[17.7,17.8)</td>
<td>17.75</td>
<td>0.004</td>
</tr>
<tr>
<td>[17.8,17.9)</td>
<td>17.85</td>
<td>0.077</td>
</tr>
<tr>
<td>[17.9,18.0)</td>
<td>17.95</td>
<td>0.170</td>
</tr>
<tr>
<td>[18.0,18.1)</td>
<td>18.05</td>
<td>0.35</td>
</tr>
<tr>
<td>[18.1,18.2)</td>
<td>18.15</td>
<td>0.41</td>
</tr>
<tr>
<td>[18.2,18.3)</td>
<td>18.25</td>
<td>0.40</td>
</tr>
<tr>
<td>[18.3,18.4)</td>
<td>18.35</td>
<td>0.54</td>
</tr>
<tr>
<td>[18.4,18.5)</td>
<td>18.45</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Table A2: Values of $\langle \Delta s \rangle$ for the 1500 m array. The fourth column shows the statistical uncertainty. For all measurements the systematic uncertainty amounts to 0.11.

<table>
<thead>
<tr>
<th>Log (E/eV) range</th>
<th>Log (E/eV)</th>
<th>$\langle \Delta s \rangle$</th>
<th>$\sigma_{\text{stat}}(\langle \Delta s \rangle)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[18.5,18.6)</td>
<td>18.55</td>
<td>-0.297</td>
<td>0.005</td>
</tr>
<tr>
<td>[18.6,18.7)</td>
<td>18.65</td>
<td>-0.242</td>
<td>0.006</td>
</tr>
<tr>
<td>[18.7,18.8)</td>
<td>18.75</td>
<td>-0.218</td>
<td>0.007</td>
</tr>
<tr>
<td>[18.8,18.9)</td>
<td>18.85</td>
<td>-0.163</td>
<td>0.009</td>
</tr>
<tr>
<td>[18.9,19.0)</td>
<td>18.95</td>
<td>-0.108</td>
<td>0.011</td>
</tr>
<tr>
<td>[19.0,19.1)</td>
<td>19.05</td>
<td>-0.056</td>
<td>0.012</td>
</tr>
<tr>
<td>[19.1,19.2)</td>
<td>19.15</td>
<td>0.004</td>
<td>0.015</td>
</tr>
<tr>
<td>[19.2,19.3)</td>
<td>19.25</td>
<td>0.077</td>
<td>0.020</td>
</tr>
<tr>
<td>[19.3,19.4)</td>
<td>19.35</td>
<td>0.15</td>
<td>0.03</td>
</tr>
<tr>
<td>[19.4,19.5)</td>
<td>19.45</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>[19.5,19.6)</td>
<td>19.55</td>
<td>0.29</td>
<td>0.04</td>
</tr>
<tr>
<td>[19.6,19.7)</td>
<td>19.64</td>
<td>0.20</td>
<td>0.04</td>
</tr>
<tr>
<td>[19.7,19.8)</td>
<td>19.74</td>
<td>0.41</td>
<td>0.06</td>
</tr>
<tr>
<td>[19.8,∞)</td>
<td>19.88</td>
<td>0.60</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table A3: Values of $\langle X_{\text{max}} \rangle$ for the 750 m array. The fourth column shows the statistical uncertainty. For all measurements the systematic uncertainty amounts to 14 g cm$^{-2}$.

<table>
<thead>
<tr>
<th>Log (E/eV) range</th>
<th>$\langle \log(E/eV) \rangle$</th>
<th>$\langle X_{\text{max}}/ \text{g cm}^{-2} \rangle$</th>
<th>$\sigma_{\text{stat}}(\langle X_{\text{max}} \rangle)/\text{g cm}^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[17.5,17.6)</td>
<td>17.55</td>
<td>687.2</td>
<td>0.5</td>
</tr>
<tr>
<td>[17.6,17.7)</td>
<td>17.65</td>
<td>695.6</td>
<td>0.6</td>
</tr>
<tr>
<td>[17.7,17.8)</td>
<td>17.75</td>
<td>699.9</td>
<td>0.8</td>
</tr>
<tr>
<td>[17.8,17.9)</td>
<td>17.85</td>
<td>707</td>
<td>1.0</td>
</tr>
<tr>
<td>[17.9,18.0)</td>
<td>17.95</td>
<td>716</td>
<td>1.0</td>
</tr>
<tr>
<td>[18.0,18.1)</td>
<td>18.05</td>
<td>733</td>
<td>2.0</td>
</tr>
<tr>
<td>[18.1,18.2)</td>
<td>18.15</td>
<td>738</td>
<td>3.0</td>
</tr>
<tr>
<td>[18.2,18.3)</td>
<td>18.25</td>
<td>745</td>
<td>3.0</td>
</tr>
<tr>
<td>[18.3,18.4)</td>
<td>18.35</td>
<td>759</td>
<td>4.0</td>
</tr>
<tr>
<td>[18.4,18.5]</td>
<td>18.45</td>
<td>754</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Table A4: Values of $\langle X_{\text{max}} \rangle$ for the 1500 m array. The fourth column shows the statistical uncertainty. For all measurements the systematic uncertainty amounts to 11 g cm$^{-2}$.

<table>
<thead>
<tr>
<th>Log (E/eV) range</th>
<th>$\langle \log(E/eV) \rangle$</th>
<th>$\langle X_{\text{max}}/ \text{g cm}^{-2} \rangle$</th>
<th>$\sigma_{\text{stat}}(\langle X_{\text{max}} \rangle)/\text{g cm}^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[18.5,18.6)</td>
<td>18.55</td>
<td>750.7</td>
<td>0.3</td>
</tr>
<tr>
<td>[18.6,18.7)</td>
<td>18.65</td>
<td>755.2</td>
<td>0.3</td>
</tr>
<tr>
<td>[18.7,18.8)</td>
<td>18.75</td>
<td>756.4</td>
<td>0.4</td>
</tr>
<tr>
<td>[18.8,18.9)</td>
<td>18.85</td>
<td>759.8</td>
<td>0.6</td>
</tr>
<tr>
<td>[18.9,19.0)</td>
<td>18.95</td>
<td>763.0</td>
<td>0.6</td>
</tr>
<tr>
<td>[19.0,19.1)</td>
<td>19.05</td>
<td>766.5</td>
<td>0.7</td>
</tr>
<tr>
<td>[19.1,19.2)</td>
<td>19.15</td>
<td>769.6</td>
<td>0.9</td>
</tr>
<tr>
<td>[19.2,19.3)</td>
<td>19.25</td>
<td>775</td>
<td>1.0</td>
</tr>
<tr>
<td>[19.3,19.4)</td>
<td>19.35</td>
<td>780</td>
<td>2.0</td>
</tr>
<tr>
<td>[19.4,19.5)</td>
<td>19.45</td>
<td>779</td>
<td>2.0</td>
</tr>
<tr>
<td>[19.5,19.6)</td>
<td>19.55</td>
<td>788</td>
<td>2.0</td>
</tr>
<tr>
<td>[19.6,19.7)</td>
<td>19.64</td>
<td>785</td>
<td>2.0</td>
</tr>
<tr>
<td>[19.7,19.8)</td>
<td>19.74</td>
<td>795</td>
<td>3.0</td>
</tr>
<tr>
<td>[19.8,\infty)</td>
<td>19.88</td>
<td>807</td>
<td>3.0</td>
</tr>
</tbody>
</table>