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Abstract We present a natural way to cover an Archimedean directed ordered vector
space E by Banach spaces and extend the notion of Bochner integrability to functions
with values in E . The resulting set of integrable functions is an Archimedean directed
ordered vector space and the integral is an order preserving map.

Keywords Bochner integral · Ordered vector space · Ordered Banach space · Closed
cone · Generating cone
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1 Introduction

We extend the notion of Bochner integrability to functions with values in a vector
space E that may not itself be a Banach space but is the union of a collection B of
Banach spaces.

The idea is the following. We call a function f , defined on a measure space X and
with values in E , “integrable” if for some D in B all values of f lie in D and f is
Bochner integrable as a function X → D. Of course, one wants a certain consistency:
the “integral” of such an f should be independent of the choice of D.

In [18], Thomas obtains this consistency by assuming a Hausdorff locally convex
topology on E , entailing many continuous linear functions E → R. Their restrictions
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to the Banach spaces that constitute B enable one to apply Pettis integration, which
leads to the desired uniqueness.

Our approach is different, following a direct-limit-like construction. We assume E
to be an ordered vector space with some simple regularity properties (Archimedean,
directed) and show that E is the union of a certain increasing system B of Banach
spaces with closed, generating positive cones (under the ordering of E). Uniqueness
of the integral follows from properties of such ordered Banach spaces. Moreover, the
integrable functions form a vector space and the integral is linear and order preserving.

In Sect. 3 we study ordered Banach spaces with closed generating cones. We give
certain properties which can be used to give an alternative proof of a classical theorem
which states that every order preserving linear map is continuous, and generalise it
to order bounded linear maps. In Sect. 4 we study Bochner integrable functions with
values in an ordered Banach space with closed generating cone. In Sect. 5 we present
the definition of a Banach cover and the definition of the extension of the Bochner
integral to functions with values in a vector space that admits a Banach cover. In
Sect. 6 we show that an Archimedean ordered vector space possesses a Banach cover
consisting of ordered Banach spaces with closed generating cones. In Sect. 7 we study
integrable functions with values in Archimedean ordered vector spaces. In Sect. 8
we compare the integral with integrals considered in [16]. In Sect. 9 we present an
application to view the convolution as an integral.

2 Notation

N is {1, 2, . . .}. We write “for all n” instead of “for all n ∈ N”. To avoid confusion:

• An “order” is a “partial order”.
• Wecall an ordered vector spaceArchimedean (see Peressini [15]) if for all a, b ∈ E
the following holds: if na ≤ b for all n ∈ N, then a ≤ 0. (In some places, e.g.,
Birkhoff [4], such spaces are said to be ‘integrally closed’.)

As is common in literature, our notations do not distinguish between a function on a
measure space and the class of that function.

3 Ordered Banach spaces with closed generating cones

In this section we describe properties of ordered Banach spaces with closed generating
cones. Using these properties we prove in Theorem 3.11 that an order bounded map
between ordered Banach spaces with closed generating cones is continuous.

Definition 3.1 An ordered locally convex vector space is a locally convex vector space
with an order that makes it an ordered vector space. A normed ordered vector space is
a normed vector space with an order that makes it an ordered vector space. An ordered
Banach space is a Banach space that is a normed ordered vector space.

A priori there is no connection between the ordering and the topology of an ordered
locally convex vector space. One reasonable and useful connection is the assumption
that the (positive) cone be closed.
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Theorem 3.2 Let E be an ordered locally convex vector space. E+ is closed if and
only if

x ≤ y ⇐⇒ α(x) ≤ α(y) for all α ∈ (E ′)+. (1)

Consequently, whenever E+ is closed then (E ′)+ separates the points of E and E is
Archimedean.

Proof Since E+ is convex, E+ is closed if and only if it is weakly closed (i.e.,
σ(E, E ′)-closed); see [7, Theorem V.1.4]. The rest follows by [1, Theorem 2.13 (3 &
4)]. �	

The following theorem is due to Andô [2]. See also [1, Corollary 2.12].

Theorem 3.3 Let D be an ordered Banach space with a closed generating1 cone D+.
There exists a C > 0 such that

C‖x‖ ≥ inf{‖a‖ : a ∈ D+,−a ≤ x ≤ a} (x ∈ E). (2)

Definition 3.4 Let D be a directed2 ordered Banach space. If C > 0 is such that (2)
holds, then we say that the norm ‖ · ‖ is C-absolutely dominating.3 We say that a norm
‖ · ‖ is absolutely dominating if it is C-absolutely dominating for some C > 0.

On a Banach lattice the norm is 1-absolutely dominating. Actually for Banach
lattices there is equality in (2).

3.5 We refer the reader to Appendix 1 for the following facts: If ‖ · ‖ is C-absolutely
dominating on a directed ordered Banach space D, thenC ≥ 1. Whenever there exists
a absolutely dominating norm, then for all ε > 0 there exists an equivalent (1 + ε)-
absolutely dominating norm. All norms on a directed ordered vector space D that
make D complete and D+ closed are equivalent (see 6.2).

3.6 Let D be a directed ordered Banach space. Then ‖ · ‖ is absolutely dominating if
and only if the (convex) set

⋃

a∈D+,‖a‖≤1

[−a, a] (3)

is a neighbourhood of 0.

Definition 3.7 (See [12, §16]) Let E be an ordered vector space. We say that a
sequence (xn)n∈N in E converges uniformly to an element x ∈ E (notation: xn

u−→ x)
whenever there exist a ∈ E+, εn ∈ (0,∞) with εn → 0 and

−εna ≤ xn − x ≤ εna (n ∈ N). (4)

1 D+ is generating if D = D+ − D+.
2 D is directed if D = D+ − D+, i.e., if D+ is generating.
3 Batty and Robinson [3] call the cone D+ approximately C-absolutely dominating, and, Messerschmidt
[13] calls D approximately C-absolutely conormal, if the norm on D is C-absolutely dominating.
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Note that one may replace “εn → 0” by “εn ↓ 0”. If E is Archimedean then the x
as above is unique. We will only consider such convergence in Archimedean spaces.
We say that a sequence (xn)n∈N in E is a uniformly Cauchy sequence if there exists
an a ∈ E+ such that for all ε > 0 there exists an N such that −εa ≤ xn − xm ≤ εa
for all n,m ≥ N . E is called uniformly complete whenever it is Archimedean and all
uniformly Cauchy sequences converge uniformly.

Lemma 3.8 Let D1, D2 be ordered vector spaces and T : D1 → D2. If T is linear
and order bounded, then T preserves uniform convergence.

Proof Suppose xn ∈ D1, εn ∈ (0, 1) and a ∈ D+
1 are such that −εna ≤ xn ≤ εna

and εn ↓ 0. Let b ∈ D+
2 be such that T [−a, a] ⊂ [−b, b]. Then ε−1

n T xn ∈ [−b, b],
i.e., −εnb ≤ T xn ≤ εnb for all n. �	
Theorem 3.9 Let D be an ordered Banach space. Consider the following conditions.

(i) ‖ · ‖ is absolutely dominating.
(ii) If a1, a2, . . . ∈ D+,

∑
n∈N ‖an‖ < ∞, then there exist a ∈ D+, εn ∈ (0,∞)

with εn → 0 such that an ≤ εna for all n.4

(iii) If x1, x2, . . . ∈ D,
∑

n∈N ‖xn‖ < ∞, then xn
u−→ 0.

If D+ is closed, then D satisfies (ii).
Suppose D is Archimedean and directed. Then the following are equivalent.

(a) D+ is closed.
(b) D satisfies (i) and (ii).
(c) D satisfies (iii)

Proof Suppose D+ is closed. Let a1, a2, . . . ∈ D+,
∑

n∈N ‖an‖ < ∞. Choose
εn ∈ (0,∞), εn → 0 such that

∑
n∈N ε−1

n ‖an‖ < ∞. By norm completeness,
a := ∑

n∈N ε−1
n an exists. Because D+ is closed a ≥ ε−1

n an for all n.
(a)�⇒(b). (ii) is implied by the above argument. By Theorem 3.3 we have (i).
(b)�⇒(c). Let x1, x2, . . . ∈ D,

∑
n∈N ‖xn‖ < ∞. Using (i) let a1, a2, . . . ∈ D+

with
∑

n∈N ‖an‖ < ∞ be such that −an ≤ xn ≤ an . By (ii) it then follows that

xn
u−→ 0.
(c)�⇒(a). Take b in the closure of D+. For n ∈ N, choose xn ∈ D+,

∑
n∈N ‖xn −

b‖ < ∞. By (iii) there exist a ∈ D+, εn ∈ (0,∞)with εn → 0 and−εna ≤ xn −b ≤
εna, so that b ≥ xn − εna ≥ −εna. Then b ≥ 0 because D is Archimedean. �	
Lemma 3.10 Let D be an ordered Banach space for which D+ is closed. Then

x1, x2, . . . ∈ D, a ∈ D, b ∈ D, ‖xn − a‖ → 0, xn
u−→ b �⇒ a = b. (5)

Proof Assume b = 0. There exist c ∈ D+, εn ∈ (0,∞)with εn ↓ 0 and−εnc ≤ xn ≤
εnc. Then−εNc ≤ xn ≤ εNcwhenever n ≥ N . Since D+ is closed,−εNc ≤ a ≤ εNc
for all N , and so, as D is Archimedean by Theorem 3.2, a = 0. �	

4 For normed Riesz spaces property (ii) is equivalent to what is called the weak Riesz-Fischer condition
(see Zaanen [19, Ch. 14, §101]).
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With this we can easily prove the following theorem. In a recently published book
by Aliprantis and Tourky [1]5 but also in older Russian papers by Wulich [5] one
can find the proof that an order preserving linear map is continuous (see [1, Theorem
2.32] or combine [5, Theorem III.2.2] (which states the result for D2 = R) and [6,
Theorem VI.2.1]). Theorem 3.11 is more general in the sense that it states that linear
order bounded maps are continuous.

Theorem 3.11 Let D1, D2 be ordered Banach spaces. Suppose D+
1 is closed and

generating and D+
2 is closed. Let T : D1 → D2 be linear and order bounded. Then T

is continuous. Consequently, if T is an order isomorphism then it is a homeomorphism.

Proof Let x1, x2, · · · ∈ D1, xn → 0 and suppose T xn → c for some c ∈ D2. If from
this we can prove c = 0, then by the Closed Graph Theorem T will be continuous.
We may assume

∑
n∈N ‖xn‖ < ∞. Then xn

u−→ 0 in D1 (Theorem 3.9), so T xn
u−→ 0

in D2 (Lemma 3.8). Hence, c = 0 according to Lemma 3.10. �	
We present a consequence as has been done for order preserving linear maps in [6,

Theorem VI.2.2].

Corollary 3.12 Let D1 be an ordered Banach space with closed generating cone. Let
D2 be an ordered normed vector space with a normal cone. Let T : D1 → D2 be
linear and order bounded. Then T is continuous.

Proof As D+
2 is normal, we have D∼

2 = D′
2 (see [1, Corollary 2.27]). Let � be the

unit ball in D1. Then for all φ ∈ D′
2, the map φ ◦ T is an order bounded functional,

whence continuous by Theorem 3.11. Thus φ ◦ T (�) is bounded for all φ ∈ D′
2. By

an application of the Principle of Uniform Boundedness (see [7, Corollary III.4.3]),
T (�) is norm bounded. �	
Theorem 3.13 [14, Theorem 6.8] Let D be an ordered Banach space with closed
cone D+. If f ∈ D′ and f ∈ D∼, i.e., f is linear continuous and order bounded,
then f is regular, i.e., there are f1, f2 ∈ D∼+ with f = f1 − f2.

By Theorem 3.13 and Theorem 3.11 we derive the following corollary.

Corollary 3.14 Let D be an ordered Banach space with closed generating cone. Then
every order bounded linear map D → R is regular, i.e., D∼ = D∼+ − D∼+.

4 The Bochner integral on ordered Banach spaces

In this section (X,A, μ) is a complete σ -finite measure space, with μ �= 0. For
more assumptions see 4.3 and 4.7.

We define the integral of simple functions in Definition 4.1 and recall the definition
and facts on Bochner integrability in Definitions 4.2 and 4.4. After that, we consider
an ordered Banach space D. In Theorems 4.5 and 4.6 we describe the order structure
of the space BD of Bochner integrable functions. In 4.8 we summarise the results of
4.9–4.16, in which we compare closedness and generatingness of the positive cones
of D and BD .

5 For complete metrisable ordered vector spaces.
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Definition 4.1 Let E be a vector space.We say that a function f : X → E is simple if
there exist N ∈ N, a1, . . . , aN ∈ E , A1, . . . , AN ∈ A with μ(A1), . . . , μ(AN ) < ∞
for which

f =
N∑

n=1

an1An . (6)

The simple functions form a linear subspace S of EX , which is a Riesz subspace of
EX in case E is a Riesz space. We define ϕ : S → E by

ϕ( f ) =
N∑

n=1

μ(An)an, (7)

where f, N , An, an are as in (6). ϕ( f ) is called the integral of f . We write SR for the
linear space of simple functions X → R.

Definition 4.2 and the facts in 4.4 can be found in Chapter III in the book by Hille
and Phillips [9].

Definition 4.2 Let (D, ‖ · ‖) be a Banach space. A function f : X → D is called
Bochner integrablewhenever there exists a sequence of simple functions (sn)n∈N such
that sn(x) → f (x) for μ-almost all x ∈ X and

∫
‖ f (x) − sn(x)‖ dμ(x) → 0. (8)

Then the sequence (ϕ(sn))n∈N converges. Its limit is independent of the choice of the
sequence (sn)n∈N and is called the Bochner integral of f .

4.3 For the rest of this section, D is a Banach space (with norm ‖ · ‖), and, we
writeB (or)BD for the Banach space of classes of Bochner integrable functions
X → D,withnorm‖ · ‖B (see4.4(b)).Wewriteb (or)bD for theBochner integral
onB.

4.4 Some facts on the Bochner integrable functions:

(a) [9, Theorem 3.7.4] and [17, Proposition 2.15] If f : X → D is Borel measurable,
f (X) is separable and

∫ ‖ f ‖ dμ < ∞, then f is Bochner integrable.
(b) [9, Theorem 3.7.8] B is a Banach space under the norm ‖ · ‖B : B → [0,∞)

given by

‖ f ‖B =
∫

‖ f ‖ dμ. (9)

(c) [9, Theorem 3.7.12] Let E be a Banach space and T : D → E be linear and
continuous. If f ∈ BD , then T ◦ f ∈ BE and

T (bD( f )) = bE (T ◦ f ). (10)
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(d) [9, Theorem 3.7.9] Let f1, f2, . . . be inB, f : X → D and h ∈ L1(μ)+. Suppose
that fn(x) → f (x) and ‖ fn(x)‖ ≤ h(x) for μ-almost all x ∈ X . Then f ∈ B
and

b( fn) → b( f ). (11)

(e) If D is an ordered Banach space then B is an ordered Banach space under the
ordering given by

f ≤ g (inB) ⇐⇒ f ≤ g μ − a.e.. (12)

Theorem 4.5 Let D be a Banach lattice. ThenBD is a Banach lattice and b is linear
and order preserving.

Proof The Bochner integrable functions form a Riesz space because of the inequality
‖|x | − |y|‖ ≤ ‖x − y‖.
Theorem 4.6 Let D be an ordered Banach space for which D+ is closed. Then b is
order preserving.

Proof Let f ∈ B and f ≥ 0. Then

α(b( f )) =
∫

α ◦ f dμ ≥ 0 (α ∈ (D′)+). (13)

Whence b( f ) ≥ 0, by Theorem 3.2. �	
4.7 For the rest of this section, D is an ordered Banach space.

4.8 The following is a list of results presented in 4.9–4.16.

(a) B+ is closed if and only if D+ is (4.9).
(b) IfB is directed, then so is D (straightforward, see also Theorem 4.12).
(c) Let C > 0 and D+ be closed and generating. If ‖ · ‖ is C-absolutely dominating,

then so is ‖ · ‖B (Lemma 4.11).
(d) Let C > 0. IfB is directed and ‖ · ‖B is C-absolutely dominating, then so is ‖ · ‖

(Theorem 4.12).
(e) B+ is closed and generating if and only if D+ is closed and generating (Theorem

4.16).
(f) If there exist disjoint A1, A2, . . . in A with 0 < μ(A) < ∞ for all n: If B+ is

generating, then so is D+ and ‖ · ‖ is absolutely dominating (Corollary 4.14).
(g) If no such A1, A2, . . . exist: B+ is generating if and only if D+ is generating

(4.15).

4.9 Whenever f ∈ B, fn ∈ B+ with
∫ ‖ f − fn‖ dμ → 0, then there exist Bochner

integrable gn ≥ 0 with
∑

n∈N
∫ ‖ f − gn‖ dμ < ∞; this implies gn → f μ-almost

everywhere. So whenever D+ is closed this implies f ≥ 0 μ-almost everywhere.
We infer that B+ is closed whenever D+ is.
On theother hand, ifB+ is closed then so isD+. Indeed, let A ∈ A, 0 < μ(A) < ∞.

If an ∈ D+ and an → a, then ‖a1A − an1A‖B → 0. Therefore a ∈ D+.
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Lemma 4.10 Suppose D+ is generating and C > 0 is such that ‖ · ‖ is C-absolutely
dominating. Let f : X → D be simple, let ε > 0. Then there exists a simple g : X →
D+ with −g ≤ f ≤ g and

∫ ‖g‖ dμ ≤ C
∫ ‖ f ‖ dμ + ε.

Proof Write f = ∑N
n=1 xn1An with disjoint sets A1, . . . , AN ∈ A of finite measure

and x1, . . . , xN ∈ D. Let κ = μ(
⋃N

n=1 An) and assume κ > 0. For each n, choose
an ∈ D+, −an ≤ xn ≤ an , ‖an‖ ≤ C‖xn‖ + ε

κ
. Put g = ∑N

n=1 an1An . Then

−g ≤ f ≤ g and
∫ ‖g‖ dμ = ∑N

n=1 ‖an‖μ(An) ≤ ∑N
n=1(C‖xn‖ + ε

κ
)μ(An) =

C
∫ ‖ f ‖ dμ + ε. �	

Lemma 4.11 Suppose D+ is closed and generating and C > 0. Then B+ is closed
and generating. If ‖ · ‖ is C-absolutely dominating, then so is ‖ · ‖B.

Proof B+ is closed by 4.9. Assume that ‖·‖ isC-absolutely dominating. Let f : X →
D be Bochner integrable and let ε > 0. We prove there exists a Bochner integrable
g : X → D+ with −g ≤ f ≤ g μ-a.e. and

∫ ‖g‖ dμ ≤ C(
∫ ‖ f ‖ dμ + ε). Choose

simple functions s1, s2, . . . with
∫ ‖ f − sn‖ dμ < ε2−n−1. Then sn → f pointwise

outside a μ-null set Y .
Define f1 = s1, fn = sn − sn−1 for n ∈ {2, 3, . . .}. Observe

∫
‖ f1‖ dμ <

∫
‖ f ‖ dμ + ε2−2,

∫
‖ fn‖ dμ < ε2−n−1 + ε2−n−2 < ε2−n (n ∈ {2, 3, . . .}). (14)

For each n, choose a simple gn : X → D+ with −gn ≤ fn ≤ gn such that

∫
‖g1‖ dμ < C

(∫
‖ f ‖ dμ + ε2−2

)
,

∫
‖gn‖ dμ < Cε2−n (n ∈ {2, 3, . . .}). (15)

As
∑

n∈N
∫ ‖gn‖ dμ < ∞ there is a μ-null set Z ⊂ X for which

∑

n∈N
‖gn(x)‖ < ∞ (x ∈ X\Z). (16)

Put X0 := X\(Y ∪ Z). Define g : X → D+ by

g(x) =
{∑

n∈N gn(x) x ∈ X0,

0 x /∈ X0.
(17)

Then g is Bochner integrable and
∫ ‖g‖ dμ ≤ ∑

n∈N
∫ ‖gn‖ dμ ≤ C(

∫ ‖ f ‖ dμ+ ε).
Moreover, for x ∈ X0 we have −g(x) ≤ ∑N

n=1 fn(x) = sN (x) ≤ g(x) for all
N , whereas sN (x) → f (x) since x /∈ Y . From the closedness of D+ it follows that
−g ≤ f ≤ g on X0. �	
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In the following Theorems (4.12, 4.13, 4.14 and 4.15) we derive properties of D
from properties of B. In Theorem 4.16 we show that D has a closed and generating
cone if and only ifB does.

Theorem 4.12 AssumeB is directed. Let C > 0 and suppose ‖ · ‖B is C-absolutely
dominating. Then D is directed and ‖ · ‖ is C-absolutely dominating.

Proof Let x ∈ D and x �= 0. Let A ∈ A with 0 < μ(A) < ∞. Then x1A ∈ B,
‖x1A‖B = μ(A)‖x‖. Let C ′ > C . There is a g ∈ B with −g ≤ x1A ≤ g,∫ ‖g(t)‖ dμ(t) ≤ C ′‖x1A‖B. Then

∫
A ‖g(t)‖ dμ(t) ≤ C ′μ(A)‖x‖, so μ{t ∈ A :

‖g(t)‖ > C ′‖x‖} < μ(A). In particular, there is a t ∈ A with ‖g(t)‖ ≤ C ′‖x‖ and
−g(t) ≤ x ≤ g(t). �	

Theorem 4.13 Let D be an ordered Banach space such that the Bochner integrable
functions N → D form a directed space. Then D is directed and ‖ · ‖ is absolutely
dominating.

Proof D is directed. In case ‖ ·‖ is not absolutely dominating, there exist x1, x2, . . . ∈
D such that for every n

2n‖xn‖ ≤ inf{‖a‖ : a ∈ D+,−a ≤ xn ≤ a}

and ‖xn‖ = 2−n . Then n �→ xn is Bochner integrable, so, by our assumption, there
exist an ∈ D+ with −an ≤ xn ≤ an for all n and

∑
n∈N ‖an‖ < ∞ which is false. �	

Corollary 4.14 Suppose there exist disjoint A1, A2, . . . in A with 0 < μ(An) < ∞
for all n. SupposeB is directed. Then D is directed and ‖ · ‖ is absolutely dominating.

Proof This follows fromTheorem4.13 since f �→ ∑
n∈N f (n)1An forms an isometric

order preserving isomorphism from the Bochner integrable functions N → D intoB.
�	

4.15 Whenever there do not exist A1, A2, . . . as in Corollary 4.14, then X = A1 ∪
· · · ∪ AN , where A1, . . . , AN are disjoint atoms. Let αn = μ(An) ∈ (0,∞). Define
a norm ‖ · ‖N on DN by ‖x‖N = ∑N

n=1 ‖xn‖. Then T : B → DN defined by
T (

∑N
n=1 xn1An ) = (α1x1, . . . , αN xN ), is an isometric order preserving isomorphism.

Therefore,

D+ is generating ⇐⇒ (DN )+ is generating ⇐⇒ B+ is generating. (18)

Theorem 4.16 D+ is closed and generating if and only ifB+ is. Moreover, if D+ is
closed and generating and C > 0, then ‖ · ‖ is C-absolutely dominating if and only if
‖ · ‖B is.

Proof This follows from Lemma 4.11 and Theorem 4.12. �	
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5 An extension of the Bochner integral

We present the definition of a Banach cover (Definition 5.2), some examples, and use
this notion to extend the Bochner integral to functions with values in such a vector
space (5.8).

The next result follows by definition of the Bochner integral or by 4.4(c).

Theorem 5.1 Let D1 and D beBanach spaces and suppose D1 ⊂ D and the inclusion
map is continuous. Suppose f : X → D has values in D1 and is Bochner integrable
as map X → D1 with integral I . Then f is Bochner integrable as a map X → D
with integral I .

Definition 5.2 Let E be a vector space. Suppose B is a collection of Banach spaces
whose underlying vector spaces are linear subspaces of E . B is called a Banach cover
of E if

⋃
B = E and for all D1 and D2 in B there exists a D ∈ B with D1, D2 ⊂ D

such that both inclusion maps D1 → D and D2 → D are continuous.
For a D ∈ B, we write ‖ · ‖D for its norm if not indicated otherwise.
If E is an ordered vector space, then an ordered Banach cover is a Banach cover

whose elements are seen as ordered subspaces of E .

5.3 Abit of pedantry: strictly speaking, aBanach space is a couple (D, ‖·‖) consisting
of a vector space D and a norm ‖ · ‖. One usually talks about the “Banach space D”,
the norm being understood. Mostly, we adopt that convention but not always. In the
context of the above definitions one has to be careful. A Banach cover may contain
several Banach spaces with the same underlying vector space, so that a formula like
“D1, D2 ⊂ D” really is ambiguous. What we mean is only an inclusion relation
between the vector spaces and no connection between the norms is assumed a proiri.

However, suppose (D1, ‖ · ‖1) and (D2, ‖ · ‖2) are elements of a Banach cover B

and D1 = D2. There is a Banach space (D, ‖ · ‖D) in B with D1, D2 ⊂ D and with
continuous inclusion maps. If a sequence (xn)n∈N in D1(= D2) is ‖ · ‖1-convergent to
a and ‖ · ‖2-convergent to b, then it is ‖ · ‖D-convergent to a and b, so a = b. Hence,
by the Closed Graph Theorem the norms ‖ · ‖1 and ‖ · ‖2 are equivalent.

Similarly, if (D1, ‖ · ‖1) and (D2, ‖ · ‖2) are elements of a Banach cover and
D1 ⊂ D2, then the inclusion map D1 → D2 automatically is ‖ · ‖1-‖ · ‖2-continuous.
Example 5.4 In [18], Thomas considers quasicomplete Hausdorff locally convex vec-
tor spaces. For every bounded closed absolutely convex subset B of such a space E
its linear hull EB is a Banach space under a norm whose closed unit ball is B. If B1
and B2 are bounded closed absolutely convex sets, then so is the closure of B1 + B2.
It follows that the spaces EB form a Banach cover of E .

Example 5.5 Let E be a uniformly complete Riesz space. The set of principal ideals
B = {(Eu, ‖ · ‖u) : u ∈ E+, u �= 0} is an ordered Banach cover of E : for u, v ∈ E+
with u, v > 0 one has Eu, Ev ⊂ Eu+v and ‖ · ‖u+v ≤ ‖ · ‖u on Eu .

Example 5.6 Let (Y,B, ν) be a complete σ -finite measure space. Let M be the space
of classes of measurable functions Y → R. A function ρ : M → [0,∞] is called
an function norm if (i) ρ( f ) = 0 ⇐⇒ f = 0 a.e., (ii) ρ(α f ) = |α|ρ( f ) (where
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0 · ∞ = 0), (iii) ρ(| f |) = ρ( f ), (iv) ρ( f + g) ≤ ρ( f ) + ρ(g), (v) 0 ≤ f ≤ g a.e.
implies ρ( f ) ≤ ρ(g) for f, g ∈ M and α ∈ R. For such function norm ρ the set

Lρ = { f ∈ M : ρ( f ) < ∞} (19)

is a normed Riesz space called a Köthe space (see [11, Ch. III §18] or [12, Ch. 1 §9]).
A Köthe space Lρ is complete, i.e., a Banach lattice if and only if for all un ∈ L+

ρ

with
∑

n∈N ρ(un) < ∞,
∑

n∈N un is an element of Lρ ([11, Theorem19.3]). Examples
of completeKöthe spaces areOrlicz spaces ([11, §20]). In particular, theBanach spaces
L p(ν) for p ≥ 1 are Köthe spaces. We introduce other examples:

For w ∈ M+ with w > 0 a.e. define ρw : M → [0,∞] by

ρw( f ) :=
∫

| f |w d ν. (20)

Then ρw is a function norm. Both the set {Lρw : w ∈ M+, w > 0 a.e.} and the set of
all complete Köthe spaces are Banach covers of M (see Appendix 1).

Example 5.7 (See Example 5.4.) In the situation of [18], the functions in our set U are
precisely the functions called “totally summable” by Thomas. Apparently, the totally
summable functions form a vector space, and the integral of such a function in the
sense of 5.8 equals its Pettis integral as considered by Thomas.

5.8 Let E be a vector space with a Banach cover B. Let (X,A, μ) be a complete
σ -finite measure space, μ �= 0.

(1) For D ⊂ B denote by BD the vector space of all Bochner integrable functions
X → D, and, by bD the Bochner integral BD → D.

(2) Let D1, D2 ∈ B, f1 ∈ BD1 , f2 ∈ BD2 , f1 = f2 μ-a.e. Then bD1( f1) = bD2( f2).
Proof. Choose D ∈ B as in Definition 5.2. Then f1, f2 ∈ BD and bD1( f1) =
bD( f1) = bD( f2) = bD2( f2).

(3) If D1, D2 ∈ B have the same underlying vector space, then BD1 = BD2 since the
identity map D1 → D2 is a homeomorphism (see 5.3).

(4) We call a function f : X → E B-integrable if there is a D ∈ B such that f is
μ-a.e. equal to some element of BD .

(5) By U we indicate the vector space of all μ-equivalence classes of B-integrable
functions.

For D ∈ B we have a natural map TD : BD → U, assigning to every element of BD

its μ-equivalence class. The space TD(BD) is a Banach space, which we indicate by
BD .6 We write bD for the map BD → D determined by

bD(TD( f )) = bD( f ) ( f ∈ BD). (21)

U is the union of the sets BD . By (2) there is a unique u : U → E determined by

u( f ) = bD( f ) (D ∈ B, f ∈ BD). (22)

6 Even though we use the same notation as in Sect. 4, see 4.3, the meaning ofBD is slightly different.
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The above leads to the following theorem.

Theorem 5.9 U is a vector space, u is linear and {BD : D ∈ B} is a Banach cover
of U.

5.10 (1) For any vector space the finite dimensional linear subspaces form a Banach
cover.

(2) If E is a Banach space, then {E} is a Banach cover.
(3) If E is a Banach space and B is a Banach cover with E ∈ B, then U is just the

space of (classes of) Bochner integrable functions X → E and u is the Bochner
integral.

(4) A special case of (3): Let E be a uniformly complete Riesz space with a unit
e and let B be the Banach cover of principal ideals as in Example 5.5. Then
(E, ‖ · ‖e) ∈ B.

5.11 Let E be a vector space and B1 and B2 be Banach covers of E . Suppose that
for all D1 ∈ B1 there exists a D2 ∈ B2 with D1 ⊂ D2 such that the inclusion map is
continuous. Write Ui , ui for the set of Bi -integrable functions and the Bi -integral, for
i ∈ {1, 2}. Then U1 ⊂ U2 and u1 = u2 on U1.

Example 5.12 (Different covers and different integrals) Let (E, ‖ · ‖) be an infinite
dimensional Banach space. Let T : E → E a linear bijection that is not continuous;
say, there exist xn ∈ E with ‖xn‖ = 2−n , T xn = xn , T (

∑
n∈N xn) �= ∑

n∈N xn . Define
‖x‖T = ‖T x‖ for x ∈ E . Then (E, ‖ · ‖T ) is a Banach space. The map f : N → E
given by f (n) = xn is Bochner integrable in (E, ‖ · ‖) and in (E, ‖ · ‖T ), but the
integrals do not agree. Whence with B1 = {(E, ‖ · ‖)} and B2 = {(E, ‖ · ‖T )} we have
f ∈ U1 ∩ U2 but u1( f ) �= u2( f ).

As an immediate consequence of Theorem 4.5 we obtain the following theorem.

Theorem 5.13 Suppose E is a Riesz space andB is a Banach cover of E that consists
of Banach lattices that are Riesz subspaces of E. Then U is a Riesz space and u is
order preserving.

Proof This is a consequence of Theorem 4.5. �	
5.14 Whenever E is an ordered vector space and B an ordered Banach cover of E ,
then U is an ordered vector space. In order for u to be order preserving, one needs a
condition on B. This and other matters will be treated in Sect. 7. A sufficient condition
turns out to be closedness of D+ for every D ∈ B (see Theorems 4.6 and 7.1). First
we will see in Sect. 6 that all Archimedean directed ordered vector spaces admit such
ordered Banach covers. (The Archimedean property is necessary as follows easily
from Theorem 3.2).

5.15 Whenever E is a vector space and B is a Banach cover of E , then the set

{A ⊂ E : there exists a D ∈ B such that A is bounded in D} (23)

forms a bornology on E (we refer to the book of Hogbe-Nlend [10] for the theory of
bornologies).
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6 Covers of ordered Banach spaces with closed generating cones

In this section E is an Archimedean directed ordered vector space.B is the collec-
tion of all ordered Banach spaces that are ordered linear subspaces of E whose
cones are closed and generating.

We intend to prove that B is a Banach cover of E (Theorem 6.5).

Lemma 6.1 Let (D1, ‖ · ‖1), (D2, ‖ · ‖2) be in B. Let z1, z2, . . . ∈ D1 ∩ D2, a ∈ D1,
b ∈ D2, ‖zn − a‖1 → 0, ‖zn − b‖2 → 0. Then a = b.

Proof We may assume
∑

n∈N ‖zn − a‖1 < ∞ and
∑

n∈N ‖zn − b‖2 < ∞. Then

zn
u−→ a in D1 and zn

u−→ b in D2 by Theorem 3.9. Then zn
u−→ a and zn

u−→ b in E .
Because E is Archimedean, a = b. �	
6.2 If D is an ordered Banach space with closed generating cone D+, under each of
two norms ‖ · ‖1 and ‖ · ‖2, then these norms are equivalent. Indeed, the identity map
(D, ‖ · ‖1) → (D, ‖ · ‖2) has a closed graph by Lemma 6.1.

Theorem 6.3 Let (D1, ‖ · ‖1), (D2, ‖ · ‖2) be in B. D1 + D2 is an ordered Banach
space with closed generating cone under the norm ‖ · ‖ : D1 + D2 → [0,∞) defined
by

‖z‖ := inf{‖x‖1 + ‖y‖2 : x ∈ D1, y ∈ D2, z = x + y}. (24)

Moreover, if C > 0 and ‖ · ‖1 and ‖ · ‖2 are C-absolutely dominating, then so is ‖ · ‖.
Proof D1 × D2 is a Banach space under the norm (x, y) �→ ‖x‖1 + ‖y‖2. From
Lemma 6.1 it follows that � := {(a, b) ∈ D1 × D2 : a = −b} is closed in D1 × D2.
Then D1×D2/� is a Banach space under the quotient norm. This means that D1+D2
is a Banach space under ‖ · ‖. (In particular, ‖ · ‖ is a norm.)

Since D+
1 + D+

2 ⊂ (D1 + D2)
+, the latter is generating.

We prove that (D1+D2)
+ is closed. Let u1, u2, . . . ∈ D1+D2,

∑
n∈N ‖un‖ < ∞;

we prove un
u−→ 0. Choose xn ∈ D1, yn ∈ D2 with un = xn + yn and

∑
n∈N ‖xn‖1 <

∞,
∑

n∈N ‖yn‖2 < ∞. Then, see Theorem 3.9, xn
u−→ 0 in D1 and yn

u−→ 0 in D2.

It follows that un
u−→ 0 in D1 + D2. By Theorem 3.9 it follows that (D1 + D2)

+ is
closed.
Suppose C > 0 is such that ‖ · ‖1 and ‖ · ‖2 are C-absolutely dominating. Let z ∈
D1 + D2, ε > 0. Choose x ∈ D1, y ∈ D2 with z = x + y, ‖x‖1 + ‖y‖2 ≤ ‖z‖ + ε

3 .
Choose a ∈ D+

1 with−a ≤ x ≤ a, ‖a‖1 < C‖x‖1+ ε
3 and b ∈ D+

2 with−b ≤ y ≤ b,
‖b‖2 < C‖y‖2 + ε

3 . Set c = a + b. Then c ∈ (D1 + D2)
+, −c ≤ z ≤ c and

‖c‖ ≤ ‖a‖1 + ‖b‖2 < C‖x‖1 + C‖y‖2 + 2 ε
3 < C‖z‖ + ε. �	

6.4 Let x ∈ E . (Wemake a D ∈ Bwith x ∈ D.) Choosea ∈ E such that−a ≤ x ≤ a.
Let D = R(a − x) + R(a + x) = Ra + Rx . D is a directed ordered vector space.
Define ‖ · ‖ : D → [0,∞) by

‖y‖ := inf{s ≥ 0 : −sa ≤ y ≤ sa}. (25)



1102 A. C. M. van Rooij, W. B. van Zuijlen

Then ‖ · ‖ is a norm on D, −‖y‖a ≤ y ≤ ‖y‖a for all y ∈ D and ‖a‖ = 1. Thus
(D, ‖ · ‖) is a directed ordered Banach space. Moreover D+ is closed: Let y ∈ D,
y1, y2, · · · ∈ D+, ‖y − yn‖ < 1

n . Then y ≥ yn − 1
n a ≥ − 1

n a, so y ≥ 0.
‖ · ‖ is 1-absolutely dominating: ‖a‖ = 1, so inf{‖c‖ : c ∈ D+,−c ≤ y ≤ c} ≤

inf{s ≥ 0 : −sa ≤ y ≤ sa} = ‖y‖.
Even ‖y‖ = inf{‖c‖ : c ∈ D+,−c ≤ y ≤ c}: For c ∈ D+ with −c ≤ y ≤ c and

s ≥ 0 such that c ≤ sa we have −sa ≤ −c ≤ y ≤ c ≤ sa and so ‖y‖ ≤ ‖c‖.
Theorem 6.5 B is a Banach cover of E. Moreover,

{D ∈ B : ‖ · ‖D is 1−absolutely dominating} (26)

is a Banach cover of E.

Proof By 6.4 each element of E is contained in an ordered Banach space with closed
generating cone (with a 1-absolutely dominating norm). By Theorem 6.3 and by def-
inition of the norm, B forms a Banach cover of E . �	
6.6 It is reasonable to ask if an analogue of Theorem 6.5 holds in the world of Riesz
spaces: does every Archimedean Riesz space have a Banach cover consisting of Riesz
spaces? The answer is negative.

Let E be the Riesz space of all functions f on N for which there exist N ∈ N

and r, s ∈ R such that f (n) = sn + r for n ≥ N . Suppose E has a Banach cover
B consisting of Riesz subspaces of E . There is a D ∈ B that contains the constant
function 1 and the identity map i : N → N. For every n ∈ N,

1{1,...,n} = 1 ∨ (n + 1)1 − i ∨ n1 ∈ D. (27)

It follows that D = E , so E is a Banach space under some norm.
But E is the union of an increasing sequence D1 ⊂ D2 ⊂ · · · of finite

dimensional—hence, closed—linear subspaces:

Dn = R1 + Ri + R1{1} + · · · + R1{n}. (28)

By Baire’s Category Theorem, some Dn has nonempty interior in E . Then E = Dn

and we have a contradiction.

6.7 In Theorem 6.5 we single out one particular Banach cover B. If we consider only
Banach covers consisting of directed spaces with closed cones, this B is the largest
and gives us the largest collection of integrable functions. Without directedness there
may not be a largest Banach cover. For instance, consider Example 5.12. Impose on
E the trivial ordering (x ≤ y if and only if x = y). Then E+ = {0}, and both B1 and
B2 consist of Banach spaces with closed (but not generating) cones.

7 The integral for an Archimedean ordered vector space

As a consequence of Theorem 4.6 we obtain the following extension of Theorem 5.13.
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Theorem 7.1 Let E be an ordered vector space with an ordered Banach cover B so
that D+ is closed for all D ∈ B. Then u is order preserving. Moreover, E and U are
Archimedean.

Lemma 7.2 Let D be an ordered Banach space with a closed generating cone D+.
Let T be a linear order preserving map of D into an Archimedean ordered vector
space H. Then ker T is closed and T (D) equipped with the norm ‖ · ‖q given by

‖z‖q = inf{‖x‖ : x ∈ D, T x = z}, (29)

has a closed generating cone T (D)+.

Proof (I) Let x1, x2, . . . ∈ ker T , x ∈ D, xn → x ; we prove x ∈ ker T . We assume∑
n∈N ‖x − xn‖ < ∞. By Theorem 3.9 xn

u−→ x . By Lemma 3.8 T xn
u−→ T x , so

T x = 0. (II) D/ ker T is a Banach space under the quotient norm ‖ · ‖Q . The formula
x + ker T �→ T x describes a linear bijection D/ ker T → T (D) and

‖x + ker T ‖Q = ‖T x‖q (x ∈ D). (30)

It follows that ‖ · ‖q is indeed a norm, turning T (D) into a Banach space.
T (D+) ⊂ T (D)+, whence T (D) is directed.
We prove that T (D) satisfies (iii) of Theorem 3.9: Let z1, z2, · · · ∈ T (D) be such

that
∑

n∈N ‖zn‖q < ∞. Choose xn ∈ D such that T xn = zn ,
∑

n∈N ‖xn‖ < ∞.

Using (iii) for D, xn
u−→ 0. Then zn = T xn

u−→ 0 by Lemma 3.8. �	
7.3 In the proof of Lemma 7.2 we mentioned the inclusion T (D+) ⊂ T (D)+. This
inclusion can be strict. Take D = H = R

2, T (x, y) = (x, x + y). Then T (D+) �=
T (D)+.

From Theorems 3.11, 4.4(c) and Lemma 7.2 we get:

Theorem 7.4 Let E1, E2 be ordered vector spaces, Ei endowed with the Banach
cover Bi consisting of the ordered Banach spaces with closed generating cones. Let
T : E1 → E2 be linear and order preserving. If f : X → E1 is B1-integrable, then
T ◦ f : X → E2 is B2-integrable, and u2(T ◦ f ) = T (u1( f )).

7.5 In view of Theorem 3.11 the reader may wonder why in Theorem 7.4 T is
required to be order preserving and not just order bounded, the more so because of the
following considerations. Let D and H be as in Lemma 7.2 and T be a linear order
bounded map of D into H . As the implication (c) �⇒ (a) of Theorem 3.9 is valid
for Archimedean (but not necessarily directed) D, following the lines of the proof of
Lemma 7.2 ker T is closed and T (D) equipped with the norm as in (29) has a closed
cone T (D)+. However, we also need T (D) to be directed and order boundedness of
T is no guarantee for that.

An alternative approach might be to drop the directedness condition on the spaces
that constitute B. However, the ordered Banach spaces with closed cones may not
form a Banach cover.

For an example, let E be �∞ and let B be the collection of all ordered Banach
spaces that are subspaces of �∞ and have closed cones. We make D1, D2 ∈ B. For
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D1 we take �∞ with the usual norm ‖ · ‖∞. Choose a linear bijection T : �∞ → �∞
that is not continuous. For a ∈ �∞ put a′ = (a1,−a1, a2,−a2, . . . ). For D2 we take
the vector space {a′ : a ∈ �∞} with the norm ‖ · ‖T given by ‖a′‖T = ‖Ta‖∞.
Then D2 is a Banach space and D+

2 , begin {0}, is closed in D2. Suppose B is a
Banach cover. Let D be as in Definition 5.2. By the Open Mapping Theorem the
identity map D1 → D is a homeomorphism. By the continuity of the inclusion map
D2 → D there exists a number c such that ‖a′‖T ≤ c‖a′‖∞ for all a ∈ �∞. Then
‖Ta‖∞ ≤ c‖a′‖∞ ≤ c‖a‖∞ for a ∈ �∞, so T is continuous. Contradiction.

Theorem 7.6 Let E be an ordered vector space such that E∼ separates the points
of E.7 Assume B is a Banach cover consisting of ordered Banach spaces with closed
generating cones. Let f ∈ U. Then α ◦ f ∈ L1(μ) for all α ∈ E∼. Moreover, I ∈ E
is such that

α(I ) =
∫

α ◦ f dμ for all α ∈ E∼, (31)

if and only if I = u( f ).

Proof Let f ∈ U and let I = u( f ). By Theorem 7.4 α ◦ f ∈ L1(μ) for all α ∈ E∼
and (31) holds. I = u( f ) is the only element of E for which (31) holds because E∼
separates the points of E . �	
Remark 7.7 Functions with values in a Banach space that are Bochner integrable are
also Pettis integrable. To some extent the statement of Theorem 7.6 is similar. Indeed,
the definition of Pettis integrability could be generalised for vector spaces V which
are equipped with a set S of linear maps V → R that separates the points of V , in
the sense that one calls a function f : X → V Pettis integrable if α ◦ f ∈ L1(μ) for
all α ∈ S and there exists a I ∈ V such that α(I ) = ∫

α ◦ f dμ for all α ∈ S. Then
Theorem 7.6 implies that every f ∈ U is Pettis integrable when considering V = E
and S = E∼. Observe, however, that even for a Riesz space E , E∼ may be trivial
(see, e.g., [11, 5.A]).

Theorem 7.8 Let E be an ordered quasicomplete Hausdorff locally convex vector
space with a closed generating cone. Let B1 be the Banach cover generated by the
bounded closed absolutely convex subsets of E (see Example 5.4). Let B2 be the
Banach cover of ordered Banach spaces with closed generating cones (see Section 6,
E is Archimedean by Theorem 3.2). Let Ui and ui denote the Bi -integrable functions
and Bi -integral, respectively. Then u1 = u2 on U1 ∩ U2.

Proof If f ∈ U1, then f is Pettis integrable in the sense of Thomas [18, Definition 1]
(or in Remark 7.7 with V = E and S = E ′). By Theorem 7.6, for f ∈ U1 ∩ U2

α(u1( f )) =
∫

α ◦ f dμ = α(u2( f )) (α ∈ (E ′)+), (32)

implying u1( f ) = u2( f ) by Theorem 3.2. �	

7 We write E∼ for the space of order bounded linear maps E → R.
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8 Comparison with other integrals

In this section (X,A, μ) is a complete σ -finite measure space and E is a directed
ordered vector space with an ordered Banach cover B so that D+ is closed for
each D ∈ B.

In 5.8 we have introduced an integral u on a spaceU ofB-integrable functions X →
E .8 In [16], starting from a natural integral ϕ on the space S of all simple functions
X → E we have made integrals ϕV , ϕL , ϕLV , . . . on spaces SV , SL , SLV , . . ..

There is an elementary connection: S is part of U and u coincides with ϕ on S.
(Indeed, let f ∈ S. Being a finite set, f (X) is contained in D for some D ∈ B. Then
f is Bochner integrable as a map X → D.)
In general, SV and SL are not subsets of U, but we can prove that u coincides with

ϕV on SV ∩U and with ϕL on SL ∩U. Better than that: u is “compatible” with ϕV in the
sense that u and ϕV have a common order preserving linear extension SV + U → E .
Similarly, u is “compatible with ϕL , ϕLV , . . .”.

Lemma 8.1 (a) Let f ∈ U, g ∈ SV , f ≤ g. Then u( f ) ≤ ϕV (g).
(b) Let f ∈ U, g ∈ SL , f ≤ g. Then u( f ) ≤ ϕL(g).

Proof (a) By the definition of ϕV and by the text preceding this lemma we have
ϕV (g) = inf{ϕ(h) : h ∈ S, h ≥ g} = inf{u(h) : h ∈ S, h ≥ g}. As g ≥ f and u is
order preserving (Theorem 7.1), it follows that ϕV (g) ≥ u( f ).

(b) Let g ∈ SL and assume f ≤ g. Let g1, g2 ∈ S+
L be such that g = g1 − g2. Let

(Bi )i∈N be a ϕ-partition for both g1 and g2. Write An = ⋃n
i=1 Bi for n ∈ N. Then

f 1An ≤ g1An , thus by (a) (and Theorem 7.1)

u( f 1An ) ≤ u(g1An ) = ϕ(g1An ) = ϕ(g11An ) − ϕ(g21An )

≤ ϕL(g1) − ϕ(g21Ak ) (k ∈ N, k < n). (33)

Which implies u( f 1An ) + ϕ(g21Ak ) ≤ ϕL(g1) for all k < n. Then letting n tend to
∞ (apply 4.4(d): f (x)1An (x) → f (x) for all x ∈ X ) we obtain

u( f ) ≤ ϕL(g1) − ϕ(g21Ak ) (k ∈ N), (34)

from which we conclude u( f ) ≤ ϕL(g). �	
Theorem 8.2

(a) If g ∈ SLV and f ≤ g, then u( f ) ≤ ϕLV (g).
(b) If SV is stable, g ∈ SV LV and f ≤ g, then u( f ) ≤ ϕV LV (g).

Proof Follow the lines of the proof of the lemma with SV , SL or SV L instead of S. �	
8.3 [Comments on Theorem 8.2]

(1) The theorem supersedes the lemma because SV + SL ⊂ SLV .

8 In this section we close an eye for the difference between a function and its equivalence class. There will
be no danger of confusion.
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(2) As a consequence, u = ϕLV on U ∩ SLV , and u = ϕV LV on U ∩ SV LV if SV is
stable.

(3) Recall that stability of SV is necessary for the existence of SV LV .

Theorem 8.4 Let E be a uniformly complete Riesz space and B be the Banach cover
of principal ideals (see Example 5.5). U is a linear subspace of SLV and u = ϕLV on
U.

Proof Let u ∈ E+ and let f : X → Eu be Bochner integrable. We prove f ∈ SLV .
For simplicity of notation, put D = Eu . Let SD be the space of simple functions

X → D. By [16, Corollary 9.8] we have f ∈ (SD)LV and u( f ) = ϕLV ( f ). Since D
is a Riesz ideal in E , the identity map D → E is order continuous. Then [16, Theorem
8.14] implies f ∈ SLV . �	

Contrary to Theorem 8.4, in [16, Example 9.9(II)] U is not a linear subspace of
SLV . Then next example shows, in the context of Theorem 8.4, that the inclusion may
be strict.

Example 8.5 (U � SLV ) For X = N,A = P(N) and μ the counting measure and
E = c. As is mentioned in [16, Examples 9.9(I)], the function n �→ 1{n} is an element
of SLV but not Bochner integrable. With B the Banach cover of principal ideals, the
function n �→ 1{n} is not B-integrable (see 5.10(4)).

9 An example: convolution

To illustrate the B-integral as an extension of the Bochner integral we consider the
following situation. (This introduction requires some knowledge of harmonic analysis
on locally compact groups, the balance of this section does not.)

LetG be a locally compact group. For f : G → R and x ∈ G we let Lx f : G → R

be the function y �→ f (x−1y).
For a finite measure μ on G and f in L1(G) one defines their convolution product

to be the element μ ∗ f of L1(G) given for almost every y ∈ G by

(μ ∗ f )(y) =
∫

f (x−1y) dμ(x) =
∫

(Lx f )(y) dμ(x). (35)

The map x �→ Lx f of G into L1(G) is continuous and bounded, hence Bochner
integrable with respect to μ. It is not very difficult to prove that

μ ∗ f =
∫

Lx f dμ(x). (36)

Similar statements are true for other spaces of functions instead of L1(G), such as
L p(G), with 1 < p < ∞, and C0(G), the space of continuous functions that vanish
at infinity.

But consider the space C(G) of all continuous functions on G. The integrals∫
f (x−1y) dμ(x) will not exist for all f ∈ C(G), y ∈ G and all finite measures
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μ, but they do if μ has compact support. Thus, one can reasonably define μ ∗ f for
f ∈ C(G) and compactly supported μ. However, there is no natural norm on C(G)

(except, of course, if G is compact), so we cannot speak of
∫
Lx f dμ(x) as a Bochner

integral. We will see that, at least for σ -compact G, it is a B-integral where B is the
Banach cover of C(G) that consists of the principal (Riesz) ideals.

Theorem 9.1 Let G be a σ -compact locally compact group. For every f ∈ C(G)

there exists a w ∈ C(G)+ such that

Every Lx f (x ∈ G) lies in the principal ideal C(G)w;
x �→ Lx f is continuous relative to ‖ · ‖w. (37)

Proof Choose compact K1 ⊂ K2 ⊂ · · · such that K1 is a neighbourhood of e;
Kn = K−1

n ; KnKn ⊂ Kn+1,
⋃

n∈N Kn = G.
For x ∈ G, define [x] to be the smallest n with x ∈ Kn . Then [x] = [x−1],

[xy] ≤ 1 + [x] ∨ [y] for all x, y ∈ G by definition.
Let f ∈ C(G). Define u, v : G → [1,∞) as follows:

u(x) := 1 + sup | f (Kn+1)|, v(x) = [x]u(x) if [x] = n. (38)

(1) If x, y ∈ G, [x] ≤ [y] = n, then x, y ∈ Kn , so

| f (xy)| ≤ sup | f (Kn+1)| ≤ u(y). (39)

(2) Hence, for all x, y ∈ G: | f (x−1y)| ≤ u(x) ∨ u(y) ≤ u(x)v(y), i.e., |Lx f | ≤
u(x)v.
Let a ∈ G, ε > 0. In (5), using (3) and (4), we show the existence of a neigh-
bourhood U of e with

x ∈ aU �⇒ |Lx f − La f | ≤ εv. (40)

Choose a p with a ∈ Kp.
(3) K1 contains an open set V containing e. We make a q ∈ N with

x ∈ aV �⇒ |Lx f − La f | ≤ εv on G\Kq . (41)

Let x ∈ aV . Then x, a ∈ Kp+1, so [x], [a] ≤ p + 1. By (1):

|(Lx f − La f )(y)| ≤ | f (x−1y)| + | f (a−1y)| ≤ 2u(y) if [y] ≥ p + 1. (42)

Moreover, εv(y) = ε[y]u(y) ≥ 2u(y) if [y] ≥ 2
ε
. Take q ∈ N with q ≥ p + 1

and q ≥ 2
ε
. For y ∈ G\Kq we have [y] > q, so |(Lx f − La f )(y)| ≤ εv(y).

(4) We show there exists an open set W containing e with

x ∈ aW �⇒ |Lx f − La f | ≤ εv on Kq . (43)
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The function (x, y) �→ |(Lx f − La f )(y)| on G × G is continuous and Kq is
compact. Hence by [16, Theorem 8.15] the function G �→ [0,∞)

x �→ sup
y∈Kq

|(Lx f − La f )(y)| (44)

is continuous. Its value at a is 0, so there exists an open set W containing e with

sup
y∈Kq

|(Lx f − La f )(y)| ≤ ε (x ∈ aW ). (45)

As v(y) ≥ 1 for all y we obtain (43).
(5) With U = V ∩ W we have

x ∈ aU �⇒ |Lx f − La f | ≤ εv on G. (46)

Therefore, to prove the theorem it is sufficient to show there exists a continuous
function w ≥ v:

(6) Set αn = n(1 + sup | f (Kn+1)|) for all n; then

[x] = n �⇒ v(x) = αn . (47)

Put K0 = ∅. For all n ∈ N we have V Kn−1 ⊂ K1Kn−1 ⊂ Kn , so Kn−1 is a
subset of K ◦

n , the interior of Kn . By Urysohn [8, Theorem VII.4.1 and Theorem
XI.1.2] for all n there is a continuous gn : G → [0, 1] with

gn = 0 on Kn−1, gn = 1 on G\K ◦
n ⊃ G\Kn . (48)

Let b ∈ G. There is a l with b ∈ Kl . bV is an open set containing b. As bV ⊂ Kl+1
and gn = 0 on Kn−1 we have: gn = 0 on bV as soon as n ≥ l + 2.
Hence, w := ∑

n∈N αn+1gn is a continuous function G → [0,∞). For every
x ∈ G there is an n with [x] = n; then x /∈ Kn−1, gn−1(x) = 1 andw(x) ≥ αn =
v(x). �	

Theorem 9.2 Let G be a σ -compact locally compact group. Letμ be a finite measure
on the Borel σ -algebra of G with a compact support. Let B be the Banach cover of
C(G) consisting of the principal ideals as in Example 5.5. Then for every f ∈ C(G)

the function x �→ Lx f is B-integrable and its integral is the “convolution product”
μ ∗ f :

(μ ∗ f )(y) =
∫

f (x−1y) dμ(x) (y ∈ G). (49)

Proof By Theorem 9.1 there exists a w ∈ C(G)+ such that (37) holds. This implies
that the map x �→ Lx f is Borel measurable and {Lx f : x ∈ G} is separable in
C(G)w. As x �→ ‖Lx f ‖w is continuous and thus bounded on the support of μ, the
map x �→ Lx f is B-integrable (see 4.4(a)). That the integral is equal to μ ∗ f follows
by 4.4(c). �	
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Remark 9.3 Theorem 9.2 compares to [16, Example 8.17] in the sense that in both
situations the convolution is equal to an integral of the translation. Though the situation
is slightly different in the sense that in Theorem 9.2 we consider σ -compact locally
compact groups, while in [16, Example 8.17] we considered metric locally compact
groups (the fact that in [16, Example 8.17] Lx f (t) = f (t x−1) is reminiscent for its
statement).
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A Appendix: Absolutely dominating norms

In this section, C > 0 and D is an ordered Banach space with closed generating
cone and with a C-absolutely dominating norm ‖ · ‖.

As is mentioned in 3.5, we show that C ≥ 1 (A.1) and that for every ε > 0 there
exists an equivalent (1+ ε)-absolutely norm (Theorem A.3). Furthermore, we discuss
(in A.4–A.10) whenever there exists an equivalent norm ‖ · ‖1 for which

‖x‖1 = inf{‖a‖1 : a ∈ D+,−a ≤ x ≤ a} (x ∈ D). (50)

This is done by means of the normN introduced in A.2. Example A.11 illustrates that
the existence of such equivalent norm may fail.

A.1 [C has to be ≥ 1] Suppose that C < 1. Choose C ′ > 0 such that C < C ′ < 1.
For all a ∈ D+ with a �= 0 there exists a b ∈ D+ with a ≤ b and ‖b‖ ≤ C ′‖a‖. Let
a ∈ D+ with ‖a‖ = 1. Iteratively one obtains a sequence a ≤ a1 ≤ a2 ≤ · · · with
‖a1‖ ≤ C ′ and ‖an+1‖ ≤ C ′‖an‖ for all n. Then

∑
n∈N ‖an‖ < ∞ and thus an

u−→ 0
by Theorem 3.9, which contradicts 0 < a ≤ an .

A.2 Define N : D → [0,∞) by

N (x) = inf{‖a‖ : a ∈ D+,−a ≤ x ≤ a}. (51)

N is a seminorm, and actually a norm because (see Theorem 3.9)

N (x) = 0 ⇐⇒ there is an a∗ ∈ D+ with − 1
n a

∗ ≤ x ≤ 1
n a

∗ (n ∈ N). (52)

Because ‖ · ‖ is C-absolutely dominating one has N ≤ C‖ · ‖.
Theorem A.3 For all ε > 0 there exists an equivalent norm ρ on D, for which

(1 + ε)2ρ(x) ≥ inf{ρ(a) : a ∈ D+,−a ≤ x ≤ a} (x ∈ D). (53)

http://creativecommons.org/licenses/by/4.0/
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Proof Define ρ := εN +‖·‖. ρ is a normwhich is equivalent to ‖·‖, sinceN ≤ C‖·‖.
Let x ∈ D, x �= 0. Choose a ∈ D+ with−a ≤ x ≤ a such that ‖a‖ ≤ (1+ε)N (x).

Note that by definition of N we have N (a) ≤ ‖a‖. Whence

ρ(a)

ρ(x)
= N (a) + ε‖a‖

N (x) + ε‖x‖ ≤ N (a) + ε‖a‖
N (x)

≤ ‖a‖ + ε‖a‖
N (x)

≤ (1 + ε)
‖a‖
N (x)

≤ (1 + ε)2.

(54)

A.4 Suppose ‖ · ‖1 is a norm equivalent to ‖ · ‖ for which there exists a C > 0 such
that

C‖x‖1 = inf{‖a‖1 : a ∈ D+,−a ≤ x ≤ a} (x ∈ D). (55)

Then it is straightforward to show that N is equivalent to ‖ · ‖.
A.5 N is equivalent to ‖ · ‖ if and only if there exists a c > 0 such that N ≥ c‖ · ‖.
The latter is true if and only if

− 1
n a

∗ ≤ xn ≤ 1
n a

∗ (n ∈ N) �⇒ lim
n→∞ ‖xn‖ = 0. (56)

Theorem A.6

N (x) = inf{N (a) : a ∈ D+,−a ≤ x ≤ a}. (57)

Proof (≤) Take a ∈ D+,−a ≤ x ≤ a; we proveN (x) ≤ N (a). For all b ≥ a,−b ≤
x ≤ b, whence N (x) ≤ ‖b‖. Thus N (x) ≤ inf{‖b‖ : a ≤ b} = N (a), the latter by
definition of N (a).

(≥) Take ε > 0. Choose a ∈ D+,−a ≤ x ≤ a, ‖a‖ ≤ N (x) + ε. Then N (a) ≤
‖a‖ ≤ N (x) + ε.

Theorem A.7 [1, Theorem 2.38]For an ordered normed vector space E the following
are equivalent.

(a) The cone E+ is normal.
(b) The normed space E admits an equivalent monotone norm.
(c) There is a c > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ c‖y‖.
A.8 Suppose D is an ordered Banach space with closed generating cone and suppose
there exists a c > 0 such that

‖x‖ ≤ c inf{‖a‖ : a ∈ D+,−a ≤ x ≤ a} = cN (x). (58)

Then for x ∈ D+, a ∈ D+ with x ≤ a one has ‖x‖ ≤ c‖a‖.
A.9 Suppose D is an ordered Banach space with closed generating cone and ‖ · ‖ is
monotone. Let x ∈ D and a ∈ D+ be such that

−a ≤ x ≤ a. (59)
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Then 0 ≤ x + a ≤ 2a and whence ‖x‖ ≤ ‖x + a‖ + ‖a‖ ≤ 3‖a‖. Thus

‖x‖ ≤ 3 inf{‖a‖ : a ∈ D+,−a ≤ x ≤ a} = 3N (x). (60)

We conclude:

Theorem A.10 Let D be an ordered Banach space with closed generating cone. The
following are equivalent

(a) There exist a norm ‖ · ‖1 that is equivalent to ‖ · ‖ for which

‖x‖1 = inf{‖a‖1 : a ∈ D+,−a ≤ x ≤ a} (x ∈ D). (61)

(b) There exists a c > 0 such that N ≥ c‖ · ‖.
(c) There exists a monotone norm that is equivalent to ‖ · ‖.
(d) E+ is normal.

In the following we give an example of an ordered Banach space with closed
generating cone D for which none of (a)–(d) of Theorem A.10 holds.

Example A.11 Let D be �1 with its natural norm. Define T : �1 → R
N by

T x = (x1, x1 + x2, x1 + x2 + x3, . . .). (62)

As T is linear, D is an ordered vector space under the relation �

x � y ⇐⇒ T x ≤ T y. (63)

The positive cone of �1 is included in D+, whence D is directed. Moreover, D+ is
closed and so‖·‖ is absolutely dominating.With xn = (1,−1, 1,−1, . . . ,±1, 0, 0 . . .)

and a = (1, 0, 0, . . .) we have −a ≤ xn ≤ a and ‖xn‖ = n, ‖a‖ = 1.

B Appendix: Banach cover of Köthe spaces

In this section (Y,B, ν) is a complete σ -finite measure space and M is the space
of classes of measurable functions Y → R as in Example 5.6.

Lemma B.1 {Lρw : w ∈ M+, w > 0} a.e. is a Banach cover of M.

Proof Lρw is complete since f �→ f w is an isometric bijection Mw → L1(ν).
Let f ∈ M . We show there exists a w ∈ M+, w > 0 a.e., with f ∈ Lρw . By

the σ -finiteness of ν there is a u ∈ L1(ν), u > 0 a.e. Put w = (| f | + 1)−1u. Then
w ∈ M+, w > 0 a.e., and f ∈ Lρw because

∫ | f |w d ν ≤ ∫
u d ν < ∞.

If w, v ∈ M+, w > 0, v > 0 a.e., then w ∧ v > 0 a.e., Lρw∧v is a subset of Lρw

and Lρv and ρw∧v ≤ ρw on Lρw and ρw∧v ≤ ρv on Lρv . �	
Theorem B.2 The complete Köthe spaces form a Banach cover of M.
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Proof Let ρ be a function norm and Lρ be complete. If fn ∈ M+ for n ∈ N and∑
n∈N ρ( fn) < ∞, then

∑
n∈N | fn| ∈ Lρ , so

∑
n∈N | fn| < ∞ a.e. and fn → 0 a.e.

We will use this fact below.
By Lemma B.1 it suffices to prove the following. Let ρ1, ρ2 be function norms, Lρ1

and Lρ2 complete. We make a function norm ρ such that Lρ is complete and ρ ≤ ρ1,
ρ ≤ ρ2. (Then Lρ1, Lρ2 ⊂ Lρ and we are done.)

Define ρ : M → [0,∞] by

ρ( f ) = inf{ρ1(g) + ρ2(h) : g, h ∈ M+, g + h ≥ | f |}. (64)

If ρ( f ) = 0, choose gn, hn with gn + hn ≥ | f |, ρ1(gn) + ρ2(hn) ≤ 2−n . Then
(by the above), gn → 0 a.e., hn → 0 a.e. Hence, f = 0 a.e. It follows easily that
ρ is a function norm. Obviously, ρ ≤ ρ1, ρ ≤ ρ2. For the completeness of Lρ :
Let u1, u2, . . . ∈ L+

ρ ,
∑

n∈N ρ(un) < ∞. Choose gn, hn ∈ M+, gn + hn ≥ un ,
ρ1(gn) + ρ2(hn) < ρ(un) + 2−n . Then

∑
n∈N ρ1(gn) < ∞, so

∑
n∈N gn ∈ Lρ1 ,

ρ1(
∑

n∈N gn) < ∞. Similarly ρ2(
∑

n∈N hn) < ∞. Then
∑

n∈N un ∈ Lρ .
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