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Abstract
This paper proposes a formal definition of influence in Bayesian reasoning, based on the notions of
state (as probability distribution), predicate, validity and conditioning. Our approach highlights
how conditioning a joint entwined/entangled state with a predicate on one of its components has
‘crossover’ influence on the other components. We use the total variation metric on probability
distributions to quantitatively measure such influence. These insights are applied to give a
rigorous explanation of the fundamental concept of d-separation in Bayesian networks.
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1 Introduction

A key feature of Bayesian (probabilistic) reasoning is that an observation leads to an update
of knowledge. This is best seen in Bayesian networks: in these graph-like models, dependency
relations between events are visually depicted as arcs between nodes. Information about a
node-event A will update knowledge of all the nodes connected by an arc to A. However,
influence may act also in more indirect ways, classified by Pearl [13] as the following “d-
separation” scenarios:

(i) in a serial connection
�� ��A →

�� ��B →
�� ��C , event A influences C through B (and viceversa),

but knowledge of B “blocks” this mutual influence — one also says that B d-separates
A and C.

(ii) in a fork connection
�� ��A ←

�� ��B →
�� ��C , information on A will influence C and viceversa,

but this flow is blocked once B is known.
(iii) in a collider situation

�� ��A →
�� ��B ←

�� ��C , any evidence about B (and its descendants)
will make A and C depend on each other.

In these three scenarios one may observe many phenomena at work which are usually ex-
plained informally in terms of influence, dependence, blocking and evidence. But what is
the formal semantics underpinning these concepts? The basic language of conditional prob-
ability, based on the reading of Pr(A|B) as “the probability of A given B”, appears to be
unsuitable for such an account. For instance, it cannot express that, in the collider situation,
any evidence on the occurrence of B will make A and C dependent, whereas the blocking
of the first two scenarios only occurs when B is known with certainty (probability 1).

This paper proposes a rigorous formal treatment of influence in Bayesian reasoning,
yielding an expressive and firmly established language for describing the above scenarios.
Our methodology draws inspiration from the area of programming language semantics, and
in particular from Effectus theory [4, 2], a comprehensive logical framework for probabilistic
and quantum computation. At the foundation of our approach there is a conceptual dis-
tinction between the knowledge of an event, called a state, and an observation/evidence of
such event, called a predicate. Concretely, a state on a ‘sample’ space X will be a (finite)
discrete probability distributions ω on X, whereas a (fuzzy) predicate p on X is a function
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21:2 A Formal Semantics of Influence in Bayesian Reasoning

X → [0, 1]. The ‘knowledge update’ is then given by a conditioned distribution, which we
write as ω|p, pronounced as: ω given p. Moreover, our approach includes predicate and state
transformers, adding expressive power to the language.

Our first contribution (§ 3) is a semantic description of d-separation in the serial (i) and
fork connection (ii): we reduce these scenarios into formal statements, whose proofs are made
straightforward by our formalism. Here the phenomenon at stake is influence blocking, for
which the basic language of states and predicates suffices. However, the collider scenario (iii),
in which influence is not blocked but rather enabled, demands a deeper analysis.

This leads to our second contribution (§ 4), namely the concept of state entwinedness.
Intuitively, for a joint state/distribution being entwined means, by analogy with the quantum
world, that its components are entangled or, in the Bayesian jargon, they model dependent
events. In order to capture the collider situation, the key observation is that the join (tensor
product) of non-entwined states (say, in (iii), the join of A and C) may become entwined
after conditioning (information about B); from that moment on, any new information on
one component of the joint state will have influence also on the other component.

As a third contribution (§ 5), we introduce a formal, quantitative definition of such influ-
ence: we call it crossover influence, as it measures the non-local action between components
of a joint states. We also define a notion of direct influence, which measures the local ac-
tion of a predicate (an information update) on a certain state. Both definitions take as a
parameter a notion of ‘distance’ between states: for our scenarios we pick the total vari-
ation metric on probability distributions, which coincides with the Kantorovich metric [17]
on discrete metric spaces (sets). We make no claim on total variation being ‘canonical’ in
the sense of [10]. Our emphasis is rather on the abstract definition of influence: this is
independent of the choice of the underlying metric, which is not itself an essential part of
our analysis, see also § 7. As far as we know, probabilistic influence has not been formalised
and investigated in this quantitative form before.

We conclude our developments with a reprise of the collider scenario (§ 6), which we are
now able to adequately describe using the toolkit introduced in § 4 and § 5. Our analysis
clarifies that the commonly used description in the literature (see e.g. [14, 8, 15]) for de-
scribing the serial (i) and fork (ii) scenarios only works for very special ‘singleton’ predicates
— which we call Dirac predicates, whereas in the collider scenario (iii) any predicate on B
creates dependence (entwinedness) between A and C.

2 Background: states, predicates, and conditional probability

In this background section we introduce the notation, terminology and basic definitions for
several constructions in (finite) discrete probability. There is a categorical formalisation
using monads behind this, see e.g. [5], but we prefer to keep constructions more concrete.

States, predicates and validity. A (finite, discrete) distribution over a ‘sample’ set
A is a weighted combination of elements of A, where weights are probabilities from the
unit interval [0, 1] that add up to 1. We call such a distribution a state, as it expresses
knowledge the occurrence of elements of A. As mentioned in §1, we pursue an analogy
with quantum states, emphasised by the use of the ‘ket’ notation: a state ω is written as
ω = r1 |a1〉 + · · · + rn |an〉, where ai ∈ A, ri ∈ [0, 1] and

∑
i ri = 1. Also, D(A) is the set

of states/distributions on A. We will sometimes treat ω ∈ D(A) equivalently as a function
ω : A→ [0, 1] with finite support supp(ω) = {a ∈ A | ω(a) 6= 0} and with

∑
a∈A ω(a) = 1.

An event is a subset E ⊆ A of the sample space. We prefer to use a more general ‘fuzzy’
kind of predicate, namely functions p : A→ [0, 1]. In this discrete case, states (distributions)
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are predicates, but not the other way around. Events can be identified with ‘sharp’ predicates
taking values in the subset of booleans {0, 1} ⊆ [0, 1]. For x ∈ A, we write ∂x for the (sharp)
Dirac predicate over x, defined as ∂x(a) = 1 if x = a and ∂x(a) = 0 otherwise.

For predicates p, q ∈ [0, 1]A and scalar r ∈ [0, 1] we define p & q as a 7→ p(a) ·q(a) and r ·p
as a 7→ r ·p(a). States and predicates are most effectively reasoned about using the language
of Kleisli categories. We call a function of shape f : A→ D(B) a ‘Kleisli’ map from A to B
and write its type as A → B. Kleisli maps can be understood as channels, or as stochastic
matrices, especially when A,B are finite sets. The (Kleisli) composition of maps f : A→ B

and g : B → C is written as g • f : A→ C. It is essentially matrix multiplication:(
g • f

)
(a) =

∑
c∈C

(∑
b∈B f(a)(b) · g(b)(c)

)∣∣c〉. (1)

We write K̀ (D) for the Kleisli category whose objects are sets, and whose arrows from A to
B are the Kleisli maps A→ B. The identity map A→ A in K̀ (D) is the function a 7→ 1 |a〉.
Note that arrows 1→ B in K̀ (D) identify elements of D(B), i.e. the states on B, and arrows
B → 2 are elements of [0, 1]B , i.e. the predicates on B.

Each (ordinary) function g : A → B gives a trivial (diagonal) matrix map ‹g› : A → B

via ‹g›(a) = 1 |g(a)〉. Then: ‹h› • ‹g› = ‹h ◦ g›.
We will see later, in Example 3, how Bayesian networks can be seen as graphs of Kleisli

maps in K̀ (D). For this interpretation, it is of importance that K̀ (D) forms a monoidal
category. The monoidal product ⊗ is defined on objects as the cartesian product × of sets,
with tensor unit the one-element set 1. On Kleisli maps f : A→ X and g : B → Y the map
f ⊗ g : A⊗B → X ⊗ Y is defined as (f ⊗ g)(a, b)(x, y) = f(a)(x) · g(b)(y).
I Definition 1. Let ω ∈ D(A) be a state and p ∈ [0, 1]A be a predicate, both on the same
set A. We write ω |= p for the validity or expected value of p in state ω. This validity is a
number in the unit interval [0, 1] defined as:

ω |= p :=
∑

a∈A ω(a) · p(a) =
(
A

p→ 2
)
•
(
1 ω→ A

)
. (2)

If this validity is non-zero, it yields a conditioning operation on ω. We write ω|p or for the
conditional state “ω given p”, defined as formal convex sum:

ω|p :=
∑
a∈A

ω(a) · p(a)
ω |= p

∣∣a〉. (3)

I Lemma 2 (From [5]). (a) p & ∂x = p(x) · ∂x and ω |= ∂x = ω(x) and ω|∂x = 1 |x〉;
(b) ω|r·p = ω|p for r 6= 0 and ω|p&∂x

= 1 |x〉 when p(x) 6= 0 and ω(x) 6= 0;

(c) Bayes’ rule holds for fuzzy predicates: ω|p |= q = ω |= p & q

ω |= p
.

I Example 3. As a running example we will use the situation of a disease that can be caused
by environmental factors or by genetic heredity. The presence of the disease in a patient will
determine whether she manifests symptoms and also whether she tests positively. The test
outcome will also influence whether she receives health care. We express these data with a
Bayesian network, consisting of a graph together with conditional probability tables.

�� ��Genetic heredity
))

�� ��Test
.. �� ��Health Care�� ��Disease

11

&&�



�
	Environmental

factors

22 �� ��Symptoms

Pr (G) = 1/50

Pr (E) = 1/10

D Pr (T )
t 9/10

f 1/20

D Pr (S)
t 9/10

f 1/15

G E Pr (D)
t t 9/10

t f 8/10

f t 4/10

f f 0

T Pr (C)
t 4/5

f 1/10

(4)
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As illustrated in [7] (cf. also [3]), there is a canonical way to interpret our Bayesian net-
work (4) as an arrow in the Kleisli category K̀ (D). Each node N of the graph, say with
k incoming edges from nodes N1, N2, . . . , Nk, is associated with an arrow N : 2k → 2 in
K̀ (D); as a stochastic matrix, N is defined by the probability table of the node N . It will
be convenient to write 2N := {n, n⊥} for the two-element target set of the node-arrow N ,
where n represents occurrence and n⊥ non-occurrence of the event N . For instance, the
arrow D : 2G ⊗ 2E → 2D for the disease node is defined by the channel 2G × 2E → D(2D)

(g, e) 7→ 9
10 |d〉+ 1

10 |d
⊥〉 (g, e⊥) 7→ 8

10 |d〉+ 2
10 |d

⊥〉
(g⊥, e) 7→ 4

10 |d〉+ 6
10 |d

⊥〉 (g⊥, e⊥) 7→ 1 |d⊥〉 .

Another example is the initial map G : 1→ 2G for the genetic heredity node, which amounts
to the distribution 1/50 |g〉 + 49/50 |g⊥〉 in D(2G) ∼= [0, 1]. In order to recover the whole
network (4), one pastes node-arrows together using the monoidal structure of K̀ (D). Nodes
in (4) that have multiple outgoing edges are modeled by composing the corresponding arrow
2k → 2 with the pairing map ∆: 2 → 2 ⊗ 2 defined by x 7→ 1 |(x, x)〉. The Bayesian
network (4) in its entirety is then expressed as the following arrow in K̀ (D).

1 G⊗E //// 2G ⊗ 2E

D //// 2D

∆ //// 2D ⊗ 2D

T⊗S //// 2T ⊗ 2S

C⊗id //// 2C ⊗ 2S (5)

Inference via predicate/state transformers. Associated with a Kleisli map f : A→ B

there are state transformer and predicate transformer maps f∗ and f∗. For a state ω ∈ D(A)
and a predicate p ∈ [0, 1]B we define f∗(ω) ∈ D(B) and f∗(p) ∈ [0, 1]A as:

f∗(ω) =
∑
b∈B

(∑
a∈A f(a)(b) · ω(a)

)∣∣b〉 f∗(p)(a) =
∑
b∈B

f(a)(b) · p(b). (6)

Notice that f∗ works forwardly, transforming a state on A into a state on B, whereas f∗
works backwardly, transforming a predicate on B into a predicate on A. One can understand
these definitions in terms of Kleisli composition: f∗(ω) = f • ω and f∗(p) = p • f . We
collect a few basic results from [5].

I Lemma 4. (a) For a Kleisli map f : A→ B, a state ω ∈ D(A) and a predicate p ∈ [0, 1]B,
f∗(ω) |= p = p • f • ω = ω |= f∗(p).

(b) Predicate transformers f∗ preserve 1, 0, negation (−)⊥ and scalar multiplication r · (−).
(c) For an ordinary function g : A→ B we have ‹g›∗(ω)|p = ‹g›∗(ω|‹g›∗(p)). �

Using transformers and conditioning one can formulate Bayesian inference (learning).
We illustrate the relevant constructions with an example and refer to [7] for more details.

I Example 5. Backward inference. A typical learning task wrt. a Bayesian network
is backward inference: how the occurrence of a certain event changes the likelihood of its
causes. A formalisation of backward inference is proposed in [7] as “predicate transformation
followed by conditioning”. We illustrate this for Example 3, focusing on the part of the graph
that describes the influence of having the disease on receiving health care. First, we compute
our a priori knowledge on the likelihood of a disease. In the formalisation (5), this is the
Kleisli arrow D • (G⊗ E) : 1→ 2D, i.e. a state on 2D.

G⊗ E = 0.002 |g, e〉+ 0.018 |g, e⊥〉+ 0.098 |g⊥, e〉+ 0.882 |g⊥, e⊥〉
D • (G⊗ E) = 0.055 |d〉+ 0.945 |d⊥〉

(7)

The event of a positive test is interpreted as the Dirac predicate ∂t ∈ [0, 1]2T on 2T , i.e. it
maps t to 1 and t⊥ to 0. We can now ask a backward inference question: if the patient tested
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positive, what is the likelihood that she had the disease? The answer is enclosed in the state
(D • (G⊗E))|T∗(∂t) : 1→ 2D, obtained by first using T : 2D → 2T to transform the predicate
∂t on 2T into a predicate T ∗(∂t) on 2D, and then conditioning the state D • (G ⊗ E) over
T ∗(∂t). The latter predicate maps d to 9/10 and d⊥ to 1/20. Next,

D • (G⊗ E) |= T ∗(∂t) = 0.097 |d〉+ 0.903 |d⊥〉
(D • (G⊗ E))|T∗(∂t) =

∑
x∈2D

D•(G⊗E)(x)·T∗(∂t)(x)
D•(G⊗E)|=T∗(∂t) |x〉

= 0.055·9/10
0.097 |d〉+ 0.945·1/20

0.097 |d⊥〉 = 0.51 |d〉+ 0.49 |d⊥〉 .

Thus evidence of a positive test raises the chances of a disease from 0.055 to 0.51.
Forward inference. A second kind of learning task is forward inference: how the occur-
rence of an event changes the likelihood of its effects. Again following [7], forward inference is
formalised as “conditioning and then state transformation”. To illustrate this in our leading
example, consider a predicate p on 2G given by g 7→ 88% and g⊥ 7→ 0.1%: it expresses that
medical records of a patient show high likelihood of a genetic transmission of the disease.
Our forward inference question is: “how does the knowledge update given by predicate p
influence the positivity of the test?” For the answer, one first extends p to a (weakened)
predicate p′ on 2G ⊗ 2E, then conditions G⊗ E over p′. Finally, one applies T • D as state
transformer to (G⊗ E)|p′ . Conditioning over p′ makes a positive test much more likely:

(T • D)∗(G⊗ E) = 0.1 |t〉+ 0.9 |t⊥〉 (T • D)∗((G⊗ E)|p′) = 0.505 |t〉+ 0.495 |t⊥〉 .

3 Influence in d-separation

This section applies the language introduced in § 2 to give a precise explanation of the
fundamental concept of ‘d-separation’ in Bayesian networks, which is used as a criterion
for independence, via connections between nodes. These connections can be of three forms,
namely ‘serial’, ‘fork’, and ‘collider’. As we shall see, the language introduced so far is only
adapted to describe the first two scenarios. The third scenario needs a richer formalism,
which justifies the developments in the next sections.

3.1 Serial connections

�� ��A
f //

�� ��B
g //

�� ��C (8)
Consider a ‘serial connection’ Bayesian network as on
the right. Clearly, what we know about A influences
our knowledge about C, and vice-versa. In the context
of d-separation one considers the special cases when there is evidence about the state of
B, so that the mutual influencing between A and B is blocked. We first quote how this is
formulated in standard references (names of the nodes in the second quote are adapted to
make them consistent with diagram (8)).

(I) [8, §1.2]: Obviously, evidence on A will influence the certainty of B, which then influences
the certainty of C. Similarly, evidence on C will influence the certainty on A through
B. On the other hand, if the state of B is known, then the channel is blocked, and A
and C become independent.

(II) [14, §1.2.3]: Figuratively, conditioning on B appears to “block” the flow of information
along the path, since learning about A has no effect on the probability of C, given B.

MFCS 2017
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A
f ////

p
����

B
g ////

∂x ����

C
q
����

2 2 2 (9)

These descriptions are rather informal. (I) speaks
about (mutual) independence, and (II) only about hav-
ing no effect in the forward direction. We will make pre-
cise what is going on. Consider the same diagram (8),
but now with f, g interpreted as maps in the Kleisli category K̀ (D) and with predicates as
on the right. The three predicates are inhabitants p ∈ [0, 1]A, ∂x ∈ [0, 1]B , q ∈ [0, 1]C .

I Proposition 6 (Blocking I). Consider the serial connection (9), with Dirac evidence ∂x

on the middle node B, for some fixed x ∈ B. Then there is no influence from A to C, nor
from C to A, in the sense that for each distribution/state ω ∈ D(A),

(a) for any predicate p on A with ω |= p 6= 0, there is an equality of states on C:

g∗
(
f∗(ω)|∂x

)
= g∗

(
f∗(ω|p)|∂x

)
.

(b) for any predicate q on C there is an equality of states on A:

ω|f∗(∂x) = ω|f∗(∂x&g∗(q)).

We recall how to read the equation in point (a): given a state ω on A, we can transform
it to a state f∗(ω) on B. We can also first condition ω to ω|p and then push forward to
f∗(ω|p) on B. These different states f∗(ω) and f∗(ω|p) become equal when we condition
with the Dirac predicate ∂x, and then push them forward to C via g∗. Thus, the influence
of p is ‘annihilated’ or ‘blocked’ via the knowledge x ∈ B used in conditioning with ∂x.
Proof For the first point it suffices to prove f∗(ω)|∂x = f∗(ω|p)|∂x . But this equation follows
directly from Lemma 2 (a) since both sides are equal to 1 |x〉.

For the second point we have f∗(∂x & g∗(q)) = f∗(g∗(q)(x) · ∂x) by Lemma 2(a), which
is then equal to g∗(q)(x) · f∗(∂x) by Lemma 4(b). Finally, by Lemma 2(b), ω|f∗(∂x&g∗(q)) =
ω|g∗(q)(x)·f∗(∂x) = ω|f∗(∂x).

I Example 7.Nodes ‘Disease’, ‘Test’ and ‘Health Care’ in the network of Example 3 form
a serial connection, with Kleisli interpretation given by solid arrows as in (10) below.

2D

T // // 2T

C ////

∂t
����

2C

1

OO
ω

OO

2
(10)

Clearly, new information about the Disease will impact
the likelihood of receiving Health Care, and viceversa,
via the intermediate Test node. We examined these
phenomena as forward and backward inference in Ex-
ample 5, following [7]. We now show that, as prescribed by d-separation, mutual influence
may be blocked: a positive test will determine the availability of health care, disregarding
whether the patient actually has the disease or not. Viceversa, a positive test will nullify any
influence of receiving health care on having the disease, as health care is entirely determined
by the test outcome. The dotted arrows in (10) describe a state ω = 1

100 |d〉+
99
100 |d

⊥〉 on 2D,
giving a 1% disease probability, and the Dirac predicate ∂t ∈ [0, 1]2T , asserting the positivity
of the test. For the transformed predicate T ∗(∂x) on 2D we have: T ∗(∂t)(d) = 9

10

T ∗(∂t)(d⊥) = 1
20

ω |= T ∗(∂t) = 117
2000 ω|T∗(∂t) = 18

117 |d〉+ 99
117 |d

⊥〉 .

The latter distribution ω|T∗(∂t) equals ω|T∗(∂t&C∗(q)) for each predicate q ∈ [0, 1]2C on 2C ,
by Proposition 6 ((b)).
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I Remark. We emphasise that, if we replace the predicate ∂t on 2D by a non-Dirac predicate
p ∈ [0, 1]2D , then there is no blocking, in general. For instance, take: p(t) = 1

3 , p(t
⊥) = 1

4 ,
q(c) = 1

5 and q(c⊥) = 1. Then we compute a difference between the following states on 2D.

ω|T∗(p) = 0.013 |d〉+ 0.987 |d⊥〉 ω|T∗(p&c∗(q)) = 0.006 |d〉+ 0.994 |d⊥〉

Hence, influence from right to left in (10) does exist for non-sharp predicates.

3.2 Fork connections
Next we consider a “fork” Bayesian network
with predicates p, ∂x, q, for a given element
x ∈ A, as on the left. The informal description
of this situation is: influence can pass between
the children B and C via A, unless the state
of A is known, as formulated e.g. in [8].

A

f

����

g

����

∂x
����
2

2 B
poooo C

q //// 2

(11)

I Example 8. The Bayesian network of Example 3 contains a fork, given by ‘Disease’, ‘Test’
and ‘Symptoms’. If a patient tests positively, it gets more likely that she has the disease, and
thus shows symptoms. However, if one gets to know with certainty that she has the disease,
then any evidence about the test will not change the likelihood of showing symptoms.

I Proposition 9 (Blocking II). In the fork network (11), with Dirac evidence on the middle
node A, there is no influence from B to C, nor from C to B. This lack of influence from B

to C is expressed via the equation:

g∗
(
ω|∂x

)
= g∗

(
ω|f∗(p)&∂x

) (12)

for each state ω on A and predicate p on B, and x ∈ A. The other direction is analogous.

Proof The state transformer g∗ is irrelevant, as ω|∂x
= 1 |x〉 = ω|f∗(p)&∂x

. The first equation
is in point (a) in Lemma 2, and the second one in point (b). �

3.3 Collider connections
The last d-separation scenario is the one of a collider:�� ��A

!!

�� ��C

}}�� ��B

which becomes in K̀ (D),
with the addition of

a predicate q,

A⊗ C
f ����
B

q // // 2.
(13)

In [14] one can read about this situation: “if the two extreme variables are (marginally)
independent, they will become dependent (i.e. connected through unblocked path) once we
condition on the middle variable (i.e. the common effect) or any of its descendants.”

In our formalisms, this explanation unravels as follows. We fix states σ ∈ D(A) and
τ ∈ D(C), giving rise to a product state σ⊗ τ ∈ D(A⊗C). If we have evidence q : B → 2 on
B, then we can pull it back to evidence f∗(q) : A ⊗ C → 2. Now, in order to complete our
formalisation, we would like to express that σ and τ are initially independent of each other
when joint in σ⊗ τ , but they get correlated after conditioning (σ⊗ τ)|f∗(q). This correlation
should be witnessed by the fact that from now on any predicate on the A-component σ will
also have influence on the C-component τ , and viceversa. However, our formalisms of § 2
still lacks the means of expressing such ‘crossover’ properties, which echo the entanglement
phenomena commonly studied in quantum theory. We devote the next two sections to
rigorously describe them within our approach, and return to the collider scenario in § 6.

MFCS 2017
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4 Joint states and entwinedness

We now commence the formal investigation of correlation phenomena which will lead to the
notion of crossover influence. We give an elementary illustration first.

I Example 10. Consider two diseases A1 and A2 which may occur together, as given by the
prior joint probability distribution: ω = 1

6 |a1a2〉+ 1
4 |a1a

⊥
2 〉+ 1

3 |a
⊥
1 a2〉+ 1

4 |a
⊥
1 a
⊥
2 〉. Assume

that there is a test for disease A1 with sensitivity 90% positive when a patient has the disease
A1, and 5% positive when the patient does not. It turns out the prior probability of A2 is
1
2 , but decreases to

40
97 after a A1-positive test. We shall see how this works in Example 15.

For two states/distributions σ ∈ D(A1) and τ ∈ D(A2) we can form the joint ‘product’
distribution σ ⊗ τ ∈ D(A1 ⊗ A2) as (σ ⊗ τ)(a1, a2) = σ(a1) · τ(a2), as already used in (7).
The two original states σ and τ can be recovered as marginals of this product state: M1(σ⊗
τ) = σ and M2(σ ⊗ τ) = τ . Marginalisation (of states) and weakening (of predicates) are
special cases of state and predicate transformation, namely for the (Kleisli) projection maps
πi : A1 ⊗ A2 → Ai, given by πi(a1, a2) = 1 |ai〉. Marginalisation moves a ‘joint’ state on a
product to one of the components, and weakening moves a predicate on a component to the
product. These two operations play a special role in the sequel, and therefore we introduce
explicit notation M and

M

. First, for a joint state ω ∈ D(A1⊗A2) we have first and second
marginalisation Mi(ω) = (πi)∗(ω) ∈ D(Ai) determined by (6) as:

M1(ω)(a1) =
∑

a2∈A2
ω(a1, a2) M2(ω)(a2) =

∑
aa∈A1

ω(a1, a2). (14)

Similarly we have weakening operations

M

i(pi) = (πi)∗(pi) ∈ [0, 1]A1⊗A2 for predicates
pi ∈ [0, 1]Ai given by:

M

1(p1)(a1, a2) = p1(a1)

M

2(p2)(a1, a2) = p2(a2). (15)

Also, for two predicates pi ∈ [0, 1]Ai , we introduce their parallel conjunction p1 � p2 ∈
[0, 1]A1×A2 , mapping (a1, a2) to p1(a1) · p2(a2). The following definition describes the inter-
action — dependence, in Bayesian jargon — between the components of a joint state.

I Definition 11. A joint state ω ∈ D(A1 ⊗ A2) is called non-entwined if it is the product
of its marginals: ω = M1(ω)⊗M2(ω). It is called entwined otherwise.

I Lemma 12. (a) M1(ω) |= p = ω |=

M

1(p) and M2(ω) |= p = ω |=

M

2(p).
(b)

M

1(p) = p� 1 and

M

2(q) = 1� q and p� q =

M

1(p) &

M

2(q).
(c) (σ ⊗ τ) |= (p� q) = (σ |= p) · (τ |= q) and (σ ⊗ τ)|p�q = (σ|p)⊗ (τ |q). �

The next result plays an important role in the sequel. The first equation below says that
if one takes the marginal of a joint state conditioned with a weakened predicate, then one
may as well condition the marginal directly. This holds if the weakening and marginalisation
use the same component. But it fails if the components are different, see the subsequent
inequality 6= below. The latter fact is remarkable, because it involves a form of influence
between components. This is also called ‘signalling’ in the quantum world, but apparently
already appears in the current probabilistic setting — only for entwinted states.

I Proposition 13. Let p ∈ [0, 1]A be a predicate on a set A.

(a) For an arbitrary joint state ω ∈ D(A⊗B),

M1
(
ω| M

1(p)
)

= M1(ω)|p but in general M2
(
ω| M

1(p)
)
6= M2(ω).
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(b) For the special case of a (non-entwined) product state σ ⊗ τ ∈ D(A⊗B),

M1
(
(σ ⊗ τ)| M

1(p)
)

= σ|p M2
(
(σ ⊗ τ)| M

1(p)
)

= τ.

Proof We only prove the equality in point (a), and refer to Example 14 (b) for the inequality
in point (b), where a counterexample is given.

M1
(
ω| M

1(p)
)
(a) (14)=

∑
b ω| M

1(p)(a, b)
(3)=
∑

b

ω(a, b) ·

M

1(p)(a, b)
ω |=

M

1(p)
(15)=

∑
b ω(a, b) · p(a)
ω |=

M

1(p)
Lem.12(a)= M1(ω)(a) · p(a)

M1(ω) |= p
(3)= M1(ω)|p(a). �

We illustrate two significant related phenomena via an example.

I Example 14. Given sets X = {x, y} and A = {a, b}, one can prove that a state ω =
r1 |x, a〉 + r2 |x, b〉 + r3 |y, a〉 + r4 |y, b〉 ∈ D(X ⊗ A), where r1 + r2 + r3 + r4 = 1, is non-
entwined if and only if r1 · r4 = r2 · r3. This fact also holds in the quantum case, see e.g. [12,
§1.5]. It plays a role in the next two illustrations.
(a) Conditioning creates entwinedness. Recall from Example 3 the joint state G⊗E on

2G⊗2E, defined as in (7). Consider now a predicate p ∈ [0, 1]2D defined by d 7→ 85% and
d⊥ 7→ 20%. It models, for instance, the information that pallor appears as a symptom in
85% of patients with the disease, but also healthy patients may be pale for other reasons,
20% of the times. Using D as a predicate transformer, we can form the conditioned state
ω = (G⊗E)|D∗(p) = 0.007 |g, e〉+ 0.055 |g, e⊥〉+ 0.191 |g⊥, e〉+ 0.747 |g⊥, e⊥〉. This state
is now entwined, see the above characterisation of non-entwinedness.

(b) Influence between marginals of entwined states. Let’s now start with an entwined
state σ = 1

3 |g, e〉 + 1
4 |g, e

⊥〉 + 1
6 |g

⊥, e〉 + 1
4 |g

⊥, e⊥〉 ∈ D(2G ⊗ 2E) and a predicate q =
∂g ∈ [0, 1]2G . By weakening we get

M

1(q) = q • π1 ∈ [0, 1]2G⊗2E . Then: σ |=

M

1(q) =
1
3 · 1 + 1

4 · 1 = 7
12 , so that:

σ| M

1(q) = 1/3
7/12
|g, e〉+ 1/4

7/12
|g, e⊥〉 = 4

7 |g, e〉+ 3
7 |g, e

⊥〉 .

Below, the second marginal of the original state σ differs from the second marginal of
this conditioned state, illustrating the inequality 6= in Proposition 13 (a).

M2(σ) = 1
2 |e〉+ 1

2 |e
⊥〉 whereas M2

(
σ| M

1(q)
)

= 4
7 |e〉+ 3

7 |e
⊥〉 .

I Example 15. We conclude with the formal description of the two-disease scenario with
which we started this section (Example 10). The test is a map T : 2A1 → 2T given by
T (a1) = 9

10 |t〉 + 1
10 |t

⊥〉 and T (a⊥1 ) = 1
20 |t〉 + 19

20 |t
⊥〉. The impact of a positive test on the

disease A2 is given by the marginal of the conditional: M2(ω| M

1(T∗(∂t))) = 40
97 |a2〉+ 57

97 |a
⊥
2 〉.

5 A quantitative definition of influence

Last section showed how evidence on one component of an entwined state may influence the
other component. But how much did it change the latter component with respect to our
prior belief? This section addresses such aspect by introducing a quantitative semantics for
our influence vocabulary. We begin by recalling the total variation metric on distributions.
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I Definition 16. Let σ, τ ∈ D(X) be two distributions on a set X. Their total variation
distance d(σ, τ) is defined as the following number in the unit interval [0, 1].

d(σ, τ) = 1
2
∑
x∈X

∣∣σ(x)− τ(x)
∣∣.

I Lemma 17. Let f : X → Y be a Kleisli map. The associated state transformer f∗ : D(X)→
D(Y ) from (6) is non-expansive: d(f∗(σ), f∗(τ)) ≤ d(σ, τ). This yields a functor K̀ (D) →
Met1, where Met1 is the category of 1-bounded metric spaces and non-expansive maps.

Proof d(f∗(σ), f∗(τ)) = 1
2
∑

y∈Y

∣∣ f∗(σ)(y)− f∗(τ)(y)
∣∣

(6)= 1
2
∑

y∈Y

∣∣ ∑
x∈X f(x)(y) · σ(x)−

∑
x∈X f(x)(y) · τ(x)

∣∣
≤ 1

2
∑

x∈X

∑
y∈Y f(x)(y) ·

∣∣σ(x)− τ(x)
∣∣

= 1
2
∑

x∈X 1 ·
∣∣σ(x)− τ(x)

∣∣ = d(σ, τ). �

We refer to [6] for more information about total variation (and Kantorovich) distance
and the distribution monad D, and turn to our formal definition of influence. First we define
it in direct form, as a number indicating how much a predicate p influences a state σ via
conditioning σ|p, given by the (total variation) distance between σ and σ|p. This seems fairly
simple. But, as we have seen in Section 4, there may also be indirect, ‘crossover’ influence
between the components of a joint entwined state: this is the content of our second definition.

I Definition 18. Let p ∈ [0, 1]A be a predicate on a set A with discrete metric.

1. For a state σ ∈ D(A) on A the direct influence of p on σ is defined as:

Id(p, σ) := d
(
σ, σ|p

)
provided σ |= p 6= 0.

2. For a joint state ω ∈ D(A⊗B) the crossover influence of p on ω is:

Ic(p, ω) := d
(
M2(ω),M2(ω| M

1(p))
)

provided ω |=

M

1(p) 6= 0.

In general we say that a predicate has no (direct or crossover) influence on a state if the
corresponding influence function (Id or Ic) has outcome zero.

I Example 19. We give an example of direct influence, postponing a detailed illustration of
crossover influence to the collider scenario in Section 6. Recall the Kleisli map (5) modeling
the Bayesian network of Example 3. We fix three different states on 2D = {d, d⊥}:

ω = 4
5 |d〉+ 1

5 |d
⊥〉 ρ = 1

2 |d〉+ 1
2 |d

⊥〉 σ = 1
5 |d〉+ 4

5 |d
⊥〉 .

Intuitively, in state ω it is likely that the patient has the disease, in state σ it is rather
unlikely, and ρ sits in the middle. Consider the Dirac predicate ∂t ∈ [0, 1]2T expressing
positivity of the test: we first use the predicate transformer T ∗ associated with the Kleilsi
map T : 2D → 2T to obtain a predicate T ∗(∂t) ∈ [0, 1]2D ; subsequently, we compute the
influence of T ∗(∂t) on the above three states. This is done via a script.

Id

(
T ∗(∂t), ω

)
= 0.19 Id

(
T ∗(∂t), ρ

)
= 0.45 Id

(
T ∗(∂t), σ

)
= 0.62

Influence measures how radically the positivity of the test challenges our belief on the disease:
a positive test does not come at surprise in state ω, but it is more unexpected in state σ.
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I Example 20. Clearly, Id(1, ω) = 0, for the truth predicate 1, since ω|1 = ω. Is there also
an example where the (direct and crossover) influence reaches the maximal distance 1? We
show how to approximate it. Take A = {a, b} with predicate p(a) = 1, p(b) = 0 and state
σ = ε |a〉+ (1− ε) |b〉. The direct influence Id(p, σ) goes to 1 as ε→ 0. Similarly, by taking
ω = ε |aa〉+ (1− ε) |bb〉 ∈ D(A×A) we get Ic(p, ω)→ 1 as ε→ 0 for crossover influence.

We now establish some facts on crossover influence: (1) it only makes sense if the state
is entwined, since for a product state the crossover influence is zero; (2) weakening and
marginalisation must work in different components, since otherwise we have direct influence;
(3) crossover influences is always less than direct influence. In the context of Definition 18:

I Lemma 21. 1. Ic(p, σ ⊗ τ) = 0;
2. d

(
M1(ω),M1(ω| M

1(p))
)

= Id(p,M1(ω));
3. Ic(p, ω) ≤ Id(

M

1(p), ω)
4. For each function g : X → Y , considered as a Kleisli map ‹g› : X → D(Y ), we have:
Id(p, ‹g›∗(σ)) ≤ Id(‹g›∗(p), σ), where σ ∈ D(X).

Proof The first two points follow directly from Proposition 13 (b) and (a). The inequality
in point (3) from the fact that marginalisation is a special form of state transformation,
which, as we know from Lemma 17, is non-expansive:

Ic(p, ω) = d
(
M2(ω),M2(ω| M

1(p))
)

= d
(
(π2)∗(ω), (π2)∗(ω| M

1(p))
)

≤ d
(
ω, ω| M

1(p)
)

= Id(

M

1(p), ω).

Finally, for point (4) we use both Lemma 4 (c) and Lemma 17 in:

Id(p, ‹g›∗(ω)) = d
(
‹g›∗(ω), ‹g›∗(ω)|p

)
= d

(
‹g›∗(ω), ‹g›∗(ω|‹g›∗(p))

)
≤ d

(
ω, ω|‹g›∗(p)

)
= Id(‹g›∗(p), ω). �

I Remark. Crossover and direct influence are instances of a more general definition of influ-
ence of a predicate p ∈ [0, 1]Aj on the i-th marginal Ai of a joint state ω ∈ D(A1⊗ . . .⊗An).
For n = 2 and i 6= j, this corresponds to crossover influence, whereas for n = i = j = 1 it
would be direct influence. We chose not to work within this uniform approach as we believe
that it is more insightful to think of the two notions of Definition 18 as conceptually distinct.

As observed in §3, the blocking action of Dirac predicates plays a key role in d-separation.
We can use Definition 18 to express that no predicate p has any influence on a Dirac-
conditioned state ω|∂x— by Lemma 2, (ω|∂x)|p = (ω|p)|∂x = 1 |x〉 = ω|∂x , so Id(p, ω|∂x) = 0.

I Example 22. For instance, we can reformulate the fork scenario as follows. Because
conditioning is commutative, (12) is the same as: ω|∂x

=
(
ω|∂x

)
|f∗(p). Thus Proposition 9

says that Id(f∗(p), ω|∂x) = 0, i.e. f∗(p) has no influence on ω|∂x .
In the same vein, one may also revisit Example 8, an instance of the serial connection

scenario: in short, from (5), use states D, T • D and S • T • D to construct a joint state
on 2D ⊗ 2T ⊗ 2S; check that a ‘positive test’ predicate ∂t ∈ [0, 1]2T has crossover influence
on the marginal 2S, then prove that a ‘disease’ predicate ∂d ∈ [0, 1]2D blocks such influence.

6 Influence in d-separation (reprise)

We conclude with a return on the collider scenario, left unfinished at the end of § 3. With
the notation introduced therein, we now explain the collider situation in Diagram (13): the
initial joint (product) state σ⊗τ is non-entwined, but it becomes entwined after conditioning
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with evidence q on B, as in (σ ⊗ τ)|f∗(q). Now any new evidence p ∈ [0, 1]A on A may have
crossover influence on C— cf. Example 14 (b). It can be explicitly quantified by computing
Ic

(
p, (σ ⊗ τ)|f∗(q)

)
.

A conceptual insight stemming from our analysis is the asymmetry between blocking
and enabling influence: while in the serial and fork scenarios only Dirac predicates are able
to block, in a collider any predicate may enable. We give a concrete example below.

I Example 23. The Bayesian network of Example 3 includes a collider, given by nodes
’Genetic Heredity’ and ‘Environmental Factors’ both pointing to ‘Disease’. The two pos-
sible causes for the disease are represented as a joint state G ⊗ E on 2G ⊗ 2E, see (7). A
priori, they are unrelated. For instance, a Dirac predicate ∂g⊥ ∈ [0, 1]2G that excludes any
genetic disorder of the patient has no effect on the chances that she has been exposed to the
environmental factors: formally, the crossover influence Ic(∂g⊥ , G ⊗ E) is 0, as guaranteed
by Lemma 21.1. However, let’s include the information that pallor is a symptom of the
disease, modeled as a predicate p ∈ [0, 1]2D as in Example 14(a): it turns G ⊗ E into an
entwined state (G ⊗ E)|D∗(p). In this changed scenario, d-separation tells that ruling out
genetic heredity (predicate ∂g⊥) does influence the belief that environment was the cause.
We can formally expressed it with crossover influence:

Ic(∂g⊥ , G⊗ E) = 0 Ic(∂g⊥ , (G⊗ E)|D∗(p)) = 0.006.

Note that a Dirac predicate ∂d ∈ [0, 1]2D expressing certainty of the disease entwines G and
E much more: indeed Ic(∂g⊥ , (G⊗ E)|D∗(∂d)) = 0.26 > Ic(∂g⊥ , (G⊗ E)|D∗(p)).

7 Discussion

Our ambition in this paper was to develop a framework where grounding concepts of Bayesian
reasoning (influence, dependence, blocking, evidence, . . . ) are given a clear, completely
formal meaning, building on [7], and can be reasoned about in an abstract and flexible
manner. As a proof of concept, we analysed d-separation: the intention was to show how
event interactions with a subtle and potentially ambiguous natural language description can
be reduced to elementary formulas of our language, with a simple and transparent proof.

We based our approach on Kleisli categories, in harmony with the increasing importance
of algebraic methods from program semantics in the analysis of probabilistic systems [11,
16, 10]. The highlight of our developments is the notion of crossover influence, which we
believe may foster research in two directions. First, it draws a parallelism with non-locality
phenomena of quantum theory, see also [6]: we plan investigate the meaning of our definitions
in that setting, exploiting the formal bridge offered by Effectus theory [4, 2]. Second, our
definition is abstract enough to accommodate different choices for the underlying notion
of distance between states. The total variation metric suits the applications of this paper,
but other choices are also worth investigating: we think in particular of the Kantorovich
metric [17], for when the sample set has a non-discrete metric, and quantitative analyses of
information leakage [1]. Also connections with Kullback-Leibler divergence [9], focussing on
loss of information, in Shannon style, and to mutual information, remain to be investigated.

A related point concerns the relationship between the total variation distance and Bayesian
influence. In our choice, we simply aimed at the most basic additive distance which does
not (unlike Kantorovich) builds on a pre-existing metric, as our sample sets have none.
Admittedly, the suitability of total variation is only empirically justified by examples. In
future work we aim at a more satisfactory investigation: recent advances on an axiomatic
treatment of metrics [10] appear to be very suitable for the purpose.
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