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Outline of the thesis

The aim of this thesis is to obtain a better understanding of the diversity, distribution and role of 

microorganisms mediating anaerobic oxidation of methane in paddy fields, with an emphasis 

on the recently discovered Methanoperedens archaea.

In Chapter 1, a general introduction into the topic of the PhD thesis  is provided.

The initial feasibility studies to detect nitrate-dependent anaerobic oxidation of methane 

(N-AOM) microorganisms in Italian paddy fields are described in Chapter 2. The chapter 

describes the abundance and distribution of two anaerobic oxidation of methane (AOM) 

microorganisms: ‘Candidatus Methanoperedens nitroreducens’ and NC10 phylum bacteria 

‘Candidatus Methylomirabilis oxyfera’ in bulk soil and rhizosphere of a paddy field. Community 

analysis based on 16S rRNA gene amplicon sequencing and qPCR of the water-logged soil 

and the rhizosphere showed that AOM-associated archaea (AAA), including ‘Candidatus M. 

nitroreducens’, comprised 9% (bulk soil) and 1% (rhizosphere) of all archaeal reads. The NC10 

phylum bacteria made up less than 1% of all bacterial sequences. In addition to detecting the 

N-AOM microorganisms, we showed with slurry incubations amended with nitrate and 13C-CH4, 

that this paddy field soil has significant activity for N-AOM (79.9. nmol g-1
dw d-1). The qPCR with 

newly developed 16S rRNA gene primers demonstrated that AAA ranged from 0.28 to 3.9 x 106 

copies g-1
dw in bulk soil and 0.27 to 2.8 x 106 in the rhizosphere. The abundance of NC10 phylum 

bacteria was an order of magnitude lower. Prior to this study, sequences of ‘Candidatus M. 

nitroreducens’ were detected but their abundance had not been linked to nitrate dependent 

AOM in paddy fields.  This chapter was published as ‘Distribution and activity of the anaerobic 

methanotrophic community in a nitrogen-fertilized Italian paddy soil’ in FEMS Microbial 

Ecology 2016.

After the characterization and genome assembly of the first characterized ‘Candidatus M. 

nitroreducens’, published in 2013, specific molecular detection tool could be designed to 

quantitatively and sensitively detect methyl-coenzyme M reductase (mcrA) gene sequences 

of this important N-AOM archaeon. Chapter 3 reports the design of two novel mcrA primer 

combinations that specifically target the mcrA gene of ‘Candidatus M. nitroreducens’. The 

first primer pair results in fragments of 186bp which can be used to quantify ‘Candidatus M. 

nitroreducens’ cells, while the second primer pair yields an 1191bp amplicon that is well suited 

for detailed phylogenetic analysis. Six different environmental samples were tested with the 

new qPCR primer pair, and abundances were compared with 16S rRNA gene primers. The 

qPCR results indicated that highest numbers of ‘Candidatus M. nitroreducens’ mcrA gene 

copies were found in rice field soil with 5.6±0.8*106 copies g-1 wet weight, while Indonesian 

river sediment had only 4.6±2.7*102 copies g-1 wet weight. Besides freshwater environments, 



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 12PDF page: 12PDF page: 12PDF page: 12

Outline of the thesis

12

sequences were also detected in marine sediment of the North Sea, which contained about 

2.5±0.7*104 copies g-1 wet weight. Phylogenetic analysis of the amplified 1191bp mcrA gene 

sequences from the different environments indicated that all clustered together with available 

genome sequences of mcrA of known ‘Candidatus M. nitroreducens’ archaea. The research 

of this chapter resulted in the article ‘McrA primers for detection and quantification of the 

anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens’ in Applied 

Microbiology and Biotechnology 2017.

After developing a functional gene-based molecular tool and having shown that ‘Candidatus 

M. nitroreducens’ is present in many ecosystems and highly abundant in Italian paddy field 

bulk soil, we set out to investigate the stratification patterns of microbial community and 

AOM potential in the same paddy field. Chapter 4 focuses on microbial diversity and methane 

metabolism in the upper 60 cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing 

and anoxic 13C-CH4 activity tests with nitrate, nitrite and iron as electron acceptors. The bacterial 

community consisted mainly of Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes 

and Actinobacteria. Among archaea, Euryarchaeota and Bathyarchaeota dominated over 

Thaumarchaeota in the upper 30 cm of the soil. Bathyarchaeota constituted up to 45% of the 

total archaeal reads in the top 5 cm. In the methanogenic community, Methanosaeta were 

generally more abundant than the versatile Methanosarcina. The measured maximum methane 

production rate was 444 nmol gdwh-1. qPCR confirmed the results of chapter 2, and throughout 

the soil core ‘Candidatus M. nitroreducens’ was more abundant than NC10 phylum bacteria 

at all depths, except at 60cm where both were very low in abundance. We characterized the 

AOM potential with a suite of electron acceptors, with maximum rates of nitrate-, nitrite- and 

iron-dependent anaerobic oxidation of methane of 57, 55 and 56 nmol gdwh-1, respectively, at 

different depths. These results demonstrated that there is substantial AOM potential in fertilized 

paddy fields, with ‘Candidatus M. nitroreducens’ archaea as the main contributor, possibly not 

only with nitrate but as well as with iron as electron acceptor. This chapter was published as 

‘Stratification and diversity of methane-oxidizing microorganisms in a nitrogen-fertilized 

Italian paddy soil’ in Frontiers in  Microbiology in 2017.

However it is crucial to assess environmental distribution of AOM microorganisms with 

culture-independent methods and link it to the methane oxidation activity of environmental 

samples, the in-depth understanding of the full-potential of ‘Candidatus M. nitroreducens’ can 

only be described by culturing these’ microorganism in the laboratory. Chapter 5 describes 

the first AOM enrichment, using paddy field soil with significant amounts of ‘Candidatus M. 

nitroreducens’, as inoculum. After two years of enrichment with continuous supply of methane 

and nitrate as the sole electron donor and acceptor, a stable enrichment dominated by 

‘Candidatus M. nitroreducens’ archaea and NC10 phylum bacteria was achieved. The results 

of qPCR quantification of 16S rRNA gene copies, analysis of metagenomic 16S rRNA reads, 
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and fluorescence in situ hybridization (FISH) correlated well and showed that, after two years, 

‘Candidatus M. nitroreducens’ had the highest (2.2±0.4*108) 16S rRNA copies per mL and 

constituted approximately 22% of the total microbial community. Whole-reactor anaerobic 

activity measurements with methane and nitrate revealed an average methane oxidation rate 

of 0.012 mmol h-1 L-1, with cell-specific methane oxidation rates up to 0.57 fmol cell-1 day-1 for 

‘Candidatus M. nitroreducens’. Phylogenetic analysis showed that the 16S rRNA genes of the 

dominant microorganisms clustered with previously described ‘Candidatus Methanoperedens 

nitroreducens ANME2D’ (96% identity). The diagnostic mcrA gene was 96% similar to ‘Candidatus 

M. nitroreducens ANME2D’ (WP_048089615.1) at the protein level. The pooled metagenomic 

sequences resulted in a high-quality draft genome assembly of ‘Candidatus Methanoperedens 

nitroreducens Vercelli’. This chapter resulted in the article ‘Enrichment of anaerobic nitrate-

dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’ archaea from an 

Italian paddy field soil’ published in Applied Microbiology and Biotechnology in 2017.

Together, the chapters of this thesis show that ‘Candidatus Methanoperedens nitroreducens’ 

archaea are very abundant in fertilized water-logged paddy fields soils, and that these 

archaea could contribute significantly to the anaerobic oxidation of methane in these soils. 

The established enrichment culture could be used in the future to investigate the metabolic 

diversity of ‘Candidatus Methanoperedens nitroreducens’.  
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Samenvatting 

Het doel van dit proefschrift was het verkrijgen van een beter inzicht in de diversiteit, de 

verspreiding en de rol van micro-organismen die anaëroob methaan kunnen oxideren in 

rijstvelden, met nadruk op de onlangs ontdekte Methanoperedens archaea.

Hoofdstuk 1 bestaat uit een algemene inleiding over diverse aspecten van de 

methaanmicrobiologie in rijstvelden. Het onderzoek naar de mogelijkheid om stikstof-

afhankelijke anaërobe methaanoxiderende (N-AOM) micro-organismen in Italiaanse rijstvelden 

te detecteren, wordt beschreven in Hoofdstuk 2. Hierbij wordt ingegaan op de aanwezigheid en 

verspreiding van twee AOM micro-organismen, ‘Candidatus Methanoperedens nitroreducens’ 

en de NC10 phylum bacterie ‘Candidatus Methylomirabilis oxyfera’, in zowel de rhizosfeer en 

als de bodem van een rijstveld. De microbiële levensgemeenschap in de met water verzadigde 

bodem en de rhizosfeer, werd geanalyseerd met behulp van 16S rRNA gen amplion sequencing 

en qPCR. Deze analyse toonde aan dat in waterverzadigde bodem 9% en in de rhizosfeer 1% 

van alle archaeale reads afkomstig waren van de groep archaea waartoe ook ‘Candidatus M. 

nitroreducens’ behoort. Van de geanalyseerde bacteriële sequenties behoorde slechts minder 

dan 1% tot het NC10 phylum.  Naast het detecteren van de N-AOM micro-organismen, lieten 

wij met behulp van bodem-incubaties, waaraan nitraat en 13C-CH4 was toegevoegd, zien dat 

deze rijstveldbodems significante N-AOM activiteit hadden (79,9 nmol g-1 dw d-1). De qPCR met 

nieuw ontwikkelde primers voor het 16S rRNA gen van de N-AOM archaea, gaven aantallen van 

0,28 tot 3,9 x 106 kopieën g-1
dw in de bodem en van 0,27 tot 2,8 x 106 kopieën g-1

dw in de rhizosfeer 

weer. Het aantal bacteriële 16S rRNA genen van het NC10 phylum was minstens een grootte 

van orde lager, dan die van de N-AOM archaea. Hoewel in eerdere studies ook sequenties van 

‘Candidatus M. nitroreducens’ gedetecteerd werden, werd hun aanwezigheid niet gekoppeld 

aan N-AOM in rijstvelden. Hoofdstuk 2 werd gepubliceerd als ‘Distribution and activity of the 

anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil’ in FEMS 

Microbial Ecology 2016.

Na het karakteriseren van de eerste twee genomen van ‘Candidatus M. nitroreducens’, 

gepubliceerd in 2013 en 2015, konden specifieke moleculaire detectie methodes ontwikkeld 

worden voor de kwantitatieve en gevoelige detectie van methyl-coenzym M reductase (mcrA) 

genen van deze belangrijke N-AOM archaea. Hoofdstuk 3 beschrijft twee nieuwe mcrA primer 

combinaties die specifiek gericht zijn op de alfa-sub eenheid van het mcrA gen van ‘Candidatus 

M. nitroreducens’. Het eerste primerpaar resulteert in fragmenten van 186bp die kunnen 

worden gebruikt om ‘Candidatus M. nitroreducens’ cellen te kwantificeren met behulp van 

qPCR, terwijl het tweede primerpaar een 1191bp lang amplicon oplevert dat geschikt is voor 

gedetailleerde fylogenetische analyse. Deze nieuwe qPCR primerparen werden getest op zes 

verschillende bodemmonsters waarbij de aanwezigheid van ‘Candidatus M. nitroreducens’ 
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werd vergeleken met 16S rRNA gen primers. De qPCR resultaten toonde aan dat het 

grootste aantal kopieën van het ‘Candidatus M. nitroreducens’ mcrA genen werd gevonden 

in de bodem van rijstvelden (5,6±0,8*106 kopieën g-1 nat gewicht), terwijl in monsters van het 

Indonesische riviersedimenten slechts 4,6±2,7*102 kopieën g-1 nat gewicht gevonden werden. 

Naast zoetwateromgevingen werden mcrA sequenties ook gedetecteerd in sediment van de 

Noordzee, dat 2,5±0,7*104 kopieën g-1 nat gewicht bevatte. De geamplificeerde 1191bp mcrA 

gen sequenties uit de verschillende milieus vielen bij fylogenetische analyse in dezelfde groep 

als de beschikbare genoomsequenties van bekende ‘Candidatus M. nitroreducens’ archaea’. 

Het onderzoek van dit hoofdstuk resulteerde in het artikel ‘McrA primers for detection and 

quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens 

nitroreducens’ en werd gepubliceerd in Applied Microbiology and Biotechnology 2017.

Na het ontwikkelen van een moleculaire methode gebaseerd op een functioneel gen en het 

aantonen van de aanwezigheid van ‘Candidatus M. nitroreducens’ in verschillende ecosystemen 

waaronder de Italiaanse rijstveldbodems, werd in hetzelfde rijstveld de stratificatie van de 

microbiële levensgemeenschap en de potentiële activiteit voor AOM onderzocht. Hoofdstuk 4 

had tot doel door middel van qPCR; 16S rRNA gen amplicon sequencing en anoxische 13C-CH4 

activiteittesten met nitraat, nitriet en ijzer als elektronenacceptoren, de microbiële diversiteit 

en het methaanmetabolisme in de bovenste 60 cm van het rijstveld in kaart te brengen. De 

op het 16S rRNA gen gebaseerde bacteriële levensgemeenschap bestond voornamelijk uit 

Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes en Actinobacteria. Bij de Archaea 

domineerden Euryarchaeota en Bathyarchaeota over Thaumarchaeota in de bovenste 30 cm 

van de bodem. Bathyarchaeota reads vormden zelfs 45% van de totale hoeveelheid archaeale 

reads in de bovenste 5 cm. Bij de methanogene archaea waren de specialistische Methanosaeta 

dominanter dan de meer veelzijdige Methanosarcina. De maximale gemeten productiesnelheid 

van methaan was 444 nmol gdw h
-1. De qPCR data bevestigde de resultaten verkregen in 

hoofdstuk 2: de bodemmonsters bevatten veel meer ‘Candidatus M. nitroreducens’ cellen dan 

NC10 phylum bacteriën, behalve op een diepte van 60 cm waar de aanwezigheid van beide 

groepen zeer laag was. Met een reeks elektronacceptoren werd de potentiële AOM activiteit 

bepaald. De maximale nitraat-, nitriet- en ijzer-afhankelijke anaërobe methaanoxidatie 

snelheden waren respectievelijk 57, 55 en 56 nmol gdwh-1. Deze resultaten toonden aan dat 

er een aanzienlijk AOM kan optreden in vruchtbare rijstveldbodems waarbij ‘Candidatus M. 

nitroreducens’ archaea waarschijnlijk de grootste bijdrage levert, mogelijk niet alleen met 

nitraat maar ook met ijzer als elektronenacceptor. Dit hoofdstuk werd gepubliceerd als 

‘Stratification and diversity of methane-oxidizing microorganisms in a nitrogen-fertilized 

Italian paddy soil’ in Frontiers in Microbiology in 2017.

Hoewel het belangrijk is om de verdeling van AOM micro-organismen met cultivatie 

onafhankelijke methoden te bepalen en deze te koppelen aan de methaanoxidatie 

Samenvatting
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activiteitsmetingen, kan de volledige kennis over ‘Candidatus M. nitroreducens’ alleen worden 

verkregen door het ophopen, groeien en karakteriseren van deze micro-organismen in het 

laboratorium. Hoofdstuk 5 beschrijft de eerste AOM ophopingscultuur, waarbij natte bodem 

van een rijstveld met significante hoeveelheden ‘Candidatus M. nitroreducens’ werd gebruikt 

als startmateriaal. Door continue aanvoer van methaan en nitraat als enige elektrondonor en 

acceptor, werd na twee jaar een stabiele ophopingscultuur verkregen, die gedomineerd werd 

door ‘Candidatus Methanoperedens nitroreducens’ archaea en NC10 bacteriën. Resultaten 

van de kwantificatie van 16S rRNA gen kopieën middels qPCR, analyse van metagenomische 

16S rRNA reads en fluorescente in situ hybridisatie (FISH) correleerden goed met elkaar en 

toonden aan dat, na twee jaar, de ‘Candidatus M. nitroreducens’ het hoogste aantal (2,2 ± 

0,4 * 108) 16S rRNA kopieën had per ml had en dat deze archaea ongeveer 22% van de totale 

microbiële gemeenschap vormden. Uit de anaërobe activiteitsmetingen van de totale reactor 

met methaan en nitraat werd duidelijk dat de gemiddelde snelheid van methaanoxidatie 

0,012 mmol h-1 L-1 was, met een celspecifieke methaanoxidatie van ongeveer 0,57 mol cell-

1 dag-1 voor ‘Candidatus M. nitroreducens’. Fylogenetische analyse toonde aan dat de 16S 

rRNA genen van de dominante micro-organismen groepeerden met eerder beschreven 

‘Candidatus M. nitroreducens ANME2D’ (96% identiteit). Het mcrA gen was 96% vergelijkbaar 

met ‘Candidatus M. nitroreducens ANME2D’ (WP_048089615.1) op het eiwitniveau. De 

samengevoegde metagenomische sequenties resulteerden in een kwalitatief hoogwaardig 

genoom van ‘Candidatus Methanoperedens nitroreducens Vercelli’. Dit hoofdstuk resulteerde 

in het artikel ‘Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus 

Methanoperedens nitroreducens’ archaea from an Italian paddy field soil’, gepubliceerd in 

Applied Microbiology and Biotechnology in 2017.

Tesamen laten de hoofdstukken van dit proefschrift zien dat ‘Candidatus Methanoperedens 

nitroreducens’ archaea in behoorlijk hoeveelheden voorkomen in bemeste, natte rijstvelden, 

en dat deze archaea daar een significant bijdrage kunnen leveren aan de anaërobe oxidatie van 

methaan. Met de verkregen ophopingscultuur kan in de toekomst de metabole diversiteit van 

‘Candidatus Methanoperedens nitroreducens’ onderzocht worden.
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Rice is the primary food source for about half of the world’s population and the second most 

widely grown cereal crop. Worldwide, rice provides 27% of dietary energy supply and 20% of 

dietary protein (Van Nguyen & Ferrero, 2006). Major producers are located in Asia (especially 

China), where approximately 90% of global rice supply originates.  In Europe, Italy is the largest 

rice producer. Rice is mainly cultivated in flooded paddy fields which are man-made wetlands 

that contribute substantially to atmospheric methane (CH4)  concentrations and release 25-300 

Tg of CH4 year-1 (Bridgham et al., 2013). This represents 10-20% of the global methane emissions 

(Conrad, 2009, Bodelier, 2011). It is predicted that the land area designated for rice cultivation, 

which currently is about 160 million hectares, will increase by 60% in the coming decades. As 

paddy fields are an important source of methane, a large number of studies have focused on; 

estimation of the methane emission rates from paddy fields; identification of environmental 

and anthropogenic factors which affect these rates and the microbial communities in paddy 

fields (Inubushi et al., 2002, Krüger et al., 2002, Chin et al., 2004, Conrad et al., 2008, Bodelier, 

2011, Banger et al., 2012, Bao et al., 2016).

In addition to methane being the second most abundant greenhouse gas, it is also 34 times 

more potent than carbon dioxide (CO2) in radiative forcing over 100 year span. Since the 

industrial era, the atmospheric methane concentrations have increased 2.5-fold to above 

1800 ppb (Myhre et al., 2013). Both natural and agricultural soils are important contributors to 

atmospheric methane, despite the large uncertainties in the estimates.

Investigation of the soil microbial community is a complex matter, as soil is not a homogenous 

environment and there is no ‘typical’ soil microbiome. The soil environment can vary from 

micrometers to millimeters in the abiotic characteristics, and the composition of bacterial 

and archaeal taxa varies on the same scale (O’Brien et al., 2016). The uniqueness of paddy 

fields environment is due to the cultivation under waterlogged conditions. Unlike many other 

plants, rice is able to tolerate the submersion much better, due to the formation of gas spaces 

between the shoot and the root called aerenchyma, which enables the oxygen transport into the 

submerged parts deeper in soil (Armstrong, 1971, Colmer, 2003, Colmer & Pedersen, 2008). The 

overlaying water decreases the oxygen penetration depth and functions as a diffusive barrier, 

which causes anoxia in the majority of soil compartments and favours the process of anaerobic 

decomposition. Further, paddy fields are commonly fertilized with nitrogen compounds several 

times over the growing season; such fertilizers maintain soil fertility and increases crop yield 

(Cassman et al., 1998). Another source of nitrogen in the form of nitrate and nitrite occurs at 

oxic/anoxic interfaces, where ammonium is oxidized with oxygen released from the roots or 

from the surface (Brune et al., 2000).

A crucial factor in the understanding of methane emissions is that the majority of methane 

released to the atmosphere (70-80%) is of biogenic origin (Conrad, 2009). Methane is the end 
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product of anaerobic digestion of organic matter by the microbial community. Most of the 

methane is produced in the anoxic layers of soil by methanogenic archaea. These thrive well 

under the anoxia, where organic matter is fermented and electron acceptors are limited. Yet 

the extensive root system creates ‘hotspots’ for microbial diversity. Studies on paddy fields 

differentiate between the bulk soil and the rhizosphere soil. The bulk soil is often dominated 

by Acidobacteria and Chloroflexi, sometimes together with Proteobacteria (Ahn et al., 2012, 

Ahn et al., 2014, Lee et al., 2015). The rhizosphere is often dominated by Firmicutes. As roots 

secrete a considerable amount of fermentable poly- and monomeric sugars, the dominance 

or high abundance of these fermenting microorganisms in the rhizosphere is to be expected 

(Aslam et al., 2013, Edwards et al., 2015). In this complex system, many of these fermenting 

microorganisms provide substrates for the methanogenic archaea, which in the anoxic layers 

of the soil produce methane either by acetoclastic of hydrogenotrophic methanogenesis. 

The abundance of methanogens, community composition and the pathways of methanogenesis 

have been intensively studied in paddy fields (Chin et al., 1999, Wang et al., 2010, Lee et al., 

2014, Lee et al., 2015, Bao et al., 2016). Among many other factors, flooding (Rui et al., 2009), 

fertilization and straw application (Bao et al., 2016), temperature (Conrad et al., 2009, Noll et 

al., 2010), rice cultivar and soil type (Conrad et al., 2008) and plant growth stage (Breidenbach 

& Conrad, 2015) affect the community composition and the amount of methane released. 

In the rhizosphere, methanogenic archaea belong mostly to hydrogenotrophic and 

methylotrophic groups (Daebeler et al., 2013), whereas in the bulk soil strictly acetoclastic 

Methanosarcinales (Methanosaeta) seem to dominate. Furthermore, versatile representatives 

of the Methanosarcinales, which may use both acetoclastic and hydrogenotrophic pathways for 

methane production, have been found to be more abundant in the rhizosphere. Hydrogenotrophic 

methanogens of the Methanocellales or Rice Cluster I (RC I) have been noted as the key players 

in Italian and other paddy fields (Conrad & Klose, 2006, Erkel et al., 2006, Watanabe et al., 

2009). 

Surprisingly, strict anaerobic methanogens have also been detected in the rhizosphere and on 

rice roots (Chin et al., 2004, Xu et al., 2012, Edwards et al., 2015, Lee et al., 2015). For instance, 

Lee et al. (2015) observed a higher abundance of methanogens in the rhizosphere than in bulk 

soil. One of the possible explanations for surviving nearby roots and being tolerant to the oxygen 

released is that methanogens possess mechanisms to counteract the reactive oxygen radical 

species as has been demonstrated for hydrogenotrophic methanogens (Erkel et al., 2006). 

The niche in the rhizosphere for strict anaerobes may be either within soil aggregates, which 

have a local low local oxygen concentration or in non-active roots where no oxygen is released.  
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The methanogenic process is counteracted by another well studied process: the aerobic 

oxidation of methane. Despite of overlaying water causing anoxia in the majority of soil 

compartments, there is a constant oxygen influx into the soil layers through diffusional 

transport via the aerenchyma and by the radial oxygen loss of the rice roots (Armstrong, 1971, 

Li & Wang, 2013). 

Aerobic methane-oxidizing bacteria (MOB) have been extensively studied since the discovery 

of “Bacillus methanicus” (Söhngen, 1906). MOB have long been considered the only microbes 

capable of oxidizing methane. The currently known MOB belong to the phyla Proteobacteria 

and Verrucomicrobia (Op den Camp et al., 2009, Semrau et al., 2010). Proteobacterial aerobic 

methanotrophs inhabit a variety of environments, ranging from tundra soil (Dedysh et al., 

2004) and arctic permafrost (Liebner et al., 2009), to sewage treatment sludge (Ho et al., 2013). 

By phylogenetic analyses of both 16S rRNA and the particulate methane mono-oxygenase 

subunit A (pmoA) gene, two groups of Proteobacteria have been identified as MOB: Type I 

methanotrophs belonging to the Gammaproteobacteria and Type II methanotrophs belonging 

to the  Alphaproteobacteria  (Trotsenko & Murrell, 2008, Semrau et al., 2010). 

Previous research of methane sinks in paddy fields has mainly focused on aerobic 

Proteobacterial methanotrophs, demonstrating that they can oxidize substantial parts of the 

methane produced in the anoxic parts of the paddy field soil (Krüger et al., 2001, Krause et 

al., 2010, Ho et al., 2011, Lüke & Frenzel, 2011, Lee et al., 2014). It has been suggested that 

Type I methanotrophs can likely outcompete Type II methanotrophs for substrates in these 

nitrogen-loaded environments (Zheng et al., 2014). Studies on selection showed dominance of 

Type I over Type II, when ammonium or nitrate were supplied as nitrogen source (Pfluger et al., 

2011). Compared to the Proteobacterial aerobic methanotrophs, the more recently discovered 

Verrucomicrobia often inhabit more extreme environments with low pH values and/or high 

temperatures (Dunfield et al., 2007, Op den Camp et al., 2009, Sharp et al., 2014, van Teeseling 

et al., 2014). 

In contrast to aerobic methane oxidation, the process of anaerobic oxidation of methane (AOM) 

is less-well understood and explored in soil systems. Yet in the absence of oxygen, there is a 

range of electron acceptors available in soils to support methane conversion to carbon dioxide:  

sulfate, nitrate, nitrite and metal oxides such as manganese and iron oxides.  

The process of anaerobic oxidation of methane was first hypothesized to occur based on 

biogeochemical sediment profiles (Reeburgh, 1976), but the responsible microbes were 

discovered only much later. Since then, many studies have addressed the importance of sulfate-

dependent AOM in marine ecosystems as reviewed in (Knittel & Boetius, 2009) showing that 

it is mediated by a consortium of anaerobic methanotrophic (ANME) archaea in cooperation 
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with sulfate-reducing bacteria, or possibly ANME alone (Knittel & Boetius, 2009, Milucka et al., 

2012, Scheller et al., 2016). Currently, ANMEs are divided into three main lineages: ANME-1, 

ANME-2 and ANME-3 (Knittel et al., 2005, Nauhaus et al., 2005, Stadnitskaia et al., 2005). They 

act as the dominant methane sink in marine environments, accounting for 80% of methane 

removal in these ecosystems (Durisch-Kaiser et al., 2005, Boetius & Wenzhofer, 2013). In 

freshwater and terrestrial environments, sulfate concentrations are typically two orders of 

magnitude lower than in marine systems, making the contribution of microorganisms using 

other electron acceptors more likely (Strous & Jetten, 2004). 

Anaerobic oxidation of methane coupled to nitrate and nitrite reduction (N-AOM) was reported 

for the first time in 2006 (Raghoebarsing et al., 2006). This enrichment contained archaea 

distantly related to ANME-2, and bacterium of the candidate division NC10. Over time, as a 

result of supplying the bioreactor with more nitrite, the enrichment culture became dominated 

by NC10 phylum bacteria, which was identified as the microorganism capable of catalyzing 

nitrite-dependent AOM alone and it was named ‘Candidatus Methylomirabilis oxyfera’ (Ettwig 

et al., 2008, Ettwig et al., 2010). ‘Candidatus Methylomirabilis oxyfera’ as the name illustrates 

has ‘miraculous’ trait of using an intra-aerobic mechanism, whereby two molecules of nitric 

oxide are probably dismutated into O2 and N2. Yet it contains the key enzymes of the aerobic 

methanotrophic pathway; the particulate methane monooxygenase complex, which can 

use the produced O2 for methane oxidation in the same manner as aerobic methanotrophs 

(Ettwig et al., 2010). The discovery of ‘Candidatus Methylomirabilis oxyfera’ identified the first 

microorganism that couples nitrogen- and methane cycle and since then a number of studies 

have demonstrated that nitrite-dependent anaerobic oxidation of methane by NC10 phylum 

bacteria significantly contributes to the methane removal in the sediments of a deep lake 

(Deutzmann & Schink, 2011, Deutzmann et al., 2014) and in a eutrophic peatland (Zhu et al., 

2012). Also in paddy fields, occurrence and significant activity of NC10 phylum bacteria has 

been demonstrated (Wang et al., 2012, Hu et al., 2014).

Using the 16S rRNA gene as phylogenetic marker, NC10 bacteria have been divided previously 

into four groups (A, B, C, D) (Ettwig et al., 2009) (Figure 1). All known N-AOM performing ‘M. 

oxyfera’-like bacteria characterized from enrichment cultures fall into group A (Ettwig et al., 

2009, Ettwig et al., 2010, Haroon et al., 2013, He et al., 2015). Very recently, a high-quality 

draft genome of an NC10 bacterium belonging to group D could be re-constructed from an 

aquifer sediment metagenome (Hug et al., 2016). Group B and C are to date only represented 

by environmental sequences and nothing is known about the physiology of these organisms.
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Figure 1: Phylogenetic overview of NC10 bacteria based on 16S rRNA gene sequences. Depicted is the 
clustering of the NC10 clade into groups A-D. ‘Candidatus Methylomirabilis oxyfera’ of the group A is 
marked in bold. The calculation of the tree was carried out by Neighbour-joining algorithm using the Jukes 
Cantor correction and filter over 1158bp and Acidobacteria as an outgroup (Welte et al., 2016).

The role of the ANME-2 archaea in the first enrichment culture was characterized much later. 

These Euryarchaea, capable of coupling nitrate reduction to anaerobic methane oxidation 

were identified as ‘Candidatus Methanoperedens nitroreducens’ (Haroon et al., 2013). Till 

2017, two genomes of ANME-2d archaea, enriched in bioreactors fed with methane, nitrate 

and ammonium (Haroon et al., 2013) or methane and nitrate, were available (Arshad et al., 

2015). ‘Candidatus Methanoperedens nitroreducens’ possesses all the genes of the (reverse) 

methanogenic pathway (Haroon et al., 2013, Arshad et al., 2015). Phylogenetic analysis revealed 

that ‘Candidatus Methanoperedens nitroreducens’ belongs to the order of Methanosarcinales 

and is classified as ‘GOM Arc I’ in the ribosomal rRNA SILVA database. The group ‘GOM Arc I’ 

consists of the ANME-2d group as well as the original GOM Arc I group with sequences from 

Gulf of Mexico (Mills et al., 2003). 

To date the GOM Arc I/ANME-2d group can be split into three defined clusters A, B and C 

(Figure 2). The 16S rRNA sequences of the two known genomes (Haroon et al., 2013, Arshad 

et al., 2015) cluster into group A, which is the largest and most uniform group. With few 

exceptions of sequences found in marine and brackish environments, this group consists of 

sequences detected in freshwater environments such as aquifers, lakes and rivers (Li et al., 
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2012, Flynn et al., 2013). Group B and C have no cultured representatives so far and consist 

exclusively of environmental sequences. The sequences of group B and C have been found in 

extreme environments such as marine and terrestrial mud volcanoes, marine sediment and 

hydrothermal vents (Inagaki et al., 2006, Pachiadaki et al., 2011, Yang et al., 2012). Sequences 

classified as ‘Candidatus Methanoperedens nitroreducens’ have been detected previously in 

paddy fields, including fields in Vercelli, Italy (Lueders et al., 2001, Conrad et al., 2008), Chinese 

paddy fields (Xu et al., 2012), and Korean paddy fields (Lee et al., 2015) as well as in natural 

wetlands (Narrowe et al., 2017).

Figure 2: Phylogenetic overview of Methanoperedens-like archaea based on 16S rRNA gene sequences. A. 
Phylogenetic positioning of GOM Arc I/ANME-2D within other ANME groups and methanogens. B. Clustering 
of ANME-2D into groups A–C. Cultured representatives are marked in bold. The classification of the groups 
was performed with all available 16S rRNA gene sequences of ANME-2D and confirmed by Neighbour-
joining and maximum likelihood algorithms. The representative Neighbour-joining phylogenetic tree was 
calculated using the Jukes Cantor correction, filter over 290 bp and ANME 1 as an outgroup. The full 16S 
rRNA sequences of the two cultured representatives ‘M. nitroreducens ANME2D’ and ‘Methanoperedens 
sp. BLZ1’ are 95.2% identical (Welte et al., 2016). 

After the nitrite-and nitrate-dependent AOM microorganisms had been identified, speculations 

on metal-dependent AOM remained. Metal-dependent AOM seemed to occur in both marine 

and freshwater environments (Beal et al., 2009, Egger et al., 2015) and possibly have played a 

role in the early earth, when oxygen was lacking (Beal et al., 2009). Iron is the most abundant 
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element on earth and in paddy fields iron reduction is considered as a central biochemical 

process. Anaerobic incubations of paddy field with Fe (III) stimulated methane oxidation 

(Kumaraswamy et al., 2001). Very recently it was shown that ‘Candidatus Methanoperedens 

nitroreducens’ can use various electron acceptors including iron-citrate and, may thus be 

able to carry out metal dependent AOM (Ettwig et al., 2016). Metal-dependent AOM has been 

demonstrated recently also for other ANME enrichments as well (Scheller et al., 2016).

In the light of these new discoveries, it is therefore of primary interest to understand fundamental 

processes in the paddy soil and the contribution of anaerobic and aerobic microorganisms 

to the methane balance in the atmosphere. Only then can we re-evaluate the influence of 

environmental and anthropogenic factors, and start to create better mitigation strategies and 

minimize the methane emissions from agricultural lands.  

In this thesis, we investigated several microbiological aspects of anaerobic oxidation of 

methane in an Italian paddy field. In chapter 2 and 4 we report the presence, abundance, 

activity and stratification of both ‘Candidatus Methylomirabilis oxyfera’ and of ‘Candidatus 

Methanoperedens nitroreducens’ with an array of complementary methods. In chapter 3 we 

developed new molecular tools for detection of ‘Candidatus Methanoperedens nitroreducens’ 

based on the key mcrA gene of the reverse methanogenesis pathway. Finally in chapter 5, 

we used Italian paddy field soil to enrich ‘Candidatus Methanoperedens nitroreducens’ in a 

bioreactor fed with methane and nitrate. The culture was analyzed with stable isotope activity 

tests, metagenomics and microscopy, and all methods showed that a new ‘Candidatus 

Methanoperedens nitroreducens’ strain was obtained.

This research and thesis was financed by ERC AG Ecomom 339880. 
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ABSTRACT

In order to mitigate methane emissions from paddy fields, it is important to understand the sources and sinks. Most paddy
fields are heavily fertilized with nitrite and nitrate, which can be used as electron acceptors by anaerobic methanotrophs.
Here we show that slurry incubations of Italian paddy field soil with nitrate and 13C-labelled methane have the potential for
nitrate-dependent anaerobic oxidation of methane (79.9 nmol g−1

dw d−1). Community analysis based on 16S rRNA amplicon
sequencing and qPCR of the water-logged soil and the rhizosphere showed that anaerobic oxidation of methane-associated
archaea (AAA), including Methanoperedens nitroreducens, comprised 9% (bulk soil) and 1% (rhizosphere) of all archaeal reads.
The NC10 phylum bacteria made up less than 1% of all bacterial sequences. The phylogenetic analysis was complemented
by qPCR showing that AAA ranged from 0.28 × 106 to 3.9 × 106 16S rRNA gene copies g−1

dw in bulk soil and 0.27 × 106 to
2.8 × 106 in the rhizosphere. The abundance of NC10 phylum bacteria was an order of magnitude lower. Revisiting
published diversity studies, we found that AAA have been detected, but not linked to methane oxidation, in several paddy
fields. Our data suggest an important role of AAA in methane cycling in paddy fields.

Keywords: anaerobic oxidation of methane; microbial community; paddy fields; 16S rRNA gene; amplicon sequencing; rice
rhizosphere; Methanoperedens nitroreducens; AAA

INTRODUCTION

Methane (CH4) is an important greenhouse gas that is up to 34
times more potent than carbon dioxide (CO2) in radiative forc-
ing (Myhre et al. 2013). Since the industrial era, the atmospheric
methane concentrations have increased 2.5-fold to above
1800ppb (Myhre et al. 2013). Paddy fields cover about 160 mil-
lion hectares worldwide and have been estimated to contribute

10–20% to the global methane emission (Conrad 2009; Bodelier
2011).

Biogenic methane emission into the atmosphere is the
net result of production by methanogens and consumption
by methanotrophs. Methanogenic archaea occur mostly in the
anoxic layers of soil and sediments, and produce methane
mainly from acetate or hydrogen, degradation products of

Received: 22 April 2016; Accepted: 18 August 2016
C� FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

1

Downloaded from https://academic.oup.com/femsec/article-abstract/92/12/fiw181/2570378/Distribution-and-activity-of-the-anaerobic
by Radboud University user
on 14 September 2017



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 32PDF page: 32PDF page: 32PDF page: 32

Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil

32

2 FEMS Microbiology Ecology, 2016, Vol. 92, No. 12

organicmatter (Conrad 2007; Borrel et al. 2011). Paddy fields have
been studied intensively for their communities of acetoclastic
and hydrogenotrophic methanogens (Conrad 2007).

For a long time microbial methane oxidation was considered
to be solely dependent on the availability of oxygen as an elec-
tron acceptor. Aerobic methanotrophs have been known since
1906, when they were first described (Söhngen 1906). Subse-
quent studies showed that they belong to at least two bacterial
phyla: Proteobacteria andVerrucomicrobia (Op denCamp et al. 2009;
Semrau, DiSpirito and Yoon 2010). Representatives of methane-
oxidizing Verrucomicrobia have so far only been found in acidic
environments (Op den Camp et al. 2009; Sharp, Stott and Dun-
field 2012; Sharp et al. 2014; van Teeseling et al. 2014). Proteobac-
terial methanotrophs belong to either the Alpha- (type II) or
Gamma-Proteobacteria (type I) (Trotsenko and Murrell 2008; Sem-
rau, DiSpirito and Yoon 2010), and have been extensively studied
in a range of environments, including paddy fields (Ho et al. 2011;
Lüke and Frenzel 2011; Lee et al. 2014).

In contrast to aerobic methanotrophs, anaerobic methan-
otrophs in non-marine environments are much less explored.
The process of anaerobic oxidation of methane (AOM) was first
hypothesized to occur based on biogeochemical sediment pro-
files (Reeburgh 1976), but the responsible microbes were dis-
covered only much later. Since then, many studies have ad-
dressed the importance of sulfate- dependent AOM in marine
ecosystems (as reviewed in Knittel and Boetius 2009) show-
ing that it is mediated by a consortium of anaerobic methan-
otrophic (ANME) archaea with sulfate-reducing bacteria, or pos-
sibly ANME archaea alone (Knittel and Boetius 2009; Milucka,
Widdel and Shima 2012; Scheller et al. 2016). This is the domi-
nant methane sink inmarine environments, accounting for 80%
of methane removal in these ecosystems (Hinrichs and Boetius
2002; Boetius and Wenzhofer 2013). Both the aerobic and anaer-
obic methanotrophic community in soils and sediments func-
tion as biofilters, controlling the amount of methane emitted
to the atmosphere. In freshwater and terrestrial environments,
sulfate concentrations are typically two orders of magnitude
lower than in marine systems, making the contribution of mi-
croorganisms using other electron acceptors more likely (Strous
and Jetten 2004). In 2006, AOM coupled to nitrate and nitrite re-
duction was first reported (Raghoebarsing et al. 2006). The re-
sponsible microorganisms were identified as archaea belong-
ing to the family Methanosarcinales but only distantly related
to ANME group 2 (ANME-2) archaea, and a bacterium of the
candidate division NC10, named ‘Candidatus Methylomirabilis
oxyfera’. This NC10 bacterium was found to be capable of cat-
alyzing nitrite-dependent AOM alone (Ettwig et al. 2008), using
an intra-aerobic mechanism, whereby two molecules of nitric
oxide are probably dismutated into O2 and N2. The O2 produced
can be used for methane oxidation via the particulate methane
monooxygenase complex much like in aerobic methanotrophs
(Ettwig et al. 2010). The initial co-culture, containing archaea and
nitrite-reducingM. oxyfera, showed also nitrate-reducing ability,
which led to the hypothesis that the archaea may be carrying
out nitrate-dependent AOM. Eventually this was confirmed in a
mixed culture, where very similarmethanotrophic archaeawere
enriched without the presence of other methanotrophs. These
Archaea were shown to oxidize methane anaerobically via a re-
verse methanogenesis pathway, using nitrate as terminal elec-
tron acceptor, and named ‘CandidatusMethanoperedens nitrore-
ducens’ (Haroon et al. 2013; Arshad et al. 2015). These archaea
have also been referred to as AOM-associated archaea (AAA)
(Knittel and Boetius 2009). They are closely related to the ANME-
2d group comprising sequences retrieved from the Gulf of Mex-
ico (Mills et al. 2003, 2005) and subsequently renamed GOM Arc

I (Lloyd, Lapham and Teske 2006). The current SILVA taxonomy,
established based on comprehensive rRNA databases, combines
AAA and ANME-2d/GOM Arc I at a higher taxonomic level into
one group referred to as GOM Arc I (Quast et al. 2013).

Before the discovery of nitrate- and nitrite-dependent AOM,
its contribution to biological methane oxidation was not known
and could not be taken into account even inwell-studied ecosys-
tems. Recent studies demonstrated that anaerobic nitrite-
dependent NC10 phylum methanotrophs contributed signifi-
cantly to methane removal in the sediments of a deep lake
(Deutzmann and Schink 2011; Deutzmann et al. 2014) and in
a eutrophic peatland (Zhu et al. 2012). Also in paddy fields,
occurrence and significant activity of NC10 phylum bacteria
have been demonstrated (Wang et al. 2012; Hu et al. 2014). To
our knowledge, no study has focused yet on nitrate-dependent
AOM by AAA in nature, nor estimated their environmental
distribution.

In the present study, we therefore investigated the role of
anaerobic methanotrophs as a methane sink in a water-logged
paddy field soil in Vercelli (Northern Italy). The Vercelli paddy
fields have been used as a model system for studying the dis-
tribution and activity of aerobic methanotrophs and anaerobic
methanogens in a temperate climate. Previous research in these
fields has suggested that in the rice field rhizosphere up to 40%
of themethane produced is consumed (Krüger, Frenzel and Con-
rad 2001). This activitywas attributed to aerobicmethanotrophs,
while the contribution of nitrate- or nitrite-dependent AOM has
not been addressed so far.

In this study, we (i) characterized the microbial community
of the bulk soil and the rhizosphere by 16S rRNA gene ampli-
con sequencing with a focus on methanotrophic organisms, (iii)
quantified the abundance of both bacterial and archaeal anaer-
obic methanotrophs using qPCR and related their abundance to
total numbers of bacteria and archaea, and (iii) demonstrated
the potential nitrate-induced AOM activity of the paddy soil.

METHODS
Soil sampling

Sampling of the rhizosphere and collection of bulk soil for
molecular analysis was carried out in September 2013 in
paddy fields at the Italian Rice Research Unit in Vercelli, Italy
(08◦22�25.89��E; 45◦19�26.98��N). These fields of silt loam soil
were flooded with approximately 15 cm of water and regularly
tilled. Soil of the experimental field had been fertilized with
147.5 kg ha−1 nitrogen and 183kg ha−1 potassium 21 days af-
ter flooding. Samples were collected 95 days after the beginning
of flooding. At the time of sampling, the porewater nitrate and
ammonium concentrations were 0.54 and 0.09 μmol/L, respec-
tively. The rice variety cultivated in the field plots was Oryza
sativa japonica Onice, a long A Italian rice variety, and sam-
ples were collected when rice plants were at the dough mat-
uration stage. All samples were collected from randomly dis-
tributed spots on one field with five replicates of both rhizo-
sphere and bulk soil. Bulk soil samples were taken at 10–20 cm
depthwith a spade. For rhizosphere samples, roots werewashed
and the majority of the attached soil was removed with gloves.
For DNA extractions, samples were stored in 50 ml falcon tubes.
Upon arrival at the laboratory in the Netherlands, samples were
immediately frozen until the DNA extraction was carried out.
For incubation experiments, soil samples were collected and
transported in a container and in the container covered with
water sampled from the field. After transport to the laboratory,
the soil samples for activity assays were stored at 4◦C.
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DNA extraction

DNA extraction from 0.25–0.75 g of soil or roots was performed
in duplicate with the PowerSoil DNA isolation Kit (Mo Bio Labo-
ratories Inc., Carlsbad, CA, USA) according to themanufacturer’s
protocol. Roots were ground in liquid nitrogenwith amortar and
pestle prior to extraction. DNA quantity was assessed by UV-
VIS spectroscopy (Nanodrop, ND-1000, Isogen Life Science, The
Netherlands) and 1% agarose gel electrophoresis was performed
to check the quality of the isolated DNA.

Primer selection and modification for amplicon
sequencing

Primers for amplification of 16S rRNA genes for bacteria
and archaea were selected based on their coverage for NC10
phylum bacteria and Methanoperedens nitroreducens as well as
suitability for amplicon sequencing (Klindworth et al. 2013).
The coverage was assessed using the Testprime Silva on-
line tool (http://www.arb-silva.de/search/testprime). The fol-
lowing primers were selected: forward S-D-Arch-0349-a-S-17
(5�GYGCASCAGKCGMGAAW3�) and reverse S-D-Arch-0519-a-A-
16 (5�TTACCGCGGCKGCTG3�) for archaea; and forward S-D-
Bact-0341-b-S-17 (5�CCTACGGGNGGCWGCAG3�) and reverse S-
D-Bact-0515-a-A-19 (5�TTACCGCGGCTGCTGGCAC3�) for bacteria.
For amplicon sequencing, the above-mentioned primers were
extended with adapter sequences, specific barcodes and key se-
quences compatible for Ion Torrent sequencing at the 5� end, re-
sulting in a total length of 56–60 nucleotides per primer.

Library preparation and Ion Torrent sequencing

DNA extractions from five replicates were pooled in equimolar
amounts and used as the template for subsequent amplicon se-
quencing. Amplicons were obtained by gradient PCR using Phu-
sion High-Fidelity PCR Master Mix (New England Biolabs, USA).
The PCR temperature protocol started with an initial denatura-
tion at 98◦C for 5 min followed by 55 cycles (a high cycle number
due to primer dimer formation) of 15 s at 98◦C, primer anneal-
ing at 50–60◦C for 30 s and elongation at 72◦C for 1.5 min. A final
elongation step was performed at 72◦C for 3 min. The size and
the quality of the amplicons were checked using 1% agarose gel
electrophoresis. Purification of amplicons with correct size was
done using the GeneJET gel extraction kit (Thermo Scientific,
Landsmeer, TheNetherlands) after extraction of the PCRproduct
from the agarose gel, according to the manufacturer’s protocol.
Extracted PCR products of the different annealing temperatures
were pooled for Ion Torrent library preparation.

For preparation of the library for Ion Torrent sequencing, am-
plification of the pooled and extracted PCR fragments was per-
formed using 100 μL of Platinum PCR SuperMix High Fidelity
(Life Technologies, USA), 5 μL of Library amplification primer
mix and 25 μL of unamplified purified PCR product. Amplifica-
tionwas performedwith an initial denaturation at 95◦C for 5min
followed by five cycles of denaturation at 95◦C for 15 s, primer
annealing at 58◦C for 15 s and elongation at 70◦C for 1 min. Pu-
rification of the library was performed using Agencourt AMPure
XP kit (Beckman Coulter, Inc., USA). Concentrations and frag-
ment lengths of the libraries were determined with the Bioan-
alyzer 2100 and the High Sensitivity DNA kit (Agilent Technolo-
gies, USA). The libraries obtained were diluted to a final concen-
tration of 26 pM, and when needed different barcoded libraries
were pooled in equimolar amounts before sequencing.

For Ion Torrent sequencing the library fragments were at-
tached to Ion Sphere particles using the Ion One Touch Instru-
ment and Ion PGMTemplate OT2 400 Kit (Life Technologies, USA)
according to the manufacturer’s instructions. After enrichment
of the Template-Positive Ion Sphere Particles, using the Ion One
Touch ES (Life Technologies, USA), they were loaded on either
an Ion 314 v2 Chip or an Ion 318 v2 Chip. Subsequently, DNA
fragments were sequenced using the Ion PGM Sequencing 400
Kit using 850 nucleotide flows, according to the manufacturer’s
instructions.

Amplicon sequence data analysis

Initial data analysis was performed using the CLC genomic
workbench, including elimination of low quality and short reads
(cut-off value 150 nucleotides). The exported reads were fur-
ther processed by using the automated pipeline of Silva next-
generation sequencing (NGS) of the SILVA rRNA gene database
project (SILVAngs 1.2) (Quast et al. 2013). In this process each
read was aligned using the SILVA Incremental Aligner (SINA;
SINA v1.2.10 for ARB SVN (revision 21008)) (Pruesse, Peplies and
Glockner 2012) against the SILVA SSUrRNA SEED and quality
controlled (Quast et al. 2013). Reads shorter than 50 aligned
nucleotides and reads with more than 2% of ambiguities, or
2% of homopolymers, respectively, were excluded from further
processing. Putative contaminations, artefacts and reads with
a low alignment quality (50 alignment identity, 40 alignment
score reported by SINA), were identified and excluded from
downstream analysis. After these initial steps of quality con-
trol, identical reads were identified (dereplication), the unique
reads were clustered (operational taxonomic units; OTUs), on
a per sample basis, and the reference read of each OTU was
classifiied. Dereplication and clustering were done using cd-
hit-est (version 3.1.2; http://www.bioinformatics.org/cd-hit) (Li
and Godzik 2006) running inaccurate mode, ignoring overhangs,
and applying identity criteria of 1.00 and 0.98, respectively.
The classification was performed by a local nucleotide BLAST
search against the non-redundant version of the SILVA SSU Ref
dataset (release 119; http://www.arb-silva.de) using blastn (ver-
sion 2.2.28+; http://blast.ncbi.nlm.nih.gov/Blast.cgi) with stan-
dard settings (Camacho et al. 2009). The classification of each
OTU reference read was mapped onto all reads that were as-
signed to the respective OTU. This yields semi-quantitative in-
formation (number of individual reads per taxonomic path),
within the limitations of PCR and sequencing technique biases,
as well as multiple rRNA operons. Reads without any BLAST hits
or reads with weak BLAST hits, where the value for (percent-
age sequence identity + percentage alignment coverage)/2 did
not exceed 93, remain unclassified. These reads were assigned
to the metagroup ‘No Relative’ in the SILVAngs fingerprint and
Krona charts (Ondov, Bergman and Phillippy 2011). This method
was first used in the publications Klindworth et al. (2013) and
Ionescu et al. (2012).

Quantification by qPCR

The quantification of the total bacterial and total archaeal
community using the 16S rRNA gene as biomarker was con-
ducted by quantitative polymerase chain reaction (qPCR).
The qPCR reactions were run in triplicate on duplicate DNA
extractions from each sample, with five samples each ob-
tained from the rhizosphere and the bulk soil. This resulted
in a total number of 30 qPCR reactions for each primer
pair and compartment. For archaea, the following primers
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were used: forward Arch-0349 (5�GYGCASCAGKCGMGAAW3�)
and reverse Arch-807 (5�GGACTACVSGGGTATCTAAT3�) (Takai
and Horikoshi 2000). For Bacteria: forward S-D-Bact-0341-b-S-
17 (5�CCTACGGGNGGCWGCAG3�) (Herlemann et al. 2011) and
reverse S-D-Bact-0515-a-A-19 (5�TTACCGCGGCTGCTGGCAC3�)
(Muyzer, de Waal and Uitterlinden 1993). AAA were targeted
by clade-specific primers 641F (5� ACTGDTAGGCTTGGGACC3�)
and 834R (5�ATGCGGTCGCACCGCACCTG3�) (previously reported
as specific FISH probes) (Schubert et al. 2011). These primers
were tested for their specificity and amplification efficiency.
They resulted in a 193 bp fragment (single band on 1%
agarose gel) with 60◦C as optimal annealing temperature, de-
termined by gradient PCR (55–65◦C) and agarose gel elec-
trophoresis. Cloning and sequencing resulted in sequences as-
signed to AAA (data not shown; Vaksmaa et al., in preparation).
NC10 phylum bacteria were amplified with 16S rRNA primers
p2F DAMO (5�GGGGAACTGCCAGCGTCAAG3�) and p2R DAMO
(5�CTCAGCGACTTCGAGTACAG3�) (Ettwig et al. 2009) resulting in
a 277 bp fragment. All qPCR reactions were performed using
the PerfCTa Quanta master mix (Quanta Biosciences, USA) and
96-well optical plates (Bio-Rad Laboratories, UK) and reactions
were performed using the Bio-Rad IQ 5 cycler (Bio-Rad, USA). Ab-
solute quantificationwas obtained by comparisonwith standard
curves obtained by 10-fold serial dilutions of pGEM-T Easy plas-
mid DNA with an insert of the target gene. Standard curve sam-
ples were used as an internal control at each qPCR run. Calcula-
tions for cell abundances were based on 16S rRNA gene copies
targeted.

Cloning and sequencing

Sequences belonging to the NC10 phylum were amplified with
202F and 1043R primers targeting the 16S rRNA gene (Ettwig
et al. 2009), and AAA sequences were obtained using the specific
forward primers 641F in combination with general archaeal re-
verse primer 915R and general prokaryote primer 1492R (with
product lengths of 297 bp and 864 bp). Two different reverse
primers were used as no specific reverse primer, resulting in a
longer DNA fragment, is available to date. Amplified PCR prod-
ucts (obtained with the same protocol as used for qPCR) were
cloned using the pGEM-T Easy cloning vector (Promega, USA)
and transformed in E. coli XL1 Blue competent cells. Plasmids
were isolated frompositively screened cloneswithGeneJET Plas-
mid Miniprep Kit (Thermo Scientific, The Netherlands) and the
insert was sequenced either at the DNA Diagnostic Center of
Nijmegen University Medical Center (Nijmegen, The Nether-
lands) or at BaseClear BV (Leiden, The Netherlands) using the
M13F primer (5�TTTCCCAGTCACGACGTTG3�). The quality of se-
quences was checked with the Chromas lite 2.01 (Technely-
sium Pty Ltd, Australia) software. All DNA sequences obtained
were aligned against the Silva reference database prior to im-
port into the ARB database of SILVA SSU Ref dataset (release
119; http://www.arb-silva.de). ARB version 5.5 was used for phy-
logenetic comparison. Phylogenetic trees were calculated using
a neighbor-joining algorithm with Jukes–Cantor correction. A
distance matrix was calculated for all sequences. Representa-
tive sequences were deposited at GenBank under the accession
numbers KT189180–KT189183 forM. nitroreducens-like sequences
and KT189184–KT189187 for NC10 sequences.

Soil incubations

Soil samples of bulk soil taken at 10–20 cm depth were used for
incubation assays. Soil slurry was prepared by sieving approx-

imately 1 kg of the wet soil through a 0.2 μm sieve to remove
roots and stones. Thereafter the sieved soil was mixed with the
mineral salt medium as described previously (Ettwig et al. 2008).
Incubations were done in 120 ml serum bottles with 60 ml of
soil slurry, which corresponded to about 14 g dry weight of soil.
Bottles were sealed with red butyl rubber stoppers and crimp-
caps. The headspace was exchanged with Ar/CO2 by five cycles
of vacuuming and gassing and left with 0.5 bar overpressure.
Each treatment was done in triplicate and left untreated as con-
trol without any additions, treated by addition of 10% CH4 v/v, or
treated by addition of 10% CH4 v/v and 5 mM NaNO3 or 2.5 mM
NaNO2 (final concentration). Headspacemeasurements to quan-
tify the CH4 concentration were carried out by gas chromatogra-
phy (Hewlett Packard 5890) and themeasurements of 13CO2 were
carried out by gas chromatography–mass spectrometry (Agilent
6890 and 5975C inert MSD, USA) as described previously (Ettwig
et al. 2009).

RESULTS
Bacterial and archaeal communities in bulk soil
and rhizosphere

The total microbial community of the Vercelli paddy field soil
and rhizosphere compartment was analyzed by amplicon se-
quencing of 16S rRNA gene sequences. The sequencing resulted
in approximately 18 000–784 000 sequences of high quality per
library (see Tables 1 and 2). Archaeal and bacterial community
composition was different between bulk soil and rhizosphere
(Table 1). In the bulk soil, a very large diversity of bacterial phy-
logenetic groups was observed, with most of the reads assigned
to Proteobacteria (32%), followed by Acidobacteria (20%). In the rhi-
zosphere the diversity was lower with almost half (46%) of the
reads belong to Firmicutes followed by Proteobacteria (39%).

Differences between the compartments were also evident
within Proteobacteria at the class level. In the rhizosphere
Gamma- (28%) and Alpha-Proteobacteria (6%) were more repre-
sented, while in the bulk soil the dominant classes comprised
Delta- (15%), Beta- (8%) and Alpha-Proteobacteria (6%). Sequences
related to the methane-oxidizing NC10 phylum made up 0.02%
in the rhizosphere and 0.6% in the bulk soil. A detailed look
at type I (Gamma-Proteobacteria) and type II (Alpha-Proteobacteria)
aerobicmethanotrophs revealed that theymade up less than 1%
of bacterial reads in both compartments.

Verrucomicrobia could be detected in both compartments;
however, sequences related (91% identity) to Methylacidiphilum,
known to carry out aerobic methane oxidation in acidic envi-
ronments, were only found in the soil compartment (0.01%).

The archaea showed a similar trend for diversity as the
bacteria: the bulk soil had a more diverse community than
the rhizosphere. Euryarchaeota were more abundant than Thau-
marcheota in both compartments (86% in rhizosphere and
51% in bulk soil). In the rhizosphere, the Methanobacteri-
aceae (44%) were most abundant, followed by Methanomicrobia
(41%) and the soil Crenarchaeotic group (SCG; 12%). In bulk
soil, Methanomicrobia dominated (44%), followed by the mis-
cellaneous Crenarchaeotic group (MCG; 36%), SCG (10%) and
Methanobacteriaceae (6%).

Methanomicrobia were analyzed further to the level of fami-
lies, showing a clear differentiation in relative abundance in bulk
soil and rhizosphere. The GOM Arc I group, comprising ‘Candi-
datus M. nitroreducens’ made up 21% of Methanomicrobia in the
bulk soil compared with 2% in the rhizosphere (9 and 0.7% of all
archaea respectively) (Fig. 1).
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Table 1. Distribution of sequence reads of the bacterial 16S rRNA gene amplification. Only phyla making up ≥1% of reads in at least one of the
two compartments are shown. Reads were assigned to phylogenetic groups based on the SILVA NGS pipeline (96 990 reads for the rhizosphere
and 783980 reads for the bulk soil). Phyla comprising potential methanotrophs are highlighted in bold. For the Proteobacteria, the individual
abundance of known methanotrophic genera is shown.

Percentage of total reads

Phylogenetic group Root compartment (%) Soil compartment (%)

Acidobacteria 1 20
Actinobacteria 7 9
Bacteroidetes 2 2
Candidate division WS3 0 2
Chloroflexi 3 14
Cyanobacteria 1 0
Firmicutes 46 3
Gemmatimonadetes 0 7
Verrucomicrobia 0.1 2
Nitrospirae 0 3
Planctomycetes 0 3
Proteobacteria 39 32
Alpha- 6 6
Methylosinus 0.2 0.09
Methylocystis 0.04 0.009
Methylocapsa 0.008 0.003

Beta- 2 8
Delta- 2 15
Gamma- 28 2
Methylomicrobium 0.004 0.08
Methylomonas 0.05 0.03
Methylocaldum 0.04 0.01
Methylobacter 0.3 0.05
Methylosarcina 0.02 0.01
Methylococcus 0 0.001
Crenothrix 0 0.0009
Methylosoma 0 0.0004

NC10 phylum 0.02 0.6

Table 2.Distribution of sequence reads of the archaeal 16S rRNA gene
amplification, with the known methanotrophic Methanoperedens ni-
troreducens of the GOM Arc I group (marked in bold). Groups making
up ≥1% of reads in at least one of the two compartments are shown
(18 162 reads for the rhizosphere and 81 078 reads for the bulk soil).
Reads were assigned to phylogenetic groups based on the SILVA NGS
pipeline.

Percentage of total reads

Archaea clade
Rhizosphere

compartment (%)
Bulk soil

compartment (%)

Euryarcheota 86 51
Haloarchaea 0 1
Methanobacteria 44 6
Methanomicrobia 41 44
GOM Arc I 0.7 9

Thermoplasmata 0 1

Thaumarcheota 14 49
MCGa 2 36
SCGb 12 10
Group C3 0 1
SAGMCG-1c 0 1

aMiscellaneous Crenarchaeotic group. bSoil Crenarchaeotic group. cSouth
African gold mine Crenarchaeotic group 1. Figure 1. Distribution of 16S rRNA gene reads belonging to the order of Metha-

nomicrobia in the bulk soil and in the rhizosphere of the Vercelli paddy field.
Values are expressed as percentage of total Methanomicrobial sequences.
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Figure 2. Boxplot of abundance of all archaea, AAA, all bacteria and NC10 phy-
lum bacteria as assessed by quantitative PCR of the 16S rRNA gene in bulk soil
(black boxes) and rhizosphere (gray boxes). The horizontal line represents the
median and the circles mark the 5th and 95th percentiles. The box upper and
lower lines represent the 75th and 25th percentiles respectively. Error bar repre-
sents standard deviation.

Quantification of total bacteria, archaea and subgroups
of known anaerobic methanotrophs

The qPCR results indicated that the total bacterial abundance
was one to two orders of magnitude higher than the archaeal
abundance in both bulk soil and rhizosphere. Among the tar-
geted anaerobic methanotrophs, AAA were present in higher
gene copy numbers than NC10 phylum bacteria (Fig. 2).

In bulk soil, AAA were approximately seven times more
abundant than NC10 phylum bacteria, and in the rhizosphere
even 28 times (Fig. 2). This indicates that in both compartments
known nitrate-dependent AOM archaea outnumbered nitrite-
dependent AOM-mediating bacteria at the 16S rRNA gene level.

Phylogenetic diversity of NC10 phylum bacteria and
AAA (‘Candidatus Methanoperedens nitroreducens’-like
archaea)

In addition to the Ion Torrent sequencing, we cloned and Sanger-
sequenced longer PCR products of the NC10 phylum 16S rRNA
gene for detailed phylogenetic analysis. All obtained sequences
(n = 22) clustered into group B (Ettwig et al. 2009) (Fig. 3). Se-
quenced products of the AAA (n = 9) confirmed the identity
of the obtained sequences to be more than 99% similar to the
AAA from the original Nijmegen enrichment culture (DQ369741,
Raghoebarsing et al. 2006) and ‘Candidatus M. nitroreducens’
(ANME2D RS06450, Haroon et al. 2013) (Fig. 4). Out of all se-
quences obtained, four representatives of each were submitted
to GenBank.

Soil slurry incubations

In order to estimate the rate of nitrate- and nitrite-dependent
anaerobic oxidation of methane (AOM), soil slurries were incu-
bated with and without 13C-labelled methane as control and
with methane in the presence of either nitrite or nitrate. The
concentrations of CH4 and 13CO2 were measured and increase
of atom fraction of 13CO2 was calculated and used as indication
of activity (Fig. 5).

After a lag phase of about a week, linear consumption of CH4

started in the soil slurry samples supplemented with 5 mM ni-

trate. This correlated with production of 13CO2 and a propor-
tional increase of the atom fraction of 13CO2. The average rate of
AOM was 79.9 nmol g−1

dw d−1 in the presence 5 mM nitrate. In
the controls without any additions, added 13CH4 and 13CH4 with
2.5mMnitrite, methane production prevailed over consumption
with 432.3, 357.5 and 185.4 nmol g−1

dw d−1, respectively.

DISCUSSION

Paddy fields are important contributors to the emission of the
greenhouse gas methane. Biogenic methane emission is the re-
sult of a delicate interplay between the presence and activity of
methanogenic producers and methanotrophic consumers. Pre-
vious research into methane sinks in paddy fields has mainly
focused on aerobic Proteobacterialmethanotrophs, demonstrat-
ing that they can oxidize substantial parts of the methane pro-
duced in the anoxic parts of the paddy field soil (Krüger, Frenzel
and Conrad 2001; Krause, Luke and Frenzel 2010; Lee et al. 2014).
In the current study, we investigated the presence and activity
of two recently discovered nitrite- and nitrate-dependent anaer-
obic methanotrophs, NC10 phylum bacteria and archaea of the
AAA clade. We showed that AAA are present in significant num-
bers (up to 107 16S rRNA copies g−1

dw) in bulk soil and rhizo-
sphere in Vercelli paddy fields, and that they were a few orders
of magnitude more abundant than the nitrite-dependent NC10
phylum bacteria.

The paddy field environment provides several distinct niches
for microorganisms, for which the proximity of the roots is an
important determinant modulating oxygen and organic carbon
supply. The rhizosphere has been described as a microbial
hotspot, where process rates are much faster compared with
the bulk soil (Kuzyakov and Blagodatskaya 2015). For the Vercelli
paddy fields, amplicon sequencing indicated a higher diversity
of bacteria and archaea in the bulk soil than in the rhizosphere.
Abundance, however, was not significantly different between
rhizosphere and bulk soil of the paddy field: about 108 and 107

16S rRNA gene copies g−1
dw for bacteria and archaea, respec-

tively. This finding was consistent with previous studies: in
soil and rhizosphere in the range 108–109 bacterial and 106–107

archaeal 16S rRNA gene copies g−1
ww (Lee et al. 2015), and in soil

1010 bacterial and 108–109 archaeal 16S rRNA gene copies g−1
dw

(Ahn et al. 2012). The rhizosphere was dominated by only a few
phyla, demonstrating the community-shaping power of the
roots. The bulk soil microbial community was dominated by
Acidobacteria and Chloroflexi, which were also found in several
other studies as dominant phyla, sometimes together with Pro-
teobacteria (Ahn et al. 2012, 2014; Lee et al. 2015). The rhizosphere,
in contrast, was clearly dominated by one phylum: almost half
of the sequences obtained from the rhizosphere were classified
as Firmicutes. As roots secrete a considerable amount of fer-
mentable poly- and monomeric sugars, the dominance or high
abundance of these fermenting microorganisms in the rhizo-
sphere was to be expected and has been demonstrated also in
previous studies (Aslam et al. 2013; Edwards et al. 2015). Many
Firmicutes release hydrogen and acetate to the environment,
which serve as substrates for methanogens. Consistent with
previous findings (Daebeler, Gansen and Frenzel 2013), we found
that methanogenic archaea in the rhizosphere belonged mostly
to hydrogenotrophic andmethylotrophic groups, whereas in the
bulk soil strictly acetoclastic Methanosarcinales (Methanosaeta)
dominated. Hydrogenotrophic methanogens of the Methanocel-
lales or RC I have been reported to be the key players in var-
ious paddy fields (Conrad and Klose 2006; Erkel et al. 2006;
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Figure 3. Phylogenetic tree of NC10 phylum bacteria 16S rRNA sequences (841 bp). The tree includes clones that were derived from this study (marked bold) together
with a selection of publicly available sequences of environmental samples as well as reference sequence of M. oxyfera (acc. no. FP565575, in group A). This covers the
whole known diversity of NC10 phylum bacteria. The tree was computed using the neighbor-joining algorithmwith Jukes–Cantor correction and a positional variability
filter was applied. Acidobacteria were used as the outgroup.

Figure 4. (A) Phylogenetic overview of methanogenic and methanotrophic archaea based on 16S rRNA gene sequences. The phylogenetic position of the GOM Arc I
archaea is marked in green. (B) Detailed presentation of the GOM Arc I clade. Clones (297 and 864 bp) obtained from paddy field are shown in green in relation to other
putatively methanotrophic archaea. The neighbor-joining phylogenetic tree was calculated using the Jukes–Cantor correction and Methanosarcina as the outgroup.
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archaea is marked in green. (B) Detailed presentation of the GOM Arc I clade. Clones (297 and 864 bp) obtained from paddy field are shown in green in relation to other
putatively methanotrophic archaea. The neighbor-joining phylogenetic tree was calculated using the Jukes–Cantor correction and Methanosarcina as the outgroup.
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Figure 5. Atom fraction of 13CO2 in soil slurries incubated with 10% 13CH4 with
addition of 5 mMNaNO3 or 2.5 mMNaNO2. As controls soil slurry was incubated
with and without 10% 13CH4. Measurements were made in triplicate with error
bar representing standard deviation.

Watanabe, Kimura and Asakawa 2009). Also versatile
representatives of the Methanosarcinales, which may use
both acetoclastic and hydrogenotrophic pathways for methane
production, were four times more abundant in the rhizosphere.

Besides fermentable compounds, roots also secrete O2,
and create microenvironments where oxygen is available si-
multaneously with methane—favorable conditions for aero-
bic methanotrophs. Aerobic Alpha- and Gamma-Proteobacteria
methanotrophs were found to make up 0.66% of bacterial reads
in rhizosphere and 0.28% in bulk soil, which is comparablewith a
Korean rice field study where 0.25–3.27% of bacterial reads were
assigned to methanotrophs (Lee et al. 2015). Besides the Pro-
teobacterial methane oxidizers well-known from paddy fields,
we also found, albeit at low numbers, sequences most closely
related (91% sequence identity) to the methanotrophic clus-
ter within Verrucomicrobia (Methylacidiphilum) in the bulk soil.
Members of this group have been shown to aerobically oxidize
methane; however, they have so far only been found in acidic
environments (Op den Camp et al. 2009; Sharp et al. 2014; van
Teeseling et al. 2014), whereas the Vercelli paddy field soil has
a more neutral pH. Based on 16S rRNA gene sequence compari-
son alone, it cannot be concluded whether these Verrucomicrobia
possess the necessary methanotrophic pathways (Op den Camp
et al. 2009) and contribute to methane oxidation in this paddy
field.

In contrast to the aerobic bacterial methane oxidizers, se-
quences of putative anaerobic bacterial methanotrophs belong-
ing to the NC10 phylum were present only in relatively low copy
numbers. Comparably low numbers have been found previously
in subtropical Chinese paddy soils (Jiaxing): 6.5 × 103 (60–70 cm)
to 7.5 × 104 (30–40 cm) 16S rRNA copies g−1 dry soil (Wang et al.
2012), whereas copy numbers that were orders of magnitude
higher (1.5 × 106 to 4.5 × 106 copies g−1 dry soil) have been ob-
served in another Chinese paddy field (Hu et al. 2014) albeit at
greater depth (60–100 cm). In contrast to the latter study, we only
retrieved 16S rRNA sequences belonging to group B of the NC10

phylum, for which to date no methane oxidation activity has
been documented. Until now, in all enrichment cultures of NC10
phylum bacteria with demonstrated methane oxidizing activity,
only group A was dominant (Ettwig et al. 2009; Hu et al. 2009;
Luesken et al. 2011; Zhu et al. 2012; Hu et al. 2015). It therefore
remains speculative whether other groups of the NC10 phylum
are involved in anaerobic methane oxidation.

Themajor finding of our studywas the detection of a sizeable
population of AAA, archaeal nitrate-reducing methanotrophs
including ‘Candidatus M. nitroreducens’. AAA 16S rRNA gene
copy numbers were two orders of magnitude higher than those
of NC10 phylum bacteria (106–107 vs 104–105 16S rRNA gene
copies g−1

dw), as judged by qPCR. To date, only limited genome
information is available for these organisms: two genomes of
NC10 phylum bacteria are published (Ettwig et al. 2010; Hug et al.
2016) and two AAA genomes are available (Haroon et al. 2013;
Arshad et al. 2015). All of these genomes possess a single 16S
rRNA gene copy indicating a direct link between 16S rRNA copy
numbers and cell abundances.

The factors that determine the outcome of competition be-
tweenNC10 phylumbacteria and AAA are not certain at present,
but are likely to include redox potential and oxygen exposure
(withNC10 bacteria likely beingmore tolerant), aswell as nitrate,
nitrite and methane availability. Low methane concentrations
probably rather favor NC10 bacteria with their high methane
affinity of about 5–10 μM (Ettwig et al. 2008; Winkler et al. 2015),
compared with themillimolar range of methanotrophic archaea
(Nauhaus et al. 2002). In planted and submerged Vercelli paddy
fields, methane fluxes of 5–36 mmol m−2 day−1 were measured
and the porewater methane concentrations ranged over the
planting season between 0.125 and 0.7 mM (measurement for
top 60 mm), being highly variable and dependent on several fac-
tors (Gilbert 1995).

Several previous studies had already found AAA populations
in paddy fields, even in Vercelli soils (Lueders et al. 2001; Con-
rad et al. 2008), but classified them as unidentified mcrA clus-
ters (Xu et al. 2012) or placed them together with methanogens
(Lueders et al. 2001; Conrad et al. 2008; Lee et al. 2015). The mcrA
gene (encoding the α-subunit of methyl-coenzyme M reductase)
is used as a marker gene for methanogens, but is also present in
archaeal methanotrophs (Knittel and Boetius 2009). Its terminal
restriction fragment of 506/507 bp as found in rice paddies stud-
ied by Conrad et al. (2008) and Xu et al. (2012) can be assigned to
the mcrA of the AAA group, with nucleotide sequence identities
>92% to clone A14 of the Dutch enrichment culture (EU495303)
(Ettwig et al. 2008). In the Chinese paddy field investigated by Xu
et al. (2012), it was altogether the second most abundant mcrA
transcript—up to 50% in bulk soil. In a Korean rice field, the GOM
Arc I group, comprising the AAA cluster, was found to increase
in abundance with depth in both rhizosphere and bulk soil (Lee
et al. 2015), with up to 60% of all archaeal sequences in bulk soil
at 40 cm depth. These findings support an important role of AAA
in rice fields. Our study is the first quantitative investigation of
these methanotrophs.

To complement the molecular work, we also assessed the
methanogenic and nitrite- and nitrate-dependent methane oxi-
dation potential. Our soil slurry incubations demonstrated with
andwithout CH4 addition highmethanogenic activity (432.3 and
357.5 nmol g−1

dw d−1, respectively), which is close to previously
reported rates of about 547.2–590.4 nmol g−1

dw d−1 for Vercelli
paddy field (Conrad and Klose 2006). Methane production pre-
vailing over methanotrophic activity in nitrite supplemented
samples might be due to the low abundance of NC10 phylum
bacteria.
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The rate observed for nitrate-supplemented samples (79.9
nmol CH4 g−1

dw d−1) was slightly higher than observed for
sulphate-dependentmethane oxidizing archaea in low-pressure
temperate sediments (1–50 nmol CH4 cm−3 d−1; Knittel and
Boetius 2009), and in very active marine methane seep sedi-
ments (up to 32.9 ± 13.9 nmol g−1

ww d−1) (Girguis et al. 2003). It
clearly exceeded previouslymeasured rates of nitrite-stimulated
AOM in a Chinese paddy field (1.68–2.04 nmol g−1

dw d−1; Hu et al.
2014) by a factor of fifty, indicating that nitrate-dependent AOM
may be an even more important methane sink than previously
considered.

Assuming that the AAA are responsible for the major part
of nitrate-dependent methane oxidation in our study, their
estimated methane oxidizing activity would be on average
1.2 fmol d−1 per 16S rRNA copy in bulk soil, which also is in
the same order of magnitude as quantified for ANME-2 archaea
in marine environments (up to 70 fmol d−1 per 16S rRNA gene
copy, Girguis et al. 2003). Compared with the cell-specific AOM
rate of NC10 phylum bacteria, ranging from only 0.09 to 0.20
fmol d−1 per 16S rRNA gene copy in continuous cultures (Ettwig
et al. 2009), the archaeal rates are slightly higher, whichmay also
be related to their larger cell size.

To summarize, the methane oxidizing potential of the soil
and the high abundance of archaeal methanotrophs observed
with qPCR and amplicon sequencing both support a significant
role of nitrate-dependent AOM in the investigated paddy field
mediated by AAA.
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Söhngen NL. Über Bakterien, welche Methan als Kohlenstoff-
nahrung und Energiequelle gebrauchen. Zentrabl Bakteriol
Parasitenk Infektionskr 1906;15:513–7.

Strous M, Jetten MSM. Anaerobic oxidation of methane and am-
monium. Annu Rev Microbiol 2004;58:99–117.

Takai K, Horikoshi K. Rapid detection and quantification of
members of the archaeal community by quantitative PCR
using fluorogenic probes. Appl Environ Microbiol 2000;66:
5066–72.

Downloaded from https://academic.oup.com/femsec/article-abstract/92/12/fiw181/2570378/Distribution-and-activity-of-the-anaerobic
by Radboud University user
on 14 September 2017



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 41PDF page: 41PDF page: 41PDF page: 41

2

41

Vaksmaa et al. 11

Trotsenko YA, Murrell JC. Metabolic aspects of aerobic obligate
methanotrophy. Adv Appl Microbiol 2008;63:183–229.

van Teeseling MCF, Pol A, Harhangi HR et al. Expanding the ver-
rucomicrobial methanotrophic world: description of three
novel species of Methylacidimicrobium gen. nov. Appl Env-
iron Microbiol 2014;80:6782–91.

Wang Y, Zhu G, Harhangi HR et al. Co-occurrence and dis-
tribution of nitrite-dependent anaerobic ammonium and
methane-oxidizing bacteria in a paddy soil. FEMS Microbiol
Lett 2012;336:79–88.

Watanabe T, KimuraM, Asakawa S. Distinct members of a stable
methanogenic archaeal community transcribe mcrA genes

under flooded and drained conditions in Japanese paddy
field soil. Soil Biol Biochem 2009;41:276–85.

Winkler MK, Ettwig KF, Vannecke TP et al. Modelling simultane-
ous anaerobic methane and ammonium removal in a gran-
ular sludge reactor. Water Res 2015;73:323–31.

Xu Y, Ma K, Huang S et al. Diel cycle of methanogen mcrA
transcripts in rice rhizosphere. Environ Microbiol Rep 2012;4:
655–63.

Zhu B, van Dijk G, Fritz C et al. Anaerobic oxidization of
methane in aminerotrophic peatland: enrichment of nitrite-
dependent methane-oxidizing bacteria. Appl Environ Micro-
biol 2012;78:8657–65.

Downloaded from https://academic.oup.com/femsec/article-abstract/92/12/fiw181/2570378/Distribution-and-activity-of-the-anaerobic
by Radboud University user
on 14 September 2017



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 42PDF page: 42PDF page: 42PDF page: 42



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

3
� McrA primers for detection and quantification of the 

anaerobic archaeal methanotroph 
‘Candidatus Methanoperedens nitroreducens’



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 44PDF page: 44PDF page: 44PDF page: 44

McrA primers for detection and quantification of the anaerobic archaeal methanotroph 
‘Candidatus Methanoperedens nitroreducens’ 

44



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 45PDF page: 45PDF page: 45PDF page: 45

3

45

METHODS AND PROTOCOLS

McrA primers for the detection and quantification
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Abstract The nitrogen and methane cycles are important bio-
geochemica l p roces ses . Recen t ly, ‘Cand ida tus
Methanoperedens nitroreducens,’ archaea that catalyze
nitrate-dependent anaerobic oxidation of methane (AOM),
were enriched, and their genomes were analyzed. Diagnostic
molecular tools for the sensitive detection of ‘Candidatus M.
nitroreducens’ are not yet available. Here, we report the design
of two novel mcrA primer combinations that specifically tar-
get the alpha sub-unit of the methyl-coenzyme M reductase
(mcrA) gene of ‘CandidatusM. nitroreducens’. The first prim-
er pair produces a fragment of 186-bp that can be used to
quantify ‘Candidatus M. nitroreducens’ cells, whereas the
second primer pair yields an 1191-bp amplicon that is with
sufficient length and well suited for more detailed phylogenet-
ic analyses. Six different environmental samples were evalu-
ated with the new qPCR primer pair, and the abundances were
compared with those determined using primers for the 16S
rRNA gene. The qPCR results indicated that the number of
copies of the ‘Candidatus M. nitroreducens’ mcrA gene was
highest in rice field soil, with 5.6 ± 0.8 × 106 copies g−1 wet

weight, whereas Indonesian river sediment had only
4.6 ± 2.7 × 102 copies g−1 wet weight. In addition to freshwa-
ter environments, sequences were also detected in marine sed-
iment of the North Sea, which contained approximately
2.5 ± 0.7 × 104 copies g−1 wet weight. Phylogenetic analysis
revealed that the amplified 1191-bp mcrA gene sequences
from the different environments all clustered together with
available genome sequences of mcrA from known
‘CandidatusM. nitroreducens’ archaea. Taken together, these
results demonstrate the validity and utility of the new primers
for the quantitative and sensitive detection of the mcrA gene
sequences of these important nitrate-dependent AOMarchaea.
Furthermore, the newly obtained mcrA sequences will con-
tribute to greater phylogenetic resolution of ‘Candidatus M.
nitroreducens’ sequences, which have been only poorly cap-
tured by general methanogenic mcrA primers.

Keywords ‘CandidatusMethanoperedens nitroreducens’ .

Anaerobic oxidation ofmethane . ANME .mcrA

Introduction

Methane is an important greenhouse gas (GHG) that contrib-
utes approximately 20% to global warming (Myhre et al.
2013). Since the advent of industrialization, atmospheric con-
centrations of methane have increased by 150%, potentially
further exacerbating climate change (Schwietzke et al. 2016).
Evaluating the contribution of environmental microorganisms
that produce or consume this significant GHG is essential for
understanding methane sources and sinks and developing mit-
igation strategies for methane released into the atmosphere.
Most research on microorganisms involved in the methane cy-
cle has focused on aerobic methanotrophic bacteria that inhabit
oxic environments or archaea that produce methane in anoxic
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zones. However, recent studies have revealed that in the anoxic
layers of soils and sediments, methane is consumed by anaer-
obic methanotrophic bacteria and/or archaea that use alternate
electron acceptors such as nitrite, nitrate, or iron (Egger et al.
2015; Ettwig et al. 2010; Raghoebarsing et al. 2006).

Enrichment cultures inoculated with freshwater sediment
exhibited coupling of the reduction of nitrite to the anaerobic
oxidation of methane (Ettwig et al. 2008; Raghoebarsing et al.
2006). The corresponding nitrite-dependent methanotrophic
bacteria were identified as belonging to the bacterial NC10
phylum and named ‘Candidatus Methylomirabilis oxyfera’
(Ettwig et al. 2010). This microorganism exhibits an intra-
aerobic metabolism in which nitric oxide is hypothesized to
be dismutated to oxygen and nitrogen gas. The oxygen could
subsequently be used by the canonical particulate methane
monooxygenase encoded by pmoCAB.

Archaea that oxidize methane anaerobically were initially
discovered in marine environments, where they carry out
sulfate-dependent anaerobic oxidation of methane (S-AOM).
These anaerobic methane-oxidizing archaea (ANME) have
been estimated to oxidize up to 90% of releasedmethane before
it reaches the atmosphere (Hinrichs and Boetius 2002; Knittel
and Boetius 2009). ANMEs are divided into three lineages,
ANME-1, ANME-2, and ANME-3 (Knittel et al. 2005;
Nauhaus et al. 2005; Stadnitskaia et al. 2005) and are further
divided into sub-clades in some cases. All three lineages have
been detected in marine and freshwater environments.

Recently, the genomes of ANME-2d archaea enriched in
bioreactors fed withmethane, nitrate, and ammonium ormeth-
ane and nitrate were obtained (Arshad et al. 2015; Haroon
et al. 2013). These Euryarchaea, which are capable of cou-
pling nitrate reduction to anaerobic methane oxidation, were
identified as ‘Candidatus Methanoperedens nitroreducens.’
Phylogenetic analysis revealed that these archaea are related
to Methanosarcina in the Methanosarcinales order (Haroon
et al. 2013) and are classified as GOM Arc I in the ribosomal
RNA (rRNA) SILVA database. The GOMArc I consists of the
ANME-2d group as well as the original GOM Arc I group
with sequences from the Gulf of Mexico (Mills et al. 2003).

‘Candidatus M. nitroreducens’ possesses all genes of the
(reverse) methanogenic pathway (Arshad et al. 2015; Haroon
et a l . 2013) . The bes t -charac ter ized enzyme of
methanogenesis and AOM is methyl-coenzyme M reductase
(MCR). In methanogenesis, MCR catalyzes the terminal step
of the pathway, resulting in the release of methane. In the
anaerobic oxidation of methane, MCR functions in a reverse
mode (Hallam et al. 2003, 2004; Krüger et al. 2003), catalyz-
ing the activation of methane (Krüger et al. 2003). The ge-
nomes of two ‘Candidatus M. nitroreducens’ strains have
been assembled and analyzed. In both genome assemblies,
the complete reverse methanogenesis pathway including the
mcrABCDG genes was identified (Arshad et al. 2015; Haroon
et al. 2013), and the genomes contained only a single copy of

the 16S rRNA and the mcrA gene. Furthermore, the enzymes
for nitrate reduction to nitrite and nitrite reduction to ammo-
nium appeared to be encoded by narGH- and nrf-type genes,
respectively (Arshad et al. 2015).

For ‘Candidatus M. oxyfera’ bacteria, specific primers for
both the 16S rRNA gene and the pmoA gene have been de-
signed (Ettwig et al. 2009; Luesken et al. 2011). Analyses of
various environmental samples using these primers have dem-
onstrated that ‘Candidatus M. oxyfera’ is present in peat
lands, lake sediments, wastewater treatment systems, rice
fields, and various other anoxic environments (Deutzmann
and Schink 2011; Hu et al. 2014; Zhou et al. 2014; Zhu
et al. 2012). As nitrate concentrations in freshwater environ-
ments are generally higher than those of nitrite or sulfate,
‘Candidatus M. nitroreducens’ may contribute significantly
to nitrate-dependent AOM in these environments (Vaksmaa
et al. 2016). To detect ‘CandidatusM. nitroreducens’ in envi-
ronmental samples, specific fluorescence in situ hybridization
(FISH) probes have been designed (Schubert et al. 2011). The
development of quantitative detection methods based on the
16S rRNA gene has also been reported (Ding et al. 2015).

Although the 16S rRNA gene is most commonly used for
phylogenetic surveys, themcrA gene is an alternative and more
specific biomarker for the detection of methanogens and
ANMEs in the environment. Although previously published
mcrA primers were designed to mainly target all known
methanogens and ANMEs, most have a strong bias toward
certain methanogens or specific groups of ANMEs (Hales
et al. 1996; Juottonen et al. 2006; Luton et al. 2002; Nunoura
et al. 2008). Available generalmcrA primers are not well suited
to capturingmcrA sequences of ‘CandidatusM. nitroreducens’
in the environment, potentially resulting in underrepresentation
in molecular surveys. Furthermore, differentiating between
phylogenetically closely related methanogens and
methanotrophs is crucial to directly link observed diversity with
the organisms responsible for either methane oxidation or
methane production. In the current study, we developed two
novelmcrA primer pairs that specifically target ‘CandidatusM.
nitroreducens’ for use in quantification and more refined phy-
logenetic analysis. We used these primers to study the distribu-
tion and abundance of ‘Candidatus M. nitroreducens’ in vari-
ous ecosystems. For comparison, we validated the use of 16S
rRNA gene probes designed for FISH analysis as qPCR
primers and compared the results with the diversity and abun-
dance obtained with the novel mcrA primers.

Materials and methods

Environmental samples

Environmental samples were obtained from six different loca-
tions: rice field soils (Vercelli, Italy), sludge from a brewery

1632 Appl Microbiol Biotechnol (2017) 101:1631–1641
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wastewater treatment plant (Lieshout, The Netherlands),
North Sea sediment (The Netherlands), polluted Citarum
River sediment (Indonesia), Jordan River sediment (UT,
USA), and State Channel sediment (UT, USA). In addition
to the environmental samples, an enrichment culture (AOM
enrichment Vercelli) of ‘Candidatus M. nitroreducens’ was
used as a sample for primer validation (Vaksmaa et al in prep-
aration). The samples were stored at −20 °C prior to DNA
extraction. Detailed information on the geographic locations
is presented in Table S1.

Primer design, DNA extraction, and PCR amplification

For primer design, 20,000 high-quality mcrA sequences de-
posited in the NCBI GenBank database (Benson et al. 2013)
were downloaded and aligned, and the lengths of these se-
quences were inspected. From the alignment of 20,000 mcrA
sequences, 45 available full-length mcrA sequences (two be-
longing to ‘Candidatus Methanoperedens nitroreducens’)
were used for primer design using the probe design tool im-
plemented in ARB (Ludwig et al. 2004). The designed mcrA
primer set McrA159F/McrA345R amplifies a 186-bp frag-
ment and has a predicted annealing temperature of 62 °C.
The McrA169F/McrA1360R primer pair yields a 1191-bp
fragment. Detailed information on the mcrA primers and 16S
rRNA primers used in this study is provided in Table 1.
Commonly used general mcrA gene primers were in silico
evaluated for their abi l i ty to target ‘Candidatus
Methanoperedens nitroreducens,’ and the number of mis-
matches is brought out in Table 2. For comparison, the 16S
rRNA gene of ‘Candidatus Methanoperedens nitroreducens’
was targeted with the clade-specific primers AAA641F and
AAA834R (previously reported as FISH probes) (Schubert
et al. 2011). These primers amplify a 212-bp fragment with
an optimal annealing temperature of 60 °C. DNAwas extract-
ed from all samples with the PowerSoil® DNA Isolation Kit.
First, 0.1–0.35 g of soil was weighed into the 2-ml tubes

provided with the kit, which contained buffer and beads.
The following steps were performed according to the manu-
facturer’s protocol (MO BIO Laboratories Inc., Carlsbad,
USA). DNA quantity was assessed using a microspectropho-
tometer (NanoDrop, ND-1000, Isogen Life Science,
The Netherlands). All PCR reactions were performed using
PerfeCTa Quanta master mix (Quanta Biosciences,
Gaithersburg, USA) with the following composition: 1 μl
each of 20 μM of the forward and reverse primers, 12.5 μl
of PCR master mix and 9.5 μl of Milli-Q water. The PCR
temperature gradient program was 96 °C for 5 min, followed
by 45 cycles of 96 °C for 30 s, gradient (55–68 °C) for 45 s,
and 72 °C for 45 s and a final extension at 72 °C for 10 min.

Cloning, sequencing, and phylogenetic analysis

The sizes of the PCR products obtained with the McrA159F/
McrA345R, McrA169F/McrA1360R, or AAA641F/
AAA834R primer pairs were evaluated by gel electrophoresis
on 1% agarose gels. The fragments were purified using the
GeneJET PCR purification kit according to the manufacturer’s
protocol (Thermo Scientific, Landsmeer, The Netherlands).
The amplified PCR products were cloned using the pGEM-
T Easy cloning vector (Promega, USA) and used to transform
E. coli XL1 Blue competent cells. The cells were plated on
Luria-Bertani (LB) agar plates containing 20 μl of 100 mg/ml
ampicillin, 35 μl of 2% X-Gal, and 35 μl of 100 mM IPTG.
The plates were incubated at 37 °C overnight. Colony PCR
was performed by direct PCR using the M13F and M13R
primers. The PCR program consisted of initialization at
96 °C for 10 min, followed by 40 cycles of amplification at
96 °C for 45 s, 57 °C for 30 s, and 72 °C for 30 s and a final
elongation step at 72 °C for 5 min. The colonies resulting in
amplification of a fragment of the correct size were grown in
5 ml of LB medium overnight at 37 °C prior to plasmid iso-
lation with a GeneJET Plasmid Miniprep Kit (Thermo
Scientific, The Netherlands). The inserts were sequenced at

Table 1 List of PCR and qPCR
primers used for mcrA and 16S
rRNA gene amplification

Primer name Sequence 5′–3’ Nr of
bases

Primer binding
site 5′ to 3′

Tm (°C) GC (%) Product
size (bp)

McrA159F AAAGTGCGGAGCAG
CAATCACC

22 159–181 66.5 55 186

McrA345R TCGTCCCATTCCTGCTG
CATTGC

23 322–345 71 57

McrA169F GCA GCA ATC ACC AAG
AAG AGA GG

23 169–192 59.9 52 1191

McrA1360R TGCCTCTTTGTGGA
GGTACATGGA

24 1336–1360 65.6 50

16S rRNA
AAA641F

ACTGDTAGGCTTG
GGACC

17 576–593 51.4 59 193

16S rRNA
AAA834R

ATGCGGTCGCACCG
CACCTG

20 768–788 72.6 70

Primer binding site refers to the nucleotide position at the mcrA gene of ‘CandidatusM. nitroreducens’

Appl Microbiol Biotechnol (2017) 101:1631–1641 1633
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BaseClear B.V. (Leiden, Netherlands) or Macrogen
(Amsterdam, Netherlands). For short fragments, theMF prim-
er (5′TTTCCCAGTCACGACGTTG′3) was used, and to re-
trieve longer fragments, sequencing was also performed with
the MR primer (5′GGATAACAATTTCACACAGG′3). The
quality of the sequences was assessed with the Chromas Lite
2.01 (Technelysium Pty Ltd., Australia) software. All DNA
sequences were imported into the mcrA ARB database. ARB
version 5.5 was used for phylogenetic comparison (Ludwig
et al. 2004). Phylogenetic trees based on the DNA sequences
were calculated using the neighbor-joining algorithm with the
Jukes-Cantor correction. Sequences were further analyzed by
BLASTn and BLASTx at NCBI (Altschul et al. 1990).

Quantification by qPCR

The mcrA and 16S rRNA gene copy numbers in the environ-
mental samples were quantified with the primer set
McrA159F/McrA345R and the 16S rRNA gene primers
AAA641F/AAA834R. All qPCR reactions were performed
using PerfeCTa Quanta master mix (Quanta Biosciences,
Gaithersburg, USA) and 96-well optical plates (Bio-Rad
Laboratories, Hercules, England). Each reaction was per-
formed in triplicate on duplicate DNA extractions. All reac-
tions were performed using the Bio-Rad IQ™ 5 cycler
(Biorad, USA). Negative controls were added to each plate
by replacing the sample volume with autoclaved Milli-Q wa-
ter. Standard curves were constructed by tenfold serial dilution
of a known copy number of the pGEM-T easy plasmid with
inserted DNA of the target gene.

In silico evaluation of 16S rRNA primers

The specificity and intra-group coverage of the 16S rRNA
gene primers DP397F/DP569R (Ding et al. 2015) and the
primers AAA641F/AAA834R, which target ‘Candidatus M.
nitroreducens,’ were evaluated. The comparison was carried
out in ARB (Ludwig et al. 2004) using the GOM Arc I group
as a representative group for ‘Candidatus M. nitroreducens’
and related sequences. The specificity and intra-group cover-
age of both primer sets were evaluated using the non-
redundant version of the SILVA SSU Ref dataset (release
119; (Quast et al. 2013)), which contains 535,004 high-
quality 16S rRNA gene sequences, of which 109 belong to
GOM Arc I.

Nucleotide sequence accession numbers

Representative sequences were deposited at GenBank under
the accession numbers KX290067–KX290105 for mcrA se-
quences amplified with the McrA159F/McrA345R primers
and under the accession numbers KX290017–KX290044 for
mcrA sequences obtained with the primers McrA169F/

McrA1360R. The 16S rRNA gene sequences were deposited
under accession numbers KX290045–KX290065.

Results

Specificity of the novel mcrA primers for qPCR

To design an mcrA primer set specific for ‘Candidatus M.
nitroreducens,’ available full-length mcrA sequences (45 se-
quences) covering the diversity of known methanotrophs and
methanogens were aligned and used for primer design.
Representative sequences and the primer-binding positions
are depicted in Fig. 1. Two sites at an appropriate distance
for qPCR amplification (at nucleotide positions 159–181 and
322–345, respectively) were conserved between the two
‘Candidatus M. nitroreducens’ sequences but were different
in all other archaeal mcrA sequences. The resulting
McrA159F/McrA345R primer pair amplifies a fragment of
186 bp, suitable for qPCR. The forward primer McrA159F
possesses four mismatches with the mcrA sequence of the
closest methanogen,Methanobacterium alcaliphilum. The re-
verse primer McrA345R possesses three mismatches with the
mcrA sequences of the methanogens Methanothermobacter
wolfeii and Methanohalophilus halophilus. The optimal an-
nealing temperature of 62 °C was determined by gradient
PCR using DNA extracted from rice field soil. All 40 PCR
products amplified from DNA from the environmental sam-
ples and the enrichment culture were cloned and sequenced
and corresponded to the expected part of the mcrA gene. The
sequencing resulted in five to seven clone sequences per each
environmental sample. All of the sequences had very high
similarity to the mcrA gene of the two described
‘CandidatusM. nitroreducens’ strains (91–100% at the nucle-
otide level and 97–100% at the amino acid level (Table S2)).

qPCR quantification of ‘Candidatus Methanoperedens
nitroreducens’ mcrA and 16S rRNA gene copies
in environmental samples

The newly designed mcrA primers McrA159F/McrA345R
were used with DNA extracted from six environmental sam-
ples. In addition, the results were compared with the copy
numbers obtained with the primers AAA641F/AAA834R
targeting the 16S rRNA gene of ‘Candidatus M.
nitroreducens.’

Two 16S rRNA primer sets, the primer pairs DP397F/
DP569R (Ding et al. 2015) and AAA641F/AAA834R,
have been proposed to ta rge t ‘Candida tus M.
nitroreducens’ and the GOM Arc I group, respectively.
Here, we analyzed the applicability of these primer sets
in silico as specific qPCR primers to target the GOM Arc
I group. The intra-group coverage and the number of out-
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group targets with one to three allowed mismatches are
presented in Table 3. The primer pair AAA641F/
AAA834R exhibited higher intra-group coverage (65–
84%) than the DP397F/DP569R primers, which covered
less than 60% of the GOM Arc I sequences at zero mis-
match. Thus, we experimentally tested the AAA641F/
AAA834R primers using DNA from the environmental
samples and the enrichment culture and sequenced the
PCR products. Twenty-one of the resultant clone

sequences were highly similar to the 16S rRNA gene se-
quences of the two descr ibed ‘Candidatus M.
nitroreducens’ strains, whereas two clone sequences did
not correspond to ‘Candidatus M. nitroreducens’
(Table S3).

In the qPCR analysis, the highest ‘Candidatus M.
nitroreducens’ copy numbers were obtained in rice field soil,
with an average mcrA gene copy number of 5.6 ± 0.8 × 106

copies g−1 wet weight and an average 16S rRNA gene

Table 2 Overview of mcrA primers commonly used to amplify methanogenic and methanotrophic communities

Author Primer name Nr of bp Binding position Primer sequence 5′–3′ Mismatches

Luton et al. (2002) ML-F 32 1021–1053 GGTGGTGTMGGATTCACACARTA
YGCWACAGC

6

ML-R 23 1468–1491 TTCATTGCRTAGTTWGGRTAGTT 3

Springer (1995) McrAF 17 988–1005 TAYGAYCARATHTGGYT 5

McrAR 17 1477–1491 ACRTTCATNGCRTARTT 4

Hales et al. (1996) ME1F 20 727–747 GCMATGCARATHGGWATGTC 6

ME2R 21 1469–1490 TCATKGCRTAGTTDGGRTAGT 4

ME3F 20 1036–1056 GGTGGHGTMGGWTTCACACA 5

Nunoura et al. (2006) Type c–d ANME-2 24 984–1008 GCTCTACGACCAGATMTGGCTTGG 3

25 1058–1083 CCGTAGTACGTGAAGTCATCCAGCA 9

Nunoura et al. (2006) Type e 25 1220–1245 CHCTGGAAGATCACTTCGGTGGTTC 5

24 1363–1387 RTATCCGAAGAARCCSAGTCKRCC 5

Nunoura et al. (2006) Type a-b ANME-1 20 1000–1020 TGGTTCGGAACGTACATGTC 4

20 1562–1582 TCTYYTCCAGRATGTCCATG 6

Nunoura et al. (2008) ME3MF 23 1015–1038 ATGTCNGGTGGHGTMGGSTTYAC 5

ME3MF-3 23 1015–1038 ATGAGCGGTGGTGTCGGTTTCAC 6

Present study McrA 159F 22 159–181 AAAGTGCGGAGCAGCAATCACC 0

Present study McrA 345R 23 322–345 TCGTCCCATTCCTGCTGCATTGC 0

The number of mismatches to the ‘CandidatusM. nitroreducens’ mcrA sequences is indicated

JMIY01000002.1 Methanoperedens nitroreducens GATGACAAAGTGCGGAGCAGCAATCACCAAGAAG AATGCTGCAATGCAGCAGGAATGGGACGATATAAG
LKCM01000102.1 Candidatus Methanoperedens DS-2015 GATGGCAAAGTGCGGAGCAGCAATCACCAAGAAG AATGCAGCAATGCAGCAGGAATGGGACGACATCAG
CP002565.1 Methanosaeta concilii GTTCATGGAGTACGCCAAGAAGCTCGAGGGCAAG AATCCAGCCATGCAGCAGTTCTGGGATGATATCAG
CP000477.1 Methanosaeta thermophila GTTCATGGAGTACTCCAAGAAGCTGGAGGGGAAG AACCCTGCGATGCAGCAGATGTGGGACGATATTCG
CP009526.1 Methanosarcina barkeri AATGATTAAAGCCGGTAAGGAAATTGCTGAGAAG AACGCTGCAATGCAGCAGATGTGGGATGACATCAG
AE010299.1 Methanosarcina acetivorans AATGATTAAGGCCGGGAAAGAAATCGCAGAGAAG AACGCTGCAATGCAGCAGATGTGGGATGACATCAG
CP009512.1 Methanosarcina mazei AATGATCAAAGCCGGAAAGGAAATCGCAGAGAAG AACGCTGCAATGCAGCAGATGTGGGATGACATCAG
CP003362.1 Methanomethylovorans hollandica AATGAAGAAGGCAGGTCAGGAGCTCGCCAAGAAG AACGCTGCAATGCAGCAGATGTGGGATGACATCAG
CP000300.1 Methanococcoides burtonii AATGAGGAAGGCAGGCCAGGAAATAGCTGACAAG AACGCTGCAATGCAGCAGATGTGGGATGACATCAG
AM114193.2 Methanocella arvoryzae GTTCAAGAAGACCGGCGACGCAATCGCGAAGAAG AACGCTGCAATGCAGCAGTTCTGGGATGAGATCCG
CP000780.1 Candidatus Methanoregula boonei GTTCTTAAAAGAAGGCCAGAAAGTCGCTCTGGAC AACGCTGCCATGCAGCAGATGTGGGACGACATCCG
CP000254.1 Methanospirillum hungatei GTTCATGGAGGCATCCAAGAAGGTAGAACTTCGC AACCCGGCAATGCAGCAGATGTGGGATGATATCCG
CP000559.1 Methanocorpusculum labreanum GTTCATGGCCGAGAACAAAAAGATCGAAGCTGCA AATGCTGCCATGCAGCAGATGTGGGATGATATCCG
HE964772.2 Methanoculleus bourgensis GTTCATGAAGGCGAGCCGTGCCATCGAGATGGAC AACGCTGCCATGCAGCAGTTCTGGGACGATATCAG
CP000562.1 Methanoculleus marisnigri GTTCATGAAGGCAAGCCGCGCCGTCGAGATGGAC AACTCTGCAATGCAGCAGATGTGGGATGACATCAG
CP000678.1 Methanobrevibacter smithii GTTTAATGATGCTGCAGAAAA------ATTAG-- AATGCAGCTATTCAACAATTGGTTGACGATATTAA
CP000102.1 Methanosphaera stadtmanae ATTTGCTGAAGAAGCTG---AAAAAGCTGTAG-- AACTCTGCAATTCAACAATTAGTAGACGATATTAA
CP002737.1 Methanotorris igneus ATTCGTTGAAGCAGCAG---AAAAATTACTTG-- AACGCTGCAATGCAACAAATGTGGGATGACATTAG
CP001696.1 Methanocaldococcus fervens ATTCGTTGAAGTTGCTC---AAAAATTGATTG-- AACGCTGCAATGCAGCAATTCTGGGATGACATAAG
DQ516909.1 Methanocaldococcus jannaschii ATTCGTTGAGGCAGCAC---AAAAATTAATTG-- AACGCTGCAATGCAGCAGTTCTGGGATGACATAAG
CP000743.1 Methanococcus aeolicus ATTTGTTGAAGCAGCAA---AGGATATCGCTG-- AATGCTGCTATTCAACAATTGCACGATGACATTAG
CP002057.1 Methanococcus voltae ATTCTTTGCAGAAAACGAAAGAATTGTTGCTG-- AACGCTGCAATCCAGCAATTATGGGACGATATCAG
CP000742.1 Methanococcus vannielii ATTTGTTGCAGCTAACGAAAAAGTTTTAGCTG-- AACGCTGCTATCCAACAGTTATGGGACGATATCAG
CP000745.1 Methanococcus maripaludis ATTCGTTGAAGCTAATGAAAAAATATTAGCTG-- AACGCTGCTATCCAACAGTTATGGGACGATATCAG
CP001710.1 Methanothermobacter marburgensis ATTCACAGAGTACGCCA---AGAAGGCAGCAG-- AACGCAGCCATCCAGCAGATGGTGGACGACATAAA
AE000666.1 Methanothermobacter thermautotrophicus GTTTGTGAACGCT---G---GTAAAGAAGTGG-- AACGCTGCCATGCAGCAGATGTGGGACGACATAAG
CP004049.1 Candidatus Methanomethylophilus alvus GTTCCAGAAAGAAGCCATGGAGATCGCGAAAAAG AACCCTGCCATCCAGCAGGCTTGGGACGACATCAG
AE009439.1 Methanopyrus kandleri CAAGGAGTGGGCTGACAAGATCGTCGAGGAGCGT AACGCCGCGATGCAGCAGATGTGGGACGACATCCG

153 187 316 351

Fig. 1 Excerpt of the full-length sequence alignment of themcrA genes of anaerobic methanotrophs and methanogens. The binding sites and conserved
positions of the McrA159F forward and McrA345R reverse primers are indicated in 2
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abundance of 1.3 ± 0.3 × 108 copies g−1 wet weight. Rice field
soil was followed by river sediment (State Channel, USA;
4.4 ± 4.4 × 105 mcrA gene copies g−1 wet weight and
1.8 ± 0.6 × 107 16S rRNA gene copies g−1 wet weight),
wastewater treatment plant sludge (1.2 ± 0.8 × 105 mcrA gene
copies g−1 wet weight and 6.7 ± 2.2 × 107 16S rRNA gene
copies g−1 wet weight), Indonesian river sediment
(3.0 ± 0.7 × 104 mcrA gene copies g−1 wet weight and
4.2 ± 2.2 × 106 16S rRNA gene copies g−1 wet weight), and
North Sea sediment (2.5 ± 0.7 × 104mcrA gene copies g−1 wet
weight and 4.5 ± 0.3 × 106 16S rRNA gene copies g−1 wet
weight). The lowest abundance was recorded in the sediment
of the Jordan River (UT, USA), where qPCR did not result in
any 16S rRNA gene amplification and only 4.6 ± 2.7 × 102

copies of themcrA gene g−1 wet weight were detected (Fig. 2).

Phylogenetic analysis

In addition to the qPCR primers McrA159F/McrA345R, a
second primer set was designed to amplify longer mcrA frag-
ments. Conserved regions were identified at nucleotide posi-
tions 169–192 and 1336–1360. The resulting primer set,
McrA169F/McrA1360R, amplifies a fragment of 1191 bp,
suitable for detailed phylogenetic analysis. The primers were
again tested using DNA extracted from the environmental
samples and the enrichment culture as described in the
BMaterials and methods^ section. Amplification resulted in a
single band of the expected size, and sequence analysis indi-
cated that all 40 sequences were highly similar to ‘Candidatus
M. nitroreducens.’ The phylogenetic positions of these clones
are depicted in Fig. 3. Clustering of sequences from the same
environment was not observed, although all sequences clus-
tered more closely with ‘Candidatus Methanoperedens sp.
DS-2015’ than ‘Candidatus Methanoperedens nitroreducens
ANME-2d.’On average, the sequences exhibited higher iden-
tity to ‘Candidatus Methanoperedens sp. DS-2015’ (87–99%
nucleotide sequence identity) than to ‘Candidatus
Methanoperedens nitroreducens ANME-2d’ (85–90% nucle-
otide sequence identity). The sequence identities of all clones
to the two described strains are provided in Table S4.

Discussion

In this study, we developed specific and sensitive molecular
detection tools to target nitrate-dependent anaerobic
methanotrophic ‘CandidatusM. nitroreducens’ archaea. We de-
signed two novel PCR primer sets for the mcrA gene of
‘CandidatusM. nitroreducens,’ thus providing a straightforward
detection and quantificationmethod. The primer set McrA159F/
McrA345R results in the amplification of a 186-bp fragment and
is suitable for quantification ofmcrA gene copies by qPCR. The
other primer set, McrA169F/McrA1360R, results in the ampli-
fication of a 1191-bp fragment that can be used in more accurate
and detailed phylogenetic analyses.

The genomes of known ‘Candidatus M. nitroreducens’
strains possess only a single copy of the 16S rRNA gene and
the mcrA gene, although copy numbers might differ for non-
cultivated species. However, the copy numbers in the environ-
mental samples obtained with the 16S rRNA gene primers were
approximately two orders of magnitude higher than the copy
numbers obtained with the mcrA primers. The newly designed
mcrA primers are highly specific, whereas the 16S rRNA gene
primers used in this study have the potential to amplify se-
quences from the whole GOM Arc I clade, possibly capturing
a larger diversity of sequences that are less related to ‘Candidatus
M. nitroreducens’. The target specificity was reflected in the
sequence diversity: the sequenced PCR products obtained with
the qPCR primer combination McrA159F/McrA345R all
corresponded to the ‘Candidatus M. nitroreducens’ mcrA gene
(97–100% identity at the amino acid level), whereas the se-
quenced PCR products of the 16S rRNA gene also included
sequences (9%) that could be identified as closely related
methanogens. This difference in specificity further suggests that
the results obtained with these 16S rRNA gene PCR primers
may overestimate the copy numbers of ‘Candidatus M.
nitroreducens’ in the environment. Overall, the mcrA primers
weremore specific, and qPCRquantification ofmcrA copy num-
bers may more accurately reflect the number of ‘CandidatusM.
nitroreducens’ cells in a specific environment.

Among the different environments, ‘Candidatus M.
nitroreducens’ was most abundant in rice field soil, followed

Table 3 The specificity and
fidelity of previously described
16S rRNA gene primers for the
total GOM Arc I group

Intra-group coverage of GOM Arc I (%) Hits in non-GOM Arc I

Mismatches Mismatches

0 1 2 3+ 0 1 2 3+

DP397F 23 64 79 85 3 8 249 2221

DP569R 59 83 84 85 1 44 343 1737

AAA641F 71 89 92 92 21 616 3184 9751

AAA834R 65 78 80 84 7 7 26 76

The intra-group coverage and the number of non-target hits are shown with up to three mismatches. The highest
intra-group coverage and the lowest number of out-group targets per primer are marked in italics
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by wastewater treatment plant sludge. The lowest copy num-
bers were obtained in the investigated river sediments (Fig. 2).
In a previous study (Ding et al. 2015), 16S rRNAgene primers
were designed to quantify ‘Candidatus Methanoperedens
nitroreducens’ in two lake sediments, a river sediment, and a
rice field soil sample. In that study, the total abundance of 16S
rRNA gene copy numbers in rice field soil was one to two
orders of magnitude lower than that obtained in the present
study (3.72 × 104 to 2.30 × 105 copies μg−1 DNA versus
1.7 ± 0.4 × 106 copies μg−1 DNA in this study). This variation
may be due to differences in the environmental samples used;
in addition, the 16S rRNA gene primers used in that study
may have been more species-specific. Importantly, the rela-
tively high gene copy numbers obtained in both studies sug-
gest that these anaerobic methanotrophic archaea play a sig-
nificant role in mediating nitrate-dependent AOM in rice
fields and contribute to mitigating methane emissions to the
atmosphere.

For accurate phylogenetic analysis, only a few ‘Candidatus
M. nitroreducens’ mcrA gene sequences with lengths greater
than 500 bp are available in public databases. These sequences
were derived from deep groundwater (Nyyssonen et al. 2012),
paddy fields (Bao et al. 2014), river sediments (Jiang et al.
2011), and lake sediments (GenBank accession number
JQ080004, unpublished). All of these sequences were re-
trieved with the general mcrA primer pair ME1F/ME2R,
which yields a sequence length of 763 bp (Hales et al.
1996). These primers have a high number of mismatches with
the two available full-length ‘Candidatus M. nitroreducens’
mcrA sequences: six mismatches in the forward primer and
five in the reverse primer. Thus, the presence of these micro-
organisms and their diversity in environmental studies may be
underestimated because presently used primers simply do not
capture them. These archaea have been assumed to be fresh-
water microorganisms, and thus, it is even more remarkable
that we amplified both 16S rRNA and mcrA gene sequences
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Fig. 2 Boxplot depicting the abundance of ‘Candidatus M.
nitroreducens’ in environmental samples as assessed by quantitative
PCR of the 16S rRNA gene and mcrA gene. For each sample, six
independent qPCR reactions of two DNA samples were performed. The
environmental samples originated from rice field soil (RF), wastewater
treatment plant sludge (BS), North Sea sediment (NS), State Channel

sediment (SC), Indonesian river sediment (IR), and Jordan River
sediment (JR). The horizontal line within each box represents the
median, and the error bars represent the standard deviation. The upper
and lower in each box lines represent the 75 and 25 percentiles,
respectively. For the Jordan River sediment, no amplification was
detected with Methanoperedens-specific 16S rRNA gene primers
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of ‘CandidatusM. nitroreducens’ frommarine North Sea sed-
iment. The NCBI database contains only a few sequence en-
tries frommarine samples, e.g., accession number HM746653
(unpublished) and accession number GU182109 (Lever et al.
2013), which were detected in the sediment of the Gulf of
Mexico and Juan de Fuca Ridge Flank basalt seafloor sedi-
ment, respectively. The sequences have 92 and 90% identity at
the nucleotide level to the mcrA gene of ‘Candidatus M.
nitroreducens’ (LKCM01000102.1), respectively. For com-
parison, the nitrite-dependent AOM bacterium ‘Candidatus
M. oxyfera’ was reported in a recent study of the Eastern
South Pacific oxygen minimum zone off Chile (Padilla et al.
2016). ‘Candidatus M. oxyfera’ had previously been solely

linked to freshwater environments. However, it seems that
both nitrite-dependent bacteria and nitrate-dependent archaea
also have niches in marine ecosystems, and their roles in these
environments remain to be elucidated.

In contrast to universal mcrA primers, universal 16S rRNA
gene primers have successfully captured ‘Candidatus M.
nitroreducens’ sequences with high identity to ‘Candidatus
M. nitroreducens’ in several environments such as
minerotrophic fens (Cadillo-Quiroz et al. 2008), river sedi-
ments (Li et al. 2012; Rastogi et al. 2009), lake sediments
(Kadnikov et al. 2012; Schubert et al. 2011; Stein et al.
2001), contaminated soils (Kasai et al. 2005), groundwater
(Flynn et al. 2013), mud volcanoes (Wrede et al. 2012), and
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Fig. 3 a Phylogenetic overview of methanogenic and anaerobic
methanotrophic archaea based on mcrA gene sequences. The
phylogenetic position of GOM Arc I archaea is marked in pink. b
Phylogenetic tree of ‘Candidatus M. nitroreducens’ mcrA clone
sequences (n = 28, 1191 bp). The tree includes the clones derived from
this study as well as reference sequences of ‘ Candidatus

Methanoperedens nitroreducens ANME-2d’ (GenBank accession
number JMY01000002.1) and ‘Candidatus Methanoperedens sp. DS-
2015’ (GenBank accession number LKCM01000080.1). The tree was
computed using the neighbor-joining algorithm with the Jukes-Cantor
correction (Color figure online)
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Antarctic cold seeps (Niemann et al. 2009), among other envi-
ronments. Based on 109 sequences of the GOMArc I group in
ARB, the phylogenetic trees not only show that the sequences
of this phylogenetic group form a distinct cluster but also indi-
cate that their diversity can be further divided into sub-branches
within the cluster (Welte et al. 2016). This diversity is partially
correlated with the environments from which the sequences
were retrieved. Due to the lack of suitable primers, there are
insufficiently high-quality mcrA sequences available to per-
form a similar analysis. This study added 28 long
‘Candidatus M. nitroreducens’ sequences (1191 bp) suitable
for high-resolution phylogenetic analysis (Fig. 3). Additional
sequences are needed to confirm the splitting of themcrA gene
diversity of ‘Candidatus M. nitroreducens’ into sub-branches.
Furthermore, additional mcrA gene sequences will permit an
investigation of the possible link between the phylogeny and
distribution of ‘Candidatus M. nitroreducens’ in nature.

In this study, we designed two novel primer sets
targeting the mcrA gene of the anaerobic methanotroph
‘Candidatus M. nitroreducens’: one set suitable for quan-
tification and the other for detailed phylogeny. These mo-
lecular tools will enable the quantification and classifica-
tion of these recently discovered anaerobic microorgan-
isms in nature and, in turn, facilitate the further elucida-
tion of the role of this important group of archaea in
global nitrogen and methane cycling.
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Abstract

Paddy fields are important ecosystems, as rice is the primary food source for about half of 

the world’s population. Paddy fields are impacted by nitrogen fertilization and are a major 

anthropogenic source of methane. Microbial diversity and methane metabolism were 

investigated in the upper 60cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing and 

anoxic 13C-CH4 turnover with a suite of electron acceptors. The bacterial community consisted 

mainly of Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes and Actinobacteria. 

Among archaea, Euryarchaeota and Bathyarchaeota dominated over Thaumarchaeota in the 

upper 30cm of the soil. Bathyarchaeota constituted up to 45% of the total archaeal reads in 

the top 5cm. In the methanogenic community, Methanosaeta were generally more abundant 

than the versatile Methanosarcina. The measured maximum methane production rate was 

444 nmol gdwh-1, and the maximum rates of nitrate-, nitrite- and iron-dependent anaerobic 

oxidation of methane (AOM) were 57 nmol, 55 nmol and 56 nmol gdwh-1, respectively, at different 

depths. qPCR revealed a higher abundance of ‘Candidatus Methanoperedens nitroreducens’ 

than methanotrophic NC10 phylum bacteria at all depths, except at 60cm. These results 

demonstrate that there is substantial potential for anaerobic oxidation of methane in fertilized 

paddy fields, with ‘Candidatus Methanoperedens nitroreducens’ archaea as a potential 

important contributor.
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Introduction

Methane, a significant greenhouse gas, has up to 34 times the global warming potential over 

100 years compared to carbon dioxide (Myhre et al., 2013). Paddy fields contribute substantially 

to atmospheric methane concentrations and release 25-300 Tg of CH4 per annum (Bridgham 

et al., 2013), representing 10-20 % of global methane emissions (Conrad, 2009;Bodelier, 2011). 

In the next decades, the land area designated for rice cultivation is predicted to increase even 

further. Without mitigation measures, this will result in elevated methane emission to the 

atmosphere. 

The microbial community structure of paddy fields is influenced by several environmental 

and anthropogenic factors. Alteration in microbial community composition in paddy fields 

have been studied  wih respect to flooding (Rui et al., 2009), fertilization and straw application 

(Bao et al., 2016), temperature (Conrad et al., 2009;Noll et al., 2010), rice cultivar and soil type 

(Conrad et al., 2008) and plant growth stage (Breidenbach and Conrad, 2015). Paddy fields 

provide a habitat for both aerobic and anaerobic methanotrophs. Aerobic methanotrophs are 

found in the oxic layers of the soil and in oxic microhabitats of the rhizosphere. Methanogenic 

archaea, anaerobic methanotrophic archaea and/or bacteria thrive preferentially in the anoxic 

compartments of the waterlogged soil. The flux of methane to the atmosphere is the net result 

of production and consumption by methanogenic and methanotrophic microorganisms. 

Since the discovery of “Bacillus methanicus” (Söhngen, 1906), aerobic methane-oxidizing 

bacteria (MOB) have been extensively studied. MOB were long considered the only microbes 

capable of oxidizing methane. Currently, MOB belong to the phyla Proteobacteria and 

Verrucomicrobia (Op den Camp et al., 2009;Semrau et al., 2010). Proteobacterial aerobic 

methanotrophs inhabit a wide variety of environments, ranging from tundra soil (Dedysh et al., 

2004) and arctic permafrost (Liebner et al., 2009) to sewage treatment sludge (Ho et al., 2013). 

Phylogenetic analyses of both 16S rRNA and the particulate methane mono-oxygenase subunit A 

(pmoA) gene have classified Proteobacteria into Gammaproteobacteria (Type I methanotrophs) 

and Alphaproteobacteria  (Type II methanotrophs) (Trotsenko and Murrell, 2008;Semrau 

et al., 2010). Type I methanotrophs belong to the genera Methylosarcina, Methylobacter, 

Methylomonas, Methylomicrobium, Methylosoma, Methylosphera and Methylovulum (Type Ia) 

and Methylococcus, Methylocaldum, Methylogaea, Methylohalobius and Methylothermus (Type 

Ib). Alphaproteobacterial MOB belong to the genera Methylocystis and Methylosinus (Type 

IIa) and the genera Methylocella, Methylocapsa and Methyloferula (Type IIb) (Dumont et al., 

2014;Zheng et al., 2014;Knief, 2015). Aerobic methanotrophs have been detected in several 

paddy field soils (Ho et al., 2011;Lüke and Frenzel, 2011;Lee et al., 2014), and furthermore, it 

has been suggested that Type I methanotrophs can likely outcompete Type II methanotrophs 

for substrates in these nitrogen-loaded environments (Zheng et al., 2014). Compared to the 
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proteobacterial aerobic methanotrophs, the more recently discovered Verrucomicrobia often 

inhabit more extreme environments with low pH values and/or high temperatures (Dunfield et 

al., 2007; Op den Camp et al., 2009; Sharp et al., 2014; van Teeseling et al., 2014).    

Rice cultivation under waterlogged conditions creates anoxia in the majority of soil compartments 

and, consequently, provides a suitable habitat for methanogenic microorganisms. Rice 

maturation with the developed and decaying rhizosphere, releases root exudates that, 

together with dead roots, provide organic matter for an anaerobic food chain. Oxygen influx 

to soil occurs through diffusional transport via the aerenchyma and radial oxygen loss of 

the rice roots (Armstrong, 1971;Li and Wang, 2013). Although traditionally considered strict 

anaerobes, methanogens have been detected in the rhizosphere and on rice roots in several 

studies (Chin et al., 2004;Xu et al., 2012;Edwards et al., 2015;Lee et al., 2015). Lee et al. (2015) 

observed a higher abundance of methanogens in the rhizosphere than in bulk soil (Lee et al., 

2015). The methanogens in the rhizosphere may live in non-active roots where no oxygen is 

released or, alternatively, may be oxygen tolerant and have mechanisms to counteract reactive 

oxygen radical species, as investigated for Rice Cluster I (RC I) (now known as Methanocella) 

methanogens (Erkel et al., 2006). The genomes of RC I harbor genes encoding catalase, three 

different superoxide anion scavengers, superoxide dismutase and two different super oxide 

reductase genes for oxygen detoxification (Erkel et al., 2006). The up-regulation of catalase 

genes in response to oxygen exposure has been observed in both Methanosarcina and 

Methanocella (Angel et al., 2011). 

Both acetoclastic and hydrogenotrophic methanogens have been identified in paddy fields. 

Methanogenic archaea of the order Methanosarcinales derive methane from the methyl group 

of compounds such as methanol and methylamine, and until now, only Methanosarcina and 

Methanosaeta are known to use acetate for methane production (Jetten et al., 1992;Costa and 

Leigh, 2014;Welte and Deppenmeier, 2014). Hydrogenotrophic methanogens belonging to the 

orders Methanomicrobiales, Methanobacteriales and Methanocellales have been commonly 

found in paddy fields, with the exception of Methanococcales, which barely have been detected 

(Watanabe et al., 2010;Lee et al., 2015). Many of these hydrogenotrophic methanogens 

can use formate as a substrate but are unable to utilize acetate. Archaea belonging to RC 

I (Methanocella) (Kögel-Knabner et al., 2010), which forms a separate phylogenetic lineage 

branching between the orders Methanosarcinales and Methanomicrobiales, are considered key 

methanogens in rice fields. The reaction stoichiometry of methanogenesis (Conrad and Klose, 

1999) indicates that acetoclastic methanogens could contribute approximately two-thirds to 

methane production, consistent with the dominance of acetoclastic over hydrogenotrophic 

methanogenesis in paddy fields (Krüger et al., 2001). 

Previous theories suggesting a decrease in methane flux as a result of direct stimulation of 

methanotrophs after amendment with nitrogen fertilizers were unable to link observations 
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to the activity of the denitrifying anaerobic methanotrophic bacteria and archaea as these 

microorganisms, were discovered only recently compared to the aerobic methanotrophs. Nitrite-

and nitrate-dependent anaerobic oxidation of methane (AOM) were first described in 2006 in 

an enrichment culture consisting of archaea distantly related to ANME-2d and of bacteria that 

consume nitrite as an electron acceptor to oxidize methane anaerobically (Raghoebarsing et 

al., 2006). This novel denitrifying, methanotrophic bacterium of the candidate division NC10 

was named ‘Candidatus Methylomirabilis oxyfera’ (Ettwig et al., 2010). Despite its preference 

for an anoxic habitat, it is postulated to have an intra-aerobic metabolism. The genome of the 

bacterium contains all genes of the aerobic methanotrophic pathway and encodes a particulate 

methane mono-oxygenase complex that can use the O2 released from nitric oxide for methane 

oxidation, similar to aerobic methanotrophs (Ettwig et al., 2010). 

The genome of ANME-2d archaea was sequenced in 2013 and responsible organism named 

‘Candidatus Methanoperedens nitroreducens’ (Haroon et al., 2013). This nitrate-reducing 

archaeon employs a reverse methanogenesis pathway to oxidize methane. The genomes of 

three different strains of ‘Candidatus Methanoperedens nitroreducens’ have been published, 

and the necessary genes for nitrate reduction and the methanogenic pathway have been 

identified (Haroon et al., 2013;Arshad et al., 2015; Vaksmaa et al., 2017(AMAB accepted)). 

Nitrite-and nitrate-dependent AOM microorganisms and/or activity have been detected in 

several freshwater environments, including paddy fields (Vaksmaa et al., 2016;Welte et al., 

2016). Recently it was demonstrated that ‘Candidatus Methanoperedens nitroreducens’ can 

also oxidize methane using iron as electron acceptor (Ettwig et al., 2016). 

Besides so far know methanotrophs and methanogens, recent investigations of microbial “dark 

matter” discovered key genes of the methane pathway to be present in phyla, which previously 

were not linked to the ability to produce or consume methane. Phylum Bathyarchaeota, 

renamed from Miscellaneous Crenarchaeotic Group is a deeply- branching phylum consisting 

of 17 sub-groups (Kubo et al., 2012).  It is abundant in marine environments but is also found 

in extreme habitats like hot springs, cold sulfur springs, Polar Regions and in mesophilic 

habitats like sewage waste, fresh water lakes and paddy fields. Though there are no pure 

isolates, based on culture independent methods, their function was speculated to be important 

in the global cycle of carbon (Parkes et al., 2005). To date there are eight different genomes 

annotated, out of which two BA1 and BA2 are hypothesized to be methane metabolizers (Evans 

et al., 2015;He et al., 2016).

Majority of previous studies of paddy field microbial communities have focused on either a 

specific group of microorganisms or environmental or anthropogenic effect on methane 

emissions or sampling had been carried out at a single depth, hindering direct comparison. 

The aim of the present study was to explore how the microbial communities in a paddy field 
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are influenced by spatial factors along a depth gradient. The objectives of this study were (i) 

to characterize the bacterial and archaeal communities in a paddy field soil core by 16S rRNA 

gene amplicon sequencing with a focus on methane cycle-related organisms; (ii) determine 

the abundances of total bacteria, total archaea, ‘Candidatus Methanoperedens nitroreducens’, 

NC10 phylum bacteria and Bathyarchaeota; and (iii) estimate the anaerobic  methane oxidation 

potential using nitrate, nitrite and iron as electron acceptors at different soil depths.  

Materials and methods

Soil sampling

Paddy field soil cores were sampled in August 2015 at the Italian Rice Research Unit in Vercelli, 

Italy (08°22’25.89’’E; 45°19’26.98’’N). The sampling fields were cultivated with the rice variety 

Oryza sativa temperate japonica Onice. The paddy fields were flooded for about 90 days, with 

fertilizer applied in April and twice in June. Soil cores were sampled in triplicate with 80-cm soil 

augers at approximately 5-m intervals. The porewater nitrate and ammonium concentrations 

were in average 0.6 µM and 6.8 µM throughout the 80 cm. Amorphous iron oxides over a 50 

cm core were in top 25 cm in average 28.5 µmol per gram wet weight (gww) soil and in lower 25 

cm 54.8 µmol per gww soil, with one maxima at 11 cm 68.6 µmol per gww soil and at 31 cm 76.0 

µmol per gww soil (data obtained from the previous year), analysis was performed as described 

in (Egger et al., 2015). For AOM and methanogenic activity incubation assays, the soil was 

sliced in the field and placed immediately in anaerobic jars. For DNA extraction, the samples 

were stored in 50-ml conical centrifuge tubes. All samples were stored at 4 °C at the field site 

laboratory until transport on cool compresses by car. After transport to the lab, samples for 

DNA extraction were immediately frozen at -20 °C, and samples for activity experiments were 

stored at 4 °C. 

Methane measurements

To measure methane entrapped in the soil, three separate cores with lengths of 51, 58 and 

68 cm were sampled. Immediately after sampling, while releasing the core from the auger, 

samples were taken with a 5-ml open-end syringe. These samples were then transferred to 

pre-weighed 120-ml bottles filled with saturated NaCl solution. The bottles were sealed with 

screw-caps with rubber stoppers. The CH4 concentration was quantified by gas chromatography 

(Hewlett Packard 5890, USA). Methane concentrations were calculated per gram dry weight 

(gdw) of the sampled soil at the respective depth.

DNA extraction

For DNA extraction soil cores were divided to 13 different depths.  Soil from the same depth 

of three cores was pooled. DNA was extracted from approximately 0.25 g of soil in duplicate 
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using a PowerSoil DNA isolation Kit (MO BIO Laboratories Inc., Carlsbad, USA) according to 

the manufacturer’s protocol. DNA was extracted from the following depths: 0 cm, 2.5 cm, 5 

cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, 40 cm, 50 cm and 60 cm. DNA quantity 

and quality were assessed by UV-VIS spectroscopy (NanoDrop, ND-1000, Isogen Life Science, 

the Netherlands). 

Quantification by qPCR

Quantification of the total bacterial and total archaeal communities using the 16S rRNA 

gene was performed in triplicate using the duplicate DNA extractions from each depth 

sample described above.  For archaea, the following primers were used: forward Arch-

349 (5’GYGCASCAGKCGMGAAW3’) (Takai and Horikoshi, 2000) and reverse Arch-807 

(5’GGACTACVSGGGTATCTAAT3’)(Wang and Qian, 2009). For bacteria, the primers were forward 

Bact-341 (5’CCTACGGGNGGCWGCAG3’) and reverse Bact-785 (5’GACTACHVGGGTATCTAATCC3’) 

(Herlemann et al., 2011). Bathyarchaeota were targeted by primers amplifying 16S rRNA gene: 

MCG528 forward and MCG732 reverse (Kubo et al., 2012). ‘Candidatus Methanoperedens 

nitroreducens’ was targeted by primers amplifying the mcrA gene: McrA159F forward and 

McrA345R reverse (Vaksmaa et al., 2017). The 16S rRNA gene of the NC10 phylum was 

amplified with the primers p2F_DAMO (5’GGGGAACTGCCAGCGTCAAG3’) and p2R_DAMO 

(5’CTCAGCGACTTCGAGTACAG3’) (Ettwig et al., 2009). All qPCR reactions were performed 

using PerfCTa Quanta master mix (Quanta Biosciences, USA) and 96-well optical plates (Bio-

Rad, USA) on a Bio-Rad CFX96 Real-Time C1000 Touch Thermal Cycler (Bio-Rad, USA), as 

described in vaksmaa et al. 2016, 2017 (Vaksmaa et al., 2016;Vaksmaa et al., 2017). Absolute 

quantification was performed by comparison to standard curves obtained using a 10-fold 

serial dilution of pGEM-T Easy plasmid DNA (Promega, USA) with an insert of the target gene 

obtained using the same primers as used for qPCR. Standard curve samples were used as a 

control for each qPCR run. 

Amplicon sequencing

The following primers were used for 16S rRNA gene amplification: forward Arch-0349 and 

reverse Arch-807 for archaea and forward Bact-0341  and reverse Bact-785 for bacteria. The 

amplicons were generated in a two-step reaction. DNA was pooled in equimolar amounts per 

depth to perform PCR under the following conditions: initial denaturation at 96 °C for 3 min; 

30-35 cycles of denaturation at 96 °C for 40 s, primer annealing at 60 °C (for archaea) or 61 °C 

(for bacteria) for 30 s, and elongation at 72 °C for 40 s; and a final elongation at 72 °C for 2 min. 

Each PCR product was verified by 1 % gel electrophoresis. The obtained PCR products were 

purified with a GeneJet PCR purification kit (Thermo Scientific, The Netherlands). A second 

PCR was then performed with the same primers described above, which were extended 

with adapter sequences, specific barcodes and key sequences compatible with Ion Torrent 

sequencing at the 5’ end. The reaction conditions for this PCR were an initial denaturation 
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at 96 °C for 10 min; 10 cycles of denaturation at 96 °C for 1 min, primer annealing at 60°C 

or 61 °C for 1 min and elongation at 72 °C for 2 min; and a final elongation step at 72 °C for 

10 min. The products were again pooled per depth and purified as described above. The DNA 

concentrations of the purified PCR products were then measured and diluted to a range of 0.2 

to 0.4 ng/µl. The concentrations and fragment lengths of the libraries were determined with 

a Bioanalyzer 2100 and a High Sensitivity DNA kit (Agilent Technologies, USA). The obtained 

libraries were diluted to a final concentration of 100 pM, and the different barcoded libraries 

were pooled in equimolar amounts before sequencing. For Ion Torrent sequencing, the 

library fragments were attached to Ion Sphere particles using an Ion One Touch Instrument 

and Ion PGM Template OT2 400 Kit (Life Technologies, USA) according to the manufacturer’s 

instructions. After enrichment of the template-positive Ion Sphere Particles using the Ion One 

Touch ES (Life Technologies, USA), the samples were loaded on an Ion 316 v2 Chip. The DNA 

fragments were then sequenced using the Ion PGM Sequencing 400 Kit and 850 nucleotide 

flows according to the manufacturer’s instructions. 

Analysis of 16S rRNA gene amplicon data

The raw sequencing reads were automatically separated into clusters of each depth based 

on the unique barcodes. After sequencing, all raw reads were imported into CLC Genomics 

Workbench vs. 9 (QIAGEN Aarhus A/S, Denmark) for initial data analysis, including trimming 

of low-quality and short reads (cut-off value 200 nucleotides). After trimming, 6661 to 11785 

reads were obtained per corresponding depth for archaea; the number of reads obtained per 

depth for bacteria was 4477 to 7198 reads. The exported reads were further processed using 

the automated pipeline of Silva NGS (Silva Next Generation Sequencing) of the SILVA rRNA 

gene database project (SILVAngs 1.2)(Quast et al., 2013). In this process, each read was aligned 

using the SILVA Incremental Aligner (SINA v1.2.10 for ARB SVN (revision 21008)) (Pruesse 

et al., 2012) against the SILVA SSUrRNA SEED and quality controlled (Quast et al., 2013). 

Reads shorter than 50 aligned nucleotides and reads with more than 2 % ambiguities or 2 % 

homopolymers were excluded from further processing. Putative contaminants, artifacts and 

reads with low alignment quality (50 alignment identity, 40 alignment score reported by SINA) 

were identified and excluded from downstream analysis. After these initial quality control 

steps, identical reads were identified (dereplication), unique reads were clustered (OTUs) on 

a per sample basis, and the reference read of each OTU was classified. Dereplication and 

clustering were performed using cd-hit-est (version 3.1.2;http://www.bioinformatics.org/cd-

hit) (Li and Godzik, 2006) running in accurate mode, ignoring overhangs, and applying identity 

criteria of 1.00 and 0.98, respectively. Classification was performed by local nucleotide BLAST 

search against the non-redundant version of the SILVA SSU Ref dataset (release 119;http://

www.arb-silva.de) using blastn (version 2.2.28+;http://blast.ncbi.nlm.nih.gov/Blast.cgi) with 

standard settings (Camacho et al., 2009). The classification of each OTU reference read was 

mapped onto all reads that were assigned to the respective OTU. This mapping yielded semi-
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quantitative information (number of individual reads per taxonomic path), within the limitations 

of PCR and sequencing technique biases, and multiple rRNA operons. Reads without any 

BLAST hits or reads with weak BLAST hits, in which the function \(% sequence identity + 

% alignment coverage)/2” did not exceed a value of 93, remained unclassified. These reads 

were assigned to the metagroup \No Relative” in the SILVAngs fingerprint and Krona charts 

(Ondov et al., 2011). This method was first used in the publications (Klindworth et al., 2013) and 

(Ionescu et al., 2012). The amplicon sequencing data were deposited to the Short Read Archive 

under Bioproject ID PRJNA378333. Estimated quantities of individual taxa were calculated by 

multiplication of relative amplicon sequence data with qPCR data. 

Soil incubations

Soil samples from the three cores were pooled at depths of  0-5 cm, 5-10 cm, 10-20 cm, 20-30 

cm, 30-40 cm, 40-50 cm and 50-60 cm. Soil slurries for each depth were prepared by mixing 

the soil with mineral salt medium as described by Ettwig et al. (2008). Activity assays were 

performed in 120-ml serum bottles with 60 ml of soil slurry. The wet and dry soil weight ratio 

of the slurry was determined in duplicate at each depth. The incubation bottles were sealed 

with red butyl rubber stoppers and crimp-caps. The headspace was exchanged with Ar/CO2 

by 5 cycles of vacuum and gassing, with a final overpressure of 0.5 bar. Treatments at each of 

the depths were performed in duplicate and consisted of adding 5 mM NaNO3, 1 mM NaNO2, 

20 mM iron nitrilotriacetic acid (FeNTA), or 20 mM ferrihydrite with 10 % 13C-CH4 v/v (final 

concentrations) and controls in which either 10 % CH4 v/v was added or no additions were 

made to the soil slurry. Each treatment was performed in duplicate with triplicate headspace 

measurements to quantify the CH4 concentration by gas chromatography (Hewlett Packard 

5890, USA) as described previously (Ettwig et al., 2009).. Headspace measurements were 

carried out over the period of 118 days, with methane concentration measured at day 0, 7, 14, 

21, 46, 54, 85, 98 and 118 and the net production or consumption rates were calculated during 

the linear phase.

Results

Methane measurements in the soil core

The highest methane concentration was measured in the top 15 cm of the soil (Figure 1). The 

highest peak was measured at 0 cm and 6.5 cm and corresponded to a methane concentration 

of approximately 165 µmol per gdw in two of the three cores. Below 15 cm, a rapid decrease in 

the methane concentration was observed; at a depth of 28 cm, methane concentrations were 

less than 7 µmol per gdw. At depths of 50 cm and below, the methane concentration was at the 

detection limit of 0.4-2 µmol per gdw.
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Quantification of total bacteria, archaea, and subgroups of known anaerobic 

methanotrophs

The total abundance of bacteria, archaea and nitrate- and nitrite dependent anaerobic 

methanotrophs was quantified by qPCR. The total bacterial abundance was higher than the 

archaeal abundance at all depths of the soil core. As depicted in Figure 2, the highest copy 

number obtained with the archaeal primer combination was observed at a depth of 10 cm 

(1.0±0.3*109 16S rRNA gene copies per gdw). Below a depth of 20 cm (2.6±0.4*108 16S rRNA gene 

copies per gdw), the archaeal copy numbers decreased gradually until 60 cm, where 4.1±2.2*105 

16S rRNA gene copies per gdw was observed. The highest amount of bacterial copies was 

observed at a depth of 10 cm (5.6±1.4*109 16S rRNA gene copies per gdw), and the lowest 

number was observed at a depth of 60 cm (1.4±0.6*107 16S rRNA gene copies per gdw). The 

known archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens’ exhibited the 

highest abundance at 20 cm, with 1.8±0.3*107 mcrA gene copies per gdw, and lowest abundance 

at 60 cm, with 7.2±1.5*103 mcrA gene copies per gdw. The anaerobic methanotrophs belonging 

to NC10 phylum bacteria had two maxima at depths of 10 cm (2.3±0.7*105 16S rRNA gene 

copies per gdw) and 35 cm (2.3±0.2*105 16S rRNA gene copies per gdw). The lowest abundance 

was observed at a depth of 60 cm (1.5±0.5*104 16S rRNA gene copies per gdw). Among the 

targeted anaerobic methanotrophs, ‘Candidatus Methanoperedens nitroreducens’ had higher 

gene copy numbers than NC10 phylum bacteria at all depths except 60 cm, where NC10 phylum 

bacteria outnumbered ‘Candidatus Methanoperedens nitroreducens’. 

Amplicon sequencing of the 16S rRNA gene in the bacterial community

At each depth, the 16S rRNA gene amplicon data were analyzed for both bacteria and 

archaea. In the bacterial community, a very large diversity was observed (Figure 3,  

Table S1), with most of the reads assigned to Acidobacteria, Chloroflexi, Proteobacteria, 

Planctomycetes and Actinobacteria. Most of the phyla were observed throughout the soil core. 

However, at depths of 40 cm and below, Cyanobacteria, Bacteroidetes and Chlorobi were hardly 

or not present at all. The opposite trend was observed for Latescibacteria, which increased 

gradually in relative abundance toward deeper layers. 16S rRNA gene reads assigned to NC10 

phylum (phylum Nitrospirae) bacteria were recorded at all depths along the gradient of the soil 

core. The lowest relative abundance was recorded at the top layer of soil (0 cm). Thereafter, 

the copies increased gradually, with a maximum at a depth of 40 cm, where reads assigned to 

the NC10 phylum represented 2.4 % of the total bacterial 16S rRNA gene reads. After 40 cm, a 

rapid decrease was observed in the relative abundance of reads assigned to the NC10 phylum 

to 50 cm (0.25 %), followed by an increase at 60 cm (1.25 %). The relative abundance of reads 

assigned to the NC10 phylum at all other depths, except 35 cm, 40 cm and 60 cm, was less than 

1 % of the total bacterial reads (Figure 4).
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Figure 1: Vertical profile of methane concentrations along the depth gradient of the paddy field soil. The 
soil depth is depicted vertically, and the methane concentration in µmol per gdw is depicted horizontally. 
Three separate cores were sampled up to the maximum depth of 68 cm. Measurements of each sample 
were performed in triplicate by gas chromatography. 

Among Proteobacteria, the relative abundance of Alphaproteobacteria was highest in the 

top 15 cm of the soil core and gradually decreased in the deeper layers of soil. Beta- and 

Gammaproteobacteria showed the lowest relative abundances, but their relative abundances 

exhibited little variation throughout the soil core. Deltaproteobacteria were the second most 

abundant in the top 15 cm. Their relative abundance peaked at 25 cm, corresponding to 8 

% of total bacterial reads, and decreased gradually thereafter. A detailed distribution of the 

proteobacterial classes is provided in Table S2.

Among sequences assigned to aerobic methanotrophs, most of the reads were assigned to 

Methylococcaceae, except at depths of 0 cm and 15 cm, where more reads were assigned 

to Methylocystaceae. Surprisingly, we observed Verrucomicrobia methanotrophs in the paddy 

soil core, and reads assigned to Candidatus Methylacidiphilum were most abundant in the top 

5 cm, constituting 20% of the total aerobic methanotrophic community. Overall, the relative 
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abundance of aerobic methanotrophs was highest at a depth of 10 cm, representing 1.1 % of the 

total bacterial community. The calculated abundance of aerobic methanotrophs in calculated 

copy numbers was on the order of 107 in the top 20 cm and then gradually decreased to 104 at 

a depth of 60 cm (Figure 4).

Figure 2: Depth profile of copy numbers of genes of interest obtained by qPCR. In all figures, the soil depth 
is depicted vertically. Horizontally, the copy numbers obtained by qPCR per gram dry weight are presented 
in log scale. A. 16S rRNA gene copy numbers of total archaea amplified with Arch349F/Arch807R primers. 
B. 16S rRNA gene copy numbers of Bathyarchaeota amplified with MCG528F/MCG732R primers C. McrA 
gene copy numbers of Methanoperedens nitroreducens quantified with McrA159F/McrA345R primers. D. 
16S rRNA gene copy numbers of total bacteria quantified with Bac341F/Bac785R primers. E. 16S rRNA 
gene copy numbers of NC10 phylum bacteria quantified with p2F_DAMO/p2R_DAMO primers. 
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Phylogenetic diversity of Verrucomicrobia and Candidatus Methylacidiphilum

Verrucomicrobial methanotrophs have rarely been observed outside acidic volcanic areas. 

Therefore, we extracted the 16S rRNA gene sequences from amplicon sequencing and 

analyzed sequences assigned to Verrucomicrobia in detail (Figure 5). Sequences clustering 

with Candidatus Methylacidiphilum were found at all depths except 7.5 cm, 50 cm and 60 cm. 

The extracted sequences clustering with Candidatus Methylacidiphilum were 85 % identical 

at the nucleotide level to cultivated strains of Candidatus Methylacidiphilum (van Teeseling et 

al., 2014). 

Figure 3: Distribution of 16S rRNA gene reads of major bacterial phyla along the depth profile of the paddy 
soil core. The soil depth in centimeters is depicted vertically, whereas the total amount of 16S rRNA gene 
amplicons per gram dry weight is depicted horizontally. The colored bars represent the relative amount of 
gene copies matching a bacterial phylum present in the soil at a particular depth.

Amplicon sequencing of the 16S rRNA gene of the archaeal community

In the archaeal community reads matching Euryarchaeota were more abundant than 

Thaumarchaeota in the top layers until a depth of 30 cm. At deeper depths of 35 cm, 50 cm, and 

60 cm (Euryarchaeota were dominant at 40 cm), sequences matching Thaumarcheota were the 

most abundant. Sequences matching the 16S rRNA gene of Bathyarchaeota (previously known 

as Miscellaneous Crenarchaeota Group (MCG)) were the most abundant in the top layers of 
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the soil. At depths of 0-5 cm, 43-45 % of the reads were assigned as Bathyarchaeota. This 

proportion decreased gradually throughout the soil core (Figure 6, Table S3). 

Analysis of the Methanomicrobia and Methanobacteria communities in greater detail revealed 

that sequencing reads assigned to Methanosaeta and Methanosarcina were most abundant 

among methanogens throughout the soil core (Figure 7). The top layer of soil had more diverse 

community than deeper layers. The methanogen community was largest at a depth of 10 cm, 

52% of total archaea. The highest relative sequence abundance of the archaeal methanotroph 

‘Candidatus Methanoperedens nitroreducens’ (GOM Arc I) was found at a depth of 25 cm, 

comprising 56.4 % of the total archaeal reads. The estimated depth distribution of ‘Candidatus 

Methanoperedens nitroreducens’ calculated based on the sequencing read abundance and on 

the total archaeal copy numbers is depicted in Figure 4. The abundance based on amplicon 

data peaked at 1.1*108 copies at a depth of 7.5 cm. 

Figure 4: Distribution of sequence reads of proteobacterial (Methylococcaceae, Methylocystaceae) and 
verrucomicrobial (Candidatus Methylacidiphilum) aerobic methanotrophs together with anaerobic 
methanotrophs: ‘Candidatus Methanoperedens nitroreducens’ and NC10 phylum bacteria based on 16S 
rRNA gene amplification. Reads were assigned to phylogenetic groups based on the SILVA NGS pipeline. 
The soil depth in centimeters is depicted vertically, and the total amount of 16S rRNA gene amplicons per 
gram dry weight is depicted horizontally. The colored bars represent the relative amount of gene copies 
corresponding to aerobic and anaerobic methanotrophs present in the soil at a particular depth.
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Figure 5: A. Phylogenetic overview of verrucomicrobial 16S rRNA gene sequences. The phylogenetic 
position of Candidatus Methylacidiphilum (Incertae sedis Candidatus Methylacidiphilum) is marked in 
red. B. Detailed presentation of the sequences of Candidatus Methylacidiphilum. Sequences of cultivated 
strains are shown in red, and sequences obtained from paddy field soil are shown in purple. The neighbor-
joining phylogenetic tree was calculated using Jukes-Cantor correction and the Arctic 97B-4 marine group 
as outgroup.

Soil slurry incubations

Soil slurries of different depths were amended with methane and electron acceptors. Controls 

were prepared with and without addition of methane to detect methanogenic activity. The 

rates of potential methane oxidation with nitrate, nitrite and two forms of iron, FeNTA and 

ferrihydrite, were recorded. The potential methane oxidation or production rate was calculated 

based on methane concentration measurements in the headspace over a time course of 118 

days (Figure 8). 
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The nitrate- and nitrite-dependent methane oxidation rates were highest in the top 20 cm. 

At depths of (0-5 cm) and (5-10 cm), higher AOM rates were measured in slurries amended 

with nitrate, 37 nmol gdw h-1 and 57 nmol gdw h-1, than in slurries amended with nitrite, 29 nmol 

gdw h-1 and 43 nmol gdw h-1, respectively. At a depth of 10-20 cm, the nitrite-amended samples 

exhibited the highest methane oxidation rate, 55 nmol gdw h-1, followed by 33 nmol gdw h-1 in 

the nitrate-amended samples. Methane oxidation was measured in the top 20-cm slurries in 

samples amended with FeNTA, with a peak of 48 nmol gdw h
-1 at a depth of 5-10 cm.

In the top layers up to 20 cm, addition of ferrihydrite did not stimulate methane oxidation. In 

the deeper layers, the pattern was the same as that for the addition of FeNTA. The highest 

methane oxidation rate was observed at a depth of 40-50 cm in slurries amended with FeNTA, 

25 nmol/gdw/h-1, followed by ferrihydrite, 20 nmol gdw h-1. At a depth of 50-60 cm, the respective 

rates for FeNTA and ferrihydrite were 56 nmol gdw h-1 and 29 nmol gdw h-1. 

In the control samples amended with methane, initial methane oxidation was monitored for a 

maximum time period of 21 days, after which methane production prevailed, with production 

of 277 nmol gdw h-1, 369 nmol gdw h-1 and 85 nmol gdw h-1 at depths of 0-5 cm, 5-10 cm and 

10-20cm, respectively. A similar pattern of methanogenesis in soil slurry incubations with no 

additions was observed. After a lag phase of approximately 21 days, the methane production 

rate increased. The highest methane production rate, 444 nmol gdw h-1, was observed at a depth 

of 5-10 cm. At a depth of 10-20 cm, methanogenesis was still observed, with a rate of 69 nmol 

gdw h-1, which decreased to less than 1 nmol gdw h-1 in deeper layers. At depths of 20-50 cm, 

oxidation prevailed over methane production in slurries amended with methane. 

Discussion

Paddy fields are a major source of methane emitted to the atmosphere. The flux of methane 

is controlled by the microbial community present in the soil, particularly by methanogens and 

methanotrophs. 

The vertical profile of the methane gradient included a higher methane concentration in the 

top 15 cm of the soil core, followed by a drastic drop. At a depth of approximately 28 cm, 

methane was nearly undetectable. This depth correlates with the interface of annual plowing 

and undisturbed soil as well as the rice root penetration depth. 

The profile of the total abundance of microorganisms along the depth gradient followed the 

same trend as methane. The highest copy numbers of both bacteria and archaea were detected 

at a depth of 10 cm, followed by a decrease to 25 cm, after which the microbial population 
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size was a few orders of magnitude smaller. The total bacterial and archaeal population sizes 

correlate well with previous reports. The total bacterial and archaeal 16S rRNA gene copy 

numbers in a Chinese paddy field ranged from 1.4*1010 to 2.9*1010 per gdw and 5.4*108-1.7*109 

per gdw, respectively (Ahn et al., 2012). In paddy fields in the Philippines, the total bacterial copy 

numbers and archaeal copy numbers were on the order of 1010 and 108 per gdw, respectively 

(Breidenbach and Conrad, 2015). In paddy fields in India, 9.6*109-1.4*1010 bacterial 16S rRNA 

copies per gdw and 7.13*107-3.02*108 archaeal 16S rRNA copies per gdw were reported (Singh 

et al., 2012). We recorded maximum bacterial and archaeal abundances of 5.6±1.4*109 and 

1.0±0.3*109 16S rRNA gene copies per gdw, respectively. 

Figure 6: Distribution of 16S rRNA gene reads of major archaeal phyla along the depth profile of the paddy 
soil core. Reads were assigned to phylogenetic groups based on the SILVA NGS pipeline. The soil depth 
in centimeters is depicted vertically, and the total amount of 16S rRNA gene amplicons per gram dry 
weight is depicted horizontally. The colored bars represent the relative amount of gene copies matching an 
archaeal phylum present in the soil at a particular depth.
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Figure 7: Distribution of 16S rRNA gene reads of methanogens along the depth profile of the paddy 
soil core. Reads were assigned to phylogenetic groups based on the SILVA NGS pipeline. The soil depth 
in centimeters is depicted vertically, and the total amount of 16S rRNA gene amplicons per gram dry 
weight is depicted horizontally. The colored bars represent the relative amount of gene copies matching 
methanogens present in the soil at a particular depth.

The rice root system has been described as the key determinant in shaping the microbial 

community via release of root exudates, decaying roots and organic matter as well as 

oxygen (Kuzyakov & Blagodatskaya, 2015). Diffusion of oxygen to the soil creates micro-oxic 

niches for oxygen-dependent microorganisms. We detected sequences belonging to aerobic 

methanotrophs throughout the soil core. The relative abundance of aerobic methanotrophs 

was highest at a depth of 10 cm and was twice as high as of that in the surface layer. Along 

the entire depth gradient, MOB were dominated by Type I Methylococcaceae, followed by Type 

II Methylocystaceae. Methylococcaceae have been detected in several environments with low 

oxygen concentration, even tolerating periods of hypoxia (Hernandez et al., 2015). The presence 

of these aerobic methanotrophs in low oxygen environments, such as the investigated paddy 

field, could possibly be explained by their denitrifying ability as has been demonstrated for 

Methylomonas denitrificans, which during hypoxia carries out nitrate reduction and methane 

oxidation (Kits et al., 2015). Other Methylococcaceae, such as Methylobacter contain in their 

genome besides respiratory nitrate and nitrite reductases as well genes necessary for 

dinitrogen fixation (Kalyuzhnaya et al., 2015).    
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In addition to detecting sequences of well-known proteobacterial aerobic methane oxidizers, 

sequences belonging to methanotrophic Verrucomicrobia were identified in this study. 

Detailed phylogenetic analysis revealed the presence of aerobic methanotrophs distantly 

related (85 % nucleotide identity of the 16S rRNA gene) to cultured members of Candidatus 

Methylacidiphilum. Only a very small number of verrucomicrobial methanotrophs have been 

detected in ecosystems other than acidic volcanic areas, including paddy field soil (Genbank 

JF984005.1), forest soil (Genbank JF420089), lake sediment (Genbank GU305773) arctic soil 

(Genbank HQ462506) and a few other environments. The reported cultivated strains originate 

exclusively from extreme hot or acidic environments in Italy, Kamchatka or New Zealand. 

Further studies are needed to determine if the microbes found in less extreme environments 

also contain pmoA genes in their genome and have the capability to oxidize methane. We 

hypothesize that there is a niche for these aerobic verrucomicrobial methane oxidizers in less 

acidic methane-rich environments such as paddy fields. 

The translation of 16S rRNA gene sequencing read numbers to copy numbers indicated that the 

methanogen population abundance was highest at a depth of 10 cm, with 4.5 *108 copies per 

gdw, followed by a decline in abundance to 60 cm, with 2.7*104 copies per gdw. The methanogenic 

population size determined previously in the same Italian paddy field was 107-108 copies per 

gdw (Conrad and Klose, 2006). Compared to other sampling sites, our observed abundances 

are slightly higher than the previously reported methanogen abundances of 1.1*107 or 1.4*107 

copies per gdw (Singh et al., 2012) or 104-105 copies per gdw (Hou et al., 2000). A previous vertical 

profile study of methanogens identified the highest abundance based on mcrA gene copy 

numbers at a depth of approximately 20 cm in three Japanese paddy fields, peaking at 107 

(Watanabe et al., 2010). Together, these results suggest that the methanogenic zone is located 

approximately 10-20 cm below the soil surface and co-occurs with the end of the main root 

system in soil.

The community analysis of methanogens revealed a diverse composition throughout the 

soil core. The methanogenic community was dominated by Methanosaeta, Methanosarcina, 

Methanobacterium, Methanoregulaceae and the RC I cluster (Methanocella), which have also 

been found previously in temperate climate paddy fields (Conrad and Klose, 2006;Watanabe 

et al., 2010). The community throughout the core was dominated by the strictly acetoclastic 

Methanosaeta, followed by more versatile Methanosarcina spp. The sampling time of the 

soil at the end of the growing season, when most root exudates are released (Aulakh et al., 

2001) and the ammonia concentration is highest, may explain the methanogen community 

structure (Singh et al., 2012). Methanosarcina spp. have been shown to be present during 

the rice-growing season, whereas during pre-planting, tilling or post-harvest, Methanosaeta 

were present in lower numbers (Singh et al., 2012), correlating with the lower concentrations 

of acetate available in the soil (Kruger et al., 2002). In paddy field soil, acetate-dependent 
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methanogenesis (acetoclastic) generally dominates over hydrogen-dependent methanogenesis 

(hydrogenotrophic), as demonstrated by 13C-labeling experiments (Conrad, 1999;Conrad et al., 

2002;Conrad, 2005;Zhang et al., 2016).  

Figure 8: Methane oxidation and methanogenesis rates measured in soil slurries incubated with 10 % 
v/v 13C-methane with the addition of 5 mM NaNO3, 1 mM NaNO2, 20 mM FeNTA or 20 mM ferrihydrite. 
As controls, soil slurries were incubated with 10 % v/v 13C-methane and without added methane. GC 
measurements were performed in triplicate, and rates were calculated in the linear phase.  Negative 
values stand for net oxidation of methane and positive values net production of methane.

The total methane concentration in soil over the course of rice maturation peaks at the 

flowering and ripening stage (Singh et al., 2012).. Previous studies in Italian paddy fields have 

demonstrated that methane emission rates reach approximately 400 nmol CH4 per gdw d
-1 70-

80 days after flooding (Kruger et al., 2005) or even approximately 600 nmol per gdw d
-1 (Conrad 

and Klose, 2006). We previously observed methanogenic activity of the same paddy field soil 
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of 432 nmol and 358 nmol per gdw d
-1 without and with the addition of methane, respectively, in 

incubation assays (Vaksmaa et al., 2016). In the current soil core, the highest methanogenic 

activity was recorded at a depth of 5-10 cm, with rates of 369 and 444 nmol per gdw d
-1 with 

and without the addition of methane. In control incubations in which methane was added, 

methanotrophic activity was initially observed. After three weeks, methanogenesis became 

the dominant process, with methane oxidation rates identical to those observed in the 

control treatment without the addition of methane. Furthermore, ferrihydrite added to slurry 

incubations seemed to stimulate methanogens in the top 20 cm. In those treatments, no initial 

methanotrophic activity was observed; only stimulation of methanogenic activity was recorded, 

even when both methane and possible electron donors were supplied. Previous studies in 

wetlands and paddy fields have demonstrated that the addition of poorly crystalline iron, such 

as ferrihydrite, has an inhibitory effect on methanogenic activity (Achtnich et al., 1995;Lueders 

and Friedrich, 2002). In contrast, the addition of highly crystalline iron oxide species of hematite 

or magnetite stimulates methanogens enriched from paddy field soil via a positive effect on 

either direct interspecies electron transfer or the availability of diffusive carriers such as 

hydrogen or formic acid (Kato et al., 2012;Holmes et al., 2017). 

Methanotrophic bacteria of the NC10 phylum have been previously detected in paddy field soil 

based on the 16S rRNA gene or pmoA genes and activity assays with nitrite and methane. 

Conflicting results regarding the vertical distribution of NC10 phylum bacteria in soil have 

been reported. Zhou et al. (2014) indicated that the highest abundance of 1.0*108 copies per 

gdw occurred at a depth of 100-120 cm (Zhou et al., 2014). This finding was supported by a 

study by Hu et al. (2014) of a Chinese paddy field, in which the highest copy number abundance 

of 1.5±0.2*106 to 4.5±0.3*106 copies per gdw was observed at a depth of 50-60 cm. However, 

the methane-oxidizing potential of soil slurries amended with nitrite was highest at a depth 

of 90-100 cm, with values of 1.68±0.03 to 2.04±0.06 nmol of CO2 per gdw (Hu et al., 2014). By 

contrast, in a subtropical paddy field soil core sampled to 100 cm, the abundance of NC10 

phylum bacteria was highest at the 0-10 cm depth, with 1.0±0.1*105 copies per gdw, followed by 

7.5±0.4*104 at 30-40 cm and a subsequent gradual decrease, with no detection at depths of 70 

cm and beyond (Wang et al., 2012) 

The phylogenetic comparison of the 16S rRNA gene reads obtained from amplicon sequencing 

revealed that, in the top layers, the 16S rRNA gene reads were assigned exclusively to group B 

(Ettwig et al., 2009;Welte et al., 2016), with nucleotide identities of 95.6-96.7 % to ‘Candidatus 

Methylomirabilis oxyfera’. Sequences belonging to Group A of NC10 phylum bacteria were 

found only at depths of 40 cm and below. This distribution is consistent with previous reports 

in which 16S rRNA gene sequencing and relative read abundance indicated that these nitrite-

dependent AOM bacteria formed the largest subset of sequencing reads among total bacterial 

reads at depths of 50 cm and 100 cm (Ding et al., 2015). In our activity assays with nitrite, we 



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 78PDF page: 78PDF page: 78PDF page: 78

Stratification and diversity of methane-oxidizing microorganisms in a nitrogen-fertilized Italian paddy soil 

78

observed the highest methane oxidation potential of 55 nmol per gdw h
-1 in samples from 10-20 

cm, which correlates with the first peak of high abundance of NC10 phylum bacteria. However, 

all the sequences at 10-20 cm all belonged to group B, for which no methane-oxidizing ability 

has been demonstrated thus far and needs further investigation.

In addition to detecting nitrite-dependent AOM bacteria of the NC10 phylum, we observed 

high numbers nitrate-dependent AOM archaea ‘Candidatus Methanoperedens nitroreducens’ 

throughout the soil core. However compared to NC10 phylum bacteria, these archaea were more 

abundant at all depths, except 60 cm, where NC10 phylum bacteria outnumbered ‘Candidatus 

Methanoperedens nitroreducens’. Sequences classified as ‘Candidatus Methanoperedens 

nitroreducens’ have been detected previously in paddy fields, including fields in Vercelli, 

Italy (Lueders et al., 2001;Conrad et al., 2008), Chinese paddy fields (Xu et al., 2012), and 

Korean paddy fields (Lee et al., 2015) as well as in natural wetlands (Narrowe et al., 2017). 

We previously quantified and detected ‘Candidatus Methanoperedens nitroreducens’ in an 

Italian paddy field based on 16S rRNA gene (Vaksmaa et al., 2016) and mcrA gene sequences 

in high abundance (Vaksmaa et al., 2017). High relative sequence abundance has also been 

observed in other paddy fields based on the 16S rRNA gene, with 60 % of all archaeal reads 

classified as ‘Candidatus Methanoperedens nitroreducens’ (GOM Arc I) at a depth of 60 cm in 

bulk soil (Lee et al., 2015). In a study by Lee et al. (2015), the soil core depth profile exhibited 

the same trend observed in the current study (Lee et al., 2015). The abundance of ‘Candidatus 

Methanoperedens nitroreducens’ increased with depth, peaking at 20 cm with 1.8±0.3*107copies 

per gdw. The activity assays performed with nitrate and methane indicated that the activity was 

highest at a depth of 5-10 cm (57 nmol per gdw d
-1), followed by a depth of 10-20 cm (33 nmol 

per gdw d
-1). We previously observed a methane-oxidizing potential of 80 nmol methane per gdw 

d-1 in mixed and sieved soil slurry from a depth of 10-20 cm (Vaksmaa et al., 2016). The present 

study is the first to evaluate potential methane oxidation rates utilizing nitrate as an electron 

acceptor in different depths of a paddy soil core. Recent research has revealed that ‘Candidatus 

Methanoperedens nitroreducens’ not only can couple nitrate reduction to methane oxidation 

but is also able to reduce oxidized metals (Ettwig et al., 2016) and may play in important role 

in both methane and iron cycling in natural and man-made wetlands (Narrowe et al., 2017). 

Finally the large number of Bathyarchaeota observed in this paddy field and other wetland 

systems is intriguing, and their potential role in methane cycling needs further investigation 

(Evans et al., 2015;Narrowe et al., 2017). For the microbial community members, were the 

function is still unknown, we detected Bathyarchaeota to be present throughout soil core with 

highest abundance at 5cm with 2.1±1.1*108 16S rRNA gene copies per gdw.. From the total 

archaeal community, these account for almost 50%. Albeit their unknown function, their high 

abundance and wide distribution indicates that though the function is unknown they might 

be relevant microorganisms. Up to date, the members of phylum Bathyarcheota have been 
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detected in a wide range of habitats from terrestrial to marine, cold and hot temperatures or 

surface and subsurface environments. Generally they are known to be abundant in marine 

environments (Teske et al., 2002;Lipp et al., 2008;Kubo et al., 2012). Similarly, other studies 

showed Bathyarchaeota to be present in freshwater environments (Porat et al., 2010;Li et 

al., 2012). Previous studies have detected Bathyarchaeota in paddy fields as well (Lee et al., 

2014;Lee et al., 2015) with abundance of  Bathyarchaeota increasing from 17% to 23% in three 

different phases of rice cultivation (Breidenbach and Conrad, 2014) and with relative abundance 

up to 42 % in paddy field sub-soils (Bai et al., 2017). 

In summary, we observed high diversity of the archaeal and bacterial microbial communities 

throughout the soil core and determined the methane-oxidation potential with various electron 

acceptors at several soil depths. This study highlights the usage of various electron acceptors 

for the AOM process. Our findings provide support for the significant role of ‘Candidatus 

Methanoperedens nitroreducens’ carrying out nitrate-dependent and/or iron-dependent AOM 

in paddy fields. NC10 phylum bacteria seem to play a less significant role in AOM in paddy 

fields. The as-yet unknown functions of members of the Candidatus Methylacidiphilum genus 

and Bathyarchaeota in paddy field soil will hopefully be explained in studies in the near future. 

We acknowledge that the small sample size of our study does have its limitations, and future 

studies should include more samples in order to more accurately estimate the contribution of 

AOM in paddy fields on a larger scale.

Conflict of Interest

All authors declare that they have no conflict of interest. All prevailing local, national and 

international regulations and conventions, and scientific ethical practices, have been respected.

Funding

This work was supported by the Netherlands Organization for Scientific Research [VENI 

863.13.007 to KFE], the European Research Council [ERC AG 339880 Eco_MoM to MSMJ, AV 

and CL], a Gravitation grant [024002002 Soehngen Institute of Anaerobic Microbiology to MSMJ; 

024002001 NESSC], and the Spinoza prize to MSMJ.

Acknowledgments	

We thank Sonja Volman (Radboud University, Nijmegen, NL) for performing initial amplicon 

sequencing during her internship and Mohammad Ghashghavi (Radboud University, Nijmegen, 

NL) and Gabriele Orasen from the CREA-Rice Research Unit of Vercelli (Italy) for assistance 

during sampling. 



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 80PDF page: 80PDF page: 80PDF page: 80

Stratification and diversity of methane-oxidizing microorganisms in a nitrogen-fertilized Italian paddy soil 

80

Author Contributions

AV and CL designed the research and carried out the fieldwork. EL and GV provided the 

access to the sampling station, and supported the design and fieldwork. AV carried out the 

experiments in the laboratory. TV and AV collected and interpreted the sequencing data. AV, CL 

and MJ drafted and finalized the manuscript with input from all authors. The manuscript was 

checked by a professional peerwith.com editor.



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

4

81

References:

Achtnich, C., Bak, F., and Conrad, R. (1995). Competition for electron donors among nitrate reducers, ferric 

iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils 

19, 65-72.

Ahn, J.H., Song, J., Kim, B.Y., Kim, M.S., Joa, J.H., and Weon, H.Y. (2012). Characterization of the bacterial 

and archaeal communities in rice field soils subjected to long-term fertilization practices. J Microbiol 

50, 754-765.

Angel, R., Matthies, D., and Conrad, R. (2011). Activation of Methanogenesis in Arid Biological Soil Crusts 

Despite the Presence of Oxygen. PLoS ONE 6, e20453.

Armstrong, W. (1971). Radial Oxygen Losses from Intact Rice Roots as Affected by Distance from the Apex, 

Respiration and Waterlogging. Physiologia Plantarum 25, 192-197.

Arshad, A., Speth, D.R., De Graaf, R.M., Op Den Camp, H.J., Jetten, M.S., and Welte, C.U. (2015). A 

Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by 

Methanoperedens-Like Archaea. Front Microbiol 6, 1423.

Aulakh, M.S., Wassmann, R., Bueno, C., Kreuzwieser, J., and Rennenberg, H. (2001). Characterization of 

Root Exudates at Different Growth Stages of Ten Rice (Oryza sativa L.) Cultivars. Plant Biology 3, 139-

148.

Bai, R., Wang, J.-T., Deng, Y., He, J.-Z., Feng, K., and Zhang, L.-M. (2017). Microbial Community and 

Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded 

Differently along Gradients of Soil Depth Layers. Frontiers in Microbiology 8, 945.

Bao, Q., Huang, Y., Wang, F., Nie, S., Nicol, G.W., Yao, H., and Ding, L. (2016). Effect of nitrogen fertilizer and/

or rice straw amendment on methanogenic archaeal communities and methane production from a 

rice paddy soil. Appl Microbiol Biotechnol 100, 5989-5998.

Bodelier, P.L. (2011). Toward understanding, managing, and protecting microbial ecosystems. Front 

Microbiol 2, 80.

Breidenbach, B., and Conrad, R. (2014). Seasonal dynamics of bacterial and archaeal methanogenic 

communities in flooded rice fields and effect of drainage. Front Microbiol 5, 752.

Breidenbach, B., and Conrad, R. (2015). Seasonal dynamics of bacterial and archaeal methanogenic 

communities in flooded rice fields and effect of drainage. Frontiers in Microbiology 5.

Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K., and Zhuang, Q. (2013). Methane emissions from wetlands: 

biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 

19, 1325-1346.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). 

BLAST+: architecture and applications. BMC Bioinformatics 10, 421.

Chin, K.J., Lueders, T., Friedrich, M.W., Klose, M., and Conrad, R. (2004). Archaeal community structure 

and pathway of methane formation on rice roots. Microbial Ecology 47, 59-67.

Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations 

in methanogenic soils and sediments. FEMS Microbiology Ecology 28, 193-202.



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

Stratification and diversity of methane-oxidizing microorganisms in a nitrogen-fertilized Italian paddy soil 

82

Conrad, R. (2005). Quantification of methanogenic pathway using stable carbon isotopic signatures: a 

review and aproposal. Organic Geochemistry 36, 739-752.

Conrad, R. (2009). The global methane cycle: recent advances in understanding the microbial processes 

involved. Environ Microbiol Rep 1, 285-292.

Conrad, R., and Klose, M. (1999). How specific is the inhibition by methyl fluoride of acetoclastic 

methanogenesis in anoxic rice field soil? FEMS Microbiology Ecology 30, 47-56.

Conrad, R., and Klose, M. (2006). Dynamics of the methanogenic archaeal community in anoxic rice soil 

upon addition of straw. European Journal of Soil Science 57, 476-484.

Conrad, R., Klose, M., and Claus, P. (2002). Pathway of CH4 formation in anoxic rice field soil and rice roots 

determined by C-13-stable isotope fractionation. Chemosphere 47, 797-806.

Conrad, R., Klose, M., and Noll, M. (2009). Functional and structural response of the methanogenic 

microbial community in rice field soil to temperature change. Environmental Microbiology 11, 1844-

1853.

Conrad, R., Klose, M., Noll, M., Kemnitz, D., and Bodelier, P.L.E. (2008). Soil type links microbial colonization 

of rice roots to methane emission. Global Change Biology 14, 657-669.

Costa, K.C., and Leigh, J.A. (2014). Metabolic versatility in methanogens. Curr Opin Biotechnol 29, 70-75.

Dedysh, S.N., Berestovskaya, Y.Y., Vasylieva, L.V., Belova, S.E., Khmelenina, V.N., Suzina, N.E., Trotsenko, 

Y.A., Liesack, W., and Zavarzin, G.A. (2004). Methylocella tundrae sp. nov., a novel methanotrophic 

bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54, 151-156.

Ding, J., Ding, Z.W., Fu, L., Lu, Y.Z., Cheng, S.H., and Zeng, R.J. (2015). New primers for detecting and 

quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches. Appl 

Microbiol Biotechnol.

Dumont, M.G., Lüke, C., Deng, Y., and Frenzel, P. (2014). Classification of pmoA amplicon pyrosequences 

using BLAST and the lowest common ancestor method in MEGAN. Frontiers in Microbiology 5.

Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., and 

Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. 

Proc Natl Acad Sci U S A 112, E911-920.

Egger, M., Rasigraf, O., Sapart, C.J., Jilbert, T., Jetten, M.S., Rockmann, T., Van Der Veen, C., Banda, N., 

Kartal, B., Ettwig, K.F., and Slomp, C.P. (2015). Iron-mediated anaerobic oxidation of methane in 

brackish coastal sediments. Environ Sci Technol 49, 277-283.

Erkel, C., Kube, M., Reinhardt, R., and Liesack, W. (2006). Genome of Rice Cluster I Archaea - the key 

methane producers in the rice rhizosphere. Science 313, 370-372.

Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, 

B.E., Zedelius, J., De Beer, D., Gloerich, J., Wessels, H.J.C.T., Van Alen, T., Luesken, F., Wu, M.L., Van 

De Pas-Schoonen, K.T., Op Den Camp, H.J.M., Janssen-Megens, E.M., Francoijs, K.J., Stunnenberg, 

H., Weissenbach, J., Jetten, M.S.M., and Strous, M. (2010). Nitrite-driven anaerobic methane oxidation 

by oxygenic bacteria. Nature 464, 543-548.



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 83PDF page: 83PDF page: 83PDF page: 83

4

83

Ettwig, K.F., Van Alen, T., Van De Pas-Schoonen, K.T., Jetten, M.S., and Strous, M. (2009). Enrichment 

and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ 

Microbiol 75, 3656-3662.

Ettwig, K.F., Zhu, B., Speth, D., Keltjens, J.T., Jetten, M.S., and Kartal, B. (2016). Archaea catalyze iron-

dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A.

Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., and Tyson, G.W. 

(2015). Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric 

metagenomics. Science 350, 434-438.

Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W. (2013). 

Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 

567-570.

He, Y., Li, M., Perumal, V., Feng, X., Fang, J., Xie, J., Sievert, S.M., and Wang, F. (2016). Genomic and 

enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota 

widespread in marine sediments. Nat Microbiol 1, 16035.

Herlemann, D.P.R., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J.J., and Andersson, A.F. (2011). 

Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME 

Journal 5, 1571-1579.

Hernandez, M.E., Beck, D.a.C., Lidstrom, M.E., and Chistoserdova, L. (2015). Oxygen availability is a major 

factor in determining the composition of microbial communities involved in methane oxidation. PeerJ 

3, e801.

Ho, A., Luke, C., Cao, Z., and Frenzel, P. (2011). Ageing well: methane oxidation and methane oxidizing 

bacteria along a chronosequence of 2000 years. Environ Microbiol Rep 3, 738-743.

Ho, A., Vlaeminck, S.E., Ettwig, K.F., Schneider, B., Frenzel, P., and Boon, N. (2013). Revisiting methanotrophic 

communities in sewage treatment plants. Appl Environ Microbiol 79, 2841-2846.

Holmes, D.E., Shrestha, P.M., Walker, D.J., and Dang, Y. (2017). Metatranscriptomic Evidence for Direct 

Interspecies Electron Transfer Between Geobacter and Methanothrix Species in Methanogenic Rice 

Paddy Soils.

Hou, A.X., Wang, Z.P., Chen, G.X., and Patrick, W.H. (2000). Effects of Organic and N Fertilizers on Methane 

Production Potential in a Chinese Rice Soil and its Microbiological Aspect. Nutrient Cycling in 

Agroecosystems 58, 333-338.

Hu, B.L., Shen, L.D., Lian, X., Zhu, Q., Liu, S., Huang, Q., He, Z.F., Geng, S., Cheng, D.Q., Lou, L.P., Xu, 

X.Y., Zheng, P., and He, Y.F. (2014). Evidence for nitrite-dependent anaerobic methane oxidation as a 

previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111, 4495-4500.

Ionescu, D., Siebert, C., Polerecky, L., Munwes, Y.Y., Lott, C., Hausler, S., Bizic-Ionescu, M., Quast, C., 

Peplies, J., Glockner, F.O., Ramette, A., Rodiger, T., Dittmar, T., Oren, A., Geyer, S., Stark, H.J., Sauter, 

M., Licha, T., Laronne, J.B., and De Beer, D. (2012). Microbial and chemical characterization of 

underwater fresh water springs in the Dead Sea. PLoS One 7, e38319.



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

Stratification and diversity of methane-oxidizing microorganisms in a nitrogen-fertilized Italian paddy soil 

84

Jetten, M.S.M., Stams, A.J.M., and Zehnder, A.J.B. (1992). Methanogenesis from acetate: a comparison 

of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiology 

Letters 88, 181-198.

Kalyuzhnaya, M.G., Lamb, A.E., Mctaggart, T.L., Oshkin, I.Y., Shapiro, N., Woyke, T., and Chistoserdova, 

L. (2015). Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Lake 

Washington Sediment. Genome Announcements 3, e00103-00115.

Kato, S., Kikuchi, S., Kashiwabara, T., Takahashi, Y., Suzuki, K., Itoh, T., Ohkuma, M., and Yamagishi, A. 

(2012). Prokaryotic Abundance and Community Composition in a Freshwater Iron-Rich Microbial Mat 

at Circumneutral pH. Geomicrobiology Journal 29, 896-905.

Kits, K.D., Klotz, M.G., and Stein, L.Y. (2015). Methane oxidation coupled to nitrate reduction under hypoxia 

by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environmental 

Microbiology 17, 3219-3232.

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and Glockner, F.O. (2013). 

Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation 

sequencing-based diversity studies. Nucleic Acids Res 41, e1.

Knief, C. (2015). Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic 

Bacteria Evaluated Based on pmoA as Molecular Marker. Frontiers in Microbiology 6.

Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kölbl, A., and Schloter, 

M. (2010). Biogeochemistry of paddy soils. Geoderma 157, 1-14.

Kruger, M., Eller, G., Conrad, R., and Frenzel, P. (2002). Seasonal variation in pathways of CH4 production 

and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Global 

Change Biology 8, 265-280.

Krüger, M., Frenzel, P., and Conrad, R. (2001). Microbial processes influencing methane emission from rice 

fields. Global Change Biology 7, 49-63.

Kruger, M., Frenzel, P., Kemnitz, D., and Conrad, R. (2005). Activity, structure and dynamics of the 

methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol 51, 323-331.

Kubo, K., Lloyd, K.G., J, F.B., Amann, R., Teske, A., and Knittel, K. (2012). Archaea of the Miscellaneous 

Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J 6, 1949-

1965.

Kuzyakov, Y., and Blagodatskaya, E. (2015) Microbial hotspots and hot moments in soil: Concept & review. 

Soil Biology and Biochemistry 83: 184-199.

Lee, H.J., Jeong, S.E., Kim, P.J., Madsen, E.L., and Jeon, C.O. (2015). High resolution depth distribution of 

Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded 

rice paddy. Front Microbiol 6, 639.

Lee, H.J., Kim, S.Y., Kim, P.J., Madsen, E.L., and Jeon, C.O. (2014). Methane emission and dynamics of 

methanotrophic and methanogenic communities in a flooded rice field ecosystem. FEMS Microbiol 

Ecol 88, 195-212.

Li, Q., Wang, F., Chen, Z., Yin, X., and Xiao, X. (2012). Stratified active archaeal communities in the sediments 

of Jiulong River estuary, China. Front Microbiol 3, 311.



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 85PDF page: 85PDF page: 85PDF page: 85

4

85

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or 

nucleotide sequences. Bioinformatics 22, 1658-1659.

Li, Y., and Wang, X. (2013). Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and 

nitrification of two rice cultivars in Chinese red soil regions. Plant and soil 2013 v.365 no.1-2, pp. 

115-126.

Liebner, S., Rublack, K., Stuehrmann, T., and Wagner, D. (2009). Diversity of aerobic methanotrophic 

bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb Ecol 57, 25-35.

Lipp, J.S., Morono, Y., Inagaki, F., and Hinrichs, K.U. (2008). Significant contribution of Archaea to extant 

biomass in marine subsurface sediments. Nature 454, 991-994.

Lueders, T., Chin, K.J., Conrad, R., and Friedrich, M. (2001). Molecular analyses of methyl-coenzyme 

M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the 

methanogenic phenotype of a novel archaeal lineage. Environmental Microbiology 3, 194-204.

Lueders, T., and Friedrich, M.W. (2002). Effects of amendment with ferrihydrite and gypsum on the structure 

and activity of methanogenic populations in rice field soil. Appl Environ Microbiol 68, 2484-2494.

Lüke, C., and Frenzel, P. (2011). Potential of pmoA amplicon pyrosequencing for methanotroph diversity 

studies. Appl Environ Microbiol 77, 6305-6309.

Myhre, G., Shindell, D., Bréon, F.M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.F., Lee, 

D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., T., T., and Zhang, H. (2013). Anthropogenic 

and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Narrowe, A.B., Angle, J.C., Daly, R.A., Stefanik, K.C., Wrighton, K.C., and Miller, C.S. (2017). High-resolution 
sequencing reveals unexplored archaeal diversity in freshwater wetland soils.

Noll, M., Klose, M., and Conrad, R. (2010). Effect of temperature change on the composition of the bacterial 

and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic 

rice field soil. FEMS Microbiol Ecol 73, 215-225.

Ondov, B.D., Bergman, N.H., and Phillippy, A.M. (2011). Interactive metagenomic visualization in a Web 

browser. BMC Bioinformatics 12, 385.

Op Den Camp, H.J.M., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., Jetten, M.S.M., 

Birkeland, N.-K., Pol, A., and Dunfield, P.F. (2009). Environmental, genomic and taxonomic perspectives 

on methanotrophic Verrucomicrobia. Environmental Microbiology Reports 1, 293-306.

Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, 

J., Jorgensen, B.B., Aiello, I.W., and Fry, J.C. (2005). Deep sub-seafloor prokaryotes stimulated at 

interfaces over geological time. Nature 436, 390-394.

Porat, I., Vishnivetskaya, T.A., Mosher, J.J., Brandt, C.C., Yang, Z.K., Brooks, S.C., Liang, L., Drake, 

M.M., Podar, M., Brown, S.D., and Palumbo, A.V. (2010). Characterization of archaeal community in 

contaminated and uncontaminated surface stream sediments. Microb Ecol 60, 784-795.

Pruesse, E., Peplies, J., and Glockner, F.O. (2012). SINA: accurate high-throughput multiple sequence 

alignment of ribosomal RNA genes. Bioinformatics 28, 1823-1829.



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

Stratification and diversity of methane-oxidizing microorganisms in a nitrogen-fertilized Italian paddy soil 

86

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glockner, F.O. (2013). 

The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. 

Nucleic Acids Res 41, D590-596.

Raghoebarsing, A.A., Pol, A., Van De Pas-Schoonen, K.T., Smolders, A.J., Ettwig, K.F., Rijpstra, W.I., 

Schouten, S., Damste, J.S., Op Den Camp, H.J., Jetten, M.S., and Strous, M. (2006). A microbial 

consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918-921.

Rui, J., Peng, J., and Lu, Y. (2009). Succession of bacterial populations during plant residue decomposition 

in rice field soil. Appl Environ Microbiol 75, 4879-4886.

Semrau, J.D., Dispirito, A.A., and Yoon, S. (2010). Methanotrophs and copper. FEMS Microbiology Reviews 

34, 496-531.

Singh, A., Singh, R.S., Upadhyay, S.N., Joshi, C.G., Tripathi, A.K., and Dubey, S.K. (2012). Community 

structure of methanogenic archaea and methane production associated with compost-treated 

tropical rice-field soil. FEMS Microbiol Ecol 82, 118-134.

Söhngen, N.L. (1906). Über Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle 

gebrauchen. Zeitschrift für Bakteriologie, Parasitenkunde und Infektionskrankheiten, II. Abteilung 

15, 513-517.

Takai, K., and Horikoshi, K. (2000). Rapid Detection and Quantification of Members of the Archaeal 

Community by Quantitative PCR Using Fluorogenic Probes. Applied and Environmental Microbiology 

66, 5066-5072.

Teske, A., Hinrichs, K.U., Edgcomb, V., De Vera Gomez, A., Kysela, D., Sylva, S.P., Sogin, M.L., and Jannasch, 

H.W. (2002). Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for 

anaerobic methanotrophic communities. Appl Environ Microbiol 68, 1994-2007.

Trotsenko, Y.A., and Murrell, J.C. (2008). Metabolic aspects of aerobic obligate methanotrophy. Advances in 

Applied Microbiology 63, 183-229.

Vaksmaa, A., Jetten, M.S.M., Ettwig, K.F., and Lüke, C. (2017). McrA primers for the detection and 

quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens’. 

Applied Microbiology and Biotechnology, 1-11.

Vaksmaa, A., Luke, C., Van Alen, T., Vale, G., Lupotto, E., Jetten, M.S., and Ettwig, K.F. (2016). Distribution 

and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil. 

FEMS Microbiol Ecol 92.

Van Teeseling, M.C.F., Pol, A., Harhangi, H.R., Van Der Zwart, S., Jetten, M.S.M., Op Den Camp, H.J.M., 

and Van Niftrik, L. (2014). Expanding the Verrucomicrobial Methanotrophic World: Description of 

Three Novel Species of Methylacidimicrobium gen. nov. Applied and Environmental Microbiology 80, 

6782–6791.

Wang, Y., and Qian, P.Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 

16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4, e7401.

Wang, Y., Zhu, G., Harhangi, H.R., Zhu, B., Jetten, M.S.M., Yin, C., and Op Den Camp, H.J.M. (2012). Co-

occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing 

bacteria in a paddy soil. FEMS Microbiology Letters 336, 79-88.



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

4

87

Watanabe, T., Wang, G., Taki, K., Ohashi, Y., Kimura, M., and Asakawa, S. (2010). Vertical changes in 

bacterial and archaeal communities with soil depth in Japanese paddy fields. Soil Science & Plant 

Nutrition 56, 705-715.

Welte, C., and Deppenmeier, U. (2014). Bioenergetics and anaerobic respiratory chains of aceticlastic 

methanogens. Biochim Biophys Acta 1837, 1130-1147.

Welte, C., Rasigraf, O., Vaksmaa, A., Versantvoort, W., Arshad, A., Op Den Camp, H., Jetten, M., Luke, C., 

and Reimann, J. (2016). Nitrate-and nitrite-dependent anaerobic oxidation of methane. Environmental 

Microbiology and Environmental Microbiology Reports.

Xu, Y., Ma, K., Huang, S., Liu, L., and Lu, Y. (2012). Diel cycle of methanogen mcrA transcripts in rice 

rhizosphere. Environmental Microbiology Reports 4, 655-663.

Zhang, G., Yu, H., Fan, X., Ma, J., and Xu, H. (2016). Carbon isotope fractionation reveals distinct process of 

CH4 emission from different compartments of paddy ecosystem. Scientific Reports 6, 27065.

Zheng, Y., Huang, R., Wang, B.Z., Bodelier, P.L.E., and Jia, Z.J. (2014). Competitive interactions between 

methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. 

Biogeosciences 11, 3353-3368.

Zhou, L., Wang, Y., Long, X.E., Guo, J., and Zhu, G. (2014). High abundance and diversity of nitrite-dependent 

anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS Microbiol Lett 360, 33-41.



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 88PDF page: 88PDF page: 88PDF page: 88



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 89PDF page: 89PDF page: 89PDF page: 89

5
�� Enrichment of anaerobic  

nitrate-dependent methanotrophic 
 ‘Candidatus Methanoperedens nitroreducens’  

archaea from an Italian paddy field soil



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 90PDF page: 90PDF page: 90PDF page: 90

�Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’  
archaea from an Italian paddy field soil

90



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

5

91

ENVIRONMENTAL BIOTECHNOLOGY

Enrichment of anaerobic nitrate-dependent methanotrophic
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Abstract Paddy fields are a significant source of methane
and contribute up to 20% of total methane emissions from
wetland ecosystems. These inundated, anoxic soils featuring
abundant nitrogen compounds and methane are an ideal niche
for nitrate-dependent anaerobic methanotrophs. After 2 years
of enrichment with a continuous supply of methane and nitrate
as the sole electron donor and acceptor, a stable enrichment
dominated by ‘Candidatus Methanoperedens nitroreducens’
archaea and ‘Candidatus Methylomirabilis oxyfera’ NC10
phylum bacteria was achieved. In this community, the
methanotrophic archaea supplied the NC10 phylum bacteria
with the necessary nitrite through nitrate reduction coupled to
methane oxidation. The results of qPCR quantification of 16S
ribosomal RNA (rRNA) gene copies, analysis of
metagenomic 16S rRNA reads, and fluorescence in situ hy-
bridization (FISH) correlated well and showed that after
2 years, ‘Candidatus Methanoperedens nitroreducens’ had
the highest abundance of (2.2 ± 0.4 × 108) 16S rRNA copies
per milliliter and constituted approximately 22% of the total
microbial community. Phylogenetic analysis showed that the
16S rRNA genes of the dominant microorganisms clustered

with previously described ‘Candidatus Methanoperedens
nitroreducens ANME2D’ (96% identity) and ‘Candidatus
Methylomirabilis oxyfera’ (99% identity) strains. The pooled
metagenomic sequences resulted in a high-quality draft genome
assembly of ‘Candidatus Methanoperedens nitroreducens
Vercelli’ that contained all key functional genes for the reverse
methanogenesis pathway and nitrate reduction. The diagnostic
mcrA gene was 96% similar to ‘Candidatus Methanoperedens
nitroreducens ANME2D’ (WP_048089615.1) at the protein
level. The ‘Candidatus Methylomirabilis oxyfera’ draft ge-
nome contained the marker genes pmoCAB, mdh, and nirS
and putative NO dismutase genes. Whole-reactor anaerobic
activity measurements with methane and nitrate revealed an
average methane oxidation rate of 0.012 mmol/h/L, with cell-
specific methane oxidation rates up to 0.57 fmol/cell/day for
‘Candidatus Methanoperedens nitroreducens’. In summary,
this study describes the first enrichment and draft genome of
methanotrophic archaea from paddy field soil, where these or-
ganisms can contribute significantly to the mitigation of meth-
ane emissions.

Keywords ‘CandidatusMethanoperedens nitroreducens’ .

Anaerobic oxidation ofmethane . NC10 phylum bacteria

Introduction

The methane concentration in the atmosphere has increased
continuously over the last 150 years. Methane is the second
most abundant greenhouse gas and exhibits radiative forcing
up to 34 times higher than that of CO2 (Myhre et al. 2013).
Paddy fields are a significant source of methane and contrib-
ute 10–20% to global methane emissions (Bodelier 2011;
Conrad 2009). The cultivated area dedicated to rice agriculture
occupies approximately 160 million ha of land worldwide and

Electronic supplementary material The online version of this article
(doi:10.1007/s00253-017-8416-0) contains supplementary material,
which is available to authorized users.

* Annika Vaksmaa
avaksmaa@science.ru.nl

1 Department of Microbiology, IWWR, Radboud University
Nijmegen, Nijmegen, The Netherlands

2 Department of Biotechnology, Delft University of Technology,
Delft, The Netherlands

3 Soehngen Institute of Anaerobic Microbiology,
Nijmegen, The Netherlands

Appl Microbiol Biotechnol (2017) 101:7075–7084
DOI 10.1007/s00253-017-8416-0



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

�Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’  
archaea from an Italian paddy field soil

92

is predicted to increase by 60% in the coming decades.
Without changes in cultivation practices, such increases will
result in even higher atmospheric methane emissions.

The global biogenic methane budget is directly linked to
the activity of methanogenic and methanotrophic microorgan-
isms in the environment. Methanotrophic organisms function
as a biofilter, and without their contribution, it is estimated that
the atmospheric methane concentration would be 10–60%
higher (Conrad 2009). Whereas aerobic methanotrophs are
well studied, much less is known about methane removal in
oxygen-limited nitrogen-loaded freshwater environments.
NC10 phylum (‘Candidatus Methylomirabilis oxyfera’) bac-
teria and ‘Candidatus Methanoperedens nitroreducens’ ar-
chaea are the only methanotrophic microorganisms known
to directly couple the anaerobic oxidation of methane to the
nitrogen cycle. NC10 phylum bacteria use nitrite as an elec-
tron acceptor (A), and ‘Candidatus Methanoperedens
nitroreducens’ archaea perform nitrate reduction (B) with
methane as an electron donor according to the following re-
actions:

8NO2
− þ 3CH4 þ 8Hþ→4N2 þ 3CO2 þ 10H2O

A;ΔG0
0 ¼ −987 kJ

.
mol CH4

� �

2x 4NO3
− þ CH4→4NO2

− þ CO2 þ 2H2Oð Þ

B;ΔG0
0 ¼ −503 kJ

.
mol

� �

8HNO3 þ 5CH4→5CO2 þ 4N2 þ 14H2O sumð Þ

In 2006, an enrichment culture in which nitrate and nitrite
reduction were coupled to the anaerobic oxidation of methane
was described for the first time (Raghoebarsing et al. 2006). In
that study, an inoculum from the sediment of a freshwater
canal was used to start an anaerobic enrichment. After
16 months, the culture was dominated by a consortium
consisting of archaea (10–15% of cells) belonging to the
Methanosarcinales family that were only distantly related to
ANME2D (86–87% in 16S ribosomal RNA (rRNA identity))
and a bacterium (approximately 80% of cells) of the candidate
division NC10. The enriched co-culture preferred nitrite over
nitrate as the substrate, although activity was observed with
both substrates (Raghoebarsing et al. 2006). The nitrite-
dependent anaerobic oxidation of methane (AOM) was later
assigned to phylumNC10 bacteria, which are able to carry out
this process in the absence of other microorganisms (Ettwig
et al. 2008). The bacterium uses an intra-aerobic mechanism
in which oxygen is produced via a putative nitric oxide dis-
mutase and subsequently used for methane oxidation via the
particulate methane monooxygenase complex. Assembly of
the genome of the NC10 bacterium revealed a complete meth-
ane oxidation pathway that included the pmoCAB operon and
an incomplete denitrification pathway. It was hypothesized

that the dismutation of nitric oxide to oxygen and nitrogen
supplies O2 for the methane monooxygenase. These NC10
phylum bacteria were named ‘Candidatus Methylomirabilis
oxyfera’ (Ettwig et al. 2010). Sequencing of the genome of the
AOM archaea and identification of their nitrate reductase in-
dicated that these archaea could couple nitrate reduction to
AOM (Arshad et al. 2015; Haroon et al. 2013). The responsi-
ble archaea were named ‘Candidatus Methanoperedens
nitroreducens.’

Recent microbial ecology studies have indicated sufficient
presence and activity of methanotrophic archaea in paddy
field soils (Lee et al. 2015; Vaksmaa et al. 2016) to warrant
investment in a long-term enrichment procedure to obtain
these paddy field AOM archaea and to study their physiology
and metabolic potential in more detail.

To achieve this goal, we started a sequencing batch biore-
actor continuously fed with nitrate and methane and inoculat-
ed with soil from an Italian paddy field soil harboring substan-
tial AOM archaeal cell numbers (Vaksmaa et al. 2016). After
establishing nitrate-dependent methane oxidation, the total
DNA of this biomass was sequenced using Ion Torrent tech-
nology, and the draft genome was annotated and analyzed.
The enriched microbial community was further characterized
by microscopy, 13CH4 and

15N activity assays, and qPCR.

Materials and methods

Source of inoculum

The soil was sampled in September 2013 from paddy fields at
the Italian Rice Research Unit in Vercelli, Italy (08° 22′ 25.89″
E; 45° 19′ 26.98″ N). These fields of silt loam soil were
flooded with approximately 15 cm of water and regularly
tilled. The soil of the experimental field was fertilized with
147.5 kg/ha nitrogen and 183 kg/ha potassium 21 days after
flooding. Soil was collected 95 days after flooding. The rice
variety cultivated in the field plots was Oryza sativa japonica
Onice. The soil was sampled down to 20 cm and transported
to the laboratory in a container flooded with water sampled
from the field. After storage at 4 °C for 6 months, the reactor
was started with 200 g of soil (wet weight).

Enrichment culture

A 2-L bioreactor (Applikon, The Netherlands) was operat-
ed at 27 °C as a sequencing batch reactor. The sequence
consisted of 12 h cycles of 10 h of constant medium sup-
ply, 1 h of biomass settling, and 1 h of pumping out of
excess liquid. The medium contained CaCl2·2H2O
(0.15 g/L) and KH2PO4 (0.01 g/L) and was autoclaved
before the addition of MgSO4·7H2O (0.1 g/L); 5 mL of a
trace element stock solution composed of ZnSO4·7H2O

7076 Appl Microbiol Biotechnol (2017) 101:7075–7084
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(0.2875 g/L), CoCl2·6H2O (0.12 g/L), CuSO4 (0.8 g/L),
NiCl2·6H2O (0.19 g/L), H3BO3 (0.014 g/L), MnCl2·4H2O
(0.2 g/L), Na2WO4·2H2O (0.02 g/L), Na2MoO4·2H2O
(0.0968 g/L), SeO2 (0.027 g/L), and CeCl2 (0.023 g/L);
3 mL of an iron stock solution composed of FeSO4·7H2O
(5 g/L) and NTA (10.31 g/L); and 1 mL of vitamin solution
(DSMZ 141). The medium was constantly sparged with
Ar/CO2 (95:5%) to maintain anaerobic conditions prior to
being supplied by peristaltic pump to the bioreactor at a
flow rate of 18.75 mL/h. The NaNO3 concentration in the
medium was increased from 1.25 to 5 mM after a year of
operation due to an increased consumption rate. The bio-
reactor was operated at pH 7, maintained with automatic
supply of KHCO3, stirred at 150 rpm, and sparged with
CH4-CO2 (95% vol/vol; purity 99.995%; flow rate
4.26 mL/min).

Activity measurements

Activitymeasurements were performed in the whole reactor in
batch mode after cutoff of the supply of medium and methane.
The nitrate in the bioreactor was depleted, and the headspace
was flushed with Ar-CO2 (95:5). Once residual methane was
no longer detected by gas chromatography, 5 mM 15N-NaNO3

and 20% 13C-CH4 (vol/vol) were added to the reactor and
headspace, respectively. Gas samples of 100 μL were taken
at various time points over 3–7 days; the production of 13C-
CO2 was monitored by gas chromatography-mass spectrome-
try (GC-MS) (Agilent 5975 inert MSD, Agilent, USA), and
the consumption of CH4 was measured by GC (Hewlett
Packard 5890, USA). Liquid culture samples of 1 mL
(duplicate) were collected for the determination of NO3 (mea-
sured by a Sievers 280i NO analyzer, GE Analytical
Instruments, USA) and NO2 and NH4 (measured by
colorimetric assays as described by Kartal et al. 2006).
Liquid samples were centrifuged for 1 min at 14,000g, and
the supernatant was removed for storage at −20 °C until
analysis.

Further activity assays were performed in 60-mL serum
bottles with 15 mL of biomass from the reactor. The re-
actor was stirred at 500 rpm for 5 min before sampling to
ensure appropriate mixing of all settled biomass. After
transfer of 15 mL of slurry, fresh medium (composition
described above) and 15N-NaNO3 (final concentration in
bottles, 5 mM) or 15N-NaNO2 (final concentration in bot-
tles, 1 mM) were added. The bottles were made anaerobic
by 5 cycles of vacuum and purging with argon-CO2 (95–
5%). An overpressure of 0.5 bar was introduced to the
bottles, and 10% 13C-CH4 was added. Measurements of
13C-CO2 and CH4 in a 50-μL headspace sample were
obtained by GC-MS and GC, respectively. Calibration
was performed with standard gas consis t ing of
QS:1.06%:0.82%:1.32%:459 ppm He/CO2/N2/O2/N2O

(Air Liquide BV, The Netherlands). Analysis of nitrogen
compounds was performed as described above for the
whole reactor as batch.

DNA extraction

DNAwas extracted from 10 mL of reactor biomass in dupli-
cate using a PowerSoil DNA Isolation Kit (MO BIO
Laboratories Inc., Carlsbad, CA, USA) according to the man-
ufacturer’s protocol with addition of 3 min beadbeating step.
DNA quantity and quality were assessed by UV-vis spectros-
copy (NanoDrop, ND-1000, Isogen Life Science,
The Netherlands).

Quantification by qPCR

The abundances of ‘Candidatus Methanoperedens
nitroreducens,’NC10 phylum bacteria, total bacteria, and total
archaea were quantified based on 16S rRNA gene amplifica-
tion by qPCR. The qPCR reactions were performed in tripli-
cate on all DNA extracts. ‘Candidatus Methanoperedens
nitroreducens’ were targeted with the clade-specific primers
641F (5′ ACTGDTAGGCTTGGGACC3′) and 834R (5′
ATGCGGTCGCACCGCACCTG3′) (previously reported as
FISH probes) (Schubert et al. 2011). NC10 phylum bacteria
were amplified with the 16S rRNA primers p2F_DAMO (5′
GGGGAACTGCCAGCGTCAAG3′) and p2R_DAMO (5′
CTCAGCGACTTCGAGTACAG3′) (Ettwig et al. 2009b).
The total number of archaea was quantified using the follow-
ing primers: Arch-349F (5′ GYGCASCAGKCGMGAAW3′)
and Arch-807R (5′ GGACTACVSGGGTATCTAAT3′). For
bacter ia , the primers Bac-341F (5 ′ CCTACGGG
NGGCWGCAG3 ′) and Bac-515R (5 ′ TTACCGCG
GCTGCTGGCAC3′) (Klindworth et al. 2013) were used.
All qPCR reactions were performed using PerfeCTa Quanta
master mix (Quanta Biosciences, Gaithersburg, MD, USA)
and 96-well optical plates on a Bio-Rad IQ™ 5 cycler (Bio-
Rad, USA). Absolute quantification was performed by com-
parison to standard curves obtained using a tenfold serial di-
lution of pGEM-T Easy plasmid DNA (Promega, USA) car-
rying an insert of the target gene obtained using the same
primers used for qPCR. Standard curve samples were used
as a control for each qPCR run.

Fluorescence in situ hybridization

‘CandidatusMethanoperedens nitroreducens’ and NC10 phy-
lum bacteria were detected using 2 mL of reactor biomass
sample. The sample was pelleted, washed twice with 1 mL
of 1× PBS, and fixed with paraformaldehyde on ice for 3 h.
Fluorescence in situ hybridization (FISH) was performed as
described by Ettwig et al. (2008).

Appl Microbiol Biotechnol (2017) 101:7075–7084 7077
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Metagenome sequencing

Ion Torrent sequencing was performed on DNA samples ob-
tained from the bioreactor after 1 and 2 years of operation.
DNA was isolated as described above. In total, 185 ng of
isolated genomic DNA was sheared for 9 min using a
Bioruptor® UCD-200 (Thermo Fisher Scientific Inc., USA).
Libraries were prepared using an Ion Plus Fragment library kit
(Thermo Fisher Scientific Inc., USA) according to the manu-
facturer’s instructions. For size selection of the adapter ligated
fragments, an E-Gel® electrophoresis system was used with a
2% E-Gel® SizeSelect™ agarose gel (Life Technologies,
Bleiswijk, The Netherlands). Eight cycles of amplification of
the size-selected fragments were performed as suggested in
the protocol. The concentrations and fragment lengths of the
libraries were determined with a Bioanalyzer® 2100 and High
Sensitivity DNA Kit (Agilent Technologies, Santa Clara, CA,
USA.) The library was diluted to a final concentration of
26 pM for emulsion PCR. Emulsion PCR was performed
using an Ion OneTouch™ 2 Instrument and Ion PGM™
Template OT2 400 Kit (Thermo Fisher Scientific Inc., USA)
according to the manufacturer’s instructions. The template-
positive Ion Sphere™ Particles (ISPs) were enriched using
the Ion One Touch™ ES (Thermo Fisher Scientific Inc.,
USA), loaded on an Ion 318™ v2 Chip and sequenced using
an Ion PGM™ Sequencing 400 Kit with 850 nucleotide flows
according to the manufacturer’s instructions. After sequenc-
ing, all raw reads were imported into CLC Genomics
Workbench v. 9 (QIAGEN Aarhus A/S, Denmark) for initial
data analysis, including trimming of low-quality and short
reads (cutoff value of 100 nucleotides), followed by assembly
of the reads obtained from both sequencing runs (word size
30, bubble size 5000). The raw reads of metagenome sequenc-
ing after 1 and 2 years have been deposited to the European
Nucleotide Archive, with study accession number
PRJEB20370. To extract the contigs of ‘Candidatus
Methanoperedens nitroreducens Vercelli,’ the contigs were
binned based on GC content and coverage using RStudio
(RStudio Team 2015) with the GC script. The contigs of
‘Candidatus Methanoperedens nitroreducens Vercelli’ were
extracted from all assemblies, and reads mapping to contigs
were reassembled in CLC (word size 30, bubble size 5000).
The completeness of the draft genome and contamination
were assessed by CheckM (Parks et al. 2015). MaGe, online
full annotation and integration automated pipeline (Vallenet
et al. 2009, 2006, 2017), was used to annotate the genome
of ‘Candidatus Methanoperedens nitroreducens Vercelli,’
and this subsequently was visualized in Artemis (Rutherford
et al. 2000). The annotated genome of ‘Candidatus
Methanoperedens nitroreducens Vercelli’ has been depos-
ited at GenBank under the accession ERS1800110.
BLAST was used to search for key genes in ‘Candidatus
Methylomirabilis oxyfera.’ The contigs from ‘Candidatus

Methylomirabilis oxyfera’ were extracted after differential
mapping. The reads from each year were mapped to the
assembly from the combined years (0.5 length fraction
and 0.95 similarity), and both values for each read were
plotted against one another in RStudio. The contigs con-
taining the nod, pmo, nirS, and 16S genes were manually
curated to extend them over the ends of the genes. The
annotated contigs were checked using the visualization
and annotation tool Artemis.

Results

Enrichment procedure for anaerobic oxidation
of methane organisms in the bioreactor

The microbial cells in the inoculum and enrichment culture
were quantified by qPCR based on the 16S rRNA gene. The
abundance of ‘Candidatus Methanoperedens nitroreducens’
was one to two orders of magnitude higher than that of
NC10 phylum bacteria in the inoculum slurry (Table 1).
After 2 years of enrichment, ‘Candidatus Methanoperedens
nitroreducens’ constituted approximately 22% of the total mi-
crobial community based on the qPCR results and was one
order of magnitude more abundant than NC10 phylum bacte-
ria. The growth of ‘Candidatus Methanoperedens
nitroreducens’ started after 10 months of enrichment. The
lag phase of NC10 phylum bacteria appeared to be longer,
but after a year, their 16S rRNA gene copy numbers had
already increased from 103 to 107 per milliliter (Fig. 1).

Fluorescence in situ hybridization

Biomass samples from the enrichment culture were analyzed
with specific probes for ‘Candidatus Methanoperedens
nitroreducens’ and NC10 phylum bacteria after 2 years of
enrichment. Both microorganisms were present in the reactor
(Fig. 2), although the cell numbers of the NC10 bacteria ap-
peared to be higher than determined by qPCR.

Activity of the nitrate-dependent anaerobic oxidation
of methane co-culture

The culture in the bioreactor oxidized CH4 to CO2 using ni-
trate as an electron acceptor. The oxidation rates increased
over the time span of 2 years. The initial potential to oxidize
methane at the expense of nitrate in the soil slurries was
16.8 nmol/g dry weight/day with 2 mM NaNO3 versus
3.7 nmol/g/day in the controls, which were incubated without
any external electron acceptor and 10% methane in the head-
space (Vaksmaa et al. 2016). During the 2 years of bioreactor
operation, neither nitrite (<80 μmol/L) nor ammonia was de-
tected (below the detection level) in significant quantities.

7078 Appl Microbiol Biotechnol (2017) 101:7075–7084
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After 2 years, the nitrate consumption and methane consump-
tion were 0.055 and 0.012 mmol/h/L, respectively (Fig. 3).
Activity measurements with 13C-CH4 with 1 mM nitrite and
5 mM nitrate in serum bottles after 2 years of enrichment
indicated that only the conversion of methane to CO2

(0.19 mmol/h/L) occurred in bottles amended with nitrate.
Surprisingly, the methane conversion rates in serum bottles
amended with nitrite were similar to those in the control sam-
ple, where no activity was seen (Supplementary Fig. S1).

Metagenomic analysis and classification based on the 16S
ribosomal RNA gene

After 1 and 2 years of enrichment, DNA was extracted from
the culture and sequenced by Ion Torrent technology
(Supplementary Table S1) to first analyze the 16S rRNA gene
composition and then to assemble draft genomes.

From the two metagenomes obtained after 1 and 2 years of
enrichment, 1014 and 1423, 16S rRNA reads were extracted,
respectively. The phylogenetic classifications for groups with
an abundance of greater than 1.5% of the total number of 16S
rRNA gene reads are shown in Fig. 4. Of the 1014 16S rRNA

reads from the first year, 19.1% were assigned to GOM Arc I
(the group to which ‘Candidatus Methanoperedens’ is classi-
fied in the ARB SILVA database (Ludwig et al. 2004)),
followed by 8.5% assigned to Chloroflexi, 7% OC31, 6.9%
CandidatusMethylomirabilis (classified as Nitrospirae in the
ARB SILVA database), and 4.4% Phycisphaeraceae of
Planctomycetes. Of the 1423 reads obtained after 2 years of
enrichment, 22% were assigned as GOM Arc I, followed by
15% Candidatus Methylomirabilis, 6.1% Rhodocyclaceae of
Betaproteobac ter ia , 5 .6% Comamonadaceae of
Betaproteobacteria , and 3.5% Anaerolineaceae of
Chloroflexi. Draft genomes were binned based on GC
content-coverage (Supplementary Fig. S2) and assembled
and annota ted in MaGe (17) . The ‘Candida tus
Methanoperedens nitroreducens Vercelli’ draft genome
contained 250 contigs, with a total size of 3.5 Mb. The com-
pleteness as assessed by CheckM was 97.7%. The genome
contained all key enzymes for the reverse methane oxidation
pathway and nitrate reductase (Supplementary Table S2).
Phylogenetic analysis of the 16S rRNA gene from the assem-
bled genome revealed that the ‘CandidatusMethanoperedens
nitroreducens’ 16S rRNA gene had 96% identity to
‘Candidatus Methanoperedens nitroreducens ANME2D’

Fig. 2 Fluorescent micrograph of biomass sample from the enrichment
culture. Blue corresponds to Cy5-EUBMIX, total bacteria, pink to NC10
phylum bacteria (Cy5-EUBMIX, DAMO193), and green to ‘Candidatus
Methanoperedens nitroreducens’ (FLUOS 641) (Color figure online)

Table 1 16S rRNA gene copies of total archaea, ‘Candidatus Methanoperedens nitroreducens,’ total bacteria, and NC10 phylum bacteria in the
enrichment at the start of the reactor and after 0.5, 1, and 2 years of operation (mean ± SE; n = 6), calculated per 1 mL of reactor sample

T = 0 0.5 years 1 year 1.5 years 2 years

Total archaea 2.6 ± 0.2 × 106 6.7 ± 0.3 × 106 1.3 ± 0.8 × 108 2.4 ± 0.4 × 108 6.6 ± 0.9 × 108

M. nitroreducens 1.9 ± 0.1 × 105 2.7 ± 0.4 × 106 3.2 ± 0.1 × 107 1.7 ± 0.0 × 108 2.2 ± 0.4 × 108

Total bacteria 1.6 ± 0.1 × 108 3.0 ± 1.2 × 107 2.3 ± 0.0 × 107 1.7 ± 0.0 × 107 3.2 ± 0.3 × 108

NC10 phylum bacteria 1.9 ± 0.9 × 103 8.8 ± 4.8 × 103 2.2 ± 0.3 × 106 2.0 ± 0.1 × 106 7.9 ± 0.3 × 107
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Fig. 1 qPCR quantification of the 16S rRNA gene copy numbers of
‘Candidatus Methanoperedens nitroreducens’ and NC10 phylum
bacteria over the period of 2 years (all time points were analyzed using
duplicate DNA extractions and triplicate qPCR reactions). The time in
days is depicted horizontally, whereas the 16S rRNA copies per milliliter
of enrichment are depicted vertically
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(JMIY01000002.1) (Haroon et al. 2013) and 97% identity to
‘Candidatus Methanoperedens BLZ1’ (LKCM01000080.1)
(Arshad et al. 2015) (Fig. 5). The diagnostic methyl-
coenzyme M reductase mcrA gene showed 96% identity at
the protein level to (WP_048089615.1) and 89% identity to
(KPQ44219.1) (Fig. 6). The 16S rRNA gene of the NC10
phylum bacteria had 99% nucleotide identity to ‘Candidatus
Methylomirabilis oxyfera’ (locus tag DAMO__16s_rRNA_1)
(FP565575) and clustered within group A of the NC10 phy-
lum (Fig. 7). The ‘CandidatusMethylomirabilis oxyfera’ draft
genome contained the diagnostic pmoCAB, mxaF methanol
dehydrogenase, nirS cd1 nitrite reductase, and putative NO
dismutase genes. The analyzed pmoA gene had 95% identity

at the protein level to ‘Candidatus Methylomirabilis oxyfera’
(CBE69519). We also identified the methanol dehydrogenase
large subunit (mxaF), with 85% identity (CBE67248) at the
protein level, and two copies of the putative nitric oxide dis-
mutase (nod) with 98% identity to CBE69502 and 92% iden-
tity to CBE69496. The identified nitrite reductase (nirS) had
93% identity to ‘Candidatus Methylomirabilis oxyfera’
(CBE69462).

Discussion

Nitrate-dependent anaerobic oxidation of methane (N-AOM)
was discovered a decade ago, but the characterization of the
metabolism has been hindered by the slow growth of the re-
sponsible organisms. The N-AOM microorganisms
‘Candidatus Methanoperedens nitroreducens’ archaea and
NC10 phylum bacteria have been detected in various fresh
water sediments (Welte et al. 2016). In this study, we started
an enrichment culture fed solely with methane and nitrate using
a paddy field soil harboring significant amounts of ‘Candidatus
Methanoperedens nitroreducens’ (Vaksmaa et al. 2016)
as the inoculum. Based on qPCR, FISH, and metagenome
analyses, the enrichment was dominated by ‘Candidatus
Methanoperedens nitroreducens’ after 2 years of enrichment.

Many previous enrichments were fed with nitrite or a mix-
ture of nitrite and nitrate instead of nitrate only; such conditions
are presumably advantageous to NC10 phylum bacteria. We
intentionally omitted ammonium from the medium as other
studies showed that such cultures would yield a mixed culture
of ‘CandidatusMethanoperedens nitroreducens’ and anammox
bacteria, which could outcompete NC10 phylum bacteria for
nitrite (Shi et al. 2013). Our previous field work demonstrated a
high abundance of ‘Candidatus Methanoperedens
nitroreducens’ in the paddy field soil (Vaksmaa et al. 2016),
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JMIY01000002.1, ‘Candidatus Methanoperedens nitroreducens ANME2D’

JF304119, uncultured archaeon, outfall sediment
KC604431, uncultured archaeon, groundwater

JF304118, uncultured archaeon, outfall sediment
FJ902710, uncultured archaeon, sediment biomat

16S rRNA ‘Candidatus Methanoperedens nitroreducens Vercelli’ 

LKMCM0100080.1, ‘Candidatus Methanoperedens BLZ1’
AB161352, uncultured archaeon, petroleum contaminated soil

HM244261, uncultured archaeon, lake sediment

JN398019, uncultured archaeon, spring pit
EU155918, uncultured archaeon, minerotrophic fen
DQ301885, uncultured archaeon, acidic peatland

FN429785, uncultured archaeon, marine sediment
HM244295, uncultured archaeon, lake sediment

FJ982718, uncultured archaeon, submarine permafrost
JN397641, uncultured archaeon, river bank
KC604432, uncultured archaeon, groundwater

JN397864, uncultured archaeon, spring pit
HM244183, uncultured archaeon, lake sediment

JN798488, uncultured archeon, hydrothermal vent
FN553696, uncultured archeon, Longatchev hydrothermal vent

HQ916487, uncultured archeon, Lei-Gong-Huomud vulcano sediment
HQ654874, uncultured archeon, Nirano mud vulcano sediment

HQ588651, uncultured archeon, Amsterdam mud vulcano sediment

FJ712371, uncultured archeon, Kazan mud vulcano sediment
KJ881619, uncultured archaeon, Red Sea upper convective layer 

AB329824, uncultured archaeon, hydrothermal depostits

ANME1

0.05

Fig. 5 Phylogenetic tree illustrating the relationships between the
assembled 16S rRNA contig of ‘Candidatus Methanoperedens
nitroreducens’ and closely related sequences. The phylogenetic tree was

constructed in ARB using the neighbor-joining method. The tree was
rooted to the ANME1 cluster. The scale bar represents a difference of
0.05 substitutions per site

JMIY01000002.1 ‘Candidatus Methanoperedens nitroreducens ANME2D’
JN185004, uncultured archaeon, soda lake sediment

HQ341615, uncultured archaeon, sediment from the Black sea
JQ618242, uncultured archaeon, rice rhizosphere soil

LKCM01000102.1 ‘Candidatus Methanoperedens BLZ1’
EU495303, anaerobic enrichment culture from Twente channel
KX290030, uncultured archaeon, North Sea
KX290037, uncultured archaeon, State channel sediment
KX290028, uncultured archaeon, Jordan river sediment

JQ618200, uncultured archaeon, rice rhizosphere soil
KF758448, enrichment culture from sewage treatement plant sludge

FR871726, uncultured archaeon, saline groundwater from borehole
KX290026, uncultured archaeon, Citarum river sediment

HM005038, uncultured archaeon, Napoli mud vulcano sediment 
GU989589, uncultured archaeon, Norwegian sea sediment

JX826414, uncultured archaeon, Guayamas basin hydrothermal vent sediment
FJ403682, uncultured archaeon, cold Seeps of Okhotsk Sea
AY883171, uncultured archaeon, Mediterranean Sea mud volcano

GU989565, uncultured archaeon, Norwegian sea sediment
EU496892, uncultured archaeon, Gulf of Mexico sediment

EU681937, uncultured archaeon, Pearl river estuary sediment
AM942097, uncultured archaeon, Marennes-Oleron Bay sediment

FJ640794, uncultured archaeon, Juan de Fuca Ridge hydrothermal vent sediment

Methanosarcina

McrA ‘Candidatus Methanoperedens nitroreducens Vercelli’ 

0.05

Fig. 6 Phylogenetic tree illustrating the relationships between the mcrA
contig of ‘Candidatus Methanoperedens nitroreducens’ and closely
related sequences. The phylogenetic tree was constructed in ARB using

the neighbor-joining method. The tree was rooted to theMethanosarcina
cluster, including Methanosarcina mazei. The scale bar represents a
difference of 0.05 substitutions per site
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which was confirmed by qPCR of the inoculum slurry. The
inoculum slurry contained approximately 1.9 ± 0.1 × 105 copies
per milliliter of the 16S rRNA gene of ‘Candidatus
Methanoperedens nitroreducens’ and 1.9 ± 0.3 × 103 copies
per milliliter of NC10 phylum bacteria. After 2 years of enrich-
ment, these numbers had increased to 2.2 ± 0.4 × 108 16S rRNA
copies per milliliter of ‘Candidatus Methanoperedens
nitroreducens’, corresponding to 22% of the total detected 16S
rRNA copies (bacteria plus archaea). These numbers indicate a
doubling time of 1 to 2 months. The abundance of 16S rRNA
gene copies of NC10 phylum bacteria was 7.9 ± 0.3 × 107,
corresponding to approximately 4% of the total copies.

The qPCR copy numbers correlated well with the
metagenome sequencing resul ts for ‘Candidatus
Methanoperedens nitroreducens’, with an abundance of 16S
rRNA reads of 22% after 2 years. The percentage of reads
assigned to NC10 phylum bacteria was 15%, possibly indicat-
ing underestimation by qPCR. The results based on the two
methods presented here provided insight into the growth dy-
namics of both methane oxidizers. The growth of ‘Candidatus
Methanoperedens nitroreducens’ was observed after approxi-
mately 10 months of acclimatization, whereas for NC10 phy-
lum bacteria, more than a year was necessary before a sub-
stantial increase in cell numbers was observed. The initial
growth of NC10 phylum bacteria was presumably nitrite-lim-
ited. Similar lag phases of the growth of NC10 phylum bac-
teria in enrichment cultures have been reported previously.
Zhu et al. showed that ‘Candidatus Methanoperedens
nitroreducens’ only started to increase in an enrichment

obtained from minerotrophic peatland after 9 months, when
significant methane oxidation rates (9 nmol/day/g in serum
bottles, based on CO2 production) indicated microbial growth
(Zhu et al. 2012). In addition to substrate preference and avail-
ability, temperature has been implicated as a decisive factor in
the outcome of AOM enrichments. In enrichments started
from wastewater treatment plant sludge and lake sediments,
a co-enrichment of NC10 phylum bacteria and ‘Candidatus
Methanoperedens nitroreducens’ was obtained at 35 °C,
whereas at 22 °C, only NC10 phylum bacteria were enriched
(Hu et al. 2009).

In our enrichment culture, the methane oxidation potential
increased in accordancewith the 16S rRNA copy number. The
batch incubations performed with the whole bioreactor re-
vealed average methane oxidation and nitrate reduction after
2 years of 0.055 and 0.012 mmol/h/L, respectively. Based on
13C-CO2 production, the cell-specific methane oxidation rates
after 2 years were 0.57 fmol/cell/day for ‘Candidatus
Methanoperedens nitroreducens’. This is in the same range
as a previously reported nitrate-dependent AOM rates that
we measured in paddy field soil in which the estimated cell-
specific rates were 1.2 fmol/cell/day of CH4 (Vaksmaa et al.
2016) as well as NC10 phylum bacteria enrichment in which
the cell-specific rates were about 0.2 fmol/cell/day of CH4

(Ettwig et al. 2009b) and is also comparable to rates reported
for sulfate-dependent AOM by ANMEs (0.7 fmol CH4/cell/
day) (Nauhaus et al. 2005). Unfortunately, we did not observe
nitrite-dependent methane oxidation in the batch incubation,
suggesting that either 1 mM nitrite was greater than the

FP565575, ‘Candidatus Methylomirabilis oxyfera’
16S rRNA ‘Candidatus Methylomirabilis oxyfera’, Vercelli bioreactor

KC539792, enrichment clone EBa14, activated sludge and methanogenic sludge

KU891931 ‘Candidatus Methylomirabilis sinica’
JQ279042, unculutred bacterium, groundwater

FJ907181, enrichment clone LCB_B1C1,  lake and anaerobic digester and activated sludge 
DQ837241, uncultured bacterium, Donana castal aquifer

AB930699, uncultured bacterium, water in dam reservoir

FJ810544, uncultured bacterium, contaminated groundwater

JX120382, uncultured bacterium, subsurface aqiufer sediment
JQ86980, uncultured bacterium, hydrocarbon contaminated aquifer sediment
JN643033, uncultured bacterium, microbial mat from lava tube wall

Group B

Group C

Group D

Acidobacteria

0.05

Fig. 7 Phylogenetic tree illustrating the relationships between the 16S
rRNA contig of Methylomirabilis bacteria from the metagenome and
closely related sequences. Depicted is the clustering of the NC10 clade
into groups A–D. ‘Candidatus Methylomirabilis oxyfera’ and
‘Candidatus Methylomirabilis sinica’ of group A are marked in red.

The scale bar represents a difference of 0.05 substitutions per site. The
tree was constructed in ARB using the neighbor-joining algorithm with
Jukes-Cantor correction. The tree was rooted to Acidobacteria (Color
figure online)
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inhibitory concentration for the organism, regardless of their
capacity to metabolize nitrite or the biomass requires a longer
adaptation time to overcome the previous nitrite limitation.
Based on the stoichiometry of the reactions for nitrate- and
nitrite-dependent anaerobic oxidation of methane, AOM or-
ganisms accounted for approximately 46% of nitrate con-
sumption, whereas presumably other nitrate reducers in the
reactor, such as denitrifiers, were responsible for the remain-
ing 54% of nitrate loss.

Metagenome analysis revealed that only a few phyla other
than ‘CandidatusMethanoperedens nitroreducens’ and NC10
phylum bacteria were represented in greater than 5% abun-
dance. Anaerolineales (8.5% abundance) belonging to
Chloroflexi are obligate anaerobes that have previously been
observed in anaerobic methanotrophic (Ettwig et al. 2009a;
Siniscalchi et al. 2015) and methanogenic enrichment cultures
(Gray et al. 2011; Liang et al. 2015; Yamada et al. 2005).
Anaerolineales may be responsible for the degradation of n-
alkanes and release formate, acetate, hydrogen, and carbon
dioxide. Hug et al. indicated that Anaerolineales may provide
organic acids to other microorganisms such as acetoclastic
methanogens (DeSantis et al. 2006). The physiology of
Candidate division OC31 (7% abundance), which was discov-
ered more recently, remains unknown. Phycisphaerae, a class
of Planctomycetes (4.4% abundance), has also been shown to
degrade heteropolysaccharides (Wang et al. 2015) and was
previously found to be highly abundant in AOM and other
anaerobic enrichment cultures. After 2 years of enrichment,
Rhodocyclaceae accounted for 6.1% and Comamonadaceae
for 5.6%. Both of these belong to Betaproteobacteria.
Members of Comamonadaceae can perform denitrification,
which may explain the observed nitrate reduction rate, which
was higher than expected based on the methane oxidation rate
alone.

The 3.5-Mb size of the draft genome of ‘Candidatus
Methanoperedens nitroreducens Vercelli’ is comparable
to those of the publicly available genomes of ‘Candidatus
Methanoperedens BLZ1’ (3.7 Mb) and ‘Candidatus
Methanoperedens nitroreducens ANME2D’ (3.2 Mb).
The GC content of the ‘Candidatus Methanoperedens
nitroreducens Vercelli’ genome is 44.1% and is more sim-
ilar to that of ‘Candidatus Methanoperedens nitroreducens
ANME2D’ (GC content 43.2%) than ‘Candidatus
Methanoperedens BLZ1’ (40.8%). Functional gene analy-
sis revealed that the mcrA gene has 96% identity to
‘Candidatus Methanoperedens nitroreducens ANME2D’
and 89% identity to ‘Candidatus Methanoperedens
BLZ1’ at the protein level. A similar trend was observed
for the majority of enzymes in the reverse methanogenesis
pathway. Analysis of the denitrification pathway revealed
the presence of nitrate reductases as well as nitric and ni-
trous oxide reductases in the draft genome, whereas no
nitrite reductase could be identified.

In summary, this is the first enrichment culture from paddy
field soil supplied solely with nitrate and methane to enrich
‘CandidatusMethanoperedens nitroreducens’ and NC10 phy-
lum bacteria. The newly enriched co-culture will be used in
future studies to unravel the ecophysiological properties of
AOM microbes and investigate their role in mitigating meth-
ane emissions from paddy fields.
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In this thesis, several environmental and eco-physiological aspects of anaerobic oxidation of 

methane (AOM) were investigated experimentally. In the environmental studies on Italian paddy 

fields (Chapters 2 and 4) we characterized the presence, abundance and stratification of NC10 

phylum bacteria, carrying out nitrite-dependent AOM, and of ‘Candidatus Methanoperedens 

nitroreducens’, an archaeon responsible for coupling nitrate reduction to AOM. The get more 

insight into the environmental distribution of these recently described archaea we designed 

new molecular tools (Chapter 3) for detection of ‘Candidatus Methanoperedens nitroreducens’ 

based on the key enzyme of the reverse methanogenesis pathway; the methyl-coenzyme M 

reductase (mcrA). In order to describe ‘Candidatus Methanoperedens nitroreducens’ in more 

detail, an enrichment culture fed with methane and nitrate was established by using Italian 

paddy field soil as inoculum. After 2 years of operation the microbial community was investigated 

with isotope activity tests, metagenomics and microscopy, and all methods showed that a new 

‘Candidatus Methanoperedens nitroreducens’ strain (Chapter 5) dominated the culture.

Microbial communities in paddy fields and the role of anaerobic 
methanotrophs

Bacterial and archaeal communities in paddy field soil are very diverse. Paddy fields provide 

a wide range of environmental conditions creating a variety of environmental niches; under 

flooding conditions, oxygen is rapidly consumed in the top soil layers, creating anoxia in 

deeper layers of soil, where radial oxygen loss through roots creates oxic pockets. The roots 

also provide organic matter to the rhizosphere microorganisms (Liesack et al., 2000). During 

the cultivation stage of rice, nitrogen fertilizers are applied to the field and provide external 

input of electron acceptors derived from the oxidation of fertilizer ammonium to nitrate and 

nitrite. After the harvest, during the resting and drainage stage, fields are dry and the oxygen 

penetration depth to the soil increases. The microbial communities in paddy fields are able to 

adapt to these fluctuating conditions and seem to be rather stable in composition. It is more 

the relative abundance and activity of specific groups that changes (Kögel-Knabner et al., 2010, 

Noll et al., 2010, Watanabe et al., 2010). The activity of the microbial communities in paddy 

fields soil shows both a high synergy and dependency on these fluctuating conditions and in 

return assist rice growth by nutrient cycling. 

Although microbial communities have been studied in the paddy fields before, anaerobic 

oxidation of methane in these system was generally not addressed, thus we were able to 

expand our microbial eco-physiology knowledge of this important ecosystem. In addition, our 

16S rRNA gene amplicon surveys showed the presence of Bathyarchaeota and Verrucomicrobia 

in the paddy fields
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Aside from commonly found phyla, we observed to our surprise that, in the paddy field microbial 

community, the for a long time neglected phylum of Bathyarchaeota constituted up to 50% 

of the total archaeal reads at the depth of 10 cm of soil. Although this phylum is detected 

in a wide range of habitats, from permafrost (Shcherbakova et al., 2016), marine methane 

hydrate sediments (Inagaki et al., 2006) to petroleum contaminated soil (Kasai et al., 2005) and 

eight genome sequences are available, their role in the environment can only be speculated 

upon now. So far their carbon and energy source is known (Kubo et al., 2012). Due to recent 

advances in sequencing technology, two genomes of the Bathyarchaeota were assembled from 

coal-bed methane wells in Australia, which contained genes encoding for the MCR complex 

(mcrABGCD). This allowed to hypothesize that they may be methylotrophic methanogens 

(Evans et al., 2015). As these microorganisms are highly abundant in a variety of ecosystems, 

it is very relevant to investigate their role in such environments. Therefore, there is a high need 

to perform genome assisted enrichments and isolation.

Another fascinating finding, based on the 16S rRNA gene diversity analysis, was the detection 

of potential aerobic Verrucomicrobial methanotrophs in several layers of the paddy field soil. 

These microbes of the Methylacidiphilum cluster were until now only observed in extreme 

environments, such as mud volcanoes, acidic hot springs and geothermal areas (Dunfield et al., 

2007, Islam et al., 2008, Op den Camp et al., 2009, van Teeseling et al., 2014). Both mesophilic 

and thermophilic Verrucomicrobial methanotrophs are able to use oxygen as electron acceptor 

to oxidize methane and their genome contains multiple gene clusters encoding for the 

pmoCAB; the key enzyme for aerobic methanotrophy. The observed 16S rRNA gene sequences 

in our study were up to 96% similar to the described strains of Methylacidiphilum. Future 

metagenomic and eco-physiological studies in paddy fields should be directed to enrich and 

isolate these less-extreme relatives to reveal if they are aerobic methanotrophs. If so, we may 

reevaluate the contribution of these particular microorganisms in many other environments 

as well.

As mentioned above, the main focus of this thesis was the AOM process and microorganism 

carrying out nitrate-and nitrite-dependent anaerobic oxidation of methane. As ‘Candidatus 

Methanoperedens nitroreducens’ and its genome was only recently described (Haroon et al., 

2013, Arshad et al., 2015), we were for the first time able to assess the importance of this 

intriguing microorganism in Italian paddy fields. 

Several wetlands, including paddy fields, have been studied for the activity and abundance 

of nitrite-dependent AOM NC10 phylum bacteria (Deutzmann & Schink, 2011, Wang et al., 

2012, Zhu et al., 2012, Shen et al., 2014, Shen et al., 2015). As these were recognized as AOM 

microorganisms earlier (Raghoebarsing et al., 2006, Ettwig et al., 2008) than ‘Candidatus 

Methanoperedens nitroreducens’, much of the observed nitrate-and nitrite-dependent 
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AOM activity has been assigned to these bacteria. AOM research including ‘Candidatus 

Methanoperedens nitroreducens’ has only emerged recently.

To date only few studies have investigated the co-occurrence of ‘Candidatus Methanoperedens 

nitroreducens’ and NC10 phylum bacteria in paddy fields (Lee et al., 2015, Ding et al., 2016, 

Vaksmaa et al., 2016) (Chapter 2 and 4). Their potential contribution to mitigate methane needs 

to be further investigated. In accordance with Lee et al., 2015, we also found that ‘Candidatus 

Methanoperedens nitroreducens’ was more abundant than NC10 phylum bacteria. In our study 

the abundance was even a magnitude higher. We demonstrated that the activity measured 

by 13C-CH4 incubation assays was higher with nitrate than with nitrite, to further support the 

important role and contribution of these archaea.

However, what determines the higher abundance of one AOM mediating microorganism over 

another in environments with high methanogenic activity and supply of nitrite and nitrate, 

remains enigmatic. One plausible explanation may lay in the structure of rice rhizosphere, 

which has a deep penetration depth in comparison with many other wetland plants, as well as 

the flooding regime and exposure to oxygen. The sensitivity to high oxygen concentrations of 

NC10 phylum bacteria has been demonstrated by a decrease in methane oxidation rate and 

by decreased transcription of key enzymes (Luesken et al., 2012). The effect of low oxygen 

concentrations (in µM range) on NC10 phylum bacteria is unknown, as it is difficult to investigate 

this in a mixed culture. Methanogens have been detected in oxic soils and demonstrated to 

have enzymatic machinery to counteract the effects of oxygen. The genome of RCI cluster 

methanogens harbors genes encoding catalase, three different superoxide anion scavengers, 

superoxide dismutase and two different super oxide reductase genes for oxygen detoxification 

(Erkel et al., 2006). The up-regulation of catalase genes in response to oxygen exposure has 

been observed in both Methanosarcina and Methanocella (Angel et al., 2011). Could it be 

that NC10 phylum bacteria are more sensitive to oxygen than ‘Candidatus Methanoperedens 

nitroreducens’? Does ‘Candidatus Methanoperedens nitroreducens’ harbor similar defense 

systems as methanogens? Studies on this aspect of AOM should be carried out and this may 

partially explain the high abundance of Methanoperedens in the paddy field environment. 

Although paddy fields seem to be an ideal spot to mediate nitrite- and nitrate-dependent 

AOM, these are not the sole possible electron acceptors available in this environment. Metal-

dependent AOM and characterization of the responsible organism has been an important topic 

during the past decade. The process itself has been demonstrated in marine and freshwater 

environments (Beal et al., 2009, Egger et al., 2015). Recently it was shown that in a sediment 

dominated by ANME-2a/c clusters, which commonly form syntrophic consortia with sulfate-

reducing Deltaproteobacteria, methane oxidation also occurs when no sulfate was present 

and when the incubations were fed with ferric citrate and Fe-EDTA (Scheller et al., 2016). 

Furthermore, it was demonstrated that ‘Candidatus Methanoperedens nitroreducens’ could 



515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa515074-L-bw-Vaksmaa
Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017Processed on: 10-11-2017 PDF page: 108PDF page: 108PDF page: 108PDF page: 108

Integration and outlook

108

mediate metal-dependent AOM. Freshwater ANME-2d (‘Candidatus Methanoperedens 

nitroreducens’) enrichment culture containing also NC10 phylum bacteria was positively 

tested for AOM activity with Fe (III) and Mn (IV). Knowing this activity cannot be assigned to 

NC10 phylum bacteria, as shown by the appropriate controls, the observed iron-dependent 

methane oxidation in the enrichment was attributed to the ANME-2d (Ettwig et al., 2016).  

Our paddy field slurry incubation assays revealed that addition of nitrate, nitrite, Fe-NTA and 

Ferrihydrite stimulated the anaerobic methane oxidation in the top 20 cm of the soil. In the 

deeper layers (40-60cm) of the soil, highest activity was observed with both forms of iron: Fe-

NTA and Ferrihydrate. In environmental studies observations have been made that link the 

biogeochemical iron profiles of wetland systems to high abundance of Methanoperedens-like 

archaea (Narrowe et al., 2017, Weber et al., 2017), this further supports the possible role of 

‘Candidatus Methanoperedens nitroreducens’ in metal-dependent AOM.

McrA as a biomarker for ‘Candidatus Methanoperedens nitroreducens’

Several studies are based on either amplicon sequencing of the 16S rRNA gene or PCR based 

quantification of the 16S rRNA gene. The first specific molecular detection tool for ‘Candidatus 

Methanoperedens nitroreducens’ was based on PCR primers derived from oligonucleotides 

used as FISH probes (Schubert et al., 2011). These oligonucleotides were a good starting point 

for qPCR quantification, however the methyl-coenzyme M reductase gene mcrA may provide a 

much more specific molecular marker to detect ‘Candidatus Methanoperedens nitroreducens’. 

McrA has been commonly used as a marker to characterize methanogenic communities and 

even primers to specifically try to capture ANME were developed (Zhou et al., 2014). 

The analysis of the mcrA gene of ‘Candidatus Methanoperedens nitroreducens’ revealed that 

the general mcrA primers designed for methanogens do not capture their mcrA sequence, 

as there are up to six mismatches in the primer sequence. In chapter 3, the necessary and 

specific molecular tools to capture the mcrA sequences of ‘Candidatus Methanoperedens 

nitroreducens’ are described. When comparing mcrA  and 16S rRNA gene primers for their 

suitability to quantify the abundance of ‘Candidatus Methanoperedens nitroreducens’, mcrA 

primers yielded in most cases lower abundances. This is due to the fact that the 16S rRNA gene 

is universal to all microorganisms and will nearly always also capture out-groups. The novel 

qPCR mcrA primers were tested in a range of environments and ‘Candidatus Methanoperedens 

nitroreducens‘ was found to be abundant in a variety of different ecosystems. We detected these 

AOM archaea in rice field soils (Vercelli, Italy), sludge from a brewery wastewater treatment 

plant (Lieshout, Netherlands), North Sea sediment (Netherlands), polluted Citarum River 

sediment (Indonesia), Jordan River sediment (Utah, United States) and State Canal sediment 

(Utah, United States). The most surprising was the detection of ‘Candidatus Methanoperedens 
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nitroreducens’ in the marine sediment of the North Sea. To date only two mcrA fragment 

sequences (about 500bp) have been reported from marine environments. These originate from 

two studies, where Twing and co-workers (HM746653) (unpublished) and Lever and colleagues 

(GU182109) detected a mcrA fragment in the sediment of Gulf of Mexico and Juan de Fuca 

Ridge Flank basalt seafloor sediment, respectively. The anaerobic methanotrophs coupling 

sulfate reduction to methane oxidation are widespread in marine environments and are 

estimated to consume up to 80-90% of methane produced. To date, the role and contribution 

of ‘Candidatus Methanoperedens nitroreducens’ in marine sediments are unknown. In costal 

sites, the terrestrial runoff could feed the nitrate-dependent AOM, though in deep marine 

sediments, nitrate may not be the most abundant electron acceptor. Could it be that there is 

strain diversity and that there is a niche for iron reduction linked to AOM in marine sediments 

mediated by ‘Candidatus Methanoperedens nitroreducens’? 

Enrichment of ‘Candidatus Methanoperedens nitroreducens’

In 2006, an enrichment culture, in which nitrate and nitrite reduction were coupled to the 

anaerobic oxidation of methane, was described for the first time (Raghoebarsing et al., 2006). 

In that study, an inoculum from the sediment of a freshwater canal was used to start an 

anaerobic enrichment. After 16 months, the culture was dominated by a consortium consisting 

of archaea (10-15% of cells) belonging to the Methanosarcinales family that were only distantly 

related to known ANMEs (86-87% in 16S rRNA gene identity) and a bacterium (approximately 

80% of cells) of the candidate division NC10. The enriched co-culture preferred nitrite over 

nitrate as the substrate, although activity was observed with both substrates (Raghoebarsing 

et al., 2006).

To date there are a number of enrichment cultures containing NC10 phylum bacteria (Ettwig 

et al., 2009, Hu et al., 2009, Hu et al., 2014, Ding et al., 2016) that were started with a variety of 

inoculum sources including paddy field soil and even costal mudflat sediment (He et al., 2015). 

Until now, the number of reported enrichments dominated by ‘Candidatus Methanoperedens 

nitroreducens’ is limited (Haroon et al., 2013, Hu et al., 2015, Ettwig et al., 2016). In chapter 5 we 

described the enrichment of these AOM microorganisms, using paddy field soil as an inoculum. 

The bioreactor was fed with methane and nitrate as the only electron donor and acceptor. In 

our enrichment the relative abundance of ‘Candidatus Methanoperedens nitroreducens’ was 

15% after one year and 22% after two years of enrichment, based on 16S rRNA gene sequences 

detected in metagenomic reads, while the abundance of NC10 phylum bacteria was 7% and 

15%, respectively. In this setting, nitrite produced due to nitrate reduction by ‘Candidatus 

Methanoperedens nitroreducens’, was scavenged by the NC10 phylum bacteria. As part of this 

research we assembled the genome of ‘Candidatus Methanoperedens nitroreducens Vercelli’, 
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which is the third publically available genome of this AOM archaeon.  Out of the three genomes 

available, two are of high-quality, though none of those genomes are complete. In order to 

investigate differences between strains, originating from different environments, more high-

quality genome sequences need to become available to carry out comparative genomics.

Many questions remain still unanswered regarding the physiology of ‘Candidatus 

Methanoperedens nitroreducens’; Does, and if so under which conditions production of 

ammonia by this archaea occurs, which could feed the anammox process in nature? In the 

genome of ‘Candidatus Methanoperedens nitroreducens’ genes necessary for dissimilatory 

nitrate reduction to ammonium (DNRA) (Haroon et al., 2013) have been identified. In an 

enrichment of ‘Candidatus Methanoperedens nitroreducens’ production of ammonia has 

been measured as well (Ettwig et al., 2016), yet to answer definitely if it really is an attribute 

of ‘Candidatus Methanoperedens nitroreducens’, pure cultures are needed. However, so far 

pure cultures have not been obtained due to slow growth and isolation difficulties of these 

´impossible´ microbes. 

In order to unravel the mystery of ‘Candidatus Methanoperedens nitroreducens’ strain diversity 

and environmental distribution in fresh and marine environments, high enrichments or 

pure cultures are needed to  address the question of salt tolerance of different strains. For 

ANME-1 the occurrence in hypersaline environments has been demonstrated (Lloyd et al., 

2006, Yakimov et al., 2007), as well as adapted cell membranes with glycerol dialkyl glycerol 

tetraethers (Niemann & Elvert, 2008). Would marine strains of ‘Candidatus Methanoperedens 

nitroreducens’ also possess such specific adaptive mechanisms and differentiate from 

freshwater strains? 

In the current state of knowledge, several electron acceptors are known to serve as substrates 

for ANMEs. Methane oxidation potential has been shown with iron and manganese for 

‘Candidatus Methanoperedens nitroreducens’. Yet all the evidence is based on activity 

measured in sediment or in an enrichment culture.  We do not know if the ANMEs can use both 

electron acceptors at the same time or switch from one to the other upon availability. Could 

they still grow? What is the importance of nitrate- versus iron-mediated AOM in paddy fields? 

To answer these questions, future research should address the enrichment of ‘Candidatus 

Methanoperedens nitroreducens’ by excluding nitrate and adding oxidized metals as sole 

electron acceptor in long term enrichments; only then the growth rates could be revealed. 

Comparative activity assays with all possible electron acceptors in ideally pure culture would 

give insight into the potential methane oxidation contribution, which could be extrapolated to 

the environment. Not only shall the substrate preference be understood, but also underlying 

mechanism of the process; how does ‘Candidatus Methanoperedens nitroreducens’ carry out 

metal-dependent AOM? 
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How exactly does this process take place, what is the electron shuttling mechanism and what 

is the necessary proximity of organism and poorly bioavailable solid iron particles in nature? 

Studies on ANME activity and the dependency of that on the proximity of the syntrophic sulfate 

reducing bacteria (SRB), revealed that the activity is highest when there is least distance. 

That allows the transferal of electrons directly from one organism to another. Having such 

syntrophic interface means greater syntrophic benefit for both partners the ANME-2 and 

associated Deltaproteobacteria via direct interspecies electron transfer (McGlynn et al., 2015). 

The same mechanism is proposed for ANME-1 and their SRB HotSeep-1 (Wegener et al., 2015).  

SRB have been studied for the genomic potential for interspecies electron transfer, and genes 

necessary were present in contrast to other SBR which do not live in syntrophic consortia with 

ANMEs (Skennerton et al., 2017).

 

An interesting study for the future in this regard is to investigate if ‘Candidatus Methanoperedens 

nitroreducens’ carry out interspecies electron transfer or as they are not dependent on other 

microbes, how do they interact with iron particles to support methane oxidation. As iron is 

solid and ‘Candidatus Methanoperedens nitroreducens’ prefers to attach to surfaces, could 

these archaea move in order to reach a preferred site of substrate? For several methanogens 

it has been demonstrated that either in conditions of stress, they are able to synthesize an 

archaellum. In the genome of ‘Candidatus Methanoperedens nitroreducens’ we identified 

several of the necessary Fla genes. Would ‘Candidatus Methanoperedens nitroreducens’ make 

use of this strategy in order to find substrate or avoid stress, is another question to answer in 

the future.

In science, as soon as a few questions are answered, many new ones will arise. The current 

research has shed light into environmental distribution and substrate utilization of ‘Candidatus 

Methanoperedens nitroreducens’, which has indicated the need to establish specific and high 

enrichments in order to unravel their full physiological potential. 
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