Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

M. Aaboud et al.*

(ATLAS Collaboration)

(Received 29 March 2017; published 13 October 2017)

Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of $\sqrt{s}=13$ TeV, corresponding to an integrated luminosity of 3.2 fb$^{-1}$ collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-k_T algorithm with radius parameter $R=0.4$. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with $20 < p_T < 2000$ GeV and pseudorapidities of $|\eta| < 4.5$, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region ($|\eta| < 1.2$) for jets with $100 < p_T < 500$ GeV. An uncertainty of about 4.5% is found for low-p_T jets with $p_T = 20$ GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets ($|\eta| > 0.8$) is derived from dijet p_T balance measurements. For jets of $p_T = 80$ GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range $|\eta| > 3.5$ and in a narrow slice of $2.2 < |\eta| < 2.4$.

DOI: 10.1103/PhysRevD.96.072002

I. INTRODUCTION

Jets are a prevalent feature of the final state in high-energy proton-proton (pp) interactions at CERN’s Large Hadron Collider (LHC). Jets, made of collimated showers of hadrons, are important elements in many Standard Model (SM) measurements and in searches for new phenomena. They are reconstructed using a clustering algorithm run on a set of input four-vectors, typically obtained from topologically associated energy deposits, charged-particle tracks, or simulated particles.

This paper details the methods used to calibrate the four-momenta of jets in Monte Carlo (MC) simulation and in data collected by the ATLAS detector [1,2] at a center-of-mass energy of $\sqrt{s} = 13$ TeV during the 2015 data-taking period of Run 2 at the LHC. The jet energy scale (JES) calibration consists of several consecutive stages derived from a combination of MC-based methods and in situ techniques. MC-based calibrations correct the reconstructed jet four-momentum to that found from the simulated stable particles within the jet. The calibrations account for features of the detector, the jet reconstruction algorithm, jet fragmentation, and the busy data-taking environment resulting from multiple pp interactions, referred to as pile-up. In situ techniques are used to measure the difference in jet response between data and MC simulation, with residual corrections applied to jets in data only. The 2015 jet calibration builds on procedures developed for the 2011 data [3] collected at $\sqrt{s} = 7$ TeV during Run 1. Aspects of the jet calibration, particularly those related to pile-up [4], were also developed on 2012 data collected at $\sqrt{s} = 8$ TeV during Run 1.

This paper is organized as follows. Section II describes the ATLAS detector, with an emphasis on the subdetectors relevant for jet reconstruction. Section III describes the jet reconstruction inputs and algorithms, highlighting changes in 2015. Section IV describes the 2015 data set and the MC generators used in the calibration studies. Section V details the stages of the jet calibration, with particular emphasis on the 2015 in situ calibrations and their combination. Section VI lists the various systematic uncertainties in the JES and describes their combination into a reduced set of nuisance parameters.

II. THE ATLAS DETECTOR

The ATLAS detector consists of an inner detector tracking system spanning the pseudorapidity1 range

\[^1\]The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z axis, while the positive x axis is defined as pointing from the collision point to the center of the LHC ring and the positive y axis points upwards.

The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is measured with respect to the z axis. Pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$, rapidity is defined as $y = \ln[(E + p_z)/(E - p_z)]$, where E is the energy and p_z is the z component of the momentum, and transverse energy is defined as $E_T = E \sin \theta$.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
| | 2.5, sampling electromagnetic and hadronic calorimeters covering the range \(| \eta | < 4.9 \), and a muon spectrometer spanning \(| \eta | < 2.7 \). A detailed description of the ATLAS experiment can be found in Ref. [1].

Charged-particle tracks are reconstructed in the inner detector (ID), which consists of three subdetectors: a silicon pixel tracker closest to the beam line, a microstrip silicon tracker, and a straw-tube transition radiation tracker farthest from the beam line. The ID is surrounded by a thin solenoid providing an axial magnetic field of 2 T, allowing the measurement of charged-particle momenta. In preparation from the beam line, the ID is surrounded by a thin solenoid pixel tracker closest to the beam line, a microstrip silicon detector (ID), which consists of three subdetectors: a silicon absorbers in both the barrel (\(\eta < 375\)) regions. An additional LAr presampler layer in front of the electromagnetic calorimeter within \(375 < \eta < 475\) measures the energy deposited by particles in the material upstream of the electromagnetic calorimeter. The hadronic Tile calorimeter incorporates plastic scintillator tiles and steel absorbers in the barrel (\(|\eta| < 0.8\)) and extended barrel (\(0.8 < |\eta| < 1.7\)) regions, with photomultiplier tubes (PMT) aggregating signals from a group of neighboring tiles. Scintillating tiles in the region between the barrel and the extended barrel of the Tile calorimeter serve a similar purpose to that of the presampler and were extended to increase their area of coverage during the shutdown leading up to Run 2. A LAr hadronic calorimeter with copper absorbers covers the hadronic endcap region (\(1.5 < |\eta| < 3.2\)). A forward LAr calorimeter with copper and tungsten absorbers covers the forward calorimeter region (\(3.1 < |\eta| < 4.9\)).

The analog signals from the LAr detectors are sampled digitally once per bunch crossing over four bunch crossings. Signals are converted to an energy measurement using an optimal digital filter, calculated from dedicated calibration runs [6,7]. The signal was previously reconstructed from five bunch crossings in Run 1, but the use of four bunch crossings was found to provide similar signal reconstruction performance with a reduced bandwidth demand. The LAr readout is sensitive to signals from the preceding 24 bunch crossings during 25 ns bunch-spacing operation in Run 2. This is in contrast to the 12 bunch-crossing sensitivity during 50 ns operation in Run 1, increasing the sensitivity to out-of-time pile-up from collisions in the preceding bunch crossings. The LAr signals are shaped [6] to reduce the measurement sensitivity to pile-up, with the shaping optimized for the busier pile-up conditions at 25 ns. In contrast, the fast readout of the Tile calorimeter [8] reduces the signal sensitivity to out-of-time pile-up from collisions in neighboring bunch crossings.

The muon spectrometer (MS) [1] surrounds the ATLAS calorimeters and measures muon tracks within \(|\eta| < 2.7\) using three layers of precision tracking chambers and dedicated trigger chambers. A system of three superconducting air-core toroidal magnets provides a magnetic field for measuring muon momenta.

The ATLAS trigger system begins with a hardware-based level 1 (L1) trigger followed by a software-based high-level trigger (HLT) [9]. The L1 trigger is designed to accept events at an average 100 kHz rate, and accepted a peak rate of 70 kHz in 2015. The HLT is designed to accept events that are written out to disk at an average rate of 1 kHz and reached a peak rate of 1.4 kHz in 2015. For the trigger, jet candidates are constructed from coarse calorimeter towers using a sliding-window algorithm at L1, and are fully reconstructed in the HLT. Electrons and photons are triggered in the pseudorapidity range \(|\eta| < 2.5\), where the electromagnetic calorimeter is finely segmented and track reconstruction is available. Compact electromagnetic energy deposits triggered at L1 are used as the seeds for the HLT algorithms, which are designed to identify electrons based on calorimeter and fast track reconstruction. The muon trigger at L1 is based on a coincidence of trigger chamber layers. The parameters of muon candidate tracks are then derived in the HLT by fast reconstruction algorithms in both the ID and MS. Events used in the jet calibration are selected from regions of kinematic phase space where the relevant triggers are fully efficient.

III. JET RECONSTRUCTION

The calorimeter jets used in the following studies are reconstructed at the electromagnetic energy scale (EM scale) with the anti-\(k_t \) algorithm [10] and radius parameter \(R = 0.4 \) using the FastJet 2.4.3 software package [11]. A collection of three-dimensional, massless, positive-energy topological clusters (topo-clusters) [12,13] made of calorimeter cell energies are used as input to the anti-\(k_t \) algorithm. Topo-clusters are built from neighboring calorimeter cells containing a significant energy above a noise threshold that is estimated from measurements of calorimeter electronic noise and simulated pile-up noise. The calorimeter cell energies are measured at the EM scale, corresponding to the energy deposited by electromagnetically interacting particles. Jets are reconstructed with the anti-\(k_t \) algorithm if they pass a \(p_T \) threshold of 7 GeV.

In 2015 the simulated noise levels used in the calibration of the topo-cluster reconstruction algorithm were updated using observations from Run 1 data and accounting for different data-taking conditions in 2015. This results in an
increase in the simulated noise at the level of 10% with respect to the Run 1 simulation in the barrel region of the detector, and a slightly larger increase in the forward region [4]. The noise thresholds of the topo-cluster reconstruction were increased accordingly. The topo-cluster reconstruction algorithm was also improved in 2015, with topo-clusters now forbidden from being seeded by the presampler layers. This restricts jet formation from low-energy pile-up depositions that do not penetrate the calorimeters.

Jets referred to as truth jets are reconstructed using the anti-\(k_t\) algorithm with \(R = 0.4\) using stable, final-state particles from MC generators as input. Candidate particles are required to have a lifetime of \(ct > 10\) mm and muons, neutrinos, and particles from pile-up activity are excluded. Truth jets are therefore defined as being measured at the particle-level energy scale. Truth jets with \(p_T > 7\) GeV and \(|\eta| < 4.5\) are used in studies of jet calibration using MC simulation. Reconstructed calorimeter jets are geometrically matched to truth jets using the distance measurement\(^2\) \(\Delta R\).

Tracks from charged particles used in the jet calibration are reconstructed within the full acceptance of the ID (\(|\eta| < 2.5\)). The track reconstruction was updated in 2015 to include the IBL and uses a neural network clustering algorithm [14], improving the separation of nearby tracks and the reconstruction performance in the high-luminosity conditions of Run 2. Reconstructed tracks are required to have a \(p_T > 500\) MeV and to be associated with the hard-scatter vertex, defined as the primary vertex with at least two associated tracks and the largest \(p_T^2\) sum of associated tracks. Tracks must satisfy quality criteria based on the number of hits in the ID subdetectors. Tracks are assigned to jets using ghost association [15], a procedure that treats them as four-vectors of infinitesimal magnitude during the jet reconstruction and assigns them to the jet with which they are clustered.

Muon track segments are used in the jet calibration as a proxy for the uncaptured jet energy carried by energetic particles passing through the calorimeters without being fully absorbed. The segments are partial tracks constructed from hits in the MS [16] which serve as inputs to fully reconstructed tracks. Segments are assigned to jets using the method of ghost association described above for tracks, with each segment treated as an input four-vector of infinitesimal magnitude to the jet reconstruction.

IV. DATA AND MONTE CARLO SIMULATION

Several MC generators are used to simulate \(pp\) collisions for the various jet calibration stages and for estimating systematic uncertainties in the JES. A sample of dijet events is simulated at next-to-leading-order (NLO) accuracy in perturbative QCD using POWHEG-BOX 2.0 [17–19]. The hard scatter is simulated with a \(2 \to 3\) matrix element that is interfaced with the CT10 parton distribution function (PDF) set [20]. The dijet events are showered in PYTHIA 8.186 [21], with additional radiation simulated to the leading-logarithmic approximation through \(p_T\)-ordered parton showers [22]. The simulation parameters of the underlying event, parton showering, and hadronization are set according to the A14 event tune [23]. For in situ analyses, samples of \(Z\) bosons with jets (\(Z + \text{jet}\)) are similarly produced with POWHEG+PYTHIA using the CT10 PDF set and the AZPHINLO event tune [24]. Samples of multijets and of photons with jets (\(\gamma + \text{jet}\)) are generated in PYTHIA, with the \(2 \to 2\) matrix element convolved with the NNPDF2.3LO PDF set [25], and using the A14 event tune.

For studies of the systematic uncertainties, the SHERPA 2.1 [26] generator is used to simulate all relevant processes in dijet, \(Z + \text{jet}\), and \(\gamma + \text{jet}\) events. SHERPA uses multileg \(2 \to N\) matrix elements that are matched to parton showers following the CKKW [27] prescription. The CT10 PDF set and default SHERPA event tune are used. The multijet systematic uncertainties are studied using the Herwig++ 2.7 [28,29] generator, with the \(2 \to 2\) matrix element convolved with the CTEQ6L1 PDF set [30]. Herwig++ simulates additional radiation through angle-ordered parton showers, and is configured with the UE-EE-5 event tune [31].

Pile-up interactions can occur within the bunch crossing of interest (in-time) or in neighboring bunch crossings (out-of-time), altering the measured energy of a hard-scatter jet or leading to the reconstruction of additional, spurious jets. Pile-up effects are modeled using PYTHIA, simulated with underlying-event characteristics using the NNPDF2.3LO PDF set and A14 event tune. A number of these interactions are overlaid onto each hard-scatter event following a Poisson distribution about the mean number of additional \(pp\) collisions per bunch crossing (\(\mu\)) of the event. The value of \(\mu\) is proportional to the predicted instantaneous luminosity assigned to the MC event. It is simulated according to the expected distribution in the 2015 data-taking period and subsequently reweighted to the measured distribution. Events are overlaid both in-time with the simulated hard scatter and out-of-time for nearby bunches. The number of in-time and out-of-time pile-up interactions associated with an event is correlated with the number of reconstructed primary vertices (\(N_{PV}\)) and with \(\mu\), respectively, providing a method for estimating the per-event pile-up contribution.

Generated events are propagated through a full simulation [32] of the ATLAS detector based on Genjos [33] which describes the interactions of the particles with the detector. Hadronic showers are simulated with the FTFP BERT model, consisting of the Fritiof model and the Bertini intra-nuclear cascade model, whereas the QGSP

\(^2\)The distance between two four-vectors is defined as \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}\), where \(\Delta \eta\) is their distance in pseudorapidity and \(\Delta \phi\) is their azimuthal distance. The distance with respect to a jet is calculated from its principal axis.
BERT model was used in Run 1, consisting of a quark–gluon string model and the Bertini intra-nuclear cascade model. A description of the various models and a detailed comparison between FTFP BERT and QGSP BERT can be found in Ref. [34]. A parametrized simulation of the ATLAS calorimeter called Atlfast-II (AFII) [32] is used for faster MC production, and a dedicated MC-based calibration is derived for AFII samples.

The data set used in this study consists of 3.2 fb$^{-1}$ of pp collisions collected by ATLAS between August and December of 2015 with all subdetectors operational. The LHC was operated at $\sqrt{s} = 13 \text{ TeV}$, with bunch crossing intervals of 25 ns. The mean number of interactions per bunch crossing was estimated through luminosity measurements [35] to be on average $\langle \mu \rangle = 13.7$. The specific trigger requirements and object selections vary among the in situ analyses and are described in the relevant sections.

V. JET ENERGY SCALE CALIBRATION

Figure 1 presents an overview of the 2015 ATLAS calibration scheme for EM-scale calorimeter jets. This calibration restores the jet energy scale to that of truth jets reconstructed at the particle-level energy scale. Each stage of the calibration corrects the full four-momentum unless otherwise stated, scaling the jet p_T, energy, and mass.

First, the origin correction recalculates the four-momentum of jets to point to the hard-scatter primary vertex rather than the center of the detector, while keeping the jet energy constant. This correction improves the η resolution of jets, as measured from the difference between reconstructed jets and truth jets in MC simulation. The η resolution improves from roughly 0.06 to 0.045 at a jet p_T of 20 GeV and from 0.03 to below 0.006 above 200 GeV. The origin correction procedure in 2015 is identical to that used in the 2011 calibration [3].

Next, the pile-up correction removes the excess energy due to in-time and out-of-time pile-up. It consists of two components: an area-based p_T density subtraction [15], applied at the per-event level, and a residual correction derived from the MC simulation, both detailed in Sec. VA. The absolute JES calibration corrects the jet four-momentum to the particle-level energy scale, as derived using truth jets in dijet MC events, and is discussed in Sec. V D. Further improvements to the reconstructed energy and related uncertainties are achieved through the use of calorimeter, MS, and track-based variables in the global sequential calibration, as discussed in Sec. V C. Finally, a residual in situ calibration is applied to correct jets in data using well-measured reference objects, including photons, Z bosons, and calibrated jets, as discussed in Sec. V D. The full treatment and reduction of the systematic uncertainties are discussed in Sec. VI.

A. Pile-up corrections

The pile-up contribution to the JES in the 2015 data-taking environment differs in several ways from Run 1. The larger center-of-mass energy affects the jet p_T dependence on pile-up-sensitive variables, while the switch from 50 to 25 ns bunch spacing increases the amount of out-of-time pile-up. In addition, the higher topo-clustering noise thresholds alter the impact of pile-up on the JES. The pile-up correction is therefore evaluated using updated MC simulations of the 2015 detector and beam conditions. The pile-up correction in 2015 is derived using the same methods developed in 2012 [4], summarized in the following paragraphs.

First, an area-based method subtracts the per-event pile-up contribution to the p_T of each jet according to its area. The pile-up contribution is calculated from the median p_T density ρ of jets in the η-ϕ plane. The calculation of ρ uses only positive-energy topo-clusters with $|\eta| < 2$ that are clustered using the k_t algorithm [10,36] with radius parameter $R = 0.4$. The k_t algorithm is chosen for its sensitivity to soft radiation, and is only used in the area-based method. The central $|\eta|$ selection is necessitated by the higher calorimeter occupancy in the forward region. The p_T density of each jet is taken to be p_T/A, where the area A of a jet is calculated using ghost association. In this procedure, simulated ghost particles of infinitesimal momentum are added uniformly in solid angle to the event.

FIG. 1. Calibration stages for EM-scale jets. Other than the origin correction, each stage of the calibration is applied to the four-momentum of the jet.

072002-4
before jet reconstruction. The area of a jet is then measured from the relative number of ghost particles associated with a jet after clustering. The median of the p_T density is used for ρ to reduce the bias from hard-scatter jets which populate the high-p_T tails of the distribution.

The ρ distribution of events with a given N_{PV} is shown for MC simulation in Fig. 2, and has roughly the same magnitude at 13 TeV as seen at 8 TeV. At 13 TeV the increase in the center-of-mass energy is offset by the higher noise thresholds and the larger out-of-time pile-up, the latter reducing the average energy readout of any given cell due to the inherent pile-up suppression of the bipolar shaping of LAr signals [6]. The ratio of the ρ-subtracted jet p_T to the uncorrected jet p_T is taken as a correction factor applied to the jet four-momentum, and does not affect the jet η and ϕ coordinates.

The ρ calculation is derived from the central, lower-occupancy regions of the calorimeter, and does not fully describe the pile-up sensitivity in the forward calorimeter region or in the higher-occupancy core of high-p_T jets. It is therefore observed that after this correction some dependence of the anti-k_t jet p_T on the amount of pile-up remains, and an additional residual correction is derived. A dependence is seen on N_{PV}, sensitive to in-time pile-up, and μ, sensitive to out-of-time pile-up. The residual p_T dependence is measured as the difference between the reconstructed jet p_T and truth jet p_T, with the latter being insensitive to pile-up. Reconstructed jets with $p_T > 10$ GeV are geometrically matched to truth jets within $\Delta R = 0.3$.

The residual p_T dependence on N_{PV} (α) and on μ (β) are observed to be fairly linear and independent of one another, as was found in 2012 MC simulation. Linear fits are used to derive the initial α and β coefficients separately in bins of p_T^{truth} and $|\eta|$. Both the α and β coefficients are then seen to have a logarithmic dependence on p_T^{truth}, and logarithmic fits are performed in the range $20 < p_T^{\text{truth}} < 200$ GeV for each bin of $|\eta|$. In each $|\eta|$ bin, the fitted value at $p_T^{\text{truth}} = 25$ GeV is taken as the nominal α and β coefficients, reflecting the dependence in the p_T region where pile-up is most relevant. The logarithmic fits over the full p_T^{truth} range are used for a p_T-dependent systematic uncertainty in the residual pile-up dependence. Finally, linear fits are performed to the binned coefficients as a function of $|\eta|$ in 4 regions, $|\eta| < 1.2$, $1.2 < |\eta| < 2.2$, $2.2 < |\eta| < 2.8$, and $2.8 < |\eta| < 4.5$. This reduces the effects of statistical fluctuations and allows the α and β coefficients to be smoothly sampled in $|\eta|$, particularly in regions of varying dependence. The pile-up-corrected p_T, after the area-based and residual corrections, is given by

$$p_T^{\text{corr}} = p_T^{\text{reco}} - \rho \times A - \alpha \times (N_{PV} - 1) - \beta \times \mu,$$

where p_T^{reco} refers to the EM-scale p_T of the reconstructed jet before any pile-up corrections are applied.

The dependence of the area-based and residual corrections on N_{PV} and μ are shown as a function of $|\eta|$ in Fig. 3. The shape of the residual correction is comparable to that found in 2012 MC simulation, except in the forward region ($|\eta| > 2.5$) of Fig. 3(a), where it is found to be larger by 0.2 GeV. This difference in the in-time pile-up term is primarily caused by higher topo-cluster noise thresholds, which are more consequential in the forward region.

Two in situ validation studies are performed and no statistically significant difference is observed in the jet p_T dependence on N_{PV} or μ between 2015 data and MC simulation. Four systematic uncertainties are introduced to account for MC mismodeling of N_{PV}, μ, and the ρ topology, as well as the p_T dependence of the N_{PV} and μ terms used in the residual pile-up correction. The ρ topology uncertainty encapsulates the uncertainty in the underlying event contribution to ρ through the use of several distinct MC event generators and final-state topologies. The uncertainties in the modeling of N_{PV} and μ are taken as the difference between MC simulation and data in the in situ validation studies. The p_T-dependent uncertainty in the residual pile-up dependence is derived from the full logarithmic fits to α and β. Both the in situ validation studies and the systematic uncertainties are described in detail in Ref. [4].

B. Jet energy scale and η calibration

The absolute jet energy scale and η calibration corrects the reconstructed jet-four-momentum to the particle-level jet energy scale and accounts for biases in the jet η reconstruction. Such biases are primarily caused by the transition between different calorimeter technologies and sudden changes in calorimeter granularity. The calibration is derived from the PYTHIA MC sample using reconstructed jets after the application of the origin and pile-up corrections. The JES calibration is derived first as a correction of the reconstructed jet energy to the truth jet energy [3]. Reconstructed jets are geometrically matched to truth jets within $\Delta R = 0.3$. Only isolated jets are used, to avoid any
ambiguities in the matching of calorimeter jets to truth jets. An isolated calorimeter jet is required to have no other calorimeter jet of \(p_T > 7 \text{ GeV} \) within \(\Delta R = 0.6 \), and only one truth jet of \(p_T > 7 \text{ GeV} \) within \(\Delta R = 1.0 \).

The average energy response is defined as the mean of a Gaussian fit to the core of the \(E^{\text{reco}} / E^{\text{truth}} \) distribution for jets, binned in \(E^{\text{truth}} \) and \(\eta_{\text{det}} \). The response is derived as a function of \(\eta_{\text{det}} \), the jet \(\eta \) pointing from the geometric center of the detector, to remove any ambiguity as to which region of the detector is measuring the jet. The response in the full ATLAS simulation is shown in Fig. 4(a). Gaps and transitions between calorimeter subdetectors result in a lower energy response due to absorbed or undetected particles, evident when parametrized by \(\eta_{\text{det}} \). A numerical inversion procedure is used to derive corrections in \(E^{\text{reco}} \) from \(E^{\text{truth}} \), as detailed in Ref. [13]. The average response is parametrized as a function of \(E^{\text{reco}} \) and the jet calibration factor is taken as the inverse of the average energy response. Good closure of the JES calibration is seen across the entire \(\eta \) range, compatible with that seen in the 2011 calibration. As in 2011, a small nonclosure on the order of a few percent is seen for low-\(p_T \) jets due to a slightly non-Gaussian energy response and jet reconstruction threshold effects, both of which impact the response fits.

A bias is seen in the reconstructed jet \(\eta \), shown in Fig. 4(b) as a function of \(|\eta_{\text{det}}| \). It is largest in jets that encompass two calorimeter regions with different energy responses caused by changes in calorimeter geometry or technology. This artificially increases the energy of one side of the jet with respect to the other, altering the reconstructed

FIG. 3. Dependence of EM-scale anti-\(k_t \) jet \(p_T \) on (a) in-time pile-up (\(N_{\text{PV}} \) averaged over \(\mu \)) and (b) out-of-time pile-up (\(\mu \) averaged over \(N_{\text{PV}} \)) as a function of \(|\eta| \) for \(p_T^{\text{truth}} = 25 \text{ GeV} \). The dependence is shown in bins of \(|\eta| \) before pile-up corrections (blue circle), after the area-based correction (violet square), and after the residual correction (red triangle). The shaded bands represent the 68% confidence intervals of the linear fits in 4 regions of \(|\eta| \). The values of the fitted dependence on in-time and out-of-time pile-up after the area-based correction (purple shaded band) are taken as the residual correction factors \(\alpha \) and \(\beta \), respectively.

FIG. 4. (a) The average energy response as a function of \(\eta_{\text{det}} \) for jets of a truth energy of 30, 60, 110, 400, and 1200 GeV. The energy response is shown after origin and pile-up corrections are applied. (b) The signed difference between the truth jet \(\eta^{\text{truth}} \) and the reconstructed jet \(\eta^{\text{reco}} \) due to biases in the jet reconstruction. This bias is addressed with an \(\eta \) correction applied as a function of \(\eta_{\text{det}} \).
four-momentum. The barrel-endcap ($|\eta_{\text{det}}| \sim 1.4$) and endcap-forward ($|\eta_{\text{det}}| \sim 3.1$) transition regions can be clearly seen in Fig. 4(b) as susceptible to this effect. A second correction is therefore derived as the difference between the reconstructed E_{reco}^j and truth E_{truth}^j, parametrized as a function of E_{reco}^j and η_{det}. A numerical inversion procedure is again used to derive corrections in E_{reco}^j from E_{truth}^j. Unlike the other calibration stages, the η calibration alters only the jet p_T and η, not the full four-momentum. Jets calibrated with the full jet energy scale and η calibration are considered to be at the EM + JES.

An absolute JES and η calibration is also derived for fast simulation samples using the same methods with a PYTHIA MC sample simulated with AFII. An additional JES uncertainty is introduced for AFII samples to account for a small nonclosure in the calibration, particularly beyond $|\eta| \sim 3.2$, due to the approximate treatment of hadronic showers in the forward calorimeters. This uncertainty is about 1% at a jet p_T of 20 GeV and falls rapidly with increasing p_T.

C. Global sequential calibration

Following the previous jet calibrations, residual dependencies of the JES on longitudinal and transverse features of the jet are observed. The calorimeter response and the jet reconstruction are sensitive to fluctuations in the jet particle composition and the distribution of energy within the jet. The average particle composition and shower shape of a jet varies between initiating particles, most notably between quark- and gluon-initiated jets. A quark-initiated jet will often include hadrons with a higher fraction of the jet p_T that penetrate further into the calorimeter, while a gluon-initiated jet will typically contain more particles of softer p_T, leading to a lower calorimeter response and a wider transverse profile. Five observables are identified that improve the resolution of the JES through the global sequential calibration (GSC), a procedure explored in the 2011 calibration [13].

For each observable, an independent jet four-momentum correction is derived as a function of p_T^{truth} and $|\eta_{\text{det}}|$ by inverting the reconstructed jet response in MC events. Both the numerical inversion procedure and the method to geometrically match reconstructed jets to truth jets are outlined in Sec. V B. An overall constant is multiplied to each numerical inversion to ensure the average energy is unchanged at each stage. The effect of each correction is therefore to remove the dependence of the jet response on each observable while conserving the overall energy scale at the EM + JES. Corrections for each observable are applied independently and sequentially to the jet four-momentum, neglecting correlations between observables. No improvement in resolution was found from including such correlations or altering the sequence of the corrections.

The five stages of the GSC account for the dependence of the jet response on (in order):

1. f_{Tile0}, the fraction of jet energy measured in the first layer of the hadronic Tile calorimeter ($|\eta_{\text{det}}| < 1.7$);
2. f_{LAr3}, the fraction of jet energy measured in the third layer of the electromagnetic LAr calorimeter ($|\eta_{\text{det}}| < 3.5$);
3. n_{trk}, the number of tracks with $p_T > 1$ GeV ghost-associated with the jet ($|\eta_{\text{det}}| < 2.5$);
4. W_{trk}, the average p_T-weighted transverse distance in the η-ϕ plane between the jet axis and all tracks of $p_T > 1$ GeV ghost-associated to the jet ($|\eta_{\text{det}}| < 2.5$);
5. n_{segments}, the number of muon track segments ghost-associated with the jet ($|\eta_{\text{det}}| < 2.7$).

The n_{segments} correction reduces the tails of the response distribution caused by high-p_T jets that are not fully contained in the calorimeter, referred to as punch-through jets. The first four corrections are derived as a function of jet p_T, while the punch-through correction is derived as a function of jet energy, being more correlated with the energy escaping the calorimeters.

The underlying distributions of these five observables are fairly well modeled by MC simulation. Slight differences with data have a negligible impact on the GSC as long as the dependence of the average jet response on the observables is well modeled in MC simulation. This average response dependence was tested using the dijet tag-and-probe method developed in 2011 and detailed in Sec. 12.1 of Ref. [13]. The average p_T asymmetry between back-to-back jets was again measured in 2015 data as a function of each observable and found to be compatible between data and MC simulation, with differences small compared to the size of the proposed corrections.

The jet p_T response in MC simulation as a function of each of these observables is shown in Fig. 5 for several regions of p_T^{truth}. The distributions are shown at various stages of the GSC to reflect the relative disagreement at the stage when each correction is derived. The dependence of the jet response on each observable is reduced to less than 2% after the full GSC is applied, with small deviations from unity reflecting the correlations between observables that are unaccounted for in the corrections. The distribution of each observable in MC simulation is shown in the bottom panels in Fig. 5. The spike at zero in the f_{Tile0} distribution of Fig. 5(a) at low p_T^{truth} reflects jets that are fully contained in the electromagnetic calorimeter and do not deposit energy in the Tile calorimeter. The negative tail in the f_{LAr3} distribution of Fig. 5(b) [and, to a lesser extent, in the f_{Tile0} distribution of Fig. 5(a)] at low p_T^{truth} reflects calorimeter noise fluctuations.

D. In situ calibration methods

The last stages of the jet calibration account for differences in the jet response between data and MC
Differences between data and MC simulation are quantified by balancing the p_T of a jet against other well-measured reference objects, each focusing on a different p_T region using Z boson, photon, and multijet systems. For each in situ calibration the response $R_{\text{in situ}}$ is defined in data and MC simulation as the average ratio of jet p_T to reference object p_T, binned in regions of the reference object p_T. It is proportional to the response of the calorimeter to jets at the EM + JES, but is also sensitive to secondary effects such as gluon radiation and the loss of energy outside of the jet cone. Event selections are designed to reduce the impact of such secondary effects. Assuming that these secondary effects are well modeled in the MC simulation, the ratio

$$c = \frac{R_{\text{in situ}}^{\text{data}}}{R_{\text{MC}}^{\text{in situ}}}$$

is a useful estimate of the ratio of the JES in data and MC simulation. Through numerical inversion a correction is derived to the jet four-momentum. The correction is derived as a function of jet p_T, and also as a function of jet η in the η-intercalibration.

FIG. 5. The average jet response in MC simulation as a function of the GSC variables for three ranges of p_T^{truth}. These include (a) the fractional energy in the first Tile calorimeter layer, (b) the fractional energy in the third LAr calorimeter layer, (c) the number of tracks per jet, (d) the p_T-weighted track width, and (e) the number of muon track segments per jet. Jets are calibrated with the EM + JES scheme and have GSC corrections applied for the preceding observables. The calorimeter distributions (a) and (b) are shown with no GSC corrections applied, the track-based distributions (c) and (d) are shown with both preceding calorimeter corrections applied, and the punch-through distribution (e) is shown with the four calorimeter and track-based corrections applied. Jets are constrained to $|\eta| < 0.1$ for the distributions of calorimeter and track-based observables and $|\eta| < 1.3$ for the muon n_{segments} distribution. The distributions of the underlying observables in MC simulation are shown in the lower panels for each p_T^{truth} region, normalized to unity. The shading in the legend reflects the shading of the distributions in the lower panel.
Events used in the in situ calibration analyses are required to satisfy common selection criteria. At least one reconstructed primary vertex is required with at least two associated tracks of \(p_T > 500 \) MeV. Jets are required to satisfy data-quality criteria that discriminate against calorimeter noise bursts, cosmic rays, and other noncollision backgrounds. Spurious jets from pile-up are identified and rejected through the exploitation of track-based variables by the jet vertex tagger (JVT) [4]. Jets with \(p_T < 50 \) GeV and \(|\eta_{\text{det}}| < 2.4 \) are required to be associated with the primary vertex at the medium JVT working point, accepting 92% of hard-scatter jets and rejecting 98% of pile-up jets.

The \(\eta \)-intercalibration corrects the jet energy scale of forward jets (\(0.8 < |\eta_{\text{det}}| < 4.5 \)) to that of central jets (\(|\eta_{\text{det}}| < 0.8 \)) in a dijet system, and is discussed in Sec. V D 1. The \(Z/\gamma + \text{jet} \) balance analyses use a well-calibrated photon or \(Z \) boson, the latter decaying into an electron or muon pair, to measure the high-

\[
\text{JET ENERGY SCALE MEASUREMENTS AND THEIR}
\]

\[
\text{…}
\]
Events used in the η-intercalibration follow from a combination of single-jet triggers with various p_T thresholds in regions of either $|\eta_{\text{det}}| < 3.1$ or $|\eta_{\text{det}}| > 2.8$. Triggers are only used in regions of kinematic phase space in which they are 99% efficient. Triggers may also be prescaled, randomly rejecting a set fraction of events to satisfy bandwidth considerations, and the event weight is scaled proportionally. Events are required to have at least two jets with $p_T > 25 \text{ GeV}$ and with $|\eta_{\text{det}}| < 4.5$. Events that include a third jet with relatively substantial p_T, $p_T^{\text{avg}} > 0.4p_T^{\text{avg}}$ are rejected. The two leading jets are also required to be fairly back-to-back, such that $\Delta \phi > 2.5 \text{ rad}$.

The residual calibration is derived from the ratio of the jet responses in data and the POWHEG+PYTHIA sample. The SHERPA sample is used to provide a systematic uncertainty in the MC modeling. The full range of $|\eta_{\text{det}}| < 4.5$ is used to derive calibrations for statistically significant regions of p_T^{avg}, offering an improvement on the 2011 calibration that extrapolated the measurement from a constrained region $|\eta_{\text{det}}| < 2.7$ due to statistical considerations. A two-dimensional sliding Gaussian kernel [3] is used to reduce statistical fluctuations while preserving the shape of the MC-to-data ratio and to extrapolate the average response into regions of low statistics.

Two η-intercalibration methods are performed that provide complementary results. In the central reference method, central regions ($|\eta_{\text{det}}| < 0.8$) are used as references to measure the relative jet response in the forward probe bins ($0.8 < |\eta_{\text{det}}| < 4.5$). In the matrix method, numerous independent reference regions are chosen and the relative jet response in a given forward probe bin is measured relative to all reference regions simultaneously. The response relative to the central region is then obtained as a function of p_T^{avg} and η_{det} through a set of linear equations. The matrix method takes advantage of a larger data set by allowing multiple reference regions, including forward ones, increasing the statistical precision of the calibration.

The binning is chosen such that each reference region is statistically significant in data and POWHEG+PYTHIA samples. Some reference regions, particularly for forward probe bins, may not be statistically significant for the SHERPA sample due to its smaller sample size. Such regions are ignored in the combined fit of the response, leading to small fluctuations in the SHERPA response, which are smoothed in p_T and η_{det} by the two-dimensional sliding Gaussian kernel.

The relative jet responses derived from the two methods show agreement at the level of 2%, within the uncertainty of the methods. A slightly larger response is seen in the most forward bins ($|\eta_{\text{det}}| > 2.5$) in the matrix method, as seen in 2011. This difference exists in the response in both data and MC simulation, and the MC-to-data ratio is consistent between methods. The matrix method is used to derive the nominal calibration in the following results, with the central reference method providing validation. As in the 2011 calibration, $\gamma + \text{jet}$ events are also used to validate the response in the forward regions, and show good agreement between data and MC simulation in the forward region.

The relative jet response is shown in Fig. 6 for both data and the two MC samples, parametrized by p_T in two η_{det} ranges and by η_{det} in two p_T ranges. The level of modeling agreement, taken between POWHEG+PYTHIA and SHERPA, is significantly better than in previous results and is generally within 1%, with larger differences at low p_T and in forward η_{det} regions. This improved agreement is not due to any changes to the method but results from better overall particle-level agreement, particularly the improved modeling of the third-jet radiation by the NLO POWHEG+PYTHIA and SHERPA generators over that of the LO PYTHIA and HERWIG generators used in the 2011 calibration. The particle-level response was also measured with a POWHEG-BOX sample showered with Herwig++, and shows a similar level of agreement as found between POWHEG+PYTHIA and SHERPA. Uncertainties are calculated in a given bin by shifting the observed asymmetry with all reference regions and recalculating the response. While accurate for data and POWHEG+PYTHIA, this can lead to statistical uncertainties that do not cover the observed fluctuations in SHERPA, but that do not affect the final systematic uncertainty derived from the smoothed difference between MC samples.

The response in data is consistently larger than that in both MC samples and in the 2011 data for the forward detector region for all p_T ranges. This is due to the reduction in the number of samples used to reconstruct pulses in the LAr calorimeter from five to four, which is sensitive to differences in the pulse shape between data and MC simulation. The reduction was predicted to increase the response in the forward region, as seen in a comparison of Run 1 data processed using both five and four samples. The expected increase matches that seen in 2015 data, and is corrected for by the η-intercalibration procedure. The effect was predicted to be particularly large for $2.3 < |\eta_{\text{det}}| < 2.6$ due to details of the jet reconstruction in calorimeter transition regions. To fully account for this effect, a finer binning of $\Delta \phi_{\text{det}}$ is used in this region.

The systematic uncertainties account for physics and detector mismodelings as well as the effect of the event topology on the modeling of the p_T balance. They are derived as a function of p_T and $|\eta_{\text{det}}|$, with no statistically significant variations observed between positive and negative η_{det}. The dominant uncertainty due to MC mismodeling is taken as the difference in the smoothed jet response between POWHEG+PYTHIA and SHERPA. The estimation of systematic uncertainties due to pile-up and the choice of event topology are similar to those of the 2011 calibration [3], but now use the bootstrapping procedure to ensure statistical significance. These uncertainties, including those from varying the $\Delta \phi$ separation requirement between the
two leading jets and the third-jet veto requirement, are usually small compared to the MC uncertainty and are therefore summed in quadrature with it into a single physics mismodeling uncertainty, with a negligible loss of correlation information. Two additional and separate uncertainties are derived to account for statistical fluctuations and the observed nonclosure of the calibration for 2.0 < |\eta_{\text{det}}| < 2.6, primarily due to the LAr pulse reconstruction effects described above. The latter is taken as the difference between data and the nominal MC event generator after repeating the analysis with the derived calibration applied to data. The total \eta-intercalibration uncertainty is shown in Fig. 7 as a function of \eta_{\text{det}} for two jet \pT values.

2. Z + jet and \gamma + jet balance

An in situ calibration of jets up to 950 GeV and with |\eta| < 0.8 is derived through the \pT balance of a jet against a Z boson or a photon. Z/\gamma + jet calibrations rely on the independent measurement and calibration of the energy of a photon or of the lepton decay products of a Z boson, through the decay channels of Z → e^+e^- and Z → \mu^+\mu^-.

Bosons are ideal candidates for reference objects as they are precisely measured: muons from tracks in the ID and MS and photons and electrons through their relatively narrow showers in the electromagnetic calorimeter and the independent measurement of electron tracks in the ID. The Z + jet calibration is limited to the statistically significant \pT range of Z boson production of 20 < \pT < 500 GeV. The \gamma + jet calibration is limited by the small number of events at high \pT and by both dijet contamination and an artificial reduction of the number of events due to the prescaled triggers at low \pT, limiting the calibration to 36 < \pT < 950 GeV.

Two techniques are used to derive the response with respect to the Z boson and photon [3]. The direct balance (DB) technique measures the ratio of a fully reconstructed jet's \pT, calibrated up to the \eta-intercalibration stage, and a

FIG. 6. Relative response of EM + JES jets as a function of \eta at (a) low \pT and (b) high \pT, and as a function of jet \pT within the ranges of (c) 1.2 < \eta_{\text{det}} < 1.5 and (d) 2.6 < \eta_{\text{det}} < 2.8. The bottom panels show the MC-to-data ratios, and the overlayed curve reflects the smoothed in situ correction, appearing solid in the regions in which it is derived and dotted in the regions to which it is extrapolated by the two-dimensional sliding Gaussian kernel. Results are obtained with the matrix method. The binning is optimized for data and Powheg+Pythia, and fluctuations in the response in Sherpa are not statistically significant. Horizontal dotted lines are drawn in all at 1, 1 ± 0.02, and 1 ± 0.05 to guide the eye.
reference object’s p_T. The use of a fully reconstructed and calibrated jet allows the calibration to be applied to jets in a straightforward manner. For a $2 \rightarrow 2 Z/\gamma +$ jet event, the p_T of the jet can be expected to balance that of the reference object. However, the DB technique can be affected by additional parton radiation contributing to the recoil of the boson, appearing as subleading jets. This is mitigated through a selection against events with a second jet of significant p_T and a minimum requirement on $\Delta \phi$, the azimuthal angle between the Z/γ boson and the jet, to ensure they are sufficiently back-to-back in ϕ. The component of the boson p_T perpendicular to the jet axis is also ignored, with the reference p_T defined as

$$p_T^{\text{ref}} = p_T^{Z/\gamma} \times \cos (\Delta \phi).$$

The DB technique is also affected by out-of-cone radiation, consisting of the energy lost outside of the reconstructed jet’s cone of $R = 0.4$ due to fragmentation processes. The out-of-cone radiation may lead to a p_T imbalance between a jet and the reference boson, and is estimated by measuring the profile of tracks around the jet axis [3].

The missing-E_T projection fraction (MPF) technique instead derives a p_T balance between the full hadronic recoil in an event and the reference boson. The average MPF response is defined as

$$R_{\text{MPF}} = \left< 1 + \frac{\hat{n}_{\text{ref}} \cdot E_T^{\text{miss}}}{p_T^{\text{ref}}} \right>, \quad (2)$$

where R_{MPF} is the calorimeter response to the hadronic recoil, \hat{n}_{ref} is the direction of the reference object, and p_T^{ref} is the transverse momentum of the reference object. The E_T^{miss} in Eq. (2) is calculated directly from all the topo-clusters of calorimeter cells, calibrated at the EM scale, and is corrected with the p_T of the minimum ionizing muons in $Z \rightarrow \mu\mu$ events. No correction is needed for electrons or photons as their calorimeter response is nearly unity.

The MPF technique utilizes the full hadronic recoil of an event rather than a single reconstructed jet. The MPF response is therefore less sensitive to the jet definition, radius parameter, and out-of-cone radiation than the DB response, with reconstructed jets only explicitly used in the event selections. The MPF technique is less sensitive to the generally ϕ-symmetric pile-up and underlying-event activity. As the MPF technique is not derived from a reconstructed jet the correction does not directly reflect the energy within the reconstructed jet’s cone. The out-of-cone uncertainty derived for the DB technique is therefore applied as an estimate of the effect of showering and jet topology. As the MPF technique does not use jets directly, the impact of the GSC is accounted for by applying a correction to the cluster-based E_T^{miss}, equal to the difference in momentum of the leading jet with and without the GSC. The results from this method are compared with those using no GSC and those with the GSC applied to all jets in the event, with negligible differences seen in the MC-to-data response ratio.

The response of the jet (DB) or hadronic recoil (MPF) is measured in both data and MC simulation, and a residual correction is derived using the MC-to-data ratio. The two methods are complementary and they are both pursued to check the compatibility of the measured response. The results below present the $Z +$ jet results using the MPF technique and the $\gamma +$ jet results using the DB technique.

For both techniques the average response is initially derived in bins of p_T^{ref}. In each bin of p_T^{ref}, a maximum-likelihood fit is performed using a modified Poisson
distribution extended to noninteger values. The fit range is limited to twice the rms of the response distribution around the mean to minimize the effect of MC mismodeling in the tails of the distribution. The average response is taken as the mean of the best-fit Poisson distribution. For 2015 data, a new procedure is used to reparametrize the average balance from the reference object \(p_T \) to the corresponding jet \(p_T \), better representing the mismeasured jet to which the calibration is applied. This procedure is used after the calibration is derived by finding the average jet \(p_T \), without \(Z/\gamma \) + jet calibrations applied, within each bin of reference \(p_T \).

Events in the \(Z + \) jet selection are required to have a leading jet with \(p_T > 10 \) GeV, and in the \(\gamma + \) jet selection are required to have a leading jet with \(p_T > 20 \) GeV. In the \(\gamma + \) jet DB (\(Z + \) jet MPF) technique, the leading jet must sufficiently balance the reference boson in the azimuthal plane, requiring \(\Delta \phi (\text{jet}, Z(\gamma)) > 2.8 (2.9) \) rad. To reduce contamination from events with significant hadronic radiation, a selection of \(p_T^{\text{second}} < \max (15 \text{ GeV}, 0.1 \times p_T^{\text{ref}}) \) is placed on the second jet, ordered by \(p_T \), in the \(\gamma + \) jet DB technique. For the \(Z + \) jet MPF technique, this selection is mostly looser as \(R_{\text{MPF}} \) is less sensitive to QCD radiation, requiring the second jet to have \(p_T^{\text{second}} < \max (12 \text{ GeV}, 0.3 \times p_T^{\text{ref}}) \).

Electrons [38] (muons [16]) used in the \(Z + \) jet events are required to pass basic quality and isolation cuts, and to fall within the range \(|\eta| < 2.47 \) (2.4). Events are selected based on the lowest-\(p_T \) unprescaled single-electron or single-muon trigger. Electrons that fall in the transition region between the barrel and the endcap of the electromagnetic calorimeter (1.37 < \(|\eta| < 1.52 \)) are rejected. Both leptons are required to have \(p_T > 20 \) GeV, and the invariant mass of the opposite-charge pairs must be consistent with the Z boson mass, with 66 < \(m_{ll} \) < 116 GeV. Photons [38] used in the \(\gamma + \) jet events must satisfy tight selection criteria and be within the range \(|\eta| < 1.37 \) with \(p_T > 25 \) GeV. Events are selected based on a combination of fully efficient single-photon triggers. Energy isolation criteria are applied to the photon showers to discriminate photons from \(Z^0 \) decays and to maximize the suppression of jets misidentified as photons [39]. Jets within \(\Delta R = 0.35 \) of a lepton are removed from consideration in the \(Z + \) jet selection, while jets within \(\Delta R = 0.2 \) of photons are similarly removed from consideration in both the \(Z + \) jet and \(\gamma + \) jet selections.

The average response in \(Z/\gamma + \) jet events as a function of jet \(p_T \) is shown in Fig. 8 for data and two MC samples. For the DB technique in \(\gamma + \) jet events, the response is slightly below unity, reflecting the fraction of \(p_T \) falling outside of the reconstructed jet cone. For the MPF technique in \(Z + \) jet events, \(R_{\text{MPF}} \) is significantly below unity, reflecting that the Z boson is fully calibrated while the topo-clusters used in calculating the hadronic recoil are at the EM scale. However, in both cases the data and MC simulation are in agreement, with the MC-to-data ratio within ~5% of unity for both MC samples. The rise in \(R_{\text{MPF}} \) at low \(p_T \) in 8(a) is caused by the jet reconstruction threshold.

Systematic uncertainties in the MC-to-data response ratios are shown in Fig. 9. In both the DB and MPF...
techniques the event selections are varied to estimate the impact of the choice of event topology on the MC mismodeling of the \(p_T \) response. Variations are made to the selection criteria for the second-jet \(p_T \) and \(\Delta \phi \) between the leading jet and reference object to assess the effect of additional parton radiation. The effect of pile-up suppression is similarly studied by varying the JVT cut about its nominal value. Potential MC event generator mismodeling is explored by repeating the analyses with alternative MC event generators, with the difference in the MC-to-data response ratios taken as a systematic uncertainty. Uncertainties in the energy (momentum) scale and resolution of electrons and photons (muons) are estimated from studies of Z → ee (Z → μμ) measurements in data [16,38]. Variations of ±1σ are propagated through the analyses to the MC-to-data response ratios. A purity uncertainty in the \(\gamma + \text{jet} \) jet balance accounts for the contamination from multijet events arising from jets appearing as fake photons. The effect of this contamination on the MC-to-data response ratio is studied by relaxing the photon identification criteria. The uncertainty due to out-of-cone radiation is derived from differences between data and MC simulation in the transverse momentum of charged-particle tracks around the jet axis. The bootstrapping procedure is used to ensure only statistically significant variations of the response are included in the uncertainties.

3. Multijet balance

The multijet balance (MJB) [3] is the last stage of the in situ calibration and is used to extend the calibrations to a \(p_T \) of 2 TeV. Topologies with three or more jets are used to balance a high-\(p_T \) jet against a recoil system composed of several lower-\(p_T \) jets. The recoil jets are of sufficiently low \(p_T \) as to be in the range of \(Z/\gamma + \text{jet} \) calibrations and are therefore fully calibrated. The \(Z/\gamma + \text{jet} \) input calibrations are combined using the procedure outlined in Sec. V D 4.

The leading jet is taken as the highest-\(p_T \) jet of an event and the four-momenta of all other subleading jets are combined into a recoil-system four-momentum. The leading jet is calibrated only up to the \(\eta \)-intercalibration stage, and is therefore at the same scale as the jets explored by the \(Z/\gamma + \text{jet} \) methods. A \(p_T \) limit of 950 GeV is imposed on each subleading jet to ensure they are fully calibrated by the \(Z/\gamma + \text{jet} \) methods. A consequence of this limit is the rejection of events with very high-\(p_T \) leading jets, which often have subleading jets with \(p_T \) above this limit. These events are recovered through the use of multiple iterations of the MJB method, with the previously derived MJB calibration being applied to higher-\(p_T \) subleading jets. The new \(p_T \) limit on the subleading jets is determined by the statistical reach of the previous iteration of the MJB method. Using 2015 data, the MJB method is able to cover a range of \(300 < p_T < 2000 \) GeV using two iterations.

The average response between the leading jet and recoil system, \(\mathcal{R}_{\text{MJB}} \), is defined as

\[
\mathcal{R}_{\text{MJB}} = \left\langle \frac{p_T^{\text{leading}}}{p_T^{\text{recoil}}} \right\rangle,
\]

where \(p_T^{\text{leading}} \) is the transverse momentum of the highest-\(p_T \) jet and \(p_T^{\text{recoil}} \) is from the vectorial sum of all subleading jets. The response is initially binned as a function of \(p_T^{\text{recoil}} \), corresponding to the well-calibrated reference object. As with the \(Z/\gamma + \text{jet} \) calibrations, a new procedure is used for 2015 data to reparametrize the response from \(p_T^{\text{recoil}} \).
to p_T^{leading}. This procedure is applied after the calibration is derived by finding the average p_T^{leading}, without $Z/\gamma + \text{jet}$ or MJB calibrations applied, within each bin of p_T^{recoll}.

Events entering the MJB calibration are recorded using a combination of fully efficient single-jet triggers used in distinct regions of p_T^{recoll}. Events are required to have at least three jets with $p_T > 25$ GeV and $|\eta| < 2.8$, with the leading jet required to be central ($|\eta| < 1.2$). Events dominated by a dijet p_T balance are rejected if the second jet's p_T is a considerable fraction of the recoil system's p_T, with a p_T asymmetry requirement of $p_T^{\text{asymmetry}} = p_T^{\text{second}}/p_T^{\text{recoll}} < 0.8$. The azimuthal angle between the leading jet and the recoil system, α^{MJB}, must satisfy the requirement $|\alpha^{\text{MJB}} - \pi| < 0.3$ rad, ensuring the p_T of the recoil system is balanced against that of the leading jet. Contamination of the leading jet from other jets is minimized by requiring the absolute value of the azimuthal angle, ρ^{MJB}, between the leading jet and the nearest jet with $p_T > 0.25p_T^{\text{leading}}$ to be greater than 1 rad.

The response \mathcal{R}_{MJB} is shown for data and MC simulation in Fig. 10(a). As expected, an offset is seen between data and MC simulation, reflecting that the recoil system in data is fully calibrated to the in situ stage while the leading jet is only partially calibrated. The response is below unity, particularly at low p_T, reflecting the bias in \mathcal{R}_{MJB} due to the leading-jet isolation requirement, which is well modeled in MC simulation. The MC-to-data ratio of \mathcal{R}_{MJB}, given by Eq. (1), is seen in the bottom panel of Fig. 10(a). A fairly constant correction of 2% is derived, up from 1% in 2011. This increase is partially due to changes in the simulation of hadronic showers in Geant4 as well as the response drift in the Tile calorimeter PMTs, which will be directly corrected in future data reprocessing.

Systematic uncertainties in the MC-to-data response ratio as a function of p_T^{leading} are shown in Fig. 10(b). They reflect 1σ uncertainties derived from the MJB event selection, MC modeling, and jet calibration. Event selection uncertainties are derived by varying the event selections and examining the impact on the MC-to-data ratio. The 1σ variations were conservatively found in 2011 to be ±0.1 rad for α^{MJB}, ±0.5 rad for ρ^{MJB}, ±5 GeV for $p_T^{\text{threshold}}$, and ±0.1 for $p_T^{\text{asymmetry}}$. The uncertainty due to MC modeling is taken as the difference in the MJB correction between the nominal Pythia generator and Herwig++. Uncertainties in the calibration of subleading jets are taken from the input in situ calibrations, with each component individually varied by ±1σ and propagated through each MJB iteration. The JES uncertainties related to the pile-up, punch-through, flavor composition, and flavor response are also propagated through each iteration in the 2015 calibration. The bootstrapping procedure is used to ensure statistical significance for each systematic uncertainty, with each pseudoexperiment independently propagated through the iterations. The combined uncertainty is generally below 1.5%, consistent with that from the 2011 calibration.

4. In situ combination

The data-to-MC ratio and the associated systematic uncertainties derived from the orthogonal $Z + \text{jet}$, $\gamma + \text{jet}$, and MJB calibrations are combined across overlapping regions of jet p_T [3]. For each method, the results are recast into a common, fine binning in p_T by...
interpolating second-order polynomial splines. Each \textit{in situ} method is assigned a \(p_T \)-dependent weight through a \(\chi^2 \) minimization, using as inputs the response ratios and their uncertainties in each \(p_T \) bin. A method’s weight is therefore increased in \(p_T \) regions of smaller relative uncertainty and smaller bin size, with the combination favoring the method of greatest precision in each region. The combined data-to-MC ratio is smoothed with a sliding Gaussian kernel to reduce statistical fluctuations.

The combined data-to-MC ratio is shown in Fig. 11 alongside the \(Z + \text{jet} \), \(\gamma + \text{jet} \), and MJB ratios in their original binnings. The inverse of the combined data-to-MC ratio is taken as the \textit{in situ} correction applied to data. The combined correction is 4\% at low \(p_T \) and decreases to 2\% at 2 TeV. This is a larger correction than seen in 2011, but it is expected due to changes in the simulation of hadronic showers in \textsc{Geant4} and the slight PMT down-drift in the Tile calorimeter. The individual \textit{in situ} results show good agreement with one another in the various regions of overlapping \(p_T \). The differences between \textit{in situ} measurements are quantified with \(\sqrt{\chi^2/N_{\text{dof}}} \), which is generally below 1.

The systematic uncertainties are averaged and smoothed with the same combination procedure through a linear transformation [3,13]. One at a time, each uncertainty source of each \textit{in situ} method is shifted coherently by 1\(\sigma \), within the method’s original binning. The binning interpolation and combination are then repeated with the nominal weighting of the methods. In this procedure, the various systematic uncertainties are treated independently of one another and as fully correlated across \(p_T \). Their independent treatment during the combination allows for alternative correlation assumptions at a later stage, and the difference between treating correlations before and after the combination are found to be negligible. The difference between the shifted combined correction factor and the nominal is taken as the 1\(\sigma \) variation for each uncertainty source. The \(Z/\gamma + \text{jet} \) uncertainties have a one-to-one correlation with the corresponding uncertainties propagated through the MJB technique. Therefore, for each of these uncertainties, the correction factors of the \textit{in situ} methods are shifted coherently by 1\(\sigma \), before the binning interpolation and combination steps.

If the nominal corrections from different \textit{in situ} methods disagree in a \(p_T \) bin, such that the tension factor \(\sqrt{\chi^2/N_{\text{dof}}} \) is above 1, the uncertainty from each source is scaled by the tension factor in that bin. In the 2015 calibration, a tension factor of \(\sim1.1 \) was found only in the narrow \(p_T \) region between 45 and 50 GeV. As with the nominal result, each systematic uncertainty component is smoothed using a sliding Gaussian kernel.

VI. SYSTEMATIC UNCERTAINTIES

The final calibration includes a set of 80 JES systematic uncertainty terms propagated from the individual calibrations and studies, listed in Table I. The majority (67) of uncertainties come from the \(Z/\gamma + \text{jet} \) and MJB \textit{in situ} calibrations and account for assumptions made in the event topology, MC simulation, sample statistics, and propagated uncertainties of the electron, muon, and photon energy scales. The remaining 13 uncertainties are derived from other sources. Four pile-up uncertainties are included to account for potential MC mismodeling of \(N_{\text{PV}}, \mu, \rho, \) and the residual \(p_T \) dependence. Three \(\eta \)-intercalibration uncertainties account for potential physics mismodeling, statistical uncertainties, and the method nonclosure in the 2.0 \(< \eta_{\text{det}} < 2.6 \) region. Three additional uncertainties account for differences in the jet response and simulated jet composition of light-quark, \(b \)-quark, and gluon-initiated jets. As in the 2011 calibration, the flavor response uncertainties are derived by comparing the average jet response for each jet flavor using \textsc{Pythia} and \textsc{Herwig++}. The flavor composition uncertainty is analysis dependent, and is either derived from MC samples in the relevant phase-space, or is assumed to be a 50\% quark and 50\% gluon composition with a conservative 100\% uncertainty. An uncertainty in the GSC punch-through correction is also considered, derived as the maximum difference between the jet responses in data and MC simulation as a function of the number of muon segments. One AFII modeling uncertainty accounts for nonclosure in the absolute JES calibration of fast-simulation jets, and is applied only to AFII MC samples. A high-\(p_T \) jet uncertainty is derived from single-particle response studies [34] and is applied to jets with \(p_T > 2 \) TeV, beyond the reach of the \textit{in situ} methods.

The full combination of all uncertainties is shown in Fig. 12 as a function of \(p_T \) at \(\eta = 0 \) and as a function of \(\eta \) at \(p_T = 80 \) GeV, assuming a flavor composition taken from
the inclusive dijet selection in **PYTHIA**. Each uncertainty is generally treated independently of the others but fully correlated across p_T and η. Exceptions are the electron and photon energy scale measurements, which are treated as fully correlated. The uncertainty is largest at low p_T, starting at 4.5% and decreasing to 1% at 200 GeV. It rises after 200 GeV due to the statistical uncertainties related to the *in situ* calibrations, and increases sharply after 2 TeV.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z + \text{jet}$</td>
<td>Uncertainty in the electron energy scale</td>
</tr>
<tr>
<td>Electron scale</td>
<td>Uncertainty in the electron energy resolution</td>
</tr>
<tr>
<td>Electron resolution</td>
<td>Uncertainty in the electron energy resolution</td>
</tr>
<tr>
<td>Muon scale</td>
<td>Uncertainty in the muon momentum scale</td>
</tr>
<tr>
<td>Muon resolution (ID)</td>
<td>Uncertainty in muon momentum resolution in the ID</td>
</tr>
<tr>
<td>Muon resolution (MS)</td>
<td>Uncertainty in muon momentum resolution in the MS</td>
</tr>
<tr>
<td>MC generator</td>
<td>Difference between MC event generators</td>
</tr>
<tr>
<td>JVT</td>
<td>Jet vertex tagger uncertainty</td>
</tr>
<tr>
<td>$2\Delta\phi$</td>
<td>Variation of $\Delta\phi$ between the jet and Z boson</td>
</tr>
<tr>
<td>2nd jet veto</td>
<td>Radiation suppression through second-jet veto</td>
</tr>
<tr>
<td>Out-of-cone</td>
<td>Contribution of particles outside the jet cone</td>
</tr>
<tr>
<td>Statistical</td>
<td>Statistical uncertainty over 13 regions of jet p_T</td>
</tr>
<tr>
<td>$\gamma + \text{jet}$</td>
<td>Uncertainty in the photon energy scale</td>
</tr>
<tr>
<td>Photon scale</td>
<td>Uncertainty in the photon energy resolution</td>
</tr>
<tr>
<td>Photon resolution</td>
<td>Uncertainty in the photon energy resolution</td>
</tr>
<tr>
<td>MC generator</td>
<td>Difference between MC event generators</td>
</tr>
<tr>
<td>JVT</td>
<td>Jet vertex tagger uncertainty</td>
</tr>
<tr>
<td>$2\Delta\phi$</td>
<td>Variation of $\Delta\phi$ between the jet and γ</td>
</tr>
<tr>
<td>2nd jet veto</td>
<td>Radiation suppression through second-jet veto</td>
</tr>
<tr>
<td>Out-of-cone</td>
<td>Contribution of particles outside the jet cone</td>
</tr>
<tr>
<td>Photon purity</td>
<td>Purity of sample in $\gamma + \text{jet}$ balance</td>
</tr>
<tr>
<td>Statistical</td>
<td>Statistical uncertainty over 15 regions of jet p_T</td>
</tr>
<tr>
<td>Multijet balance</td>
<td>Angle between leading jet and recoil system</td>
</tr>
<tr>
<td>(\alpha_{\text{MJB}}) selection</td>
<td>Angle between leading jet and closest subleading jet</td>
</tr>
<tr>
<td>(\beta_{\text{MJB}}) selection</td>
<td>Angle between leading jet and closest subleading jet</td>
</tr>
<tr>
<td>MC generator</td>
<td>Difference between MC event generators</td>
</tr>
<tr>
<td>p_T symmetry selection</td>
<td>Second jet’s p_T contribution to the recoil system</td>
</tr>
<tr>
<td>Jet p_T threshold</td>
<td>Jet p_T threshold</td>
</tr>
<tr>
<td>Statistical components</td>
<td>Statistical uncertainty over 16 regions of p_T^{leading}</td>
</tr>
<tr>
<td>(\eta)-intercalibration</td>
<td>Envelope of the MC, pile-up, and event topology variations</td>
</tr>
<tr>
<td>Physics mismodeling</td>
<td>Nonclosure of the method in the $2.0 <</td>
</tr>
<tr>
<td>Nonclosure</td>
<td>Nonclosure of the method in the $2.0 <</td>
</tr>
<tr>
<td>Statistical component</td>
<td>Statistical uncertainty</td>
</tr>
<tr>
<td>Pile-up</td>
<td>Uncertainty of the μ modeling in MC simulation</td>
</tr>
<tr>
<td>N_{PV} offset</td>
<td>Uncertainty of the N_{PV} modeling in MC simulation</td>
</tr>
<tr>
<td>ρ topology</td>
<td>Uncertainty of the per-event p_T density modeling in MC simulation</td>
</tr>
<tr>
<td>p_T dependence</td>
<td>Uncertainty in the residual p_T dependence</td>
</tr>
<tr>
<td>Jet flavor</td>
<td>Uncertainty in the jet composition between quarks and gluons</td>
</tr>
<tr>
<td>Flavor composition</td>
<td>Uncertainty in the jet response of gluon-initiated jets</td>
</tr>
<tr>
<td>Flavor response</td>
<td>Uncertainty in the jet response of gluon-initiated jets</td>
</tr>
<tr>
<td>b-jet</td>
<td>Uncertainty in the jet response of b-quark-initiated jets</td>
</tr>
<tr>
<td>Punch-through</td>
<td>Uncertainty in GSC punch-through correction</td>
</tr>
<tr>
<td>AFII non-closure</td>
<td>Difference in the absolute JES calibration using AFII</td>
</tr>
<tr>
<td>Single-particle response</td>
<td>High-p_T jet uncertainty from single-particle and test-beam measurements</td>
</tr>
</tbody>
</table>
where MJB measurements end and larger uncertainties are taken from the single-particle response. The uncertainty is fairly constant as a function of \(\eta \) and reaches a maximum of 2.5% for the most forward jets. A sharp feature can be seen in the region 2.0 < |\(\eta \)| < 2.6 due to the nonclosure uncertainty of the \(\eta \)-intercalibration.

The complete set of systematic uncertainties provides a detailed understanding of the many factors that influence the JES. Uncertainties are generally derived in specific regions of jet \(p_T \) and \(\eta \), and the correlation of uncertainties between two jets with different kinematics can vary in strength. For the set of variables \(\{ p_T, \eta \} \), the Pearson correlation coefficient (C) between two jets is used to quantify the correlations, and is defined as

\[
C(\{ p_T, \eta \}_1, \{ p_T, \eta \}_2) = \frac{\text{Cov}(\{ p_T, \eta \}_1, \{ p_T, \eta \}_2)}{\sqrt{\text{Cov}(\{ p_T, \eta \}_1, \{ p_T, \eta \}_1) \times \text{Cov}(\{ p_T, \eta \}_2, \{ p_T, \eta \}_2)}},
\]

where Cov is the covariance of the systematic uncertainties between the two sets of variables.

The jet–jet correlation matrix, including all 80 uncertainties, is shown as a function of jet \(p_T \) (\(\eta^{ij1} = \eta^{ij2} = 0 \)) in Fig. 13(a) and as a function of jet \(\eta \) (\(p_T^{ij1} = p_T^{ij2} = 60 \text{ GeV} \)) in Fig. 13(b). Regions of strong correlation (\(C \sim 1 \)) are shown in mid-tone red, and of weak correlation (\(C \sim 0 \)) in dark blue. In the \(p_T \) correlation map, features are visible at low, medium, high, and very high \(p_T \), corresponding to the kinematic phase space of the \textit{in situ} \(p_T \)-balance calibrations and the single-particle response. In the \(\eta \) correlation map the correlation is strongest in the central and forward \(\eta \) regions of the \(\eta \)-intercalibration. Strong jet-jet correlations are seen as a function of \(\eta \) due to the dominance of the MC modeling term in the \(\eta \)-intercalibration. Correlations due to the nonclosure uncertainty, being most significant for 2.2 < |\(\eta \)| < 2.4, are seen to be localized in a narrow \(\eta \) region, as expected.

While the 80 uncertainties provide the most accurate understanding of the JES uncertainty, a number of physics analyses would be hampered by the implementation and evaluation of them all. Furthermore, many would receive no discernible benefit from the rigorous conservation of all correlations. For these cases a reduced set of nuisance parameters (NPs) is made available that seeks to preserve as precisely as possible the correlations across jet \(p_T \) and \(\eta \).

As a first step, the global reduction [3] is performed through an eigen-decomposition of the 67 \(p_T \)-dependent \textit{in situ} uncertainties following from the \(\mathcal{Z}/\gamma + \text{jet} \) and MJB intercalibrations. The five principal components of greatest magnitude are kept separate and the remaining components are quadratically combined into a single NP, treating them as independent of one another. This reduces the number of independent \textit{in situ} uncertainty sources from 67 to 6 NPs, with only percent-level losses to the correlations between jets. The difference in correlation, given by Eq. (3), between the full NP representation and the reduced representation as a function of jet \(p_T \) is given in Fig. 14(a), showing the losses to be small and constrained in kinematic phase space.

A new procedure is introduced for 2015 data to further reduce the remaining 19 NPs (6 \textit{in situ} \(p_T \)-balance NPs and 13 others) into a smaller, strongly reduced representation. Various combinations of the remaining NPs into three components are attempted, and NPs within a single component are quadratically combined. The combinations attempt to group NPs into \(p_T \) and \(\eta \) regions where they are most relevant, thereby minimizing the correlation loss and reducing the potential for artificial correlation structures across large regions of jet kinematic phase space.

FIG. 12. Combined uncertainty in the JES of fully calibrated jets as a function of (a) jet \(p_T \) at \(\eta = 0 \) and (b) \(\eta \) at \(p_T = 80 \text{ GeV} \). Systematic uncertainty components include pile-up, punch-through, and uncertainties propagated from the \(\mathcal{Z}/\gamma + \text{jet} \) and MJB (absolute \textit{in situ} JES) and \(\eta \)-intercalibration (relative \textit{in situ} JES). The flavor composition and response uncertainties assume a quark and gluon composition taken from PYTHIA dijet MC simulation (inclusive jets).
Combinations that group NPs that are dominant in low-, medium-, and high-$$p_T$$ kinematic regimes are therefore generally favored. The $$\eta$$-intercalibration nonclosure uncertainty (Sec. V D 1), being fairly large and localized, and the AFI uncertainty, being specific to a certain type of MC simulation, are not included in this procedure. This procedure is performed using PYTHIA MC simulation, assuming a conservative 50% quark and 50% gluon composition with a 100% uncertainty.

The correlation loss between a strongly reduced representation NPred and the full representation NPfull is generally non-composition with a 100% uncertainty. Assuming a conservative 50% quark and 50% gluon composition which varies the regions of greatest correlation loss from the $$\eta$$-intercalibration.

This simple mean is taken as the average correlation loss over the fine logarithmic $$p_T$$ bins, excluding bins in kinematically forbidden regions. Sensitivity to this correlation loss is analysis dependent and is determined by the regions in jet $$p_T-\eta$$ phase space where the analysis events fall. To allow analyses to probe their sensitivity to this loss, a set of four different strongly reduced representations $$\{\text{NP}_{\text{red}}\}$$ is generated which varies the regions of greatest correlation loss between them. Each $$\text{NP}_{\text{red}}$$ combines the components in a unique way, with different kinematic regions becoming better or worse descriptions of the full correlation matrix. The sensitivity of an analysis to the correlation loss can be quantified by examining the effect of each $$\text{NP}_{\text{red}}$$ on the final analysis observable. The four $$\text{NP}_{\text{red}}$$ are each derived to focus on one of the following correlation scenarios:

FIG. 13. The full correlation matrix between two jets using all 80 uncertainty sources as a function of (a) $$p_T$$ for $$\eta^\text{jet1} = \eta^\text{jet2} = 0$$ and (b) $$\eta$$ for $$p_T^\text{jet1} = p_T^\text{jet2} = 60$$ GeV. Regions of strong correlation are visible at low, medium, high, and very high $$p_T$$ corresponding to the $$Z +$$ jet, $$\gamma +$$ jet, and MJB calibrations and the single-particle response, as well as in the central and forward jet $$\eta$$ regions from the $$\eta$$-intercalibration.

FIG. 14. Jet-jet correlation losses after applying (a) the global reduction and (b) subsequent strong reduction as a function of $$p_T$$ for $$\eta^\text{jet1} = \eta^\text{jet2} = 0$$. The correlation loss is relatively minor from the global reduction and larger from the strong reduction in certain kinematic regions.
(1) the general representation with low-, medium-, and high-p_T kinematic regimes;
(2) preservation of low-p_T vs medium-p_T correlation structure as well as η dependencies;
(3) preservation of medium-p_T vs high-p_T correlation structure;
(4) preservation of very high-p_T correlation structure.

When deriving a reduced representation, it can be useful to highlight exceptional uncertainties or vary the way in which they are combined. An uncertainty may exhibit a large anticorrelation across p_T or η, and the anti-correlation information is lost when summed in quadrature with other uncertainties to form a single NP. If such an uncertainty is non-negligible, it is useful to isolate it as a single strongly reduced NP. For uncertainties derived from the comparison of two MC event generators, the correlation structure is not well defined. These NPs can be split into two identical components of complementary weight, such that their combination sums to the original uncertainty for all points in the $p_T-\eta$ phase space. The split NP can then be divided between two strongly reduced NPs, changing the correlation information in certain kinematic regions. A reduced representation can also recover the correlation information from globally subdominant eigenvectors that were initially combined in the preceding eigen-decomposition. These eigenvectors are smaller overall than others but may be dominant for specific kinematic regions. By keeping these eigenvectors separate until the strong reduction procedure, the correlation structure in kinematic regions of interest can be better probed, at the expense of an increased loss in the overall global correlation structure.

To ensure the set of four reduced representations $\{\text{NP}_\text{red}\}$ is suitable in bracketing the full correlation matrix, a metric is defined to quantify the uncovered correlation loss of any derived set. The metric measures the maximum correlation difference between any two reduced representations $\text{NP}_\text{red} \in \{\text{NP}_\text{red}\}$ and compares it with the smallest difference between the full representation NP_full and any NP_red. If the difference between any two NP_red is larger than that of any NP_red and NP_full, then analyses that bracket their sensitivity to correlation loss with $\{\text{NP}_\text{red}\}$ are conservative with respect to any differences with the full representation. The metric to quantify the uncovered correlation loss of any derived $\{\text{NP}_\text{red}\}$ is defined as

$$\min_{i \in \{\text{NP}_\text{red}\}} |C_{\text{full}} - C_i| - \max_{i, j \in \{\text{NP}_\text{red}\}} |C_i - C_j|,$$

FIG. 15. Uncovered jet-jet correlation loss between the full NP representation and the set of strongly reduced representations, showing regions which are not fully covered by the strongly reduced set of four representations. The uncovered correlation loss is calculated by the metric given in Eq. (4). The uncovered correlation loss is explored in the four-dimensional jet-jet $p_T-\eta$ phase space. Each subplot shows the uncovered correlation loss as a function of p_T, and subplots are shown for several regions of η in steps of $\Delta \eta = 0.5$. White regions represent the kinematically forbidden phase space beyond the reach of $\sqrt{s} = 13$ TeV. The top (bottom) number in each subplot gives the maximum (mean) uncovered correlation loss, multiplied by a factor of 100 for visibility, with the mean excluding kinematically forbidden regions.
where C_{full} is the correlation coefficient for the full NP set and C_{red} is that of a reduced NP representation. The metric is calculated throughout the jet-jet p_T-η phase space, and is not allowed to be greater than zero.

This uncovered correlation loss is shown in Fig. 15 for several points in the four-dimensional jet-jet p_T-η phase space. It is shown as a function of p_T for several distinct regions of η in steps of $\Delta \eta = 0.5$. For each η region, the maximum correlation loss not covered by differences between the reduced representations is above the level of -0.3 with a mean at or above -0.01. The regions of maximum difference are very limited in kinematic phase space and therefore have a minimal impact, with the strongly reduced representation procedure probing almost all of the JES correlation structure. The majority of ATLAS searches using 2015 data have been shown to be insensitive to this limited loss of correlation information and have used the strongly reduced NPs successfully, such as the dijet [40] and multijet [41] resonance searches.

VII. CONCLUSIONS

The derivation of the 2015 ATLAS calibration of the jet energy scale is presented for EM-scale anti-k_T, $R = 0.4$ jets. An area-based pile-up correction and a pile-up-sensitive residual correction are derived to reduce contamination from the busy detector environment at a bunch spacing of 25 ns. Absolute jet energy scale and η calibrations are derived from Monte Carlo simulation to correct the jet four-momentum to the particle-level energy scale and to improve the jet angular resolution. The global sequential calibration is derived from p_T-sensitive observables to improve the jet resolution and to account for the differing energy response between quark- and gluon-initiated jets.

In situ calibrations are derived using 3.2 fb$^{-1}$ of $\sqrt{s} =$ 13 TeV proton-proton collision data collected by ATLAS in 2015 at the LHC. Dijet events are selected to measure the p_T- and η-dependent response of forward jets with respect to central jets. A p_T-dependent correction is derived by balancing the p_T of jets against reference photons and Z bosons decaying into electrons and muons. A final correction is derived for higher-p_T jets through multijet events in which the highest-p_T jet is significantly more energetic than the others. The in situ corrections are combined in their overlapping p_T ranges to provide a single consistent calibration at a level of 4% at 20 GeV and 2% at 2 TeV.

The uncertainty in the jet energy scale is consistent with previous results in 2011 using 7 TeV data, and is at a level of 4.5% at 20 GeV, 1% at 200 GeV, and 2% at 2 TeV for an inclusive dijet sample. The uncertainties are fairly constant with respect to η, and a dedicated uncertainty is introduced for $2.0 < |\eta| < 2.6$ to account for details in the calorimeter energy reconstruction. A new method for combining systematic uncertainties into a strongly reduced set while preserving correlations is described. The full set of 80 uncertainties is reduced to five, and the correlation information loss is probed through a set of four unique combination scenarios.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC and NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC Ki, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partagé le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSR, GIF and Minerva, Israel; BRF, Norway; CECR Programa Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [42].
Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
130 Czech Technical University in Prague, Praha, Czech Republic
131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
132 State Research Institute for High Energy Physics (Protvino), NRC KI, Russia
133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
134 INFN Sezione di Roma, Italy
134b Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
135 INFN Sezione di Roma Tor Vergata, Italy
136 Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
136b INFN Sezione di Roma Tre, Italy
137 Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

137a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
137b Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
137c Faculté des Sciences, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
137d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
137e Faculté des sciences, Université Mohammed V, Rabat, Morocco
138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz California, USA
140 Department of Physics, University of Washington, Seattle Washington, USA
141 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
142 Department of Physics, Shinshu University, Nagano, Japan
143 Department Physik, Universität Siegen, Siegen, Germany
144 Department of Physics, Simon Fraser University, Burnaby British Columbia, Canada
145 SLAC National Accelerator Laboratory, Stanford California, USA

146a Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
146b Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
147 Department of Physics, University of Cape Town, Cape Town, South Africa
148 Department of Physics, University of Johannesburg, Johannesburg, South Africa
149 School of Physics, University of the Witwatersrand, Johannesburg, South Africa
148b Department of Physics, Stockholm University, Sweden
149b The Oskar Klein Centre, Stockholm, Sweden
150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook New York, USA
151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
152 School of Physics, University of Sydney, Sydney, Australia
153 Institute of Physics, Academia Sinica, Taipei, Taiwan
154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
157 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
160 Tomsk State University, Tomsk, Russia
161 Department of Physics, University of Toronto, Toronto Ontario, Canada
162 INFN-TIFPA, Italy
162b University of Trento, Trento, Italy

163a TRIUMF, Vancouver British Columbia, Canada
163b Department of Physics and Astronomy, York University, Toronto Ontario, Canada
164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
165 Department of Physics and Astronomy, Tufts University, Medford Massachusetts, USA
166 Department of Physics and Astronomy, University of California Irvine, Irvine California, USA
Also at Department of Physics, California State University, Sacramento California, USA.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.

Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.

Also at School of Physics, Sun Yat-sen University, Guangzhou, China.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Stanford University, Stanford California, USA.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Giresun University, Faculty of Engineering, Turkey.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at Department of Physics, Nanjing University, Jiangsu, China.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.