The impact of group model building on behaviour

Etiënne A.J.A. Rouwette


Abstract

Group model building refers to a process of building system dynamics models with decision makers, experts, and other stakeholders. Involving stakeholders in building system dynamics models has a long history going back several decades (Andersen, Vennix, Richardson, & Rouwette, 2007). In early studies participants were mainly asked to participate in order to bring their knowledge into the modelling process, contributing insights and data that often cannot be found in other data sources. Later it was recognised that clients who have an active role in setting the focus of a modelling project and building the model are likely to understand and accept results. A series of studies has addressed the impact of group model building on changes in participants’ knowledge and behaviour. Single case studies, going back to the 1960s, describe how a particular group of participants work on a specific problem, the insights that emerge and whether or not results were implemented. Recently these cases studies were contrasted and analysed in review papers. The general conclusion from these reviews is that group model building does lead to changes in knowledge and behaviour, but much remains unclear on the underlying mechanism. Modelling engagements focus on messy unstructured situations, and at the start of a project it is not clear which information is relevant for understanding what is going on. By jointly developing a model, a consistent picture of the situation gradually emerges. How model construction changes participants’ insights, and when and how participants translate insights into actions, are questions that researchers have begun to address. Group model building research has gradually shifted from a focus on changes in participant behaviour after the modelling project, to behaviour in modelling sessions.

Introduction

The first wave of group model building research consisted of over 130 studies describing single applications, brought together and analysed in two review papers. Research on exploring the underlying mechanism can broadly be placed into three groups: studies focusing on participants as recipients of information, as sources of information, or looking at the interaction between receiving and contributing information. The second wave of studies uses theories from social psychology to explain how modelling impacts knowledge and behaviour. In modelling sessions participants receive information, which might persuade them to change their evaluation of the issue at hand. Changes in evaluations in turn lead to changes in intentions and action. While these studies focus on receiving information, the third wave of studies looks at participants as actively constructing information. A model helps to bring pieces of information together, but a necessary precondition is that information is brought out into the open. As each individual participant only knows a fragment of the total set of information, pieces of the puzzle need to be brought together to get an overview. This means that their decision to share information is crucial to the modelling effort. Research shows that members
of freely interacting groups often do not share essential information, resulting in suboptimal decisions. Interaction in modelling groups is less free in the sense that participants are led through a series of steps designed to elicit and combine relevant information. It seems logical to expect that compared to freely interacting groups, modelling groups exchange more information and come to better decisions. Finally, a fourth wave of studies looks at the interaction between receiving and contributing information. How does the gradual emergence of model structure influence communication between participants? Do participants share information with all others equally, or are participants higher in the hierarchy more likely to send and receive?

This chapter starts by explaining the practice of group model building in more depth. The main part describes the four waves in turn. Ideas for further research are formulated at the end.

**Group model building in practice**

An example may serve to show how group model building is used in practice. In 2012 a company active in the part-time labour market feared that the economic downturn that had started in 2008, would eventually impact their organisation (Bachurina, 2012). The strategy of the company in essence came down to bringing together two types of clients: temporary workers looking for a job and company clients looking to fill temporary positions. In a growing economy, temporary workers would visit the company offices in increasing numbers. Companies often could not find new recruits fast enough and therefore hired the part-time labour organisation to find temporary workers. Some managers were worried that while this mechanism increased revenues in a growing economy, it would also lead to increasing losses in downturn. A group model building project typically starts with a conversation between a contact client and a modeller. The client relates how he or she sees the problematic situation and the desired outcomes of a potential project. If facilitated system dynamics modelling is found to be a suitable approach, a topic area is chosen and potential participants are invited to a series of sessions. A rule of thumb is to invite participants from all areas of expertise that bear on the topic, in addition to persons who have a role in the implementation of conclusions.

In the first session the aim of the project is introduced to the participants. Participants are invited to narrow down the issue that the modelling project will focus on. In system dynamics a problem is expressed in the form of a reference mode: the behaviour of a performance measure over time. This reference mode may take the form of a sketch by participants or be constructed on the basis of data from information systems. The left hand side of Figure 1 shows profit as the central reference mode in this case.
Expressing the central issue of interest in the form of a reference mode of behaviour sets the stage for the rest of the modelling effort. In essence participants are asked to identify how this behaviour came about, by jointly building the model structure that is responsible for the problem. In this sense, system dynamicists strongly believe in operational thinking: those factors that are connected to the problem should be identified and related to one another. An example by Richmond (1993) may clarify what is meant with operational thinking. An economic journal published a study on a sophisticated econometric model designed to predict milk production in the United States. The model included a large set of variables linked together in complex equations, but the number of cows was not included in the model. ‘If one asks how milk is actually generated, one discovers that cows are absolutely essential to the process’ (Richmond, 1993: 128). The focus on operational thinking is different from other (facilitated) Operational Research modelling approaches that focus on mapping for instance ideal systems or personal beliefs on means-ends relations. Models that are created in group model building have a dual identity (Zagonel, 2004). On the one hand they can be seen as tools that align views of stakeholders (the boundary object view). On the other hand, models may be said to represent reality (the micro world view). Which of the two views is emphasised depends, among others, on the aim of the modelling project.

In group model building, as in other facilitated modelling approaches, the person guiding the group through the steps of modelling remains neutral with regard to content. The facilitator helps the group to articulate their ideas and relate these to each other in a series of steps. Participants are asked to individually note down variables that relate to the issue of interest. These are collected and noted down on a whiteboard or computer screen. Next the central variable, in this case the company’s profit, is placed on the middle of the board or screen. The facilitator then asks the group members to suggest a variable that impacts the central variable. When one participant suggests a variable and relation, the facilitator notes this down on the screen and then asks the rest of the group if they agree. Other group members may suggest changes and additional variable, but the ground rule is that a relation is only drawn if all participants agree. In this way a model is incrementally built and the list of unconnected variables grows smaller. The model at any time
captures what has been discussed and agreed upon so far. The right hand side of Figure 1 shows a causal loop diagram that emerged over the course of one session.

In follow-up sessions the model may be expanded until the point that the group has sufficient confidence that the structure that has been built can explain the observed behaviour. Analysis of the model concentrates on feedback loops. At the end of a group model building project, a model typically consists of multiple interacting feedback loops. When participants have adequate confidence in the model structure, policies to change the situation in a desired direction can be added to the model and their effects analysed. Projects may stop short of formal modelling when the client’s goal of increased understanding has been reached. Nevertheless, most system dynamicists would agree that formal modelling, even without extensive reference data, will always contribute to the consistency of the model and improve understanding. Formalising the model comes down to expressing each relation in mathematical form and assigning parameter values.

![Causal Loop Diagram]

**Figure 2. Stock and flow diagram on client acquisition**

Figure 2 shows a stock and flow diagram, which is used to visualise formal models. Formal models may be simulated over time, so that model behaviour can be compared to the reference mode. This comparison is one of several validation tests that need to be passed if a model is to be used as a micro world. Still, a formal model can operate as a boundary object. Vennix, one of the founders of group model building, once explained the benefits of a formal model to clients as follows: “What it brings to the process is one additional participant. This participant is rather dumb as he only knows what you have told him. But he is also very consistent: he can tell you exactly what the consequences of your assumptions are.” In the case of the temporary work organisation, the initial causal loop diagram was translated into a formal model. Data from the internal ERP system was used to populate the model with data. Testing ideas against data revealed several inconsistencies in the participants’ reasoning. Different scenarios of economic growth were simulated and compared to the business as usual scenario. Contrary to expectations, the scenarios did not show large differences in number of clients or resulting profits. Consultant visits to prospective client organisations turned out to have a larger impact than initially assumed.

This example illustrates both one particular approach to working with participants as well as some of the core ideas of system dynamics. System dynamicists assume that feedback loops are important elements of a system’s structure and responsible for its unexpected behaviour. As human beings lack the ability to predict how a system consisting of multiple interacting feedback loops will behave, mathematical models are necessary to infer behaviour from structure. By emphasising the role of mathematical models it may seem a straightforward conclusion that the most important information
on messy problems consists of precise, numerical data. We need numbers in order to build a mathematical model. What is far more important, however, is qualitative information on how decisions by actors in the system are made. To a large extent, this information cannot be found in information systems or databases, but is part of stakeholders’ mental data. ‘Searching questions, asked at points throughout the organization under study by one skilled in knowing what is critical in system dynamics, can divulge far more useful information than is apt to exist in recorded data’ (Forrester, 1961: 58). In other words, the idea that stakeholders are important sources of information has been around from the start of the system dynamics field. Another role of stakeholders is in receiving and accepting model results and is closely related to implementation. Roberts (1973) highlighted the importance of choosing a problem that is relevant to a decision maker, otherwise she will not bother with the modelling process or the resulting recommendations. Apart from showing how the core assumptions of system dynamics play out in practice, the example also shows one particular process of involving clients in system dynamics modelling. A wide range of approaches to working with clients, from generic approaches to quite specific elements of modelling sessions, is reported in the literature. While participation in building system dynamics models has been around since the start of the field in the 1950s, the term group model building was first used in a paper by Richardson and Andersen in 1995. Group model building now serves as a generic label for at least six distinct facilitated modelling formats, which are described in more depth by Andersen, Vennix, Richardson, & Rouwette (2007). Recently the focus of discussion has shifted to fine-grained analysis of short pieces of interaction. Andersen and Richardson (1997) introduced the idea of so-called scripts: precise descriptions of a specific phase in a modelling session of 20 minutes or less. Scripts have an aim, a step-by-step outline of what to say and do with clients, and a specified product. By combining scripts the agenda for a single session or project can be developed. Hovmand and colleagues (Hovmand et al., 2012) have compiled a list of scripts and advice on how to use them, and made all material freely available via Wikibooks (https://en.wikibooks.org/wiki/Scriptapedia).

First wave: reviews of assessment studies

The previous section indicated that although group model building applications have a set of core ideas in common, a wide variety of ways to involve clients may be used in practice. At least six different approaches have emerged and a facilitator can choose from a list of scripts when designing a session or project. It is not surprising that the first wave of group model building evaluation has focused on bringing together different group model building applications and comparing them with regard to process and outcomes. Two reviews are available: Rouwette, Vennix and Van Mullekom (2002) gather group model building studies published up until 1999; Scott, Cavana and Cameron (2015) look at studies published between 2001 and 2014.

Studies were included if they described a system dynamics modelling project involving a client team in at least the stage of conceptualization, and empirical results on its effectiveness were described. Rouwette et al. find a total of 107 studies, which in the main (84) address organisational problems and strive for implementation of results. Those for which no implementation is expected, are usually training or demonstration sessions, often with student participants. Studies also differ with regard to research design:
- 88 studies are qualitative case studies gathering data through observation (all 88), individual assessment interviews (six) and group interviews (two);
- 19 studies use a quantitative estimation of results, through a posttest survey (14) or through questionnaires employed at two points in time (five).

Before addressing the results of the review, four issues are important to address. First, it is likely that studies are biased towards successful interventions. Second, it is important to note that the majority of these studies depend on participants’ self-assessment of results after the intervention. This is problematic as people are poor judges of both the extent and causes of learning (Nisbett & Wilson, 1977). Only five studies collect data before and after the project. Third, group model building is not a uniform intervention but, as described in the previous section, uses a range of processes and scripts. Each of the applications addresses a particular problem and works with a particular group of participants, and the temporary workers case reported above offers one example. The range of available scripts and ways to design the process are reflected in the cases. About one in four starts from a preliminary model, the others from a blank sheet of paper. A total of 22 studies result in qualitative models; 85 result in a quantitative model of which 56 involve the client in the formalisation phase. About one half of the projects are completed within three months, and two out of three in six months. Fourth, studies look at a range of group model building outcomes but no single study addresses the full set of outcomes. Given the variety in context and process of modelling interventions, outcomes are remarkably similar. These are some of the key outcomes reported in the review:

- communication: measured in 40 studies of which 39 indicate a positive effect;
- learning: 96 of 101 indicate a positive effect;
- consensus: 49 of 53 indicate a positive effect;
- commitment: 31 of 35 report a positive effect;
- changes in behaviour: 29 of 30 report a positive effect;
- implementation of results: 42 of 84 report a positive effect.

There are few differences in outcomes between types of studies. Qualitative models seem to be less likely to lead to commitment, consensus or system changes than (small or large) quantitative models. The context in which qualitative models are built is different and time investment is lower than for full quantification. Differences between types of modelling interventions may therefore also be due to differences in context or the time participants spent in sessions. On other outcome measures there are no differences. A recent review (Scott et al., 2015) looks at quantitative assessment studies published from 2001 to 2014. A total of 26 studies are found. Where studies in the previous review are to a large extent based on self-assessment of results after the intervention, 15 studies in this review use measurements at two points in time. Results are in line with the previous review, in that Scott and colleagues also find that group model building achieves a range of outcomes such as communication, learning, consensus, behavioural change and implementation. Four studies in the review compare the approach to ‘normal meetings’ and find that group model building is more effective. No studies were found that compare effectiveness of group model building to other modelling interventions.

Several studies that are included in these reviews attempt to explain why outcomes were created. One causal mechanism, formulated at a quite generic level, is the following. Ultimately the aim of
facilitated system dynamics is to change the problematic situation for the better. In order for ‘system improvement’ to materialise, someone will have to implement system changes. These may be in line with recommendations from the modelling project, or come down to (conscious or unconscious) changes in individual behaviour. Implementation of system changes is more likely if insight into the problem of interest has shifted (or in other words, learning has occurred). Another influence on implementation may be the group consensus that has developed over the course of the modelling project. Consensus and insight may develop on the basis of the communication process between participants, which is supported by both the model and facilitation.

![Figure 3. A possible causal mechanism relating group model building process and goals](image)

In the next wave of evaluations several authors zoom in on particular elements of this causal chain, compare elements and relations to existing theories and test to what extent these explain group model building results.

**Second wave: participants as recipients of information**

The second wave of evaluation studies brings together those contributions that look at how people’s opinions change due to the information they receive in the modelling engagement. Here the focus is still on participant behaviour after the project but an explanation is sought in the information that is exchanged during modelling. Two theories have been proposed. The first centres on the concept of mental models. This is a central concept in system dynamics, as many in the field assume that lasting improvement in decision making can only follow from a significant change in decision makers’ mental models (e.g. Doyle & Ford, 1999; Geurts & Vennix, 1989). Doyle and Ford (1999: 414) consider a number of different interpretations of the term used in system dynamics publications and beyond, and ultimately arrive at the following definition: ‘A mental model of a dynamic system is a relatively enduring and accessible, but limited, internal conceptual representation of an external system (historical, existing or projected) whose structure is analogous to the perceived structure of that system.’ Richardson, Andersen, Maxwell and Stewart (1994) specify in more detail which elements a mental model contains. They separate mental models into means, ends and means-ends models. Goals are stored in the ends model while strategies, tactics and policy levers are part of the means model. The means-ends model connects these two and consists of detailed causal relations (design logic) as well as more simple if-then statements (operator logic). In driving a car, design logic refers for instance to the inner workings of the engine. An example of operator logic would be: if you break hard on a wet road, your car is likely to skid. Andersen, Maxwell, Richardson and Stewart’s preliminary conclusion is that (1994) providing operator logic is necessary for improving decisions in
complex situations. This is surprising, as many system dynamicists would assume that making participants familiar with detailed model structure and its corresponding behaviour is the key to increasing insight and changing behaviour. In terms of Andersen and colleagues, this constitutes design logic and is not likely to be effective.

A second theory also focuses on how information changes participants’ minds, but in addition makes the link from changes in insights to behaviour explicit. This line of study (Rouwette, Korzilius, Vennix, & Jacobs, 2011; Rouwette, Vennix, & Felling, 2009) looks at the relation between attitudes and behaviour and the impact of persuasion on attitude change. The impact of attitudes on behaviour is shown in the right hand side of Figure 4 below. In Ajzen’s theory of planned behaviour, (Ajzen, 1991; Martin Fishbein & Ajzen, 2011) intentions are the immediate antecedent of behaviour. Intentions are in turn explained by the attitude toward behaviour, subjective norm and perceived behavioural control.

Figure 4. The impact of group model building on persuasion, attitudes and behaviour (based on Rouwette, 2003: 116)

Let’s take a manager of the part-time labour company described in the example above as an example. Ajzen’s theory addresses particular behaviours. Imagine the manager is considering to hire more personnel. The theory then assumes that her intention to hire personnel becomes stronger if:

- attitude toward behaviour, or the evaluation of the outcomes of this action, becomes more positive: for instance when she expects more personnel to be able to attract more company clients and eventually more turnover;
- subjective norm, or the degree to which she expects significant others to think she should engage in this behaviour, grows stronger: for instance when she realises senior management is more positive about hiring than she expected;
- perceived behavioural control, or the evaluation of control over the behaviour, increases: for instance when she realises that employees can be hired faster than initially predicted.

Ajzen’s theory is probably one of the most widely used in social psychology and tested in a multitude of studies. In addition to its conceptual structure, it also comes with recommendations on empirical
testing. An example is Fishbein and Ajzen’s (1975) emphasis on compatibility of measures in order to ensure a substantial correlation. They suggest that general attitudes with respect to organisations, institutions, groups, individuals or ideas are good predictors of general behavioural categories summed over multiple behaviours. In contrast, specific attitudes will be good predictors of specific actions.

Intentions, attitudes, norms and control can be related to the group model building outcomes discussed earlier. Intention is similar to commitment in that both capture the effort a person wants to exert in order to reach a goal. Attitude toward behaviour is closely related to the ends model described before. The subjective norm and consensus are similar in their emphasis on the subjective or personal definition of a situation. Perceived behavioural control seems related to the means model mentioned earlier.

The left hand side of Figure 4 shows how modelling and facilitation are related to changes in attitude, norm and control. Theories on persuasion (Chaiken, Giner-Sorolla, & Chen, 1996; Petty & Cacioppo, 1986; Petty & Wegener, 1998) specify two routes through which attitudes can be changed: the central and peripheral route. The central route consists of understanding and evaluation of arguments. A persuasive message is received, arguments in the message are identified, contrasted with existing knowledge and judged on their validity. Quality of arguments and their persuasiveness only has an influence when taking this first route. Following the peripheral route, evaluations are changed on the basis of simple decision rules or heuristics. An example of a heuristic is: ‘if a large number of studies support these conclusions I accept them as valid’. The decision which route will be used depends on the person’s motivation and ability to process information. If both motivation and ability are high, the central route will be more effective in changing attitudes. Motivation is high when for example the situation is high in personal relevance. Ability to process is high when a person can understand the message, deduce arguments and compare these to her own ideas. Rouwette (2003) assumes that ability to process information is where group model building makes an essential contribution, as it helps participants to integrate and structure available information about a problem.

Which evidence has been found that group model building effects actually materialise along these lines? Rouwette (2003) uses the concepts described above to assess the effectiveness of modelling in five applied cases. A total of 29 participants and 86 behavioural options are included in the analysis. In line with expectations, participants perceive a high ability to process information and exchange of arguments. Attitudes and subjective norm change in line with project recommendations, perceived behavioural control does not change. Rouwette, Korzilius, Vennix and Jacobs (2011) test relations in the model proposed above in seven modelling cases (five from Rouwette’s study and two additional cases), with a total of 42 participants and 124 behavioural options. As expected, participants are motivated and able to process information exchanged in the sessions. Information contained persuasive arguments. Ability to process information however impacts only one of the three variables as expected. A structural equations analysis shows that ability only has a weak relation to attitude and no relation to subjective norm or perceived behavioural control. Both studies conclude that control does not change, and several reasons for this lack of impact come to mind. It may be that participants who before the modelling engagement only see a limited part of the issue, over the course of the project learn about other aspects and come to realise that the problem is even more
complex than they initially thought. However, even if this is the case in qualitative projects, one
would expect that the simulation of policies helps participants to identify levers for change and
therefore increases their sense of control. Both qualitative and quantitative projects may suffer from
an emphasis on design logic at the cost of operator logic, and therefore not give participants
concrete guidelines to improve their situation (Andersen et al., 1994). With regard to attitudes,
Rouwette (2003) does see a change in line with recommendations. But Rouwette et al. (2011) find
that attitudes are only weakly related to ability to process, and in addition are negatively impacted
by argument quality. At first sight this result is difficult to understand: if there are better arguments
for a proposed action, participants’ support declines? One explanation may be the compatibility of
measurements. Fishbein and Ajzen’s (1975) recommendations on compatibility were followed with
regard to all variables in Ajzen’s theory, but not with regard to communication. The measurement of
ability to process is generic but actions and corresponding intentions, attitudes, norms and control
were formulated at a much more specific level. It may thus be the case that some participants felt
that communication in general was quite open, but with regard to the particular action they were
interested in, they did not hear anything that was both new and relevant.

The second wave of evaluation leaves us with a better understanding of what kind of information is
particularly likely to change the opinion of participants in a modelling session. It also specifies the
path from opinion to behaviour after the modelling intervention. The causal mechanisms have been
tested in a limited number of studies, yielding limited support but also pointing to measurement
problems and possibly unexpected impacts of modelling. It is also clear that the causal mechanisms
presented here only tell part of the story. In particular, they give us little to go on when trying to
 pinpoint exactly which piece of modelling output is likely to sway participants. The general idea is
that information needs to be relevant and novel to someone if is to impact his opinion, and may be
more effective when formulated as operator logic. But in order to be persuasive, information
apparently needs to be tailored to the person and even to the particular actions that person is
considering. This means that a piece of information may change one person’s opinion but not that of
another, or change one type of behaviour but not a slightly different one. Researchers in facilitated
modelling may be most interested in a more generic question: in comparison to unsupported
decision making, such as a free discussion, why does modelling seem to work better? In terms of the
concepts introduced in this section, how does modelling help to identify arguments?

**Third wave: participants as sources of information**

Where the previous wave of studies tried to discover the causes of changes in behaviour after
sessions, studies in this third group focus squarely on behaviour during sessions – in particular
communicative behaviour. The temporary workers case described at the beginning of this chapter
showed how participants over the course of the project jointly construct a model of their situation of
interest. The facilitator designs a process, typically with the help of scripts, that invites participants to
identify relevant information and share it with others. Information is confronted and combined and
aspects that participants all agree to end up in the model. Participant opinions may also be compared
against available data, contributing to further refinement of the model. Since the facilitator is neutral
with regard to content and moreover does not have the detailed content knowledge that
participants have, relevant variables, relations and loops will have to be suggested by participants. If a piece of information is not mentioned, and not revealed by other data later, it will not be part of the model. At any moment during the modelling process, a participant has to decide if her personal expertise and opinion is relevant to the topic that is being discussed, and if so formulate it in model terms. Figure 2 shows a particular part of the temporary workers model: the part on client acquisition. If the model is to represent client acquisition in a valid manner, participants with information on this topic will need to speak up so that their suggestions can be incorporated into the model. As participants come from different departments or organisations, it is not a given that they immediately see how their personal opinions and expertise are relevant to a particular topic.

This situation is similar to a line of research known as hidden profile studies. Stasser and Titus (Stasser & Titus, 1985, 2003) set out to study information sharing in groups. They provided group members with pieces of information, some of which known to one individual only and other known to more or all group members. For instance, let’s imagine there is a group of three people that want to choose between option A and B. There are four pieces of information in favour of option A. This information is shared, meaning that it is known to all three of the members. There are seven pieces of information in favour of option B. Only one of these is shared, and in addition each group member has two pieces that are only known to him or her. This is the unique information. If group members share all of their information, they will realise that there is more information in favour of B than of A (seven against four). However, before the discussion starts, each member has four pieces in favour of A and three in favour of B (one shared and two unique). Initially, he or she will think A is the best alternative. A hidden profile is created when each group member has unique information and the best alternative is hidden from members. They will have to pool their information in order to identify the best alternative. Typically, group members discuss shared information and only a minority of groups (around one in five) choose the best option. The findings have been supported by a series of studies (Stasser & Titus, 2003). Some of these studies focused on ways to increase information exchange and prevent groups from falling into the hidden profile trap. Factors such as facilitation, assignment of expert roles, process accountability, a shared task representation, critical thinking norms and counterfactual thinking have been explored (McCardle-Keurentjes, Rouwette, & Vennix, 2008).

Many of these factors seem an inherent part of a facilitated modelling process. As a consequence, it does not seem too far-fetched to assume that participants in group model building are more likely than unsupported groups to exchange information and identify the best solution. McCardle-Keurentjes (McCardle-Keurentjes, 2015; McCardle-Keurentjes et al., 2008) has tested this assumption in two group level and one individual experiment. Participants in her study construct causal loop diagrams. Two outcomes in particular are relevant here: coverage of information (the extent to which task information is mentioned at least once) and focus of discussion (which part of the discussion focused on a particular type of information, for instance unique or shared information). As the latter also includes mentioning a particular piece of information more than once, this outcome also fits to the next wave of studies that addresses interaction between sending and receiving information. Contrary to expectations, group model building groups had no better coverage of unique information and neither did they focus more of their discussion on unique information. Modelling groups also did not make decisions of higher quality than unsupported groups. Modelling groups did spend more time on long term information and spent less time on discussing solutions.
The main outcomes expected of the individual experiment are likewise not found. McCardle-Keurentjes suggests several possible reasons for the lack of differences between modelling and unsupported groups. The participants in her controlled experiments were students, with no stake nor substantial experience in the problem to be discussed. The time for discussion and model construction was limited to one hour.

The third wave of evaluation leaves us with somewhat of a puzzle. As McCardle-Keurentjes (2015) notes, testing whether unique information would be exchanged more in group model building than in unsupported meetings seemed to constitute an easy test. The intervention however failed that test. Part of the explanation may indeed be that in her experiment time was limited (one hour versus at a minimum of two times three hours for qualitative modelling in real-life settings). But why facilitated system dynamics did not contribute to better coverage of unique information, even if only in one hour, is unclear. The next wave again evaluates modelling in applied settings, looking at how contribution and reception of information interact.

**Fourth wave: interaction between contributing and receiving information**

The description of the second wave of studies ended with the question how group model building helps to identify arguments. From the third wave no definite conclusion could be drawn: facilitated modelling does not seem to make it more likely that unique information is identified. Which other explanations for the effects of modelling on insight, attitudes and behaviour were suggested? Three ideas are put forward in the literatureiii. Black and Andersen (2012) propose that models can function as boundary objects. De Gooyert (2016) understands the modelling process as the construction of a shared frame of reference. Van Nistelrooij, Rouwette, Verstijnen and Vennix (2012) turn to social exchange theory to better understand the role of power distance in communication.

According to Black and Andersen (2012), the importance of boundary objects follows from their use as a tangible representation of dependencies across disciplinary, organizational, social or cultural lines that can be transformed by all discussion participants. A representation functions as a boundary object if it is a tangible two or three dimensional shared object, depicts dependencies between participants’ objectives, expertise, resources and actions, and – importantly - it can be changed by all involved. Black and Andersen describe how a boundary object is incrementally built, using examples of modelling groups struggling with conflict. *The visible script products, wielded as boundary objects, provide early and growing evidence that participants are being heard by facilitators and by one another. This evidence builds trust and at least a limited sense of psychological safety [...]’* (Black & Andersen, 2012: 203). The first stage of building the boundary object is to generate tangible ideas for the group to consider. In the second stage group members identify interdependencies between ideas and perspectives, showing consequences of the ideas identified so far. Black and Andersen describe how two groups with opposing points of view managed to work together in listing their ideas and identifying interdependencies, using a computer system that allowed ideas to be represented anonymously. By uncoupling ideas from persons, the group managed to build on each other’s contributions. The third stage is a discussion that transforms some of the ideas, by modifying what was gathered so far on the basis of the group’s shared input. The emerging diagram helps to depersonalise conflict and in one case ran directly counter to the ideas of a powerful executive in the meeting, without challenging him directly. Finally, in stage 4 the group uses the transformed ideas
and prioritisation to identify ways forward. In a session with representatives of different agencies the first three stages had been completed and a shared representation built, to some extent bridging the differences in goals, areas of expertise and actions of participants. When the close of the session drew near, the commissioner who had convened the meeting decided to bypass the shared visual representation and unilaterally proposed a list of eight actions to take the results further. The participants never followed up on the discussion and the actions were not implemented. Black and Andersen assume that the commissioner’s unilateral proposal took away the opportunity for the participants to transform the shared representation and therefore stage 4, identifying actions together, was never completed. By laying out four stages of information exchange in modelling sessions, each stage building on the former and all four necessary if the group wants to identify joint actions, Black and Andersen (2012) enrich our understanding of how group model building helps to identify arguments. In effect, when information shared by participants is solidified in the form of a visual representation this establishes a level of trust. Trust in turn allows the group to move on to exchanging another kind of information, in turn enriching the diagram, and so on.

De Gooyert (De Gooyert, 2016) draws on the framing literature to conceptualise what is going on in modelling sessions (e.g. Kaplan, 2008; Snow, Rochford Jr, Worden, & Benford, 1986). He analyses eight sessions with a total of 96 participants. Each session lasted about five hours and brought together eight to 15 participants from a range of organisations in the energy sector. On the basis of video recordings and transcriptions of the conversations in the workshops, De Gooyert analyses how participants engage in frame building and frame relating. Frame building comes down to identifying important cues and expressing the meaning attached to these cues, justifying ideas using analogies, metaphors or other sources of authority. Interestingly, listening plays an important role in frame building as it helps to confirm and amplify suggested frames. As soon as a frame is relatively stable, participants start to connect it to other frames. De Gooyert finds several frame relating strategies: translating, extending, dissecting, appealing, and merging, thereby refining the work of Snow et al. (1986). Strategies for frame building and relating explain why in some workshops results in more shared cognitions and others fail to achieve convergence.

Van Nistelrooij et al. (2012) offer another perspective on how sending and receiving information interact. They build on social exchange theory (Lawler, Thye, & Yoon, 2008; Lawler & Yoon, 1998) which looks at how social exchanges take place in a network. For each interacting dyad in the network, the difference in power between the partners in the dyad shapes their exchange relation. A higher power difference will lead to a lower number of exchanges. Successful exchanges will in turn lead both partners in the dyad to attach more positive emotions to the relation. This in turn fosters commitment to the relation and a feeling of cohesion. In a pilot study Van Nistelrooij et al. compare meetings in a Dutch government organisation with a total of 11 participants. Participants once met in a regular meeting and once in a group model building meeting. The first half hour of each meeting was transcribed, coded by a single coder and analysed with regard to interactions. Power was measured by asking organisation members to indicate the perceived power of each meeting participant. Employees of the focus organisation were presented with a matrix of 16 members of their organisation. Persons were presented in pairs, and for each pair the question was asked who was highest in authority. As expected, in the regular meeting the interaction between partners in a dyad dropped off fast with increasing power distance. In the group model building session, the decline was much less prominent. These results provide some evidence for the idea that in facilitated modelling participants interact on a more equal level than in a meeting as usual. However, the
content of exchanges was not yet analysed so it remains to be seen how important or relevant the information exchanged in dyads was. Ideally, one would like to see that a participant who is perceived to be in a lower power position reveals crucial information that makes the model more relevant to the problem at stake.

The fourth wave of studies offers three pathways in which contributing and receiving information interact. Four incremental stages of constructing shared visual representations help participants to build trust and joint understanding. Frame building and relating help to achieve convergence in opinions. There is some indication that facilitation and modelling neutralise the effect of power differences: even partners in a dyad that are very different in power, exchange information in modelling sessions, but less so in meetings as usual.

**Conclusion**

In this contribution I reviewed studies on the impact of facilitated system dynamics modelling, with a particular emphasis on behaviour. Behaviour has been studied from two perspectives. On the one hand, system dynamics modelling aims to change a problematic situation for the better which necessitates implementation of results. Implementation assumes that at least some stakeholders in the situation at hand change their behaviour. On the other hand, a facilitated approach also encourages particular behaviour of participants in sessions while discouraging other types of behaviour. For instance, information sharing and equal participation are supported, high levels of cognitive conflict and politicking are avoided. Early evaluation studies of group model building concentrated on implementation, or behaviour after the sessions. To explain (lack of) implementation, researchers and practitioners frequently referred to the interaction between participants, the problem and the model, much of which can be observed during modelling sessions. To check assumptions on effective ingredients, most early studies relied on opinions of participants assessed in interviews or questionnaires after the sessions. Only recently studies have tried to open the black box by capturing and analysing what goes on in model-supported meetings. This contribution described four phases of evaluation of group model building: reviews of assessment studies, the receiver perspective, the sender perspective, and interaction of sending and receiving information. The table below presents the key topics.
Reviews of assessment studies

A review of 107 studies shows effect of modelling on communication, learning, consensus, commitment, behaviour and implementation

Rouwette et al. (2002)

A review of 26 quantitative assessments shows similar outcomes

Scott et al. (2015)

Receiver perspective

Mental models consist of means, ends and means-ends models; operator logic may be more effective in changing mental models than design logic

Richardson et al. (1994); Andersen et al. (1994)

The impact of modelling may be understood in terms of persuasion and the impact of attitudes, subjective norms and perceived control on behaviour

Rouwette (2003)

Sender perspective

Participants in modelling sessions may have unique information that needs to be shared before the best solution can be identified (hidden profile condition)

McCardle-Keurentjes (2015)

Interaction of sending and receiving information

Models operate as boundary objects and are constructed in four iterative phases

Black and Andersen (2012)

Participants in modelling sessions build and relate frames

De Gooyert (2016)

Perceived power of participants does not impact information sharing in modelling sessions

Van Nistelrooij et al. (2012)

Table 1. Main topics in four phases of group model building evaluation and selected references

The picture that emerges after describing these four phases of evaluation is more consistent than perhaps expected. Theories and studies, some of them preliminary, seem to build on each other and fill in each other’s blind spots. In broad lines, and with some ideas more supported by evidence than others, the impact of group model building on behaviour seems to materialise along the following lines. A group of participants is brought together because of their knowledge, power and/or interest in a dynamic problem. There may be a degree of conflict between participants but all commit to spend a limited time on trying to better understand the problem. A facilitator guides them through a process of building a model that attempts to explain the problematic behaviour over time. Participants share their ideas on the problem, first drawing up a list and then relating ideas. The resulting diagram is modified on the basis of the group discussion, possibly compared to available data, and ultimately points to actions that may improve the situation. Each phase that is completed successfully creates trust and lays the groundwork for the next stage. In the process participants build a joint understanding by constructing and relating frames. Facilitation and modelling help participants, despite their differences in power, to bring relevant information out into the open. Unique information is shared but not more than in regular meeting. So far behaviour in meetings was discussed. Because participants receive new and relevant information that may lead them to reconsider some of their opinions, behaviour outside of sessions is also impacted. Participants change their ideas on desirable ends, and about how means and ends relate. This is closely related to changes in attitudes and subjective norm. If the information in the session does not only represent design logic, but also operator logic, perceptions of means and perceived behavioural control may also change. Opinions on ends (attitudes), means (perceived control) and means-ends relations converge and create a strong subjective norm. All of these contribute to changed intentions and ultimately behaviour. Provided that the quality of the model is sufficient, implementation of proposed recommendations will help to change the situation for the better.

There are several spots in which details are missing from this picture. Possibly, on closer inspection, inconsistencies or impossibilities emerge as in the works of Escher and Magritte. It is likely to be too much too hope for, that facilitated modelling turns out to be a purely democratic process in which the truth is jointly discovered and recommendations are implemented. What sounds more realistic is
that group model building helps to counter some biases in human decision making, by exploiting others. This is similar to Schoemaker’s (1993) discovery that the use of multiple scenarios reduces overconfidence by reinforcing the conjunction fallacy.

Several limitations, puzzles and avenues for further research stand out. McCardle-Keurentjes (2015) arrives at the surprising conclusion that students participating in group model building do not exchange more unique information than students in meetings as usual. In addition, many of the positive results of the reviews (Rouwette et al., 2002; Scott et al., 2015) follow from participants’ self-assessment of results after the intervention, while we know that people are poor judges of learning (Nisbett & Wilson, 1977). De Gooyert (2016) points out that system dynamics seems to have a blind spot in the sense that it does not address the political dimension of the policy process. Alternative paths through which group model building influences participants’ behaviour in and outside of sessions can be identified. The fact that participants in system dynamics modelling are asked a descriptive or explanatory question may be important: how are decisions made in this part of the problem, how can we explain the observed data? This is different from asking how future goals may be achieved, or who was involved in/ is responsible for the problem, or any number of other questions. Another factor may be the level of formality of the models used: formal enough to provide some structure to the conversation, but not so formal as to stifle discussion (Andersen et al., 2007). Finally, a lot can be learned from a comparison between group model building and other facilitated modelling approaches. For instance, Tavella and Franco (2015) also look at microlevel interactions between participants, and participants and the model. Franco, Rouwette and Korzilius (2015) use interaction analysis to understand how consensus develops in modelling groups.

An earlier study (Rouwette & Vennix, 2006) concluded by saying that the most promising path forward was to determine the ‘differences that matter’, between problems, between client groups and between modelling interventions. Ten years later there is more clarity on possible causal paths starting from behaviour in modelling sessions, via opinions and attitudes of participants, to behaviour in and effects on the problem of interest. Maybe, in addition to conducting more fine-grained empirical studies, we also need further development in terms of conceptual understanding. Perhaps it is time to turn our sketch of causal mechanisms into a simulation model, and test its dynamic implications.

References


Ansems, R. (2010). The effectiveness of Group Model Building, linking facilitated modelling with Critical Events and Group Decision Development. (Master), Radboud University, Nijmegen.


De Gooyert, V. (2016). *Stakeholder dynamics in the Dutch energy transition; Towards a shared frame of reference*. (PhD), Radboud University, Nijmegen.


Pala, O. (2008). *Selective exposure to information in the context of escalation of commitment*. (PhD), Radboud University, Nijmegen.


Van Kessel, H. (2012). *The effectiveness of Group Model Building and group decision making. An experimental comparison of the interactions and the outcomes of a Group Model Building session with a Meeting as Usual*. (Master), Radboud University, Nijmegen.


In his master thesis, Ansems (2010) uses part of the dataset of McCardle-Keurentjes (2015) to test the difference between two group model building meetings and two meetings as usual, with regard to critical events and decision development.

The focus here is on modelling in groups, but several studies in addition to McCardle-Keurentjes’s (2015) work offer relevant insights on the use of models in individual settings. Hodgkinson et al. (1999) conclude that cognitive mapping may be an effective means to limit effects of the framing bias; Wright and Goodwin (2002) offer a critique. Pala (2008) finds that causal loop diagrams can decrease escalation of commitment and selective exposure to information.

Two master thesis studies using a limited set of groups are also relevant to the interaction between sending and receiving information. Van Kessel (2012) looks at the difference between five group model building meetings and five meetings as usual with regard to decision process (equality of interactions and perceived procedural justice), and outcomes (outcome satisfaction, decision scheme satisfaction, consensus and commitment). Participants are students. Adriaans (2014) analyses two group model building sessions with medical specialists with regard to information elaboration and asking questions.