The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/177473

Please be advised that this information was generated on 2019-04-15 and may be subject to change.
Successful treatment of azole-resistant invasive aspergillosis in a bottlenose dolphin with high-dose posaconazole

Paulien E. Bunschökea, Seyedmojtaba Seyedmousavib,1, Steven J.M. Gansc, Peter B.J. van Vierzenc, Willem J.G. Melchersb,d, Cornelis E. van Elka, Johan W. Moutone, Paul E. Verweijb,d,*

a Veterinary Department, Dolfinarium, Harderwijk, The Netherlands
b Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
c Departments of Pulmonology and Radiology, St Jansdal Hospital, Harderwijk, The Netherlands
d Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
e Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands

ARTICLE INFO

Keywords:
Aspergillus fumigatus
Azole resistance
Bottlenose dolphin
Posaconazole
Antifungal therapy

ABSTRACT

Invasive aspergillosis due to azole-resistant *Aspergillus fumigatus* is difficult to manage. We describe a case of azole-resistant invasive aspergillosis in a female bottlenose dolphin, who failed to respond to voriconazole and posaconazole therapy. As intravenous therapy was precluded, high dose posaconazole was initiated aimed at achieving trough levels exceeding 3 mg/l. Posaconazole serum levels of 3–9.5 mg/l were achieved without significant side-effects. Follow-up bronchoscopy and computed tomography showed complete resolution of the lesions.

1. Introduction

Azoles remain the corner-stone of prevention and treatment of aspergillus diseases, including acute invasive aspergillosis (IA) [1]. However, the clinical use of azoles is threatened by the emergence of azole resistance in *Aspergillus fumigatus*, the primary cause of IA in many regions of the world [2]. Resistance that arises through the environmental use of azole fungicides is believed to be an important driver of azole-resistant cases [3]. This route of resistance development proves a clinical challenge with cases of azole-resistant IA occurring in patients without previous azole therapy [4,5], and cases of azole-susceptible and azole-resistant *A. fumigatus* co-infection [6]. Resistance mutations commonly confer resistance to multiple azole drugs, including the recently clinically-licensed isavuconazole [7]. However, based on in vitro and experimental models it was hypothesized that low-level azole-resistant *A. fumigatus* infection might be successfully treated with voriconazole or posaconazole provided that the treatment dose and exposure could be increased [8].

We describe a case of azole-resistant IA in a bottlenose dolphin that was successfully managed by increasing posaconazole exposure.

2. Case

A 10 year old female captive bottlenose dolphin (*Tursiops truncatus*), weighing 175 kg, was treated with antibiotics for bacterial pneumonia caused by *Vibrio alginolyticus*. Treatment follow-up was conducted with blood samples, CT-scans, bronchoscopies, and protected brush samples from the tracheal and/or bronchial mucosa for histopathology and bacterial and fungal culture (Fig. 1).

The bacterial pneumonia required long-term antibiotic treatment and 6 months into therapy she developed multiple white, raised lesions in the trachea and bronchi, one of which was sampled with protected brush during bronchoscopy. No fungi were cultured but based on the bronchoscopic appearance of the lesions a *Candida* infection was suspected. Treatment with oral voriconazole with a loading dose of 5.5 mg/kg per day during 3 days and a maintenance dose of 5.5 mg/kg per week (given in one single dose) was started. Follow-up bronchoscopies were performed one, two and three months after voriconazole treatment was started, showing no improvement. Fungal culture of a protected brush sample, taken at one and two months of voriconazole therapy remained negative, but at three months *A. fumigatus* was cultured. Retrospective analysis of a serum sample indicated the presence of circulating galactomannan (GM; GM-index 6.5). The *A. fumigatus* isolate was sent to the Mycology Reference Laboratory and

* Corresponding author.

E-mail address: paul.verweij@Radboudumc.nl (P.E. Verweij).

1 Present address: Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
Y121F/T289A resistance mutation was identified. Detection of invasive aspergillosis and for treatment response evaluation [9, 10], detection is a well-validated diagnostic tool in humans for the diagnosis of IA. At diagnosis, GM was detected in the serum. Although GM fungus was cultured from plaques in the trachea and bronchi that were obtained using bronchoscopy, the presence of circulating GM would help to diagnose Aspergillus infection and possibly be useful for monitoring of treatment response. GM however does not identify the species of Aspergillus that is causing the fungal pneumonia, nor does it provide information regarding the presence of resistance. Additional tests would be required either through culture or molecular tests of respiratory specimens. PCR-tests that identify the most prevalent Aspergillus species as well as the presence of azole resistance mutations are commercially available [14]. In humans such assays enabled the detection of azole-resistant *A. fumigatus* directly in BAL-fluid [14, 15]. The *A. fumigatus* strain recovered from our case harbored a resistance mutation that is associated with environmental resistance selection [5], indicating that the dolphin inhaled *A. fumigatus* conidia that were already azole-resistant.

Treatment options in humans and animals with azole-resistant IA are limited. Experts recommended to move away from azole monotherapy when resistance is documented, switching to liposomal amphotericin B or voriconazole and echinocandin combination therapy [16]. In vitro and in vivo studies indicate that the activity of polyenes and echinocandins are not affected by the presence of azole resistance mutations [17–19]. Furthermore, voriconazole and anidulafungin combination therapy was shown to be effective in an animal model of disseminated IA due to *A. fumigatus* with low-level voriconazole resistance [8]. However, the efficacy of the combination against voriconazole high-level resistant *A. fumigatus* has not been studied [18]. There is concern that voriconazole will not be effective in high-level resistant *A. fumigatus* infection and combination therapy will solely rely on anidulafungin efficacy, which is suboptimal [18].

As intravenous therapy was no option in treating the dolphin, it was decided to increase the exposure of posaconazole. Using results of pharmacokinetic and pharmacodynamic in vitro and in vivo models we have previously attempted to bridge these experimental results to human infection by calculating which posaconazole exposure would be required in relation to the *A. fumigatus* MIC to treat successfully [8]. For each MIC the corresponding posaconazole exposure and plasma level were determined [8]. Based on our analysis a posaconazole plasma-level of 3.09–3.33 mg/l would be required to treat an infection with a posaconazole MIC of 0.5 mg/l and 6.18–6.66 mg/l for a MIC of 1.0 mg/l [8]. Indeed when a plasma level of > 3 mg/l was achieved in the dolphin, gradual clinical response was documented without significant toxicity ultimately leading to clinical cure.

In the dolphin very high drug exposures were achieved using the oral solution formulation. In humans posaconazole drug levels above 3 mg/l could not be achieved due to limited bioavailability associated with the oral suspension. However, phase I and phase II pharmacokinetic studies indicate that a posaconazole plasma level above 3 mg/l can be achieved using the new intravenous and tablet formulations, without significant side-effects [20]. As the majority of azole-resistant *A. fumigatus* isolates show low-level resistance to posaconazole, i.e., within the 0.5 mg/l to 1 mg/l MIC range [17], intravenous posaconazole might be a treatment option in human cases of azole-resistant IA.

Our study shows proof-of-principle of high-dose posaconazole for the treatment of IA due to posaconazole low-level-resistant *A. fumigatus*. With the availability of new posaconazole formulations further studies need to explore this option for the management of azole-resistant IA in animals and humans.

Conflict of interest

P.E. Verweij has received research grants and served as consultant for Gilead Sciences, Pfizer, MSD, Astellas, F2G, and Basilea. Other authors: ‘there are none’.
Fig. 2. Evolution of pulmonary lesions on consecutive CT-scans of the lung at the level of the heart. Panel A, Axial CT image, taken before high-dose posaconazole treatment was started, showing small granulomas and some infiltrates at the left side; Panel B, At 6 weeks of high dose posaconazole therapy. The CT image shows a progression of the granulomas at the left side and some infiltrates at both sides; Panel C, After 14 weeks of posaconazole high-dose therapy, showing a substantial reduction of the granulomas and infiltrates; Panel D, CT imaging after 22 weeks of high-dose posaconazole treatment showing complete resolution of the granulomas. Some residual peribronchial lesions are visible.

Fig. 3. Posaconazole dose (lower panel), posaconazole trough plasma levels (mg/l; middle panel) and consecutive bronchoscopy images of Aspergillus trachea lesions (upper panel). Green indicates the area of posaconazole exposure calculated to be sufficient to successfully treat posaconazole low-resistant A. fumigatus (MIC 0.5 mg/l), while the red area represents insufficient posaconazole exposure. Day 0 indicates the first day of posaconazole therapy. Posaconazole treatment was interrupted for 11 days (day 445–455) because the dolphin was clinically poor and a possible side effect of high-dose posaconazole needed to be ruled-out. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Acknowledgements

We thank Henrich van der Lee and Ton Rijs for their technical support.

References

