Seroprevalence of Scrub Typhus, Typhus, and Spotted Fever among Rural and Urban Populations of Northern Vietnam

Nguyen vu Trung,1 Le Thi Hoi,1 Nguyen Thi Hong Thuong,2 Tran Khanh Toan,3 Tran Thi Kieu Huong,2 Tran Mai Hoa,1 Annette Fox,2,4 Nguyen van Kinh,1 H. Rogier van Doorn,2,5* Heiman F. L. Wertheim,2,5,6 Juliet E. Bryant,2,5† and Behzad Nadjm5,6†

1National Hospital for Tropical Diseases, Hanoi, Vietnam; 2Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam; 3Hanoi Medical University, Hanoi, Vietnam; 4Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; 5Center for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; 6Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands

Abstract. Rickettsial infections are recognized as important causes of fever throughout southeast Asia. Herein, we determined the seroprevalence to rickettsioses within rural and urban populations of northern Vietnam. Prevalence of individuals with evidence of prior rickettsial infections (IgG positive) was surprisingly low, with 9.14% (83/908) testing positive to the three major rickettsial serogroups thought to circulate in the region. Prevalence of typhus group rickettsiae (TG)–specific antibodies (6.5%, 58/908) was significantly greater than scrub typhus group orientiae (STG)– or spotted fever group rickettsiae (SFG)–specific antibodies (P < 0.05). The majority of TG seropositives were observed among urban rather than rural residents (P < 0.05). In contrast, overall antibody prevalence to STG and SFG were both very low (1.1%, 10/908 for STG; 1.7%, 15/908 for SFG), with no significant differences between rural and urban residents. These results provide data on baseline population characteristics that may help inform development of Rickettsia serological testing criteria in future clinical studies.

INTRODUCTION

Rickettsial infections are commonly recognized as an important cause of fever and central nervous system infections throughout southeast Asia; however, there remains much debate over the relative burden of disease attributable to rickettsial agents, and many unresolved issues with diagnosis of clinical cases.1–4 Rickettsioses are zoonotic infections transmitted to humans through bites of infected fleas, mites, ticks, and lice. The epidemiology, ecology, and clinical characteristics of the rickettsioses are highly geographically variable due to species diversity of rickettsial agents as well as the diversity of arthropod vectors involved in transmission.5–7 Rickettsial agents are small Gram-negative, obligate intracellular bacteria. There are three major serogroups of rickettsial agents: scrub typhus group (STG) that includes Orientia tsutsugamushi and the newly described Orientia chuito, pathogens of scrub typhus; typhus group rickettsiae (TG) that includes Rickettsia typhi, the pathogen of murine typhus, and Rickettsia prowazekii, the agent of epidemic or louse-borne typhus which tends to be more severe than R. typhi; and the spotted fever group rickettsiae (SFG) that includes over 20 Rickettsia species worldwide. Although data from Vietnam are scant, a retrospective fever study conducted in Bach Mai Hospital, a large central hospital in Hanoi, Vietnam, found that scrub and murine typhus accounted for a surprisingly high fraction of cases of fever without focusing on other diagnoses between 2001 and 2003 (as much as 40.9% and 33% of suspect Rickettsia cases, respectively), when using immunofluorescence assay for confirmatory diagnosis.8

Diagnosis of rickettsioses is notoriously difficult for a number of reasons: 1) clinical presentations are nonspecific and highly variable (the typical eschar for scrub typhus and spotted fever is not always present and often overlooked by patients and physicians, and a rash is nonspecific and appears late in the disease); 2) the organisms are not picked up by routine culture media, and specific culture techniques mandate biosafety level 3 procedures and laboratory space; and 3) despite significant advances in diagnostic methodology in recent years, there remains a general lack of standardized and validated assays, and lack of consistent practice across different hospital clinical laboratories.9 An adequate understanding of local population exposure levels is important for the development of appropriate diagnostic thresholds for sample positivity, which is particularly important when only a single serum is available. In this study, we aimed to investigate exposure levels of healthy Vietnamese people to rickettsial agents (STG, TG, and SFG), using serum collections from a previous comparative study of urban and rural residential populations in the metropolitan area of Hanoi,10,11 to support future prospective studies of rickettsial disease among suspect clinical patients. The original study that gave rise to the serum collections was implemented in 2011–2012, and entitled “Influenza and dengue transmission, and Klebsiella pneumoniae carriage in urban and rural sites in Ha Noi,” and took advantage of the existing framework and infrastructure of the FilaBavi demographic surveillance site.11 Enrollment in the influenza/dengue/Klebsiella study involved identifying a random selection of healthy people from two districts of Hanoi Province (urban DongDa and rural BaVi), with deliberate selection of children and young adults in view of the project emphasis on dengue. Written informed consent was obtained for sampling at two time points for nasal/throat swabs as well as serum collections, to screen for the three pathogens of interest (influenza/dengue/Klebsiella). The original study was approved by the Institutional Review Board of Hanoi Medical University (HMU; August 18, 2011, No. 91)
TABLE 1

Descriptive data on the serum sample set and seropositivity against the three test rickettsial antigen preparations

<table>
<thead>
<tr>
<th>Age group</th>
<th>Total no. sera</th>
<th>No. pair sera</th>
<th>Median age (years)</th>
<th>Female gender (%)</th>
<th>No. Dong Da (Urban)</th>
<th>Number of seropositives (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STG</td>
<td>SFG</td>
</tr>
<tr>
<td>< 5</td>
<td>41</td>
<td>6</td>
<td>4</td>
<td>53.7</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>5–12</td>
<td>208</td>
<td>46</td>
<td>8</td>
<td>49</td>
<td>87</td>
<td>121</td>
</tr>
<tr>
<td>13–26</td>
<td>183</td>
<td>52</td>
<td>16</td>
<td>50.3</td>
<td>112</td>
<td>71</td>
</tr>
<tr>
<td>> 26</td>
<td>476</td>
<td>137</td>
<td>51</td>
<td>59</td>
<td>259</td>
<td>217</td>
</tr>
<tr>
<td>Overall</td>
<td>908</td>
<td>241</td>
<td>29</td>
<td>54.7</td>
<td>479</td>
<td>429</td>
</tr>
</tbody>
</table>

STG = scrub typhus group orientiae; SFG = spotted fever group; TG = typhus group.
among undifferentiated fever cases or for investigations of healthy populations in southeast Asia (Supplemental Table 1). While direct comparisons of seropositivity levels among healthy individuals versus fever cases are not valid, the overall low seropositivity detected from our cohort is surprising given the recent report by Hamaguchi and others that indicated a large number of undiagnosed fever cases presenting to hospital in Hanoi were infected with either TG or STG. Hamaguchi and others noted that their enrollment criteria heavily selected in favor of rickettsial cases (e.g., through lack of an alternative diagnosis, presence of an eschar or nonresponse to β-lactam antibiotics) and thus may overrepresent the fraction of fever cases attributable to rickettsial agents. The low levels of seropositives detected here may indicate that the antigens used in this study were not sufficiently reactive with local circulating strains, despite our inclusion of the genotypes believed to be dominant in the region. Observed increases in age-related seropositivity suggest retention of antibodies throughout life; however, we cannot rule out the possibility that our low levels of detected IgG positivity reflect decay kinetics, such that individuals do not retain a long-term signature of prior or repeated exposures. Low levels of seropositivity may also reflect the relatively young age of the population tested. One fortunate consequence of low background antibody prevalence to rickettsial agents is that the use of unpaired ELISA serology for diagnosis of suspect cases may be less likely to yield false positives in our location. A great deal remains to be learned about the basic epidemiology, transmission, and burden of Rickettsia in the region; further studies to investigate seroprevalence in both clinical populations as well as healthy individuals are needed to assess potential risks to human populations, and to forecast how changing patterns of land use and urbanization may impact spread of disease.

Received May 18, 2016. Accepted for publication January 17, 2017.

Published online March 6, 2017.

Note: Supplemental table appears at www.ajtmh.org.

Acknowledgments: We would like to thank the colleagues from the U.S. Naval Medical Research Center for kindly providing training and technical assistance to establish serological testing capacity for rickettsial infections at the National Hospital for Tropical Diseases. This work was supported by the National Foundation for Science and Technology Development of Vietnam (NAFOSTED) [106-VS.04-2014.10].

Authors’ addresses: Nguyen vu Trung, Le Thi Hoi, Tran Mai Hoa, and Nguyen van Kin, National Hospital for Tropical Diseases, Hanoi, Vietnam, E-mails: nvrutung@fpt.vn, lehoi2003@gmail.com, tranmahoa268@gmail.com, and kinhvn@nhd.vn, Nguyen Thi Hong Thuong and Tran Thi Kieu Huong, Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam, E-mails: thuongnh@oucru.org and huongtkt@oucru.org, Tran Khanh Toan, Hanoi Medical University, Hanoi, Vietnam, E-mail: tkt0an@yahoo.com, Annette Fox, Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam, and Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia, E-mail: annette.fox@unimelb.edu.au, H. Rogier van Doorn, Juliet E. Bryant, and Behzad Nadjm, Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam, Center for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom, E-mails: rvandoorn@oucru.org, jbyrant@oucru.org, and bnadjm@oucru.org. Heiman F. L. Wertheim, Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam, Center for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom, and Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands, E-mail: heiman.wertheim@gmail.com.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

