11th Linguistic Annotation Workshop

Proceedings of the Workshop

EACL Workshop
April 3, 2017
Valencia, Spain
Preface

The Linguistic Annotation Workshop (The LAW) is organized annually by the Association for Computational Linguistics Special Interest Group for Annotation (ACL SIGANN). It provides a forum to facilitate the exchange and propagation of research results concerned with the annotation, manipulation, and exploitation of corpora; work towards harmonization and interoperability from the perspective of the increasingly large number of tools and frameworks for annotated language resources; and work towards a consensus on all issues crucial to the advancement of the field of corpus annotation.

Last fall, when workshop proposals were solicited, we were asked for a tagline that would telegraph the essence of LAW. Naturally, this prompted a healthy dose of wordsmithing on the part of the organizing committee. The initial suggestions (including “Annotation schemers unite!” and “Don’t just annoTATE—annoGREAT!”) were deemed too corny. Then, playing on the abbreviation “LAW”, various legal puns emerged: “the fine print of linguistic annotation”; “the letter and spirit of linguistic annotation”; “LAW, the authority on linguistic annotation”; “LAW, where language is made to behave”; and so forth. “Annotation schemers on parole” took the punning to the extreme (as students of Saussure will recognize).

In the end, we settled on “LAW: Due process for linguistic annotation”. The concept of “due process” underscores the care required not just to annotate, but to annotate well. To produce a high-quality linguistic resource, diligence is required in all phases: assembling the source data; designing and refining the annotation scheme and guidelines; choosing or developing appropriate annotation software and data formats; applying automatic tools for preprocessing and provisional annotation; selecting and training human annotators; implementing quality control procedures; and documenting and distributing the completed resource.

The 14 papers in this year’s workshop study methods for annotation in the domains of emotion and attitude; conversations and discourse structure; events and causality; semantic roles; and translation (among others). Compared to previous years, syntax plays a much smaller role: indeed, this may be the first ever LAW where no paper has the word “treebank” in the title. (We leave it to the reader to speculate whether this reflects broader trends in the field or has an innocuous explanation.) Also groundbreaking in this year’s LAW will be a best paper award, to be announced at the workshop.

LAW XI would not have been possible without the fine contributions of the authors; the remarkably thorough and thoughtful reviews from the program committee; and the sage guidance of the organizing committee. Two invited talks will add multilingual perspective to the program, Deniz Zeyrek and Johan Bos having generously agreed to share their wisdom. We thank our publicity chair, Marc Verhagen, as well as those who have worked to coordinate the various aspects of EACL workshops, including logistics and publications.

We hope that after reading the collected wisdom in this volume, you will be empowered to give the linguistic annotation process its due.

Nathan Schneider and Nianwen Xue, program co-chairs
Program Co-chairs:

Nathan Schneider Georgetown University
Nianwen Xue Brandeis University

Publicity Chair:

Marc Verhagen Brandeis University

Program Committee:

Adam Meyers New York University
Alexis Palmer University of North Texas
Amália Mendes University of Lisbon
Amir Zeldes Georgetown University
Andrew Gargett University of Birmingham
Annemarie Friedrich Saarland University
Antonio Pareja-Lora Universidad Complutense de Madrid / ATLAS, UNED
Archna Bhatia IHMC
Benoît Sagot Université Paris Diderot
Bonnie Webber University of Edinburgh
Collin Baker ICSI Berkeley
Dirk Hovy University of Copenhagen
Djamé Seddah Paris-Sorbonne University
Els Lefever Ghent University
Heike Zinsmeister University of Hamburg
Ines Rehbein Leibniz Science Campus, Institute for German Language and Heidelberg University
Joel Tetreault Grammarly
John S. Y. Lee City University of Hong Kong
Josef Ruppenhofer Leibniz Science Campus, Institute for German Language and Heidelberg University
Katrin Tomanek OpenTable
Kemal Oflazer Carnegie Mellon University—Qatar
Kilian Evang University of Groningen
Kim Gerdes Sorbonne Nouvelle
Kiril Simov Bulgarian Academy of Sciences
Lori Levin Carnegie Mellon University
Manfred Stede University of Potsdam
Marie Candito Université Paris Diderot
Markus Dickinson Indiana University
Martha Palmer University of Colorado at Boulder
Massimo Poesio University of Essex
Nancy Ide Vassar College
Nicoletta Calzolari CNR-ILC
Nizar Habash New York University Abu Dhabi
Özlem Çetinoğlu University of Stuttgart
Pablo Faria State University of Campinas
Ron Artstein Institute for Creative Technologies, USC
Sandra Kübler Indiana University
Stefanie Dipper Ruhr University Bochum
Tomaž Erjavec Jožef Stefan Institute
SIGANN Organizing Committee:

Udo Hahn Jena University
Valia Kordoni Humboldt University of Berlin

Stefanie Dipper Ruhr University Bochum
Annemarie Friedrich Saarland University
Chu-Ren Huang The Hong Kong Polytechnic University
Nancy Ide Vassar College
Lori Levin Carnegie Mellon University
Adam Meyers New York University
Antonio Pareja-Lora Universidad Complutense de Madrid / ATLAS, UNED
Massimo Poesio University of Essex
Sameer Pradhan Boulder Learning, Inc.
Ines Rehbein Leibniz Science Campus, Institute for German Language and Heidelberg University
Manfred Stede University of Potsdam
Katrin Tomanek OpenTable
Fei Xia University of Washington
Heike Zinsmeister University of Hamburg
Table of Contents

Readers vs. Writers vs. Texts: Coping with Different Perspectives of Text Understanding in Emotion Annotation
 Sven Buechel and Udo Hahn ... 1

Finding Good Conversations Online: The Yahoo News Annotated Comments Corpus
 Courtney Napoles, Joel Tetreault, Aasish Pappu, Enrica Rosato and Brian Provenzale 13

Crowdsourcing discourse interpretations: On the influence of context and the reliability of a connective insertion task
 Merel Scholman and Vera Demberg .. 24

A Code-Switching Corpus of Turkish-German Conversations
 Özlem Çetinoğlu .. 34

Annotating omission in statement pairs
 Héctor Martínez Alonso, Amaury Delamaire and Benoît Sagot 41

Annotating Speech, Attitude and Perception Reports
 Corien Bary, Leopold Hess, Kees Thijs, Peter Berck and Iris Hendrickx 46

Consistent Classification of Translation Revisions: A Case Study of English-Japanese Student Translations
 Atsushi Fujita, Kikuko Tanabe, Chihoko Toyoshima, Mayuka Yamamoto, Kyo Kageura and Anthony Hartley ... 57

Representation and Interchange of Linguistic Annotation: An In-Depth, Side-by-Side Comparison of Three Designs
 Richard Eckart de Castilho, Nancy Ide, Emanuele Lapponi, Stephan Oepen, Keith Suderman, Erik Velldal and Marc Verhagen ... 67

TDB 1.1: Extensions on Turkish Discourse Bank
 Deniz Zeyrek and Murathan Kurfalı .. 76

Two Layers of Annotation for Representing Event Mentions in News Stories
 Maria Pia di Buono, Martin Tutek, Jan Šnajder, Goran Glavaš, Bojana Dalbelo Bašić and Natasa Milic-Frayling ... 82

Word Similarity Datasets for Indian Languages: Annotation and Baseline Systems
 Syed Sarfaraz Akhtar, Arihant Gupta, Avijit Vajpayee, Arjit Srivastava and Manish Shrivastava 91

The BECauSE Corpus 2.0: Annotating Causality and Overlapping Relations
 Jesse Dunietz, Lori Levin and Jaime Carbonell ... 95

Catching the Common Cause: Extraction and Annotation of Causal Relations and their Participants
 Ines Rehbein and Josef Ruppenhofer ... 105

Assessing SRL Frameworks with Automatic Training Data Expansion
 Silvana Hartmann, Éva Mújdricza-Maydt, Illia Kuznetsov, Iryna Gurevych and Anette Frank . 115
Workshop Program

Monday, April 3, 2017

9:30–9:40 Welcome

9:40–10:40 Invited Talk I: The TED-Multilingual Discourse Bank
 Deniz Zeyrek

10:40–11:00 Emotion

10:40–11:00 Readers vs. Writers vs. Texts: Coping with Different Perspectives of Text Understanding in Emotion Annotation
 Sven Buechel and Udo Hahn

11:00–11:30 Coffee Break

11:30–12:10 Conversations & Discourse

11:30–11:50 Finding Good Conversations Online: The Yahoo News Annotated Comments Corpus
 Courtney Napoles, Joel Tetreault, Aasish Pappu, Enrica Rosato and Brian Provenzale

11:50–12:10 Crowdsourcing discourse interpretations: On the influence of context and the reliability of a connective insertion task
 Merel Scholman and Vera Demberg
Monday, April 3, 2017 (continued)

12:10–13:00 Posters

A Code-Switching Corpus of Turkish-German Conversations
Özlem Çetinoğlu

Annotating omission in statement pairs
Héctor Martínez Alonso, Amaury Delamaire and Benoît Sagot

Annotating Speech, Attitude and Perception Reports
Corien Bary, Leopold Hess, Kees Thijs, Peter Berck and Iris Hendrickx

Consistent Classification of Translation Revisions: A Case Study of English-Japanese Student Translations
Atsushi Fujita, Kikuko Tanabe, Chiho Toyoshima, Mayuka Yamamoto, Kyo Kageura and Anthony Hartley

Representation and Interchange of Linguistic Annotation: An In-Depth, Side-by-Side Comparison of Three Designs
Richard Eckart de Castilho, Nancy Ide, Emanuele Lapponi, Stephan Oepen, Keith Suderman, Erik Velldal and Marc Verhagen

TDB 1.1: Extensions on Turkish Discourse Bank
Deniz Zeyrek and Murathan Kurfalı

Two Layers of Annotation for Representing Event Mentions in News Stories
Maria Pia di Buono, Martin Tutek, Jan Šnajder, Goran Glavaš, Bojana Dalbelo Bašić and Natasa Milic-Frayling

Word Similarity Datasets for Indian Languages: Annotation and Baseline Systems
Syed Sarfaraz Akhtar, Arihant Gupta, Avijit Vajpayee, Arjit Srivastava and Manish Shrivastava

13:00–14:30 Lunch
Monday, April 3, 2017 (continued)

14:30–15:00 Posters (contd.)

15:00–16:00 Causality & Semantic Roles
15:00–15:20 The BECauSE Corpus 2.0: Annotating Causality and Overlapping Relations
 Jesse Dunietz, Lori Levin and Jaime Carbonell
15:20–15:40 Catching the Common Cause: Extraction and Annotation of Causal Relations and
 their Participants
 Ines Rehbein and Josef Ruppenhofer
15:40–16:00 Assessing SRL Frameworks with Automatic Training Data Expansion
 Silvana Hartmann, Éva Mújdricza-Maydt, Ilia Kuznetsov, Iryna Gurevych and
 Anette Frank

16:00–16:30 Coffee Break

16:30–17:30 Invited Talk II: Cross-lingual Semantic Annotation
 Johan Bos

17:30–18:00 Discussion and Wrap-up
Readers vs. Writers vs. Texts:
Coping with Different Perspectives of Text Understanding in
Emotion Annotation

Sven Buechel and Udo Hahn
Jena University Language & Information Engineering (JULIE) Lab
Friedrich-Schiller-Universität Jena, Jena, Germany
{sven.buechel,udo.hahn}@uni-jena.de
http://www.julielab.de

Abstract

We here examine how different perspectives of understanding written discourse, like the reader’s, the writer’s or the text’s point of view, affect the quality of emotion annotations. We conducted a series of annotation experiments on two corpora, a popular movie review corpus and a genre- and domain-balanced corpus of standard English. We found statistical evidence that the writer’s perspective yields superior annotation quality overall. However, the quality one perspective yields compared to the other(s) seems to depend on the domain the utterance originates from. Our data further suggest that the popular movie review data set suffers from an atypical bimodal distribution which may decrease model performance when used as a training resource.

1 Introduction

In the past years, the analysis of subjective language has become one of the most popular areas in computational linguistics. In the early days, a simple classification according to the semantic polarity (positiveness, negativeness or neutrality) of a document was predominant, whereas in the meantime, research activities have shifted towards a more sophisticated modeling of sentiments. This includes the extension from only few basic to more varied emotional classes sometimes even assigning real-valued scores (Strapparava and Mihalcea, 2007), the aggregation of multiple aspects of an opinion item into a composite opinion statement for the whole item (Schouten and Frasincar, 2016), and sentiment compositionality on sentence level (Socher et al., 2013).

There is also an increasing awareness of different perspectives one may take to interpret written discourse in the process of text comprehension. A typical distinction which mirrors different points of view is the one between the writer and the reader(s) of a document as exemplified by utterance (1) below (taken from Katz et al. (2007)):

(1) Italy defeats France in World Cup Final

The emotion of the writer, presumably a professional journalist, can be expected to be more or less neutral, but French or Italian readers may show rather strong (and most likely opposing) emotional reactions when reading this news headline. Consequently, such finer-grained emotional distinctions must also be considered when formulating instructions for an annotation task.

NLP researchers are aware of this multi-perspectival understanding of emotion as contributions often target either one or the other form of emotion expression or mention it as a subject of future work (Mukherjee and Joshi, 2014; Lin and Chen, 2008; Calvo and Mac Kim, 2013). However, contributions aiming at quantifying the effect of altering perspectives are rare (see Section 2). This is especially true for work examining differences in annotation results relative to these perspectives. Although this is obviously a crucial design decision for gold standards for emotion analytics, we know of only one such contribution (Mohammad and Turney, 2013).

In this paper, we systematically examine differences in the quality of emotion annotation regarding different understanding perspectives. Apart from inter-annotator agreement (IAA), we will also look at other quality criteria such as how well the resulting annotations cover the space of possible ratings and check for the representativeness of the rating distribution. We performed a series of annotation experiments with varying instruc-
tions and domains of raw text, making this the first study ever to address the impact of text understanding perspective on sentence-level emotion annotation. The results we achieved directly influenced the design and creation of EMOBANK, a novel large-scale gold standard for emotion analysis employing the VAD model for affect representation (Buechel and Hahn, 2016).

2 Related Work

Representation Schemes for Emotion. Due to the multi-disciplinary nature of research on emotions, different representation schemes and models have emerged hampering comparison across different approaches (Buechel and Hahn, 2016). In NLP-oriented sentiment and emotion analysis, the most popular representation scheme is based on semantic polarity, the positiveness or negativeness of a word or a sentence, while slightly more sophisticated schemes include a neutral class or even rely on a multi-point polarity scale (Pang and Lee, 2008).

Despite their popularity, these bi- or tri-polar schemes have only loose connections to emotion models currently prevailing in psychology (Sander and Scherer, 2009). From an NLP point of view, those can be broadly subdivided into categorical and dimensional models (Calvo and Mac Kim, 2013). Categorical models assume a small number of distinct emotional classes (such as Anger, Fear or Joy) that all human beings are supposed to share. In NLP, the most popular of those models are the six Basic Emotions by Ekman (1992) or the 8-category scheme of the Wheel of Emotion by Plutchik (1980).

Dimensional models, on the other hand, are centered around the notion of compositionality. They assume that emotional states can be best described as a combination of several fundamental factors, i.e., emotional dimensions. One of the most popular dimensional models is the Valence-Arousal-Dominance (VAD; Bradley and Lang (1994)) model which postulates three orthogonal dimensions, namely Valence (corresponding to the concept of polarity), Arousal (a calm-excited scale) and Dominance (perceived degree of control in a (social) situation); see Figure 1 for an illustration. An even more wide-spread version of this model uses only the Valence and Arousal dimension, the VA model (Russell, 1980).

For a long time, categorical models were predominant in emotion analysis (Ovesdotter Alm et al., 2005; Strapparava and Mihalcea, 2007; Balahur et al., 2012). Only recently, the VA(D) model found increasing recognition (Paltoglou et al., 2013; Yu et al., 2015; Buechel and Hahn, 2016; Wang et al., 2016). When one of these dimensional models is selected, the task of emotion analysis is most often interpreted as a regression problem (predicting real-valued scores for each of the dimension) so that another set of metrics must be taken into account than those typically applied in NLP (see Section 3).

Despite its growing popularity, the first large-scale gold standard for dimensional models has only very recently been developed as a follow-up to this contribution (EMOBANK; Buechel and Hahn (2017)). The results we obtained here were crucial for the design of EMOBANK regarding the choice of annotation perspective and the domain the raw data were taken from. However, our results are not only applicable to VA(D) but also to semantic polarity (as Valence is equivalent to this representation format) and may probably generalize over other models of emotion, as well.

Resources and Annotation Methods. For the VAD model, the Self-Assessment Manikin (SAM; Bradley and Lang (1994)) is the most important and to our knowledge only standardized instrument for acquiring emotion ratings based on human self-perception in behavioral psychology (Sander and Scherer, 2009). SAM iconically displays differences in Valence, Arousal and Dominance by a set of anthropomorphic cartoons on

Figure 1: The emotional space spanned by the Valence-Arousal-Dominance model. For illustration, the position of Ekman’s six Basic Emotions are included (as determined by Russell and Mehrabian (1977)).
a multi-point scale (see Figure 2). Subjects refer to one of these figures per VAD dimension to rate their feelings as a response to a stimulus.

SAM and derivatives therefrom have been used for annotating a wide range of resources for word-emotion associations in psychology (such as Wariner et al. (2013), Stadthagen-Gonzalez et al. (2016), Yao et al. (2016) and Schmidtke et al. (2014)), as well as VAD-annotated corpora in NLP; Preotuc-Pietro et al. (2016) developed a corpus of 2,895 English Facebook posts (but they rely on only two annotators). Yu et al. (2016) generated a corpus of 2,009 Chinese sentences from different genres of online text.

A possible alternative to SAM is Best-Worst Scaling (BSW; Louviere et al. (2015)), a method only recently introduced into NLP by Kiritchenko and Mohammad (2016). This annotation method exploits the fact that humans are typically more consistent when comparing two items relative to each other with respect to a given scale rather than attributing numerical ratings to the items directly. For example, deciding whether one sentence is more positive than the other is easier than scoring them (say) as 8 and 6 on a 9-point scale.

Although BWS provided promising results for polarity (Kiritchenko and Mohammad, 2016), in this paper, we will use SAM scales. First, with this decision, there are way more studies to compare our results with and, second, the adequacy of BWS for emotional dimensions other than Valence (polarity) remains to be shown.

Perspectival Understanding of Emotions. As stated above, research on the linkage of different annotation perspectives (typically reader vs. writer) is really rare. Tang and Chen (2012) examine the relation between the sentiment of microblog posts and the sentiment of their comments (as a proxy for reader emotion) using a positive-negative scheme. They examine which linguistic features are predictive for certain emotion transitions (combinations of an initial writer and a responsive reader emotion). Liu et al. (2013) model the emotion of a news reader jointly with the emotion of a comment writer using a co-training approach. This contribution was followed up by Li et al. (2016) who criticized that important assumptions underlying co-training, viz. sufficiency and independence of the two views, had actually been violated in that work. Instead, they propose a two-view label propagation approach.

Various (knowledge) representation formalisms have been suggested for inferring sentiment or opinions by either readers, writers or both from a piece of text. Reschke and Anand (2011) propose the concept of predicate-specific evaluativity functions which allow for inferring the writers’ evaluation of a proposition based on the evaluation of the arguments of the predicate. Using description logics as modeling language Klenner (2016) advocates the concept of polarity frames to capture polarity constraints verbs impose on their complements as well as polarity implications they project on them. Deng and Wiebe (2015) employ probabilistic soft logic for entity and event-based opinion inference from the viewpoint of the author or intra-textual entities. Rashkin et al. (2016) introduce connotation frames of (verb) predicates as a comprehensive formalism for modeling various evaluative relationships (being positive, negative or neutral) between the arguments of the predicate as well as the reader’s and author’s view on them. However, up until now, the power of this formalism is still restricted by assuming that author and reader evaluate the arguments in the same way.

In summary, different from our contribution, this line of work tends to focus less on the reader’s perspective and also addresses cognitive evaluations (opinions) rather than instantaneous affective reactions. Although these two concepts are closely related, they are yet different and in fact their relationship has been the subject of a long lasting and still unresolved debate in psychology (Davidson et al., 2003) (e.g., are we afraid of something because we evaluate it as dangerous, or do we evaluate something as dangerous because we are afraid?).

To the best of our knowledge, only Mohammad and Turney (2013) investigated the effects of different perspectives on annotation quality. They conducted an experiment on how to formulate the emotion annotation question and found that asking whether a term is associated with an emotion actually resulted in higher IAA than asking whether a term evokes a certain emotion. Arguably, the former phrasing is rather unrelated to either writer or reader emotion, while the latter clearly targets the emotion of the reader. Their work renders evidence for the importance of the perspective of text comprehension for annotation quality. Note that they focused on word emotion rather than sentence emotion.
3 Methods

Inter-Annotator Agreement. Annotating emotion on numerical scales demands for another statistical tool set than the one that is common in NLP. Well-known metrics such as the κ-coefficient should not be applied for measuring IAA because these are designed for nominal-scaled variables, i.e., ones whose possible values do not have any intrinsic order (such as part-of-speech tags as compared to (say) a multi-point sentiment scale).

In the literature, there is no consensus on what metrics for IAA should be used instead. However, there is a set of repetitively used approaches which are typically only described verbally. In the following, we offer comprehensive formal definitions and a discussion of them.

First, we describe a leave-one-out framework for IAA where the ratings of an individual annotator are compared against the average of the remaining ratings. As one of the first papers, it was used and verbally described by Strapparava and Mihalcea (2007) and was later taken on by Yu et al. (2016) and Preotuic-Pietro et al. (2016).

Let b_j denote $(x_{1j}, x_{2j}, ..., x_{mj})$, the vector composed out of the j-th column of the matrix and let $f : \mathbb{R}^m \times \mathbb{R}^m \rightarrow \mathbb{R}$ be an arbitrary metric for comparing two data series, then $L1O_f(X)$, the leave-one-out IAA for the rating matrix X relative to the metric f, is defined as

$$L1O_f(X) := \frac{1}{n} \sum_{j=1}^{n} f(b_j, b_\emptyset)$$ (1)

where b_\emptyset is the average annotation vector of the remaining raters:

$$b_\emptyset := \frac{1}{n-1} \sum_{k \in \{1, ..., n\} \setminus \{j\}} b_k$$ (2)

For our experiments, we will use three different metrics specifying the function f, namely r, MAE and RMSE.

In general, the Pearson correlation coefficient r captures the linear dependence between two data series, $x = x_1, x_2, ..., x_m$ and $y = y_1, y_2, ..., y_m$. In our case x, y correspond to the rating vector of an individual annotator and the aggregated rating vector of the remaining annotators, respectively.

$$r(x, y) := \frac{\sum_{i=1}^{m} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{m} (y_i - \bar{y})^2}}$$ (3)

where \bar{x}, \bar{y} denote the mean value of x, y, respectively.

When comparing a model’s prediction to the actual data, it can be very important not only to
take correlation-based metrics like r into account, but also error-based metrics (Buechel and Hahn, 2016). This is so because a model may produce very accurate predictions in terms of correlation, while at the same time it may perform poorly when taking errors into account (for instance, when the predicted values range in a much smaller interval than the actual values).

To be able to compare a system’s performance more directly to the human ceiling, we also apply error-based metrics within this leave-one-out framework. The most popular ones for emotion analysis are Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) (Paltoglou et al., 2013; Yu et al., 2016; Wang et al., 2016):

\[
\text{MAE}(\mathbf{x}, \mathbf{y}) := \frac{1}{m} \sum_{i=1}^{m} |(x_i - y_i)| \tag{4}
\]

\[
\text{RMSE}(\mathbf{x}, \mathbf{y}) := \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - y_i)^2} \tag{5}
\]

One of the drawbacks of this framework is that each x_{ij} from matrix X has to be known in order to calculate the IAA. An alternative method was verbally described by Buechel and Hahn (2016) which can be computed out of mean and SD values for each item alone (a format often available from psychological papers). Let X be defined as above and let \overline{x}_i denote the mean value for the i-th item. Then, the Average Annotation Standard Deviation (AASD) is defined as

\[
\text{AASD}(X) := \frac{1}{m} \sum_{i=1}^{m} \sqrt{\frac{1}{n} \sum_{j=1}^{n} (x_{ij} - \overline{x}_i)^2} \tag{6}
\]

Emotionality. While IAA is indubitably the most important quality criterion for emotion annotation, we argue that there is at least one additional criterion that is not covered by prior research: When using numerical scales (especially ones with a large number of rating points, e.g., the 9-point scales we will use in our experiments) annotations where only neutral ratings are used will be unfavorable for future applications (e.g., training models). Therefore, it is important that the annotations are properly distributed over the full range of the scale. This issue is especially relevant in our setting as different perspectives may very well differ in the extremity of their reactions, as evident from Example (1). We call this desirable property the emotionality (EMO) of the annotations.

For the EMO metric, we first derive aggregated ratings from the individual rating decisions of the annotators, i.e., the ratings that would later form the final ratings of a corpus. For that, we aggregate the rating matrix X from Equation 1 into the vector y consisting of the respective row means \overline{y}_i.

\[
\overline{y}_i := \frac{1}{n} \sum_{j=1}^{n} x_{ij} \tag{7}
\]

\[
y := (\overline{y}_1, \ldots, \overline{y}_i, \ldots, \overline{y}_m) \tag{8}
\]

Since we use the VAD model, we will have one such aggregated vector per VAD dimension. We denote them y^1, y^2 and y^3. Let the matrix $Y = (y^j_i) \in \mathbb{R}^{m \times 3}$ hold the aggregated ratings of item i for dimension j, and let N denote the neutral rating (e.g., 5 on a 9-point scale). Then,

\[
\text{EMO}(Y) := \frac{1}{3 \times m} \sum_{j=1}^{3} \sum_{i=1}^{m} |y^j_i - N| \tag{9}
\]

Representative Distribution. A closely related quality indicator relates to the representativeness of the resulting rating distribution. For large sets of stimuli (words as well as sentences), numerous studies consistently report that when using SAM-like scales, typically the emotion ratings closely resemble a normal distribution, i.e., the density plot displays a Gaussian, “bell-shaped” curve (see Figure 3b) (Preot¸iuc-Pietro et al., 2016; Warriner et al., 2013; Stadthagen-Gonzalez et al., 2016; Montefinese et al., 2014).

Intuitively, it makes sense that most of the sentences under annotation should be rather neutral, while only few of them carry extreme emotions. Therefore, we argue that ideally the resulting aggregated ratings for an emotion annotation task should be normally distributed. Otherwise, it must be seriously called into question in how far the respective data set can be considered representative, possibly reducing the performance of models trained thereon. Consequently, we will also take the density plot of the ratings into account when comparing different set-ups.

4 Experiments

Perspectives to Distinguish. Considering Example (1) and our literature review from Section
2, it is obvious that at least the perspective of the writer and the reader of an utterance must be distinguished. Accordingly, writer emotion refers to how someone feels while producing an utterance, whereas reader emotion relates to how someone feels right after reading or hearing this utterance.

Also taking into account the finding by Mohammad and Turney (2013) that agreement among annotators is higher when asking whether a word is associated with an emotion rather than asking whether it evokes this emotion, we propose to extend the common writer-reader framework by a third category, the text perspective, where no actual person is specified as perceiving an emotion. Rather, we assume for this perspective that emotion is an intrinsic property of a sentence (or an alternative linguistic unit like a phrase or the entire text). In the following, we will use the terms Writer, Text and Reader to concisely refer to the respective perspectives.

Data Sets. We collected two data sets, a movie review data set highly popular in sentiment analysis and a balanced corpus of general English. In this way, we can estimate the annotation quality resulting from different perspectives, also covering interactions regarding different domains.

The first data set builds upon the corpus originally introduced by Pang and Lee (2005). It consists of about 10k snippets from movie reviews by professional critics collected from the websiterottentomatoes.com. The data was further enriched by Socher et al. (2013) who annotated individual nodes in the constituency parse trees according to a 5-point polarity scale, forming the Stanford Sentiment Treebank (SST) which contains 11,855 sentences.

Upon closer inspection, we noticed that the SST data have some encoding issues (e.g., Absorbing character study by AndrÁ© Turpin.) that are not present in the original Rotten Tomatoes data set. So we decided to replicate the creation of the SST data from the original snippets. Furthermore, we filtered out fragmentary sentences automatically (e.g., beginning with comma, dashes, lower case, etc.) as well as manually excluded grammatically incomplete and therefore incomprehensible sentences, e.g., "Or a profit" or "Over age 15". Subsequently, a total of 10,987 sentences could be mapped back to SST IDs forming the basis for our experiments (the SST* collection).

To complement our review language data set, a domain heavily focused on in sentiment analysis (Liu, 2015), for our second data set, we decided to rely on a genre-balanced corpus. We chose the Manually Annotated Sub-Corpus (MASC) of the American National Corpus which is already annotated for various linguistic levels (Ide et al., 2008; Ide et al., 2010). We excluded registers containing spoken, mainly dialogic or non-standard language, e.g., telephone conversations, movie scripts and tweets. To further enrich this collection of raw data for potential emotion analysis applications, we additionally included the corpus of the SEM-EVAL-2007 Task 14 focusing on Affective Text (SE07; Strapparava and Mihalcea (2007)), one of the most important data sets in emotion analysis. This data set already bears annotations according to Ekman’s six Basic Emotions (see Section 2) so that the gold standard we ultimately supply already contains a bi-representational part (being annotated according to a dimensional and a categorical model of emotion). Such a double encoding will easily allow for research on automatically mapping between different emotion formats (Buechel and Hahn, 2017).

In order to identify individual sentence in MASC, we relied on the already available annotations. We noticed, however, that a considerable portion of the sentence boundary annotations were duplicates which we consequently removed (about 5% of the preselected data). This left us with a total of 18,290 sentences from MASC and 1,250 headlines from SE07. Together, they form our second data set, MASC*.

Study Design. We pulled a 40 sentences random sample from MASC* and SST*, respectively. For each of the three perspectives Writer, Reader and Text, we prepared a separate set of instructions. Those instructions are identical, except for the exact phrasing of what a participant should annotate: For Writer, it was consistently asked “what emotion is expressed by the author”, while Text and Reader queried “what emotion is conveyed” by and “how do you [the participant of the survey] feel after reading” an individual sentence, respectively.

After reviewing numerous studies from NLP and psychology that had created emotion annotations (e.g., Katz et al. (2007), Strapparava and Mihalcea (2007), Mohammad and Turney (2013), Pinheiro et al. (2016), Warriner et al. (2013)), we largely relied on the instructions used by Bradley
and Lang (1999) as this is one of the first and probably the most influential resource from psychology which also greatly influenced work in NLP (Yu et al., 2016; Preotuchi-Pietro et al., 2016).

The instructions were structured as follows. After a general description of the study, the individual scales of SAM were explained to the participants. After that, they performed three trial ratings to familiarize themselves with the usage of the SAM scales before proceeding to judge the actual 40 sentences of interest. The study was implemented as a web survey using Google Forms.1 The sentences were presented in randomized order, i.e., they were shuffled for each participant individually.

For each of the six resulting surveys (one for each combination of perspective and data set), we recruited 80 participants via the crowdsourcing platform crowdflower.com (CF). The number was chosen so that the differences in IAA may reach statistical significance (according to the leave-one-out evaluation (see Section 3), the number of cases is equal to the number of raters). The surveys went online one after the other, so that as few participants as possible would do more than one of the surveys. The task was available from within the UK, the US, Ireland, Canada, Australia and New Zealand.

We preferred using an external survey over running the task directly via the CF platform because this set-up offers more design options, such as randomization, which is impossible via CF; there, the data is only shuffled once and will then be presented in the same order to each participant. The drawback of this approach is that we cannot rely on CF’s quality control mechanisms.

In order to still be able to exclude malicious raters, we introduced an algorithmic filtering process where we summed up the absolute error the participants made on the trial questions — those were asking them to indicate the VAD values for a verbally described emotion so that the correct answers were evident from the instructions. Raters whose absolute error was above a certain threshold were excluded.

We set this parameter to 20 (removing about a third of the responses) because this was approximately the ratio of raters which struck us as unreliable when manually inspecting the data while, at the same time, leaving us with a reasonable number of cases to perform statistical analysis. The results of this analysis is presented in the following section. Our two small sized yet multi-perspectival data sets are publicly available for further analysis.2

5 Results

In this section, we compare the three annotation perspectives (WRITER, READER and TEXT) on two different data sets (SST* and MASC*; see Section 4), according to three criteria for annotation quality: IAA, emotionality and distribution (see Section 3).

Inter-Annotator Agreement

Since there is no consensus on a fixed set of metrics for numerical emotion values, we compare IAA according to a range of measures. We use r, MAE and RMSE in the leave-one-out framework, as well as AASD (see Section 3). Table 1 displays our results for the SST* and MASC* data set. We calculated IAA individually for Valence, Arousal and Dominance. However, to keep the number of comparisons feasible, we restrict ourselves to presenting the respective mean values (average over VAD), only. The relative ordering between the VAD dimensions is overall consistent with prior work so that Valence shows better IAA than Arousal or Dominance (in line with findings from Warriner et al. (2013) and Schmidtke et al. (2014)).

We find that on the review-style SST* data, WRITER displays the best IAA according to all of the four metrics ($p < 0.05$ using a two-tailed t-test, respectively). Note that MAE, RMSE and AASD are error-based so that the smaller the value the better the agreement. Concerning the ordering of the remaining perspectives, TEXT is marginally better regarding r, while the results from the three error-based metrics are clearly in favor of READER. Consequently, for IAA on the

<table>
<thead>
<tr>
<th>Perspective</th>
<th>r</th>
<th>MAE</th>
<th>RMSE</th>
<th>AASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITER</td>
<td>.53</td>
<td>1.41</td>
<td>1.70</td>
<td>1.73</td>
</tr>
<tr>
<td>TEXT</td>
<td>.41</td>
<td>1.73</td>
<td>2.03</td>
<td>2.10</td>
</tr>
<tr>
<td>READER</td>
<td>.40</td>
<td>1.66</td>
<td>1.96</td>
<td>2.02</td>
</tr>
<tr>
<td>MASC*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITER</td>
<td>.43</td>
<td>1.56</td>
<td>1.88</td>
<td>1.95</td>
</tr>
<tr>
<td>TEXT</td>
<td>.43</td>
<td>1.49</td>
<td>1.81</td>
<td>1.89</td>
</tr>
<tr>
<td>READER</td>
<td>.36</td>
<td>1.58</td>
<td>1.89</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Table 1: IAA values obtained on the SST* and the MASC* data set. r, MAE and RMSE refer to the respective leave-one-out metric (see Section 3).

1https://forms.google.com/

2https://github.com/JULIELab/EmoBank
Table 2: Emotionality results for the SST* and the MASC* data set.

<table>
<thead>
<tr>
<th>Perspective</th>
<th>EMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST*</td>
<td></td>
</tr>
<tr>
<td>Writer</td>
<td>1.09</td>
</tr>
<tr>
<td>Text</td>
<td>1.04</td>
</tr>
<tr>
<td>Reader</td>
<td>0.91</td>
</tr>
<tr>
<td>MASC*</td>
<td></td>
</tr>
<tr>
<td>Writer</td>
<td>0.75</td>
</tr>
<tr>
<td>Text</td>
<td>0.70</td>
</tr>
<tr>
<td>Reader</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Surprisingly, the results look markedly different on the MASC* data. Here, regarding r, Writer and Text are on par with each other. This contrasts with the results from the error-based metrics. There, Text shows the best value, while Writer, in turn, improves upon Reader only by a small margin. Most importantly, for neither of the four metrics do we obtain statistical significance between the best and the second best perspective ($p \geq 0.05$ using a two-tailed t-test, respectively). Thus, concerning IAA on the MASC* sample, the results remain rather opaque.

The fact that, contrary to that, on SST* the results are conclusive and statistically significant, strongly suggests that the resulting annotation quality is not only dependent on the annotation perspective. Instead, there seem to be considerable dependencies and interactions concerning the domain of the raw data, as well.

Interestingly, on both corpora correlation- and error-based sets of metrics behave inconsistently which we interpret as a piece of evidence for using both types of metrics, in parallel (Buechel and Hahn, 2016; Wang et al., 2016).

Emotionality. For emotionality, we rely on the EMO metric which we defined in Section 3 (see Table 2 for our results). For both corpora, the ordering of the perspectives according to the EMO score is consistent: Writer yields the most emotional ratings followed by Text and Reader. ($p < 0.05$ for each of the pairs using a two-tailed t-test). These unanimous and statistically significant results further underpin the advantage of the Text and especially the Writer perspective as already suggested by our findings for IAA.

Distribution. We also looked at the distribution of the resulting aggregated annotations relative to the chosen data sets and the three perspectives by examining the respective density plots. In Figure 3, we give six examples of these plots, displaying the Valence density curve for both corpora, SST* and MASC*, as well as the three perspectives. For Arousal and Dominance, the plots show the same characteristics although slightly less pronounced.

The left density plots, for the SST*, display a bimodal distribution (having two local maxima), whereas the MASC* plots are much closer to a normal distribution. This second shape has been consistently reported by many contributions (see Section 3), whereas we know of no other study reporting a bimodal emotion distribution. This highly atypical finding for SST* might be an artifact of the website from which the original movie review snippets were collected—there, movies are classified into either fresh (positive) or rotten (negative). Consequently, this binary classification scheme might have influenced the selection of snippets from full-scale reviews (as performed by the website) so that these snippets are either clearly positive or negative.

Thus, our findings seriously call into question in how far the movie review corpus by Pang and Lee (2005)—one of the most popular data sets in sentiment analysis—can be considered representative for review language or general English. Ultimately, this may result in a reduced performance of models trained on such skewed data.

6 Discussion

Overall, we interpret our data as suggesting the Writer perspective to be superior to Text and Reader: Considering IAA, it is significantly better on one data set (SST*), while it is on par with or only marginally worse than the best perspective on the other data set (MASC*). Regarding emotionality of the aggregated ratings (EMO), the superiority of this perspective is even more obvious.
The relative order of Text and Writer on the other hand, is not so clear. Regarding IAA, Text is better on MASC* while for SST* Reader seems to be slightly better (almost on par regarding r but markedly better relative to the error measures we propose here). However, regarding the emotionality of the ratings, Text clearly surpasses Reader.

Our data suggest that the results of Mohammad and Turney (2013) (the only comparable study so far, though considering emotion on the word rather than sentence level) may be also true for sentences in most of the cases. However, our data indicate that the validity of their findings may depend on the domain the raw data originate from. They found that phrasing the emotion annotation task relative to the Text perspective yields higher IAA than relating to the Reader perspective. However, more importantly, our data complement their results by presenting evidence that Writer seems to be even better than any of the two perspectives they took into account.

7 Conclusion

This contribution presented a series of annotation experiments examining which annotation perspective (Writer, Text or Reader) yields the best IAA, also taking domain differences into account—the first study of this kind for sentence-level emotion annotation. We began by reviewing different popular representation schemes for emotion before (formally) defining various metrics for annotation quality—for the VAD scheme we use, this task was so far neglected in the literature.

Our findings strongly suggest that Writer is overall the superior perspective. However, the exact ordering of the perspectives strongly depends on the domain the data originate from. Our results are thus mainly consistent with, but substantially go beyond, the only comparable study so far (Mohammad and Turney, 2013). Furthermore, our data provide strong evidence that the movie review corpus by Pang and Lee (2005)—one of the most popular ones for sentiment analysis—may not be representative in terms of its rating distribution potentially casting doubt on the quality of models trained on this data.

For the subsequent creation of EmoBank, a large-scale VAD gold standard, we took the following decisions in the light of these not fully conclusive outcomes. First, we decided to annotate a 10k sentences subset of the MASC* corpus considering the atypical rating distribution in the SST* data set. Furthermore, we decided to annotate the whole corpus bi-perspectivally (according to Writer and Reader viewpoint) as we hope that the resulting resource helps clarifying which factors exactly influence emotion annotation quality. This freely available resource is further described in Buechel and Hahn (2017).

References

Finding Good Conversations Online: The Yahoo News Annotated Comments Corpus

Courtney Napoles,1 Joel Tetreault,2 Enrica Rosato,3 Brian Provenzale,4 and Aasish Pappu3
1 Johns Hopkins University, napoles@cs.jhu.edu
2 Grammarly, joel.tetreault@grammarly.com
3 Yahoo, {aasishkp|enricar}@yahoo-inc.com
4 Accellion, bprovenzale@gmail.com

Abstract

This work presents a dataset and annotation scheme for the new task of identifying “good” conversations that occur online, which we call ERICs: Engaging, Respectful, and/or Informative Conversations. We develop a taxonomy to reflect features of entire threads and individual comments which we believe contribute to identifying ERICs; code a novel dataset of Yahoo News comment threads (2.4k threads and 10k comments) and 1k threads from the Internet Argument Corpus; and analyze the features characteristic of ERICs. This is one of the largest annotated corpora of online human dialogues, with the most detailed set of annotations. It will be valuable for identifying ERICs and other aspects of argumentation, dialogue, and discourse.

1 Introduction

Automatically curating online comments has been a large focus in recent NLP and social media work, as popular news outlets can receive millions of comments on their articles each month (Warzel, 2012). Comment threads often range from vacuous to hateful, but good discussions do occur online, with people expressing different viewpoints and attempting to inform, convince, or better understand the other side, but they can get lost among the multitude of unconstructive comments. We hypothesize that identifying and promoting these types of conversations (ERICs) will cultivate a more civil and constructive atmosphere in online communities and potentially encourage participation from more users.

ERICs are characterized by:

- A respectful exchange of ideas, opinions, and/or information in response to a given topic(s).
- Opinions expressed as an attempt to elicit a dialogue or persuade.
- Comments that seek to contribute some new information or perspective on the relevant topic.

ERICs have no single identifying attribute: for instance, an exchange where communicants are in total agreement throughout can be an ERIC, as can an exchange with heated disagreement. Figures 1 and 2 contain two threads that are characterized by continual disagreement, but one is an ERIC and the other is not. We have developed a new coding scheme to label ERICs and identify six dimensions of comments and three dimensions of threads that are frequently seen in the comments section. Many of these labels are for characteristics of online conversations not captured by traditional argumentation or dialogue features. Some of the labels we collect have been annotated in previous work (§2), but this is the first time they are aggregated in a single corpus at the dialogue level.

In this paper, we present the Yahoo News Annotated Comments Corpus (YNACC), which contains 2.4k threads and 10k comments from the comments sections of Yahoo News articles. We additionally collect annotations on 1k threads from the Internet Argument Corpus (Abbott et al., 2016), representing another domain of online debates. We contrast annotations of Yahoo and IAC threads, explore ways in which threads perceived to be ERICs differ in this two venues, and identify some unanticipated characteristics of ERICs.

This is the first exploration of how characteristics of individual comments contribute to the dialogue-level classification of an exchange. YNACC will facilitate research to understand ERICS and other aspects of dialogue. The corpus and annotations will be available at https://github.com/cnap/ynacc.
2 Related work

Recent work has focused on the analysis of user-generated text in various online venues, including labeling certain qualities of individual comments, comment pairs, or the roles of individual commenters. The largest and most extensively annotated corpus predating this work is the Internet Argument Corpus (IAC), which contains approximately 480k comments in 16.5k threads from online forums in which users debate contentious issues. The IAC has been coded for for topic (3k threads), stance (2k authors), and agreement, sarcasm, and hostility (10k comment pairs) (Abbott et al., 2016; Walker et al., 2012). Comments from online news articles are annotated in the SEN-SEI corpus, which contains human-authored summaries of 1.8k comments posted on Guardian articles (Barker et al., 2016). Participants described
each comment with short, free-form text labels and then wrote a 150–250-word comment summary with these labels. Barker et al. (2016) recognized that comments have diverse qualities, many of which are coded in this work (§3), but did not explicitly collect labels of them.

Previous works present a survey of how editors and readers perceive the quality of comments posted in online news publications (Diakopoulos and Naaman, 2011) and review the criteria professional editors use to curate comments (Diakopoulos, 2015). The latter identifies 15 criteria for curating user-generated responses, from online and radio comments to letters to the editor. Our annotation scheme overlaps with those criteria but also diverges as we wish for the labels to reflect the nature of all comments posted on online articles instead of just the qualities sought in editorially curated comments. ERICs can take many forms and may not reflect the formal tone or intent that editors in traditional news outlets seek.

Our coding scheme intersects with attributes examined in several different areas of research. Some of the most recent and relevant discourse corpora from online sources related to this work include the following: Concepts related to persuasiveness have been studied, including annotations for “convincing-ness” in debate forums (Habernal and Gurevych, 2016), influencers in discussions from blogs and Wikipedia (Biran et al., 2012), and user relations as a proxy of persuasion in reddit (Tan et al., 2016; Wei et al., 2016). Politeness was labeled and identified in Stack Exchange and Wikipedia discussions (Danescu-Niculescu-Mizil et al., 2013). Some previous work focused on detecting agreement has considered blog and Wikipedia discussions (Andreas et al., 2012) and debate forums (Skeppstedt et al., 2016). Sarcasm has been identified in a corpus of microblogs identified with the hashtag #sarcasm on Twitter (González-Ibáñez et al., 2011; Davidov et al., 2010) and in online forums (Oraby et al., 2016). Sentiment has been studied widely, often in the context of reviews (Pang and Lee, 2005), and in the context of user-generated exchanges, positive and negative attitudes have been identified in Usenet discussions (Hassan et al., 2010). Other qualities of user-generated text that are not covered in this work but have been investigated before include metaphor (Jang et al., 2014) and tolerance (Mukherjee et al., 2013) in online discussion threads, “dogmatism” of reddit users (Fast and Horvitz, 2016), and argumentation units in discussions related to technology (Ghosh et al., 2014).

3 Annotation scheme

This section outlines our coding scheme for identifying ERICs, with labels for comment threads and each comment contained therein.

Starting with the annotation categories from the IAC and the curation criteria of Diakopoulos (2015), we have adapted these schemes and identified new characteristics that have broad coverage over 100 comment threads (§4) that we manually examined.

Annotations are made at the thread-level and the comment-level. Thread-level annotations capture the qualities of a thread on the whole, while comment-level annotations reflect the characteristics of each comment. The labels for each dimension are described below. Only one label per dimension is allowed unless otherwise specified.

3.1 Thread labels

Agreement The overall agreement present in a thread.
• Agreement throughout
• Continual disagreement
• Agreement → disagreement: Begins with agreement which turns into disagreement.
• Disagreement → agreement: Starts with disagreement that converges into agreement.

Constructiveness A binary label indicating when a conversation is an ERIC, or has a clear exchange of ideas, opinions, and/or information done so somewhat respectfully.1
• Constructive
• Not constructive

Type The overall type or tone of the conversation, describing the majority of comments. Two labels can be chosen if conversations exhibit more than one dominant feature.
• Argumentative: Contains a lot of “back and forth” between participants that does not necessarily reach a conclusion.
• Flawemwar: Contains insults, users “yelling” at each other, and no information exchanged.

1Note that this definition of constructive differs from that of Niculae and Danescu-Niculescu-Mizil (2016), who use the term to denote discrete progress made towards identifying a point on a map. Our definition draws from the more traditional meaning when used in the context of conversations as “intended to be useful or helpful” (Macmillan, 2017).
• **Off-Topic/digression:** Comments are completely irrelevant to the article or each other, or the conversation starts on topic but veers off into another direction.
• **Personal stories:** Participants exchange personal anecdotes.
• **Positive/respectful:** Consists primarily of comments expressing opinions in a respectful, potentially empathetic manner.
• **Snarky/humorous:** Participants engage with each other using humor rather than argue or sympathize. May be on- or off-topic.

3.2 Comment labels

Agreement Agreement expressed with explicit phrasing (e.g., *I disagree...*) or implicitly, such as in Figure 2. Annotating the target of (dis)agreement is left to future work due to the number of other codes the annotators need to attend to. Multiple labels can be chosen per comment, since a comment can express agreement with one statement and disagreement with another.
- Agreement with another commenter
- Disagreement with another commenter
- Adjunct opinion: Contains a perspective that has not yet been articulated in the thread.

Audience The target audience of a comment.
- Reply to specific commenter: Can be explicit (i.e., @HANDLE) or implicit (not directly naming the commenter). The target of a reply is not coded.
- Broadcast message: Is not directed to a specific person(s).

Persuasiveness A binary label indicating whether a comment contains persuasive language or an intent to persuade.
- Persuasive
- Not persuasive

Sentiment The overall sentiment of a comment, considering how the user feels with respect to what information they are trying to convey.
- Negative
- Neutral
- Positive
- Mixed: Contains both positive and negative sentiments.

Tone These qualities describe the overall tone of a comment, and more than one can apply.
- Controversial: Puts forward a strong opinion that will most likely cause disagreement.
- Funny: Expresses or intends to express humor.
- Informative: Contributes new information to the discussion.
- Mean: The purpose of the comment is to be rude, mean, or hateful.
- Sarcastic: Uses sarcasm with either intent to humor (overlaps with Funny) or offend.
- Sympathetic: A warm, friendly comment that expresses positive emotion or sympathy.

Topic The topic addressed in a comment, and more than one label can be chosen. Comments are on-topic unless either Off-topic label is selected.
- Off-topic with the article
- Off-topic with the conversation: A digression from the conversation.
- Personal story: Describes the user’s personal experience with the topic.

4 Corpus collection

With the taxonomy described above, we coded comments from two separate domains: online news articles and debate forums.

Threads from online news articles YNACC contains threads from the “comments section” of Yahoo News articles from April 2016.² Yahoo filters comments containing hate speech (Nobata et al., 2016) and abusive language using a combination of manual review and automatic algorithms, and these comments are not included in our corpus. From the remaining comments, we identified threads, which contain an initial comment and at least one comment posted in reply. Yahoo threads have a single-level of embedding, meaning that users can only post replies under a top-level comment. In total, we collected 521,608 comments in 137,620 threads on 4,714 articles on topics including finance, sports, entertainment, and lifestyle. We also collected the following metadata for each comment: unique user ID, time posted, headline, URL, category, and the number of thumbs up and thumbs down received. We included comments posted on a thread regardless of how much time had elapsed since the initial comment because the vast majority of comments were posted in close sequence: 48% in the first hour after an initial comment, 67% within the first three hours, and 92% within the first 24 hours.

We randomly selected 2,300 threads to annotate, oversampling longer threads since the aver-

²Excluding comments labeled non-English by LangID, a high-accuracy tool for identifying languages in multiple domains (Lui and Baldwin, 2012)
Table 1: Description of the threads and comments annotated in this work and the number coded by trained and untrained annotators. Thread length is in comments, comment length in characters.

<table>
<thead>
<tr>
<th></th>
<th>IAC</th>
<th>Yahoo</th>
</tr>
</thead>
<tbody>
<tr>
<td># Threads</td>
<td>1,000</td>
<td>2,400</td>
</tr>
<tr>
<td># Comments</td>
<td>16,555</td>
<td>9,160</td>
</tr>
<tr>
<td>Thread length</td>
<td>29 ± 55</td>
<td>4 ± 3</td>
</tr>
<tr>
<td>Comment length</td>
<td>508 ± 583</td>
<td>232 ± 538</td>
</tr>
<tr>
<td>Trained</td>
<td>0</td>
<td>1,400</td>
</tr>
<tr>
<td>Untrained</td>
<td>1,000</td>
<td>1,300</td>
</tr>
</tbody>
</table>

Threads from web debate forums To test this annotation scheme on a different domain, we also code online debates from the IAC 2.0 (Abbott et al., 2016). IAC threads are categorically different from Yahoo ones in terms of their stated purpose (debate on a particular topic) and length. The mean IAC thread has 29 comments and each comment has 102 tokens, compared to Yahoo threads which have 4 comments with 51 tokens each. Because significant attention is demanded to code the numerous attributes, we only consider IAC threads with 15 comments or fewer for annotation, but do not limit the comment length. In total, we selected 1,000 IAC thread to annotate, specifically: 474 threads from 4forums that were coded in the IAC, all 23 threads from CreateDebate, and 503 randomly selected threads from ConvinceMe.

4.1 Annotation

The corpus was coded by two groups of annotators: professional trained editors and untrained crowdsourced workers. Three separate annotators coded each thread. The trained editors were paid contractors who received two 30–45-minute training sessions, editorial guidelines (2,000-word document), and two sample annotated threads. The training sessions were recorded and available to the annotators during annotation, as were the guidelines. They could communicate their questions to the trainers, who were two authors of this paper, and receive feedback during the training and annotation phases.

Because training is expensive and time consuming, we also collected annotations from untrained coders on Amazon Mechanical Turk (AMT). To simplify the task for AMT, we only solicited thread-level labels, paying $0.75 per thread. For quality assurance, only workers located in the United States or Canada with a minimum HIT acceptance rate of 95% could participate, and the annotations were spot-checked by the authors. Trained annotators coded 1,300 Yahoo threads and the 100-thread test set on the comment- and thread-levels; untrained annotators coded thread-level labels of 1,300 Yahoo threads (300 of which overlapped with the trained annotations) and 1,000 IAC threads (Table 1). In total, 26 trained and 495 untrained annotators worked on this task.

4.2 Confidence

To assess the difficulty of the task, we also collected a rating for each thread from the trained annotators describing how confident they were with their judgments of each thread and the comments it comprises. Ratings were made on a 5-level Likert scale, with 1 being not at all confident and 5 fully confident. The levels of confidence were high (3.9 ± 0.7), indicating that coders were able to distinguish the thread and comment codes with relative ease.

4.3 Agreement levels

We measure inter-annotator agreement with Krippendorff’s alpha (Krippendorff, 2004) and find that, over all labels, there are substantial levels of agreement within groups of annotators: \(\alpha = 0.79 \) for trained annotators and \(\alpha = 0.71 \) and 72 for untrained annotators on the Yahoo and IAC threads, respectively. However, there is lower agreement on thread labels than comment labels (Table 2). The agreement of thread type is 25% higher for the Yahoo threads than the IAC (0.62–0.64 compared to 0.48). The less subjective comment labels (i.e., agreement, audience, and topic) have higher agreement than persuasiveness, sentiment, and tone. While some of the labels have only moderate agreement (0.5 < \(\alpha \) < 0.6), we find these results satisfactory as the agreement levels are higher than those reported for similarly subjective discourse annotation tasks (e.g., Walker et al. (2012)).
Table 2: Agreement levels found for each label category within trained and untrained groups of annotators, measured by Krippendorff’s alpha.

<table>
<thead>
<tr>
<th>Category</th>
<th>Yahoo Trained</th>
<th>Yahoo Untrained</th>
<th>IAC Trained</th>
<th>IAC Untrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreement</td>
<td>0.52</td>
<td>0.50</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Constructive</td>
<td>0.48</td>
<td>0.52</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>0.62</td>
<td>0.64</td>
<td>0.48</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Percentage of threads (out of 300) for which the majority label of the trained annotators matched that of the untrained annotators.

<table>
<thead>
<tr>
<th>Category</th>
<th>Label</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructive</td>
<td>Overall</td>
<td>0.81</td>
</tr>
<tr>
<td>Agreement</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>Thread type</td>
<td>Argumentative</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Flamewar</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Off-topic</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Personal stories</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Respectful</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Snarky/humorous</td>
<td>0.85</td>
</tr>
</tbody>
</table>

5 Annotation analysis

To understand what makes a thread constructive, we explore the following research questions:

1. How does the overall thread categorization differ between ERICs and non-ERICs? (§5.1)
2. What types of comments make up ERICs compared to non-ERICs? (§5.2)
3. Are social signals related to whether a thread is an ERIC? (§5.3)

5.1 Thread-level annotations

Before examining what types of threads are ERICs, we first compare the threads coded by different sets of annotators (trained or untrained) and from different sources (IAC or Yahoo). We measure the significance of annotation group for each label with a test of equal proportions for binary categories (constructiveness and each thread type) and a chi-squared test of independence for the agreement label. Overall, annotations by the trained and untrained annotators on Yahoo threads are very similar, with significant differences only between some of the thread type labels (Figure 3). We posit that the discrepancies between the trained and untrained annotators is due to the former’s training sessions and ability to communicate with the authors, which could have swayed annotators to make inferences into the coding scheme that were not overtly stated in the instructions.

The differences between Yahoo and IAC threads are more pronounced. The only label for which there is no significant difference is personal stories (\(p = 0.41\), between the IAC and trained Yahoo labels). All other IAC labels are significantly different from both trained and untrained Yahoo labels (\(p < 0.001\)). ERICs are more prevalent in the IAC, with 70% of threads labeled constructive, compared to roughly half of Yahoo threads. On the whole, threads from the IAC are more concordant and positive than from Yahoo: they have more agreement and less disagreement, more than twice as many positive/respectful threads, and fewer than half the flamewars.

For Yahoo threads, there is no significant difference between trained and untrained coders for constructiveness (\(p = 0.11\)) and the argumentative thread type (\(p = 0.07\); all other thread types are significant with \(p < 10^{-5}\)). There is no significant difference between the agreement labels, either (\(p = 1.00\)). Untrained coders are more likely than trained to classify threads using emotional labels like snarky, flamewar, and positive/respectful, while trained annotators more frequently recognize off-topic threads. These differences should be taken into consideration for evaluating the IAC codes, and for future efforts collecting subjective annotations through crowdsourcing.
We measure the strength of relationships between labels with the phi coefficient (Figure 4). There is a positive association between ERICs and all agreement labels in both Yahoo (trained) and IAC threads, which indicates that concord is not necessary for threads to be constructive. The example in Figure 1 is a constructive thread that is argumentative and contains disagreement. Thread types associated with non-ERICs are flamewars, off-topic digressions, and snarky/humorous exchanges, which is consistent across data sources. The labels from untrained annotators show a stronger correlation between flamewars and not constructive compared to the trained annotators, but the former also identified more flamewars. Some correlations are expected: across all annotating groups, there is a positive correlation between threads labeled with agreement throughout and positive/respectful, and disagreement throughout is correlated with argumentative (Figures 1 and 2) and, to a lesser degree, flamewar.

The greatest difference between the IAC and Yahoo are the thread types associated with ERICs. In the IAC, the positive/respectful label has a much stronger positive relationship with constructive than the trained Yahoo labels, but this could be due to the difference between trained and untrained coders. Argumentative has a positive correlation with constructive in the Yahoo threads, but a weak negative relationship is found in the IAC. In both domains, threads characterized as off-topic, snarky, or flamewars are more likely to be non-ERICs. Threads with some level of agreement characterized as positive/respectful are commonly ERICs. A two-tailed z-test shows a significant difference between the number of ERICs and non-ERICs in Yahoo articles in the Arts & Entertainment, Finance, and Lifestyle categories ($p < 0.005$; Figure 5).

5.2 Comment annotations

We next consider the codes assigned by trained annotators to Yahoo comments (Figure 6). The majority of comments are not persuasive, reply to a previous comment, express disagreement, or have negative sentiment. More than three times as many comments express disagreement than agreement, and comments are labeled negative seven times as frequently as positive. Approximately half of the comments express disagreement or a negative sentiment. Very few comments are funny, positive, sympathetic, or contain a personal story ($< 10\%$). Encouragingly, only 6% of comments are off-topic with the conversation, suggesting that participants are attuned to and respectful of the topic. Only 20% of comments are informative, indicating that participants infrequently introduce new information to complement the article or discussion.

The only strong correlations are between the binary labels, but the moderate correlations provide insight into the Yahoo threads (Figure 7). Some relationships accord with intuition. For instance, participants tend to go off-topic with the article when they are responding to others and not during broadcast messages; comments expressing disagreement with a commenter are frequently posted in a reply to a commenter; comments expressing agreement tend to be sympathetic and have positive sentiment; and mean comments correlate with negative sentiment. Commenters in this domain also express disagreement without particular nastiness, since there is no correlation between disagreement and mean or sarcastic comments. The informative label is moderately correlated with persuasiveness, suggesting that comments containing facts and new information are more convincing than those without.

The correlation between comment and thread labels is shown in Figure 7. Many of the relationships are unsurprising, like off-topic comments, personal-story threads have personal-story comments; thread agreement levels correlate with comment-level
agreements; and flamewars are correlated with mean comments.

In accord with our definition of ERICs, constructiveness is positively correlated with informative and persuasive comments and negatively correlated with negative and mean comments. From these correlations one can infer that argumentative threads are generally respectful because, while they are strongly correlated with comments that are controversial or express disagreement or a mixed sentiment, there is no correlation with mean and very little with negative sentiment. More surprising is the positive correlation between controversial comments and constructive threads. Controversial comments are more associated with ERICs, not non-ERICs, even though the controversial label also positively correlates with flamewars, which are negatively correlated with constructiveness. The examples in Figures 1–2 both have controversial comments expressing disagreement, but comments in the second half of the non-ERIC veer off-topic and are not persuasive, where the ERIC stays on-topic and persuasive.

5.3 The relationship with social signals

Previous work has taken social signals to be a proxy for thread quality, using some function of the total number of votes received by comments within a thread (e.g., Lee et al. (2014)). Because earlier research has indicated that user votes are not completely independent or objective (Sipos et al., 2014; Danescu-Niculescu-Mizil et al., 2009), we take the use of votes as a proxy for quality skeptically and perform our own exploration of the relationship between social signals and the presence of ERICs. On Yahoo, users reacted to comments with a thumbs up or thumbs down and we collected the total number of such reactions for each comment in our corpus. First, we compare the total number of thumbs up (TU) and thumbs down (TD) received by comments in a
thread to the coded labels to determine whether there are any relationships between social signals and threads qualities. We calculate the relationship between labels in each category with TU and TD with Pearson’s coefficient for the binary labels and a one-way ANOVA for the agreement category. The strongest correlation is between TD and untrained annotators’ perception of flamewars \((r = 0.21)\), and there is a very weak to no correlation (positive or negative) between the other labels and TU, TD, or TU−TD. There is moderate correlation between TU and TD \((r = 0.46)\), suggesting that threads that elicit reactions tend to receive both thumbs up and down.

The correlation between TU and TD received by each comment is weaker \((r = 0.23)\). Comparing the comment labels to the TU and TD received by each comment also show little correlation. Comments that reply to a specific commenter are negatively correlated with TU, TD, and TU−TD \((r = 0.30, -0.25, \text{and } -0.22, \text{respectively})\). The only other label with a non-negligible correlation is disagreement with a commenter, which negatively correlates with TU \((r = -0.21)\). There is no correlation between social signal and the presence of ERICs or non-ERICs. These results support the findings of previous work and indicate that thumbs up or thumbs down alone (and, presumably, up/down votes) are inappropriate proxies for quality measurements of comments or threads in this domain.

6 Conclusion

We have developed a coding scheme for labeling “good” online conversations (ERICs) and created the Yahoo News Annotated Comments Corpus, a new corpus of 2.4k coded comment threads posted in response to Yahoo News articles. Additionally, we have annotated 1k debate threads from the IAC. These annotations reflect several different characteristics of comments and threads, and we have explored their relationships with each other. ERICs are characterized by argumentative, respectful exchanges containing persuasive, informative, and/or sympathetic comments. They tend to stay on topic with the original article and not contain funny, mean, or sarcastic comments. We found differences between the distribution of annotations made by trained and untrained annotators, but high levels of agreement within each group, suggesting that crowdsourcing annotations for this task is reliable. YNACC will be a valuable resource for researchers in multiple areas of discourse analysis.

Acknowledgments

We are grateful to Danielle Lottridge, Smaranda Muresan, and Amanda Stent for their valuable input. We also wish to thank the anonymous reviewers for their feedback.
References

Maria Skeppstedt, Magnus Kerren, Carita Sahlgren, and Andreas Paradis. 2016. Unshared task: (Dis)agreement in online debates. In 3rd Workshop on Argument Mining (ArgMining’16), Berlin, Germany, August 7-12, 2016, pages 154–159. Association for Computational Linguistics.

Crowdsourcing discourse interpretations: On the influence of context and the reliability of a connective insertion task

Merel C.J. Scholman
Language Science and Technology
Saarland University
Saarbrücken, Germany
{m.c.j.scholman,vera}@coli.uni-saarland.de

Vera Demberg
Computer Science
Saarland University
Saarbrücken, Germany

Abstract

Traditional discourse annotation tasks are considered costly and time-consuming, and the reliability and validity of these tasks is in question. In this paper, we investigate whether crowdsourcing can be used to obtain reliable discourse relation annotations. We also examine the influence of context on the reliability of the data. The results of the crowdsourced connective insertion task showed that the majority of the inserted connectives converged with the original label. Further, the distribution of inserted connectives revealed that multiple senses can often be inferred for a single relation. Regarding the presence of context, the results show no significant difference in distributions of insertions between conditions overall. However, a by-item comparison revealed several characteristics of segments that determine whether the presence of context makes a difference in annotations. The findings discussed in this paper can be taken as preliminary evidence that crowdsourcing can be used as a valuable method to obtain insights into the sense(s) of relations.

1 Introduction

In order to study discourse coherence, researchers need large amounts of discourse-annotated data, and these data need to be reliable and valid. However, manually coding coherence relations is a difficult task that is prone to individual variation (Spooren and Degand, 2010). Because the task requires a large amount of time and resources, researchers try to find a balance between obtaining reliable data and sparing resources. This has led to the standard practice of using two trained, expert annotators to code data.

Not only is this procedure time-consuming and therefore costly, it also raises questions regarding the reliability and validity of the data. When using trained, expert annotators, they may agree because they share implicit knowledge and know the purpose of the research well, rather than because they are carefully following instructions (Artstein and Poesio, 2008; Riezler, 2014). Krippendorff (2004) therefore notes that the more annotators participate in the process and the less expert they are, the more likely they can ensure the reliability of the data.

In this paper, we investigate how useful crowdsourcing can be in obtaining discourse annotations. We present an experiment in which subjects were asked to insert (“drag and drop”) a connecting phrase from a pre-defined list between the two segments of coherence relations. By employing non-trained, non-expert (also referred as naïve) subjects to code the data, large amounts of data can be coded in a short period of time, and it is ensured that the obtained annotations are independent and do not rely on implicit expert knowledge. Instead, the task allows us to tap into the naïve subjects’ interpretations directly.

However, crowdsourcing has rarely been used to obtain discourse relation annotations. This could be due to the nature of crowdsourcing: Typically, crowdsourced tasks are small and intuitive tasks. Under these conditions, crowdsourced annotators – unlike expert annotators or in-lab naïve annotators – cannot be asked to code according to a specific framework because this would require them to study manuals. Therefore, rather than asking for relation labels, we ask them to insert a connective from a predefined list. In order to ensure that these connectives are not ambiguous (Asr and Demberg, 2013), we chose connectives based
on a classification of connective substitutability by Knott and Dale (1994). We investigate how reliable the obtained annotations are by comparing them to expert annotations from two existing corpora.

Moreover, we examine the effect of the design of the task on the reliability of the data. Researchers agree that discourse relations should be supplied with linguistic context in order to be annotated reliably but there are no clear guidelines for how much context is needed. The current contribution experimentally examines the influence of context on the interpretation of a discourse relation, with a specific focus on whether there is an interaction between characteristics of the segment and the presence of context.

The contributions of this paper include the following:

- We evaluate a new crowdsourcing method to elicit discourse interpretations and obtain discourse annotations, showing that such a task has the potential to function as a reliable alternative to traditional annotation methods.

- The distributions of inserted connectives per item reveal that, often, annotators converged on two or three dominant interpretations, rather than one single interpretation. We also found that this distribution is replicable with high reliability. This is evidence that relations can have multiple senses.

- We show that the presence of context led to higher annotator agreement when (i) the first segment of a relation refers to an entity or event in the context, or introduces important background information; (ii) the first segment consists of a deranked subordinate clause attaching to the context; or (iii) the context sentence following the relation expands on the second argument of the relation. This knowledge can be used in the design of discourse relation annotation tasks.

2 Background

In recent years, several researchers have set out to investigate whether naïve coders can also be employed to annotate data. Working with such annotators has the practical advantage that they are easier to come by, and it is therefore also easier to employ a larger number of annotators, which decreases the effect of annotator bias (Artstein and Poesio, 2005; Artstein and Poesio, 2008). Studies employing naïve annotators have found high agreement between these annotators and expert annotators for Natural Language tasks (e.g., Snow et al., 2008). Classifying coherence relations, however, is considered to be a different and especially difficult type of task due to the complex semantic interpretations of relations and the fact that textual coherence does not reside in the verbal material, but rather in the readers’ mental representation (Spooren and Degand, 2010). Nevertheless, naïve annotators have recently also been employed successfully in coherence relation annotation tasks (Kawahara et al., 2014; Scholman et al., 2016) and connective insertion tasks (Rohde et al., 2015, 2016) similar to the one reported in this paper.

Rohde et al. (2016) showed that readers can infer an additional reading for a discourse relation connected by an adverbial. By obtaining many observations for a single fragment rather than only two, they were able to identify patterns of co-occurring relations; for example, readers can often infer an additional causal reading for a relation marked by otherwise. These results highlight a problem with double-coded data: Without a substantial number of observations, differences in annotations might be written off as annotator error or disagreement. In reality, there might be multiple interpretations for a relation, without there being a single correct interpretation. The connective insertion method used by Rohde et al. (2016) is therefore more sensitive to the possibility that relations can have multiple readings.

The current study uses a similar method as Rohde et al. (2016), but applies it to answer a different type of question. Rohde et al. (2016) investigated whether readers can infer an additional sense for a pair of sentences already marked by an adverbial. They did not have any expectations on whether there was a correct answer; rather, they set out to identify specific patterns of connective insertions. In the current study, we investigate whether crowdsourcing can be used to obtain annotated data that is similar in quality to data annotated by experts. Crucially, we assume that there is a correct answer, namely the original label that was assigned by expert annotators. We therefore will compare the results from the current study to the original annotations in order to evaluate the usability of the connective insertion method for dis-
course annotation.

The design of the current study also differs from other connective-based annotation approaches such as Rohde et al. (2016) and the Penn Discourse Treebank (PDTB, Prasad et al., 2008) in that the connectives were selected to unambiguously mark a specific type of relation. Certain connectives are known to mark different types of relations, such as *but*, which can mark CONTRAST, CONCESSION and ALTERNATIVE relations. In the current study, we excluded such ambiguous connectives in order to be able to derive relation types from the insertions. For example, the connecting phrase AS AN ILLUSTRATION is taken to be a dominant marker for INSTANTIATION relations. The procedure for selecting phrases will be explained in Section 3.

Given the limited amount of research into using naïve subjects for discourse relation annotation, it is important to investigate how this task should be designed. One aspect of this design is the inclusion of context. The benefits of context are widely acknowledged in the field of discourse analysis. Context is necessary to ground the discourse being constructed (Cornish, 2009), and the interpretation of any sentence other than the first in a discourse is therefore constrained by the preceding context (Song, 2010). This preceding context has significant effects on essential parts of discourse annotation, such as determining the rhetorical role each sentence plays in the discourse, and the temporal relations between the events described (Lascarides et al., 1992; Spooren and Degand, 2010). The knowledge of context is therefore assumed to be a requirement for discourse analysis.

Although researchers agree that relations should be supplied with linguistic context in order to be annotated reliably, there are no clear guidelines for how much context is needed. As a result, studies have diverged in their methodology. For some annotation experiments, coders annotate the entire text (e.g., Rehbein et al., 2016; Zufferey et al., 2012). In these cases, they automatically take the context of the relation at hand into account when they annotate a text linearly. By contrast, in experiments where the entire text does not have to be annotated, or the task is split into smaller tasks for crowdsourcing purposes, the relations (or connectives) are often presented with a certain amount of context preceding and following the segments under investigation (e.g., Hoek and Zufferey, 2015; Scholman et al., 2016).

Knowing how much context is minimally needed to be able to reliably annotate data will save resources; after all, the less context annotators have to read, the less time they need to spend on the task. The goal of the current experiment is therefore to test the reliability of crowdsourced discourse annotations compared to original corpus annotations, as well as the effect of context on the reliability of the task.

3 Method

Participants were asked to insert connectives into coherence relations. The items were divided into several batches. Each batch contained items with context or without context, but these two types were not mixed.

3.1 Participants

167 native English speakers completed one or more batches of this experiment. They were recruited via Prolific Academic and reimbursed for their participation (2 GBP per batch with context; 1.5 GBP per batch without context). Their education level ranged between an undergraduate degree and a doctorate degree.

3.2 Materials

The experimental passages consisted of 192 implicit and 42 explicit relations from Wall Street Journal texts. These relations are part of both the Penn Discourse Treebank (PDTB, Prasad et al., 2008) and the Rhetorical Structure Theory Discourse Treebank (RST-DT, Carlson et al., 2003), and therefore carry labels that were assigned by the respective expert annotators at the time of the creation of the corpora. The following types of relations were included: 24 CAUSE, 24 CONJUNCTION (additive), 36 CONCESSION, 36 CONTRAST, 54 INSTANTIATION and 60 SPECIFICATION relations. For the first four relation types, the PDTB and RST-DT annotators were in agreement on the label. The latter two types were chosen to accommodate a related experiment, and for most of these, the PDTB and RST-DT annotators were not in agreement. Lower agreement on these relations is therefore also expected in the current experiment.

The 234 items were divided into 12 batches, with 2 CAUSE, 2 CONJUNCTION, 3 CONCESSION, 3 CONTRAST, 4 or 5 INSTANTIATION and
5 Specification items per batch. Order of presentation of the items per batch was randomized to prevent order effects. Subjects were allowed to complete more than one batch, but saw every item only once. Average completion time per batch was 16 minutes with context and 12 minutes without context. Due to presentation errors in one conjunction, two cause, and two concession items, the final dataset for analysis consists of 229 items.

Connecting phrases – Subjects were presented with a list of connectives and asked to insert the connective that best expresses the relation holding between the textual spans. The connectives were chosen to distinguish between different relation types as unambiguously as possible, based on an investigation on connective substitutability by Knott and Dale (1994). The list of connecting phrases consisted of: because, as a result, in addition, even though, nevertheless, by contrast, as an illustration and more specifically.

3.3 Procedure

The experiment was hosted on LingoTurk (Pusse et al., 2016). Participants were presented with a box with predefined connectives followed by the text passage. In the context condition, the passage consisted of black and grey sentences. The black sentences were the two arguments of the coherence relation, and the grey sentences functioned as context (two sentences preceding and one following the relation). Subjects were instructed to choose the connecting phrase that best reflected the meaning between the black text elements, but to take the grey text into account. In the no-context condition, the grey sentences were not presented or mentioned.

Punctuation markers following the first argument of the relation were replaced by a double slash (//, cf. Rohde et al., 2015) to avoid participants from being influenced by the original punctuation markers.

In between the two arguments of the coherence relation was a box. Participants were instructed to “drag and drop” the connecting phrase that “best reflected the meaning of the connection between the arguments” (cf. Rohde et al., 2015) into this green box. Participants could also choose two connecting phrases using the option “add another connective”. Moreover, they could manually insert a connecting phrase by clicking “none of these”.

Participants were allowed to complete more than one batch, but they were never able to complete the same batch in both conditions.

4 Results

Prior to analysis, 5 participants from the context condition and 4 participants from the no-context condition were removed from the analysis because they had very short completion times (<10 minutes for 20 passages of 5 sentences each; <5 minutes for 20 passages of 2 sentences each) and showed high disagreement compared to other participants. The following analyses do not take the responses of these participants into consideration. In total, each list was completed by 12 to 14 participants.

As with any discourse annotation task, some variation in the distribution of insertions can be expected. We are therefore interested in larger shifts in the distribution of insertions. To evaluate these distributions, we report percentages of agreement (cf. De Kuthy et al., 2016). Typically, annotation tasks are evaluated using Cohen’s or Fleiss’ Kappa (Cohen, 1960; Fleiss, 1971). However, Kappa is not suitable for the current task because it assumes that all coders annotate all fragments.

Participants were given the option of inserting two connecting phrases if they thought that both phrases reflected the meaning of the relation. 3.4% of all answers consisted of two connecting phrases. For most items that received a double insertion, only one answer consisted of a double insertion. The data on multiple insertions therefore does not allow us to draw any strong conclusions. This will be elaborated on in the discussion.

2% of all insertions were manual answers. There was no clear pattern in these manual answers: Only a few items received manual answers, and these items usually received at most two manual answers. An additional 1% of the data consisted of ‘blank insertions’: Subjects used the ‘manual answer’ option to not insert anything. As with the manual answers, there was no clear pattern. We aggregate the class ‘manual answer’ and ‘no answer’ for our analyses.

We also aggregated frequencies of the connectives that fell into the same class: because and as a result were aggregated as causal connectives, and even though and nevertheless were aggregated as concessive connectives.

In the next section, we first show evidence that
the method is reliable. We then turn to the reliability of the no-context condition in comparison to the context condition to be able to determine whether the presence of context led to higher agreement on the sense(s) of items. Finally, we look at the entropy per item and per condition.

4.1 Overall reliability

The results showed that the method is successful: The connectives inserted by the participants are consistent with the original annotation. This is shown in Figure 1a, with the bars reflecting the inserted connective per original class and condition. Figure 1b shows this distribution in more detail by displaying the percentage of inserted connectives per item for the context condition. The distribution for the no-context condition is not included since it is almost identical to the distribution of the context condition. Every stacked bar on the x-axis represents an item; the colours on the bars represent the inserted connective.

These visualizations reveal several trends. First, for CAUSE and CONCESSION relations, the insertions often converge with the original label. 78% of the inserted connectives in items with a causal original label were causal connectives, and 67% of the inserted connectives in concessive items were concessive connectives. For both classes, the second most frequent category of inserted connectives was the other class: For CAUSE, the second most frequent category was CONCESSION (10%), and for CONCESSION, the second most frequent category was CAUSE (15%). On closer inspection of the items, we find that the disagreement between crowdsourced annotations and original annotations can be traced back to difficulties with specific items, and not to unreliability of the workers: The main cause for the confusion of causal and concessive relations can be attributed to the lack of context and/or background knowledge, especially for items with economic topics. For these topics, it can be very hard to judge whether a situation mentioned in one segment is a consequence of the other segment, or a denied expectation.

The second pattern that Figure 1a reveals concerns the classes CONJUNCTION and CONTRAST. The distribution of inserted connectives for these classes look similar: The expected marker is used most often (40% and 44%, respectively), with the corresponding causal relation as the second most frequent inserted connective type (27% causal insertions and 32% concessive insertions, respectively). A closer look at the annotations for items in these classes reveals that this is due to genuine ambiguity of the relation. For relations originally annotated as additive, we find that oftentimes a causal relation can also be inferred. The same explanation holds for CONTRAST relations: Relations from this class that often receive concessive insertions are characterized by the reference to contrasting expectations. Some confusion between these relations is expected, as it is known that concessive and contrastive relations are relatively difficult to distinguish even for trained annotators (see, for example, Robaldo and Miltsakaki, 2014; Zufferey and Degand, 2013).

Finally, looking at INSTANTIATION and SPECIFICATION relations, we can see that there is more variety in terms of which connective participants inserted. This was expected, as these relations were chosen because original PDTB and RST annotators did not agree on them.

Looking at the no-context condition in Figure 1a, we find a near-perfect replication of the insertions in the context condition. This is further evidence for the reliability of the task. On average, the difference between the conditions on agreement with the original label differed only by 3.7%. Fisher exact tests showed no significant difference in the distribution of responses between conditions for any of the original classes (Cause: \(p = .61 \); Conjunction: \(p = .62 \); Concession: \(p = .98 \); Contrast: \(p = .88 \); Instantiation: \(p = .93 \); Specification: \(p = .85 \)).

Another notable pattern, shown in Figure 1b, is that items often did not receive only one type of inserted connective; rather, they received multiple types of insertions. For INSTANTIATION and SPECIFICATION items, for example, participants often converged on two senses: Both the originally annotated sense, as well as a causal reading. This indicates that multiple interpretations are possible for a single relation.

Another way to analyse the data is to assign to each relation the label corresponding to the connective that was inserted most frequently by our participants (in Figure 1b, this corresponds to the largest bar per item). We can then calculate agreement between the dominant response per item and the original label. These results are reported in Table 1.

Table 1 shows that the dominant response con-
Distributions (%) of inserted connectives per original class. For every type of insertion, darker colours represent the context condition and lighter colours represent the no-context condition.

Table 1: Percentage agreement between the original label and the dominant response per condition.

<table>
<thead>
<tr>
<th>Original class</th>
<th>Context</th>
<th>No context</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE</td>
<td>91</td>
<td>95</td>
</tr>
<tr>
<td>CONJUNCTION</td>
<td>52</td>
<td>35</td>
</tr>
<tr>
<td>CONCESSION</td>
<td>85</td>
<td>79</td>
</tr>
<tr>
<td>CONTRAST</td>
<td>53</td>
<td>58</td>
</tr>
<tr>
<td>INSTANTIATION</td>
<td>54</td>
<td>46</td>
</tr>
<tr>
<td>SPECIFICATION</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

Looking at the effect of context, we see that agreement between the dominant response and the original label is slightly higher when context is present for four of six types of relations (CONCESSION, INSTANTIATION and SPECIFICATION relations). For CONJUNCTION relations, the agreement converges with the original label often for CAUSE and CONCESSION relations and a majority of the time for CONTRAST and INSTANTIATION relations (in the context condition). The dominant response for SPECIFICATION items hardly converges with their original classification. This is as expected, as PDTB and RST-DT annotators also showed little agreement on SPECIFICATION relations.
ment is even 17% higher in the context condition compared to the no-context condition. These results suggest that presence of context does have an influence on the subjects’ interpretations of the relations. In the next sections, we will look at the distribution of individual items in more detail.

4.2 Effect of context: Dominant response per item

For 9% of the items, the dominant response shifts from one category to another depending on the presence of context. Manual inspection of these items revealed several characteristics that they have in common. First, it was found that often the topic is introduced in the context, and the (lack of) knowledge of the topic influenced the subject’s interpretation of the relation. This is illustrated using the following CONJUNCTION example:

(1) Quite the contrary – it results from years of work by members of the National Council on the Handicapped, all appointed by President Reagan. You depict the bill as something Democratic leaders “hoodwinked” the administration into endorsing.

Arg1: The opposite is true: It’s the product of many meetings with administration officials, Senate staffers, advocates, and business and transportation officials.

Arg2: many congressmen are citing the compromise on the Americans With Disabilities Act of 1989 as a model for bipartisan deliberations. Most National Council members are themselves disabled or are parents of children with disabilities.

In Example 1, the context introduces the topic. The first argument (Arg1) then presents one argument for the claim that the bill results from years of hard work (as mentioned in the context), and the second argument (Arg2) is another argument for this claim. However, without the context, Arg2 can be taken as a result of Arg1. While this interpretation might be true, it does not seem to be the intended purpose of the relation. In the context condition, subjects interpreted the relation as a CONJUNCTION relation (58% of insertions were in addition). In the no-context condition, however, the dominant response was causal (58% of insertions), and the conjunctive in addition only accounted for 17% of all insertions.

Another common characteristic in items for which the presence or absence of context changes the dominant response, is that the context sentence following the relation expands on Arg2, thereby changing the probability distribution of that relation. This is common in INSTANTIATION and SPECIFICATION relations, where the second argument provides an example or specification of Arg1. Often, the sentence following Arg2 also provides an example or further specification, which emphasizes the INSTANTIATION/SPECIFICATION sense of the relation between Arg1 and Arg2. However, in relations for which Arg2 can also be seen as evidence for Arg1, the following context sentence can also function to emphasize the causal sense of the relation by expanding on the argument in Arg2. Consider Example 2, taken from the class SPECIFICATION.

(2) Like Lebanon, and however unfairly, Israel is regarded by the Arab world as a colonial aberration. Its best hope of acceptance by its neighbours lies in reaching a settlement with the Palestinians.

Arg1: Like Lebanon, Israel is being remade by demography.

Arg2: in Greater Israel more than half the children under six are Muslims.

In this example, the context sentence following Arg2 expands on Arg2. Together, they convey the information that although Jews are the majority now, within 25 years Muslims will be the majority. Without the context, one could imagine that the text would go on to list more instances of how the demography is changing. Subjects in the no-context condition indeed seem to have interpreted it this way: 75% of the inserted connective phrases were as an illustration, and the remaining insertions were even though and because. By contrast, in the context condition subjects mainly interpreted a causal relation (64% of insertions), together with the specification sense (17%). The marker as an illustration only accounted for 7% of completions. Hence, with context present subjects interpreted Arg2 as providing evidence for Arg1, but without context it was interpreted as an INSTANTIATION relation.
4.3 Effect of context: Entropy per item

Another way of analyzing the influence of the presence of context on the participants’ response, is to look at the entropy of the distribution of insertions. In the context of the current study, entropy is defined as a measure of the consistency of connective insertions. When the majority of insertions for a certain item are the same, the entropy will be low, but when a certain item receives many different types of insertions, the entropy will be high.

For every item, we calculated Shannon’s entropy. We then compared the conditions to determine whether entropy of an item increased or decreased depending on the presence of the context. Here we discuss items that have a difference of at least 1 bit of entropy between the conditions. This set consists of 18 items. Interestingly, presence of context only leads to lower entropy (higher agreement) in 10 items. For the other 8 items, subjects showed more agreement when the context was not presented.

When context is beneficial An analysis of items for which presence of context led to higher agreement has revealed two common characteristics. First, similar to what we found in the previous section, presence of context is helpful when the context introduces important background information, or when the first argument refers to an entity or event in the context.

Second, we observed that agreement was higher in the context condition when Arg1 consists of a subordinate clause that attaches to another clause in the context. In these cases, the dependency of Arg1 to the context possibly hinders a correct interpretation of Arg1. Consider the following SPECIFICATION relation:

(3) The spun-off concern “clearly will be one of the dominant real estate development companies with a prime portfolio,” he said. For the last year, Santa Fe Pacific has redirected its real estate operations toward longer-term development of its properties, Arg1: hurting profits that the parent had generated in the past from periodic sales from its portfolio // Arg2: real estate operating income for the first nine months fell to $71.9 million from $143 million a year earlier.

In a statement late yesterday, Santa Fe Pacific’s chairman, Robert D. Krebs, said that Santa Fe Pacific Realty would repay more than $500 million in debt owed to the parent before the planned spinoff.

In this example, Arg1 is a deranked subordinate clause, which cannot be used as an independent clause. All subjects in the context condition inserted a causal connective. However, in the no-context condition only 58% inserted a causal connective, and 33% of inserted connectives were in addition. Hence, the dominant response remained the same, but the amount of agreement decreased when the context was absent.

When context is disadvantageous Of the 8 items for which absence of context led to more agreement, 7 had a common characteristic: The relation between the context and Arg1 is not strong, for example because Arg1 is also the start of a new paragraph, or because there is a topic change. It is likely that in these cases, the presence of context took the focus away from the relation.

5 Discussion

The annotations obtained using the connective insertion task have the potential to better reflect the average readers’ interpretations because the naïve annotators don’t rely on implicit expert knowledge. Moreover, it is easier, more affordable and faster to obtain many annotations for the same item via crowdsourcing than via traditional annotation methods. Collecting a large number of annotations for the same item furthermore reveals a probability distribution over relation senses. This can give researchers more insight into the readings of ambiguous relations, and into how dominant each sense is for a specific relation.

The procedures of traditional annotation methods often lead to implicit annotation biases that are implemented to achieve inter-annotator agreement (see, for example, Rehbein et al., 2016). However, annotations that contain biases are less useful from a linguistic or machine learning perspective, as relevant information about a second or third interpretation is obscured. Asking a single, trained annotator to annotate several senses also does not solve this issue: The annotations would still depend on expert knowledge and the annotation process would take more time. In this paper, we have shown that crowdsourcing can be a solution.

However, it should be noted that the design of the experiment was somewhat simplified compared to traditional annotation tasks, largely due to
two factors. First, all items were known to be related to one of the six senses under investigation, that is, participants were not presented with items that did not actually contain a relation (similar to PDTB’s NOREL), or that belonged to a different class from those under investigation (for example, TEMPORAL relations). A second constraint on the current study is that participants were presented with tokens that only marked the six classes under investigation. Including more classes and therefore also more connectives in an annotation study could result in lower agreement between the coders. Future research will therefore focus on whether other relations (including NOREL) can also be annotated reliably by naïve coders.

Crowdsourcing the data also presents possible confounding factors for the design of an annotation study. More specifically, one has to be aware of the effect of motivation on the results. For example, we found that the participants rarely inserted multiple connectives for the same relation. It is possible that motivation played a role in this. Participants were only required to insert one connecting phrase; the second one was optional. Since inserting a second phrase takes more time, participants might have neglected to do so, even if they interpreted multiple readings for some relations. For future experiments, this effect can be avoided by asking subjects to explicitly indicate that they don’t see a second reading.

Regarding the influence of context, the findings from our experiment do not support the general consensus that presence of context is a necessary requirement for discourse annotation. The lack of a clear positive effect of context on agreement could be due to general ambiguity of language. As Spooren and Degand (2010) note, “establishing a coherence relation in a particular instance requires the use of contextual information, which in itself can be interpreted in multiple ways and hence is a source of disagreement.” Nevertheless, we do suggest to include context in discourse annotation tasks if time and resources permit it. Generally context does not lead to worse annotations when the fragments are presented in their original formatting, and the presence of context might facilitate the inference of the intended relation.

6 Conclusion

The current paper addresses the question of whether a crowdsourcing connective insertion task can be used to obtain reliable discourse annotations, and whether the presence of context influence the reliability of the data.

Regarding the influence of context, the results showed that the presence of context influenced the annotations when the fragments contained at least one of the following characteristics: (i) the context introduced the topic, (ii) the context sentence following the relation expands on the second argument of the relation; or (iii) the first argument of the relation is a subordinate clause that attaches to the context. The presence of context led to less agreement when the connection between the context and the first argument was not strong due to a paragraph break or a topic change.

Regarding the reliability of the task, we found that the method is reliable for acquiring discourse annotations: The majority of inserted connectives converged with the original label, and this convergence was almost perfectly replicable, in the sense that a similar pattern was found in both conditions. The results also showed that subjects often converged on two types of insertions. This indicates that multiple interpretations are possible for a single relation. Based on these results, we argue that annotation by many (more than 2) annotators is necessary, because it provides researchers with a probability distribution of all the senses of a relation. This probability distribution reflects the true meaning of the relation better than a single label assigned by an annotator according to a specific framework.

Acknowledgements

This research was funded by the German Research Foundation (DFG) as part of SFB 1102 “Information Density and Linguistic Encoding” and the Cluster of Excellence “Multimodal Computing and Interaction” (EXC 284).

References

Fatemeh Torabi Asr and Vera Demberg. 2013. On the information conveyed by discourse markers. In Pro-

A Code-Switching Corpus of Turkish-German Conversations

Özlem Çetinoğlu
IMS, University of Stuttgart
Germany
ozlem@ims.uni-stuttgart.de

Abstract

We present a code-switching corpus of Turkish-German that is collected by recording conversations of bilinguals. The recordings are then transcribed in two layers following speech and orthography conventions, and annotated with sentence boundaries and intersentential, intrasentential, and intra-word switch points. The total amount of data is 5 hours of speech which corresponds to 3614 sentences. The corpus aims at serving as a resource for speech or text analysis, as well as a collection for linguistic inquiries.

1 Introduction

Code-switching (CS) is mixing two (or more) languages in spoken and written communication (Myers-Scotton, 1993; Poplack, 2001; Toribio and Bullock, 2012) and is quite common in multilingual communities (Auer and Wei, 2007). With the increase in multilingual speakers worldwide, CS becomes more prominent.

In parallel, the interest in processing mixed language is on the rise in the Computational Linguistics community. Researchers work on core tasks such as normalisation, language identification, language modelling, part-of-speech tagging as well as downstream ones such as automatic speech recognition and sentiment analysis (Çetinoğlu et al., 2016). The majority of the corpora used in these tasks come from social media (Nguyen and Doğruöz, 2013; Barman et al., 2014; Vyas et al., 2014; Solorio et al., 2014; Choudhury et al., 2014; Jamatia et al., 2015; Samih and Maier, 2016; Vilares et al., 2016; Molina et al., 2016).

Social media has the advantage of containing vast amount of data and easy access. Depending on the medium, however, limitations might arise. For instance, Twitter, the most popular source so far, allows the distribution of tweet IDs rather than tweets themselves, which can be deleted. Hence it is hard to use the full resource, reproduce previous results or compare to them. Moreover the character limit and idiosyncratic language of social media bring extra challenges of processing in addition to challenges coming from code-switching.

Spoken data has also been a popular source in computational CS research (Solorio and Liu, 2008; Lyu and Lyu, 2008; Chan et al., 2009; Shen et al., 2011; Li et al., 2012; Lyu et al., 2015; Yilmaz et al., 2016). There are no limitations on the length of sentences, idiosyncrasies are less pronounced. Despite such advantages, it is almost solely used in speech analysis. To our knowledge, only Solorio and Liu (2008) have used transcriptions of CS speech in text analysis. One reason that researchers processing CS text prefer social media could be that it is already text-based, and it requires much less time and effort than speech collection transcription. For the existing speech corpora, discrepancies between the speech transcriptions and the input text processing tools expect could be a drawback. For instance the SEAME corpus (Lyu et al., 2015) does not use punctuation, capitalisation, or sentence boundaries in transcriptions, yet standard text processing tools (POS taggers, morphological analysers, parsers) are trained on edited text, hence make use of orthographic cues.

In this paper, we introduce a Turkish-German code-switching corpus of conversations and their two layers of transcriptions following speech and orthography conventions. The data is annotated with sentence boundaries and intersentential, intrasentential, and intra-word switch points. Our aim is to provide a resource that could be used by researchers from different backgrounds, e.g., for speech recognition and language identification in...
speech, for language identification and predicting CS points in text, and as a corpus of empirical evidence for linguistically interesting structures.

2 Related Work

Creating code-switching corpora for speech analysis has started with reading designed text rather than spontaneous speech. Lyu and Lyu (2008) use a Mandarin-Taiwanese test set for their language identification system that consist of 4.8 hours of speech corresponding to 4600 utterances. The set is designed to have Mandarin as the main language with one or two Taiwanese words replaced with their Mandarin counterparts. Chan et al. (2009) introduce a Cantonese-English corpus of read speech of 3167 manually designed sentences. English is inserted into Cantonese as segments of one or more words. Another read speech corpus is created by Shen et al. (2011) for Mandarin-English and consists of 6650 utterances. Li et al. (2012) collected 5 hours of code-switched Mandarin-English speech from conversational and project meetings. Intersentential and intrasentential switches add up to 1068 in total.

Lyu et al. (2015) present the largest CS speech resource, the SEAME corpus, which has 192 hours of transcribed Mandarin-English interviews and conversations in the latest version. The code-switching points naturally occur in the text, as both languages are written in their own scripts. A recent corpus of 18.5 hours is introduced by Yilmaz et al. (2016) on Frisian-Dutch broadcasts. CS points are marked in the transcriptions but not on the audio level.

Solorio and Liu (2008) recorded a conversation of 40 minutes among Spanish-English bilinguals. The transcribed speech contains 922 sentences with 239 switch points among them. The authors used this data to train machine learning algorithms that predict CS points of an incrementally given input.

Speech collections have always been the primary source in sociolinguistic and psycholinguistic research. We list some of these spoken corpora that employ code-switching instances of Turkish and German, mixed with other languages or with each other. The “Emigranto” corpus (Eppler, 2003) documents conversations with Jewish refugees settled in London in 1930s, who mix Austrian German with British English. In this corpus, Eppler (2011) looks into mixed dependencies where a dependent and its head are from different languages. She observes that dependents with a mixed head have on average longer dependencies than ones with a monolingual head.

In a similar fashion, Tracy and Lattey (2009) present more than 50 hours of recordings of elderly German immigrants in the U.S. The data is fully transcribed and annotated, yet each session of recordings is transcribed as a single file with no alignment between transcript utterences and their corresponding audio parts, and annotations use Microsoft Word markings, e.g. bold, italic, underline, or different font sizes, thus require format conversions to be processed by automatic tools that accept text-based inputs.

Kallmeyer and Keim (2003) investigate the communication characteristics between young girls in Mannheim, mostly of Turkish origin, and show that with peers, they employ a mixed form of Turkish and German. Rehbein et al. (2009) and Herkenrath (2012) study the language acquisition of Turkish-German bilingual children. On the same data Özüdil (2010) analyses reasons of code-switching decisions. The Kiezdeutsch corpus (Rehbein et al., 2014) consists of conversations among native German adolescents with a multiethnic background, including Turkish. As a result, it also contains a small number of Turkish-German mixed sentences.

3 Data

The data collection and annotation processes are handled by a team of five Computational Linguistics and Linguistics students. In the following sections we give the details of these processes.

3.1 Collection

The data collection is done by the annotators as conversation recordings. We asked the annotators to approach Turkish-German bilinguals from their circle for an informal setting, assuming this might increase the frequency of code-switching. Similarly we recommended the annotators to open topics that might induce code-switching, such as work and studies (typically German-speaking environments) if a dialogue started in Turkish, or Turkish food and holidays in Turkey (hence Turkish-specific words) in a German-dominated conversation.

1https://catalog.ldc.upenn.edu/LDC2015S04
28 participants (20 female, 8 male) took part in the recordings. The majority of the speakers are university students. Their ages range from 9 to 39, with an average of 24 and a mode of 26. We also asked the participants to assign a score from 1 to 10 for their proficiency in Turkish and German. 18 of the participants think their German is better, 5 of them think their Turkish is better, and the remaining 5 assigned an equal score. The average score for German is 8.2, and for Turkish 7.5.\(^2\)

3.2 Annotation

The annotation and transcriptions are done using Praat.\(^3\) We created six tiers for each audio file: spk1_verbal, spk1_norm, spk2_verbal, spk2_norm, lang, codesw. The first four tiers contain the verbal and normalised transcription of speakers 1 and 2. The tier lang corresponds to the language of intervals and can have TR for Turkish, DE for German, and LANG3 for utterances in other languages. The first five tiers are intervals, while the last one is a point tier that denotes sentence and code-switching boundaries. The labels on the boundaries are SB when both sides of the boundary are in the same language, SCS when the language changes from one sentence to the next (intersentential), WCS when the switch is between words within a sentence (intrasentential). Figure 1 shows a Praat screenshot that demonstrates the tiers and exemplifies SCS and WCS boundaries.

Since Turkish is agglutinative and case markers determine the function of NPs, non-Turkish common and proper nouns with Turkish suffixes are commonly observed in CS conversations. We mark such words in the codesw tier as an intra-word switch and use the symbol § following Çetinoğlu (2016). Example (1) depicts the representation of a mixed word where the German compound *Studentenwohnheim* ‘student accommodation’ is followed by the Turkish locative case marker -da (in bold).

\[(1)\]
\begin{align*}
\text{Studentenwohnheim} & \text{§ da} \\
\text{student accommodation} & \text{§ Loc}
\end{align*}

‘in the student accommodation’

For many proper names, Turkish and German orthography are identical. Here, the speech data in parallel becomes an advantage, and the language is decided according to the pronunciation. If the proper name is pronounced in German, and followed by a Turkish suffix a § switch point is inserted. Otherwise it follows Turkish orthography.

3.3 Transcription

For speech analysis it is important to transcribe utterances close to how they are pronounced. In some transcription guidelines, capitalisation and punctuation are omitted (e.g. in the SEAME corpus (Lyu et al., 2015)\(^4\)), in some others they are used to mark speech information (e.g. in the Kiezdeutsch corpus (Rehbein et al., 2014)\(^5\)). Text analysis on the other hand generally relies on standard orthography. This raises a conflict between two tasks on how to transcribe speech. To avoid this problem, we introduced two tiers of transcription. The verbal tier follows the speech conventions. If a speaker uses a contraction, the word is transcribed as contracted. The acronyms are written as separate characters. Numbers are spelled out. Recurring characters are represented with the single character followed by a colon. The normalised tier follows the edited text conventions. Words obey the orthographic rules of standard Turkish and German, e.g. characters of acronyms are merged back. Punctuation is added to the text, obeying the tokenisation standards (i.e. separated from the preceding and following tokens with a space).

Example (2) gives a sentence showing the verbal and normalised tiers for a Turkish sentence. The r sound in the progressive tense suffix *-yor* is not pronounced, hence omitted in the verbal tier. The vowel of the interjection *ya* is extended during speech, and the colon representation is used to reflect it in the verbal tier, yet the normalised tier has the standard form. Also, the question mark is present in the normalised tier.

\[(2)\]
\begin{align*}
\text{verbal: } & \text{ne diyosun ya:} \\
\text{norm: } & \text{Ne diyorsun ya?} \\
\text{What say.Prog.2PSg Intj.} & \\
\text{‘What do you say?’}
\end{align*}

If a made-up word is uttered, it is preceded with an asterisk mark in the transcription. Note that dialectal pronunciation or using a valid word in

\(^2\)The metadata is also available in the CMDI format at the IMS Clarin repository.
\(^3\)www.fon.hum.uva.nl/praat
\(^4\)https://catalog.ldc.upenn.edu/docs/LDC2015S04/SEAME.V4.0.pdf
\(^5\)http://www.kiezdeutschkorpus.de/files/kidko/downloads/KiDKo-Transkriptionsrichtlinien.pdf
wrong context is not considered within this class. Partial words are marked with two hyphens instead of the common use of one hyphen, as the latter is used in German to denote the initial part of a compound when two compounds share a common part and the first compound is written only as the unshared part (e.g. *Wohn- und Schlafzimmer* ‘living room and bedroom’).

We also marked [silence], [laugh], [cough], [breathe], [noise], and put the remaining sounds into the [other] category. Overlaps occur usually when one speaker is talking and the other is uttering backchannel signals and words of acknowledgement. There are also cases both speakers tend to speak at the same time. In all such cases, both voices are transcribed, one speaker is chosen to be the main speaker, and an [overlap] marker is inserted to the secondary speaker’s verbal and normalised tiers. The codesw and lang tiers are decided according to the main speaker’s transcription.

3.4 Quality Control

Once the Praat annotation is completed its output files are converted to a simpler text format for easier access from existing tools and for easier human readability. We ran simple quality control scripts that check if all the tiers are present and non-empty, if the lang and codesw tiers have values from their label sets, and if the lang and codesw labels are meaningful, for instance, if there are TR labels on both sides of a SCS (intersentential CS) boundary, either the boundary should be corrected to SB or one of the language labels should be DE or LANG3. Any mistakes are corrected by the annotators on a second pass.

For the quality control of the transcriptions we employed Turkish and German morphological analysers (Oflazer, 1994; Schmid et al., 2004) and analysed all the tokens in the normalised tier according to their languages. We then created a list of tokens unknown to the analysers, which are potentially mispelled words. The annotators went through the list and corrected their mistakes in both the verbal and normalised tiers. The remaining list also gives us the words unknown to the morphological analysers.

4 Statistics and Observations

The durations of recordings range from 20 seconds to 16 minutes. There are 47 transcribed files with a total of 5 hours. Each file is accompanied with a metadata file that contains speaker information, that could be used to filter the corpus according to age intervals, education levels, language proficiency etc.

Table 1 gives the basic statistics on the normalised version of the transcriptions. The token count includes punctuation and interjections, and excludes paralinguistic markers and overlaps.
Table 1: Basic statistics about the data.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Language Pair</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>DE → DE</td>
<td>1356</td>
<td>62.60</td>
</tr>
<tr>
<td></td>
<td>TR → TR</td>
<td>809</td>
<td>37.35</td>
</tr>
<tr>
<td></td>
<td>LANG3 → LANG3</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>SCS</td>
<td>TR → DE</td>
<td>754</td>
<td>52.07</td>
</tr>
<tr>
<td></td>
<td>DE → TR</td>
<td>671</td>
<td>46.34</td>
</tr>
<tr>
<td></td>
<td>LANG3 → TR</td>
<td>7</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>LANG3 → DE</td>
<td>6</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>DE → LANG3</td>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>TR → LANG3</td>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td>WCS</td>
<td>TR → DE</td>
<td>1082</td>
<td>51.20</td>
</tr>
<tr>
<td></td>
<td>DE → TR</td>
<td>914</td>
<td>43.26</td>
</tr>
<tr>
<td></td>
<td>DE → LANG3</td>
<td>34</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>TR → LANG3</td>
<td>31</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>LANG3 → DE</td>
<td>28</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>LANG3 → TR</td>
<td>24</td>
<td>1.14</td>
</tr>
<tr>
<td>§</td>
<td>DE → TR</td>
<td>246</td>
<td>95.72</td>
</tr>
<tr>
<td></td>
<td>LANG3 → TR</td>
<td>11</td>
<td>4.28</td>
</tr>
</tbody>
</table>

Table 2: Breakdown of switches from one language to another, and their percentages within their switch type.

Switch points split mixed tokens into two in the transcriptions for representational purposes, but they are counted as one token in the statistics.

The majority of the switches are intrasentential and the language of the conversation changes when moving from one sentence to another in 40% of the time. They also correspond to the 55.3% of all switches. 38% of them happen between words, and the remaining 6.7% are within a word. Table 2 shows the breakdown of switches. There are 614 overlaps and 648 paralinguistic markers.7

We have observed that many CS instances fall into the categories mentioned in Çetinoğlu (2016), like German verbs coupled with Turkish light verbs etmek ‘do’ or yapmak ‘make’; Turkish lexicalised expressions and vocatives in German sentences, and vice versa; subordinate clauses and conjunctions in the one language while the remaining of the sentence is in the other language. One category we have seen more prominent in speech data is non-standard syntactic constructions, perhaps due to spontaneity. For instance, Example (3), which is also given as Figure 1, is a question with two verbs (Turkish in bold). Both German hast du and Turkish var mı corresponds to ‘do you have’.

(3) Hast du auch so BWL gibi Have you also like business studies like derslerin var mı so? class.Poss2sg exist Ques like?

‘Do you also have classes like business studies?’

5 Conclusion

We present a corpus collected from Turkish-German bilingual speakers, and annotated with sentence and code-switching boundaries in audio files and their corresponding transcriptions which are carried out as both verbal and normalised tiers. In total, it is 5 hours of speech and 3614 sentences. Transcriptions are available for academic research purposes.8 The licence agreement can be found at http://www.ims.uni-stuttgart.de/institut/mitarbeiter/ozlem/LAW2017.html along with transcription examples. Audio files will be manipulated before distribution in order to conceal speakers’ identity, to comply with the German data privacy laws.9

Acknowledgements

We thank Sevde Ceylan, Uğur Kostak, Hasret el Sanhoury, Esra Soydoğan, and Cansu Turgut for the data collection and annotation. We also thank anonymous reviewers for their insightful comments. This work was funded by the Deutsche Forschungsgemeinschaft (DFG) via SFB 732, project D2.

References

8If parts of data contain information that can reveal the identity of a specific person, they are anonymised.

9National: https://www.datenschutz-wiki.de/Bundesdatenschutzgesetz. State: https://www.baden-wuerttemberg.datenschutz.de/landesdatenschutzgesetz-inhaltsverzeichnis/

Annotating omission in statement pairs

Héctor Martínez Alonso1 Amaury Delamaire2,3 Benoît Sagot1
1. Inria (ALMAaCH), 2 rue Simone Iff, 75012 Paris, France
2. École des Mines de Saint-Étienne, 158 cours Fauriel, 42000 Saint-Étienne, France
3. Storyzy (Trooclick), 130 rue de Lourmel, 75015 Paris, France
{hector.martinez-alonso,benoit.sagot}@inria.fr
amaury.delamaire@trooclick.com

Abstract

In this piece of industrial application, we focus on the identification of omission in statement pairs for an online news platform. We compare three annotation schemes, namely two crowdsourcing schemes and an expert annotation. The simplest of the two crowdsourcing approaches yields a better annotation quality than the more complex one. We use a dedicated classifier to assess whether the annotators’ behaviour can be explained by straightforward linguistic features. However, for our task, we argue that expert and not crowdsourcing-based annotation is the best compromise between cost and quality.

1 Introduction

In a user survey, the news aggregator Storyzy\footnote{http://storyzy.com} found out that the two main obstacles for user satisfaction when accessing their site’s content were redundancy of news items, and missing information respectively. Indeed, in the journalistic genre that is characteristic of online news, editors make frequent use of citations as prominent information; yet these citations are not always in full. The reasons for leaving information out are often motivated by the political leaning of the news platform.

Existing approaches to the detection of political bias rely on bag-of-words models (Zhitomirsky-Geffet et al., 2016) that examine the words present in the writings. Our goal is to go beyond such approaches, which focus on what is said, by instead focusing on what is omitted. Thus, this method requires a pair of statements; an original one, and a shortened version with some deleted words or spans. The task is then to determine whether the information left out in the second statement conveys substantial additional information. If so, the pair presents an omission; cf. Table 1.

Omission detection in sentence pairs constitutes a new task, which is different from the recognition of textual entailment—cf. (Dagan et al., 2006)—because in our case we are certain that the longer text entails the short one. What we want to estimate is whether the information not present in the shorter statement is relevant. To tackle this question, we used a supervised classification framework, for which we require a dataset of manually annotated sentence pairs.

We conducted an annotation task on a sample of the corpus used by the news platform (Section 3). In this corpus, reference statements extracted from news articles are used as long ‘reference’ statements, whereas their short ‘target’ counterparts were selected by string and date matching.

We followed by examining which features help identify cases of omission (Section 4). In addition to straightforward measures of word overlap (the Dice coefficient), we also determined that there is a good deal of lexical information that determines whether there is an omission. This work is, to the best of our knowledge, the first empirical study on omission identification in statement pairs.\footnote{We make all data and annotations are freely available at github.com/hectormartinez/verdidata.}

2 Related work

To the best of our knowledge, no work has been published about omission detection as such. However, our work is related to a variety of questions of interest that resort both to linguistics and NLP.

Segment deletion is one of the most immediate forms of paraphrase, cf. Vila et al. (2014) for a survey. Another phenomenon that also presents the notion of segment deletion, although in a very
different setting, is ellipsis. In the case of an ellipsis, the deleted segment can be reconstructed given a discourse antecedent in the same document, be it observed or idealized (Asher et al., 2001; Merchant, 2016). In the case of omission, a reference and a target version of a statement are involved, the deleted segment in one version having an antecedent in the other version of the statement, in another document, as a result of editorial choices.

Our task is similar to the problem of omission detection in translations, but the bilingual setting allows for word-alignment-based approaches (Melamed, 1996; Russell, 1999), which we cannot use in our setup. Omission detection is also related to hedge detection, which can be achieved using specific lexical triggers such as vagueness markers (Szarvas et al., 2012; Vincze, 2013).

3 Annotation Task

The goal of the annotation task is to provide each reference–target pair with a label: Omission, if the target statement leaves out substantial information, or Same if there is no information loss.

Corpus We obtained our examples from a corpus of English web newswire. The corpus is made up of aligned reference-target statement pairs; cf. Table 1 for examples. These statements were aligned automatically by means of word overlap metrics, as well as a series of heuristics such as comparing the alleged speaker and date of the statement given the article content, and a series of text normalization steps. We selected 500 pairs for annotation. Instead of selecting 500 random pairs, we selected a contiguous section from a random starting point. We did so in order to obtain a more natural proportion of reference-to-target statements, given that reference statements can be associated with more than one target.

Annotation setup

Our first manual annotation strategy relies on the AMT crowdsourcing platform. We refer to AMT annotators as turkers. For each statement pair, we presented the turkers with a display like the one in Figure 1.

We used two different annotation schemes, namely OM_p, where the option to mark an omission is “Text B leaves out some substantial information”, and OM_e, where it is “Text B leaves out something substantial, such as time, place, cause, people involved or important event information.”

The OM_p scheme aims to represent a naive user intuition of the relevance of a difference between statements, akin to the intuition of the users mentioned in Section 1, whereas OM_e aims at capturing our intuition that relevant omissions relate to missing key news elements describable in terms of the 5-W questions (Parton et al., 2009; Das et al., 2012). We ran AMT task twice, once for each scheme. For each scheme, we assigned 5 turkers per instance, and we required that the annotators be Categorization Masters according to the AMT scoring. We paid 0.05$ per instance.

Moreover, in order to choose between OM_p and OM_e, two experts (two of the authors of this article) annotated the same 100 examples from the corpus, yielding the OE annotation set.

Annotation results

The first column in Table 2 shows the agreement of the annotation tasks in terms of Krippendorff’s α coefficient. A score of e.g. 0.52 is not a very high value, but is well within what can be expected on crowdsourced semantic annotations. Note, however, the chance correction that the calculation of α applies to a skewed binary distribution is very aggressive (Passonneau and Carpenter, 2014). The conservativeness of the chance-corrected coefficient can be assessed if we compare the raw agreement between experts (0.86) with the α of 0.67. OM_e causes agreement to descend slightly, and damages the agreement of Same, while Omission remains largely constant. Moreover, disagreement is not evenly distributed across annotated instances, i.e. some instances show perfect agreement, while other instances have maximal disagreement.

We also measured the median annotation time per instance for all three methods; OM_e is almost twice as slow as OM_p (42s vs. 22s), while
Example 1 Interior Minister Chaudhry Nisar Ali Khan on Friday said no Pakistani can remain silent over the atrocities being committed against the people of the occupied Kashmir by the Indian forces.

Example 2 I don’t feel guilty. I cannot tell you how humiliated I feel. “I feel robbed emotionally. But we’re coming from the east (eastern Europe), we’re too close to Russia...”

Example 3 The tusks resemble the prehistoric sabre-tooth tiger, but of course, they are not related. It could make wildlife watching in Sabah more interesting. The rare elephant’s reversed tusks might create some problems when it comes to jostling with other elephants. The tusks resemble the prehistoric sabre-tooth tiger, but of course, they are not related.

Table 1: Examples of annotated instances. The ‘Instance’ column contains the full reference statement, with the elements not present in the target statement marked in italics. The last three columns display the proportion of Omission labels provided by the three annotation setups.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>α</th>
<th>i</th>
<th>% Om.</th>
<th>Vote</th>
<th>MACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full OMp</td>
<td>0.52</td>
<td>22</td>
<td>61.72</td>
<td>.65</td>
<td>.63</td>
</tr>
<tr>
<td>Full OMe</td>
<td>0.49</td>
<td>41</td>
<td>63.48</td>
<td>.69</td>
<td>.61</td>
</tr>
<tr>
<td>100 OMp</td>
<td>0.52</td>
<td>22</td>
<td>62.42</td>
<td>.64</td>
<td>.62</td>
</tr>
<tr>
<td>100 OMe</td>
<td>0.54</td>
<td>42</td>
<td>60.00</td>
<td>.61</td>
<td>.58</td>
</tr>
<tr>
<td>100 OE</td>
<td>0.67</td>
<td>16</td>
<td>70.87</td>
<td>—</td>
<td>.62</td>
</tr>
</tbody>
</table>

Table 2: Dataset, Krippendorff’s α, median annotation time, raw proportion of Omission, and label distribution using voting and MACE.

The table shows the the expert annotation time in OE is 16s. The large time difference between OMp and OMe indicates that changing the annotation guidelines has indeed an effect in annotation behavior, and that the agreement variation is not purely a result of the expectable annotation noise in crowdsourcing.

The fourth and fifth columns in Table 2 show the label distribution after adjudication. While the distribution of Omission=Same labels is very similar after applying simple majority voting, we observe that the distribution of the agreement does change. In OMp, approx. 80% of the Same-label instances are assigned with a high agreement (at least four out of five votes), whereas only a third of the Same instances in OMe have such high agreement. Both experts have a similar perception of omission, albeit with a different threshold: in the 14 where they disagree, one of the annotators shows a systematic preference for the Omission label.

We also use MACE to evaluate the stability of the annotations. Using an unsupervised expectation-maximization model, MACE assigns confidence to annotators, which are used to estimate the resulting annotations (Hovy et al., 2013). While we do not use the label assignments from MACE for the classification experiments in Section 4, we use them to measure how much the proportion of omission changes with regards to simple majority voting. The more complex OMe scheme has, parallel to lower agreement, a much higher fluctuation—both in relative and absolute terms—with regards to OMp, which also indicates this the former scheme provides annotations that are more subject to individual variation. While this difference is arguably a result of genuine linguistic reflection, it also indicates that the data obtained by this method is less reliable as such.

To sum up, while the label distribution is similar across schemes, the Same class drops in overall agreement, but the Omission class does not.

In spite of the variation suggested by their α coefficient, the two AMT annotated datasets are very similar. They are 85% identical after label assignment by majority voting. However, the cosine similarity between the example-wise proportions of omission labels is 0.92. This difference is a consequence of the uncertainty in low-agreement examples. The similarity with OE is 0.89 for OMp and 0.86 for OMe; OMp is more similar to the expert judgment. This might be related to the fact that the OMe instructions prime turkers to favor named entities, leading them to pay less attention to other types of substantial information such as modality markers. We shall come back to the more general role of lexical clues in Section 4.

Given that it is more internally consistent and it matches better with OE, we use the OMp dataset for the rest of the work described in this article.

4 Classification experiments

Once the manually annotated corpus is built, we can assess the learnability of the Omission–Same
decision problem, which constitutes a binary classification task. We aimed at measuring whether the annotators’ behavior can be explained by simple proxy linguistic properties like word overlap or length of the statements and/or lexical properties.

Features: For a reference statement \(r \), a target statement \(t \) and a set \(M \) of the words that only appear in \(r \), we generate the following feature sets:

1. **Dice** (\(F_a \)): Dice coefficient between \(r \) and \(t \).
2. **Length** (\(F_b \)): The length of \(r \), the length of \(t \), and their difference.
3. **BoW** (\(F_c \)): A bag of words (BoW) of \(M \).
4. **DWR** (\(F_d \)): A dense word representation is word-vector representation of \(M \) built from the average word vector for all words in \(M \). We use the representations from GloVe (Pennington et al., 2014).
5. **Stop proportion** (\(F_e \)): The proportion of stop words and punctuation in \(M \).
6. **Entities** (\(F_f \)): The number of entities in \(M \) predicted by the 4-class Stanford Named Entity Recognizer (Finkel et al., 2005).

Table 3 shows the classification results. We use all exhaustive combinations of these feature sets to train a discriminative classifier, namely a logistic regression classifier, to obtain a best feature combination. We consider a feature combination to be the best when it outperforms the others in both accuracy and F1 for the Omission label. We compare all systems against the most frequent label (MFL) baseline. We evaluate each feature twice, namely using five-cold cross validation (CV-5 OM\(_p\)) and in a split scenario where we test on the 100 examples of OE after training with the remaining 400 examples from OM\(_p\) (Test OE). The three best systems (i.e. non-significantly different from each other when tested on OM\(_p\)) are shown in the lower section of the table. We test for significance using Student’s two-tailed test and \(p < 0.05 \).

As expected, the overlap (\(F_a \)) and length metrics (\(F_b \)) make the most competitive standalone features. However, we want to measure how much of the labeling of omission is determined by which words are left out, and not just by how many.

The system trained on BoW outperforms the system on DWR. However, BoW features contain a proxy for statement length, i.e. if \(n \) words are different between ref and target, then \(n \) features will fire, and thus approximate the size of \(M \). A distributional semantic model such as GloVe is however made up of non-sparse, real-valued vectors, and does not contain such a proxy for word density. If we examine the contribution of using \(F_d \) as a feature model, we see that, while it falls short of its BoW counterpart, it beats the baseline by a margin of 5-10 points. In other words, regardless of the size of \(M \), there is lexical information that explains the choices of considering an omission.

Table 3: Accuracy and F1 for the Omission label for all feature groups, plus for the best feature combination in both evaluation methods. Systems significantly under baseline are marked in grey.

<table>
<thead>
<tr>
<th>Feature</th>
<th>CV-5 OM(_p) acc.</th>
<th>CV-5 OM(_p) F1</th>
<th>Test OE acc.</th>
<th>Test OE F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFL</td>
<td>.69</td>
<td>.81</td>
<td>.73</td>
<td>.84</td>
</tr>
<tr>
<td>(F_a)</td>
<td>.79</td>
<td>.81</td>
<td>.76</td>
<td>.83</td>
</tr>
<tr>
<td>(F_b)</td>
<td>.80</td>
<td>.85</td>
<td>.74</td>
<td>.82</td>
</tr>
<tr>
<td>(F_c)</td>
<td>.76</td>
<td>.83</td>
<td>.76</td>
<td>.82</td>
</tr>
<tr>
<td>(F_d)</td>
<td>.74</td>
<td>.84</td>
<td>.76</td>
<td>.84</td>
</tr>
<tr>
<td>(F_e)</td>
<td>.69</td>
<td>.81</td>
<td>.73</td>
<td>.84</td>
</tr>
<tr>
<td>(F_f)</td>
<td>.69</td>
<td>.81</td>
<td>.73</td>
<td>.84</td>
</tr>
</tbody>
</table>

5 Conclusion

We have presented an application-oriented effort to detect omissions between statement pairs. We have assessed two different AMT annotation schemes, and also compared them with expert annotations. The extended crowdsourcing scheme is defined closer to the expert intuition, but has lower agreement, and we use the plain scheme instead. Moreover, if we examine the time need for annotation, our conclusion is that there is is in fact detrimental to use crowdsourcing for this annotation task with respect to expert annotation. Chiefly, we also show that simple linguistic clues allow a classifier to reach satisfying classification results (0.86–0.88 F1), which are better than when solely relying on the straightforward features of different length and word overlap.

Further work includes analyzing whether the changes in the omission examples contain also changes of uncertainty class (Szarvas et al., 2012) or bias type (Recasens et al., 2013), as well as expanding the notion of omission to the detection of the loss of detail in paraphrases. Moreover, we want to explore how to identify the most omission-prone news types, in a style similar to the characterization of unreliable users in Wei et al. (2013).
References

Annotating Speech, Attitude and Perception Reports

Corien Bary, Leopold Hess, Kees Thijs,
Radboud University Nijmegen
Department of Philosophy,
Theology and Religious Studies
Nijmegen, the Netherlands
l.hess,k.thijs,c.bary
@ftr.ru.nl

Peter Berck and Iris Hendrickx
Radboud University Nijmegen
Centre for Language & Speech Technology / Centre for Language Studies,
Nijmegen, the Netherlands
p.berck,i.hendrickx
@let.ru.nl

Abstract

We present REPORTS, an annotation scheme for the annotation of speech, attitude and perception reports. The scheme makes it possible to annotate the various text elements involved in such reports (e.g. embedding entity, complement, complement head) and their relations in a uniform way, which in turn facilitates the automatic extraction of information on, for example, complementation and vocabulary distribution. We also present the Ancient Greek corpus RAG (Thucydides’ History of the Peloponnesian War), to which we have applied this scheme using the annotation tool BRAT. We discuss some of the issues, both theoretical and practical, that we encountered, show how the corpus helps in answering specific questions about narrative perspective and the relation between report type and complement type, and conclude that REPORTS fitted in well with our needs.

1 Introduction

Both in our daily communication and in narratives we often refer to what other people said, thought and perceived. Take as an example (1) which has a speech, attitude and perception report in the first, second and third sentence, respectively:

(1) John came to Mary, bent on his knees, and asked her ‘Will you marry me?’ He was afraid that Mary didn’t like him enough. He didn’t look at her face.

Notice that not only does the type of the report differ (speech, attitude, perception), we also see different kinds of complements: a direct complement ‘Will you marry me?’, an indirect complement that Mary didn’t like him enough and an NP complement her face. (Throughout this paper, by ‘reports’ we understand reports of speech acts, attitudes and perceptions - i.e., such things that can in principle have propositional contents, even if in a given case the report complement is only an NP. John came to Mary is not a report in this sense.)

The relation between the report type and the complement type (direct, indirect (further divided into e.g. complementizer + finite verb, participle, infinitive), NP) has been a major topic of research in semantics (Portner, 1992; Verspoor, 1990), syntax (Bresnan, 1970; Haumann, 1997), and language typology (Givón, 1980; Cristofaro, 2003; Cristofaro, 2008) alike.

A corpus annotated for speech, attitude and perception reports is a convenient tool to study this relation since it makes it possible to extract relevant information automatically. For a dead language like Ancient Greek - for which we developed our annotation scheme REPORTS in the first place - such a corpus is even more important, as the research is corpus-based by necessity.

In addition to the linguistic question of understanding the relation between report type and complement type, a corpus annotated for speech, attitude and perception reports is also of great use for questions of a more narratological nature. Narratology is the study of narratives, and one of the big topics here is that of narrative perspective, the phenomenon whereby literary texts often present events through the eyes of one of the characters in the story. Such a perspective emerges from the intricate interplay of all kinds of linguistic expressions, with an important role for speech, attitude and perception reports (whose thoughts and perceptions we read and what form they have).

In order to ultimately understand how narrative perspective works, a first step is a corpus annotated for speech, attitude and perception reports. Within the Perspective project,1 we created such

1www.ru.nl/ncs/perspective
a corpus for Ancient Greek, RAG (Reports in Ancient Greek). Ancient Greek authors often create shifts to the perspectives of characters. Thucydides, for example, whose History of the Peloponnesian War (books 6 and 7) is the first corpus we annotated, was already in ancient times famous for this (Plutarch, De Gloria 3). How these authors achieved these perspective shifts is however an unsolved puzzle. We aim to shed light on these issues using the RAG corpus. Both the annotation guidelines and the annotated corpus are publicly available.

RAG makes it possible to extract certain information about reports automatically, which will contribute to answering questions at both the linguistic and the narratological side. Although we developed the annotation scheme primarily with Ancient Greek in mind, we expect that it can be used for corpora in many other languages as well (see the evaluation below). A corpus annotated according to this scheme makes it for example easy to see which report types occur with which complement types. Here we distinguish not only between reports of speech, attitude and perception, but also annotate certain further subdivisions such as that between normal and manipulative speech reports (as in English tell that vs. tell to) which can be expected to be relevant.

In addition to extracting information about the combinations of report types and complement types, RAG (and other corpora that use the scheme) also makes it possible to search for certain words in report complements only. An interesting class here is for example that of attitudinal particles such as Ancient Greek δή, μήν, and που. These small words express the attitude of the actual speaker towards his utterance (e.g. (un)certainty, confirming expectations, countering the assumptions of the addressee (Thijs, 2017)). In reports, however, they can also be anchored to the reported speaker. Both in light of a better understanding of these notoriously elusive words themselves (e.g. which layer of meaning they target), and in light of their role in creating a certain narrative perspective (whose point of view they express) (Eckardt, 2012), the behavior of particles in reports deserves special attention (Döring, 2013), the study of which is strongly facilitated by a corpus annotated for reports.

In parallel with RAG, we developed an Ancient Greek lemmatizer, GLEM, and POS tagger. This combination increases the possibilities for data extraction considerably, as we will see. An interesting application of the lemmatizer for the narratological question lies in determining the vocabulary distribution of a certain text. Are there for example significant differences between the words the narrator uses when speaking for himself and those in the complements of other people’s speeches, attitudes and perceptions (and how does this differ for the different kinds of reports and complements)? The lemmatizer makes it possible to extract this information at the level of the lemma rather than the individual word form. If we apply the scheme REPORTS to other authors, we can also study differences between authors in this respect, for example, whether Herodotus has a stronger distinction between vocabularies, while in Thucydides this is more blurred. This could then explain why it is especially Thucydides that stands out as the author who creates especially sophisticated narrative effects.

A characteristic feature of Ancient Greek speech reports is that they are often quite long. Even indirect reports seem to easily extend to several sentences (rather than just clauses). RAG is also useful for a better linguistic understanding of these constructions. We can for example search for clitic words that are taken to come exclusively at the peninitial position within a sentence, e.g. connective particles such as γάρ (Goldstein, 2016), to see whether it is indeed justified to speak about ‘complements’ consisting of more than one sentence (and hence, in the case of infinitive complements, of sentences without a finite verb!).

In this paper we discuss related annotation work (section 2), and describe the annotation tool BRAT which we used (section 3) and our annotation scheme REPORTS (section 4). In section 4 we also discuss some choices we made regarding the implementation of REPORTS in our corpus RAG. The corpus is further described in section 5, where we also discuss the application of the lemmatizer and POS tagger and present the results of a small experiment testing inter-annotator agreement. We evaluate BRAT and REPORTS in section 6, including a discussion of the extendability of REPORTS to other languages. Section 7 concludes with final remarks.

<https://github.com/GreekPerspective>
2 Related work

Previous attempts at corpus annotation for related topics include the annotation of committed belief for English (Diab et al., 2009) and the annotation of direct and indirect speech in Portuguese (Freitas et al., 2016). Our project differs from the former in its focus on complementation (rather than information retrieval) and from the latter in its broader scope (reports in general rather than only speech).

Also related are the annotation schemes for modality such as (McShane et al., 2004; Hendrickx et al., 2012). These schemes aim to grasp the attitude of the actual speaker towards the proposition and label such attitudes as for example belief or obligation. In contrast to modality annotation, which focuses on the attitude of the actual speaker, we are interested in speech, attitude and perception ascriptions in general, including ascriptions to other people than the actual speaker. Another difference is our focus on the linguistic constructions used. In that respect our scheme also differs from (Wiebe et al., 2005), which, like RAG, annotates what we call reports, but without differentiating between e.g. different kinds of complements.

3 BRAT rapid annotation tool

BRAT is an open source web-based tool for text annotation (Stenetorp et al., 2012) and is an extension of stav, a visualization tool that was designed initially for complex semantic annotations for information extraction in the bio-medical domain including entities, events and their relations (Ohta et al., 2012; Neves et al., 2012). BRAT has been used in many different linguistic annotation projects that require complex annotation such as ellipsis (Anand and McCloskey, 2015), co-reference resolution (Kilicoglu and Demner-Fushman, 2016), and syntactic chunks (Savkov et al., 2016).

As BRAT uses a server-based web interface, annotators can access it in a web browser on their own computer without the need for further installation of software. All annotations are conveniently stored on the server.

We considered several other possible annotation tools for our project, such as MMAX2 (Müller and Strube, 2006), GATE Teamware (Bontcheva et al., 2013) and Arethusa. The main reasons for selecting BRAT as tool for the implementation of our annotation scheme were its web interface and its flexibility: BRAT accommodates the annotation of discontinuous spans as one entity and supports different types of relations and attributes.

Furthermore, BRAT offers a simple search interface and contains a tool for comparison of different versions of annotations on the same source text. BRAT also includes conversion scripts to convert several input formats such as the CoNLL shared task format, MALT XML for parsing and the BIO format (Ramshaw and Marcus, 1995).

BRAT stores the annotation in a rather simple plain text standoff format that is merely a list of character spans and their assigned labels and relations, but that can easily be converted to other formats for further exploitation or search. We plan to port the annotated corpus to the ANNIS search tool (Krause and Zeldes, 2016) in a later stage to carry out more complex search queries.

4 REPORTS: an annotation scheme for speech, attitude and perception reports

4.1 The scheme

The annotation scheme REPORTS consists of entities, events and attributes of both.

Entities are (possibly discontinuous) spans of text. Let’s start with two central ones, the attitude/speech/perception embedding entity, like confessed in (2), and the report complement, here that he was in love.

(2) John confessed that he was in love.

The attitude/speech/perception embedding entity is most typically a verb form, as in (2), but may also be a noun phrase (e.g. the hope that). The embedding entity and the complement stand in the two-place relation report, which we implemented as an event in BRAT.

Because this complement is internally complex in some cases – consisting of a series of connected complement clauses – we use as a third entity the complement chunk. Chunks are all of the individual complement clauses that are syntactically dependent upon one and the same embedding entity. In (3) we have one complement that he was in love and had not slept for three nights, which

3http://brat.nlplab.org
4http://www.perseids.org/tools/arethusa/app/#/
5https://stp.lingfil.uu.se/~nivre/research/treebank.xsd.txt
6Hence the term embedding entity, rather than just verb.
consists of two chunks that he was in love and had not slept for three nights:

(3) John confessed that he was in love and had not slept for three nights.

The complement chunks stand in the chunk-of relation to the complement they are part of. Complement chunks have a head, the final entity we annotate. Heads are always verbs. It is the verb that is directly dependent on the embedding entity and can be either a finite verb, an infinitive or a participle, depending on the specific subordinating construction used. In (3) the heads are was and had. As one would expect they stand in the head-of relation to the chunk. Table 1 lists all the entities and events.

The table also shows the attributes assigned within each class. The attributes of the embedding entities concern its semantic type. Within the class of speech report we distinguish (i) normal speech, involving neutral expressions such as say, answer, report; (ii) manner of speech, which are restricted to entities that refer to the physical properties of the speech act (e.g. scream, cry, whisper); (iii) manipulative speech, which is reserved for speech entities that are meant to lead to future actions of the addressee, such as order/persuade/beg someone to. The attitude embedding entities (which cover a broadly construed range of propositional attitudes) are further subdivided into (i) knowledge (e.g. know, understand that), (ii) belief (e.g. think, believe, assume that), (iii) voluntative (e.g. want, intend, hope, fear to) and (iv) other (mostly emotional attitudes such as be ashamed, be grieved, rejoice). Entities of perception (e.g. see, hear) do not have a further subdivision.

The complement type is also specified by means of an attribute. Here, there are five options: (i) direct, (ii) indirect, (iii) mixed, (iv) NP and (v) preposed NP. The mixed category is used for those cases where a combination of direct and indirect speech is used – embedding constructions in Ancient Greek sometimes shift or slip from one construction into the other (Maier, 2015). The NP-category covers instances of complements which do not have a propositional (clausal) character, but only consist of an NP-object. An English example would be he expects a Spartan victory.

The category of preposed NPs is typical of Ancient Greek. In case of finite complement clauses, a constituent that semantically belongs to this complement is sometimes placed in a position preceding the complementizer, i.e. syntactically outside of the complement clause. This happens for reasons of information structure – Ancient Greek is a discourse-configurational language, in which word order is determined mainly by information-structural concepts like topic and focus (Allan, 2014; Goldstein, 2016). It may even happen that this constituent is syntactically marked as a main clause argument – this phenomenon is called prolepsis in the literature (Panhuis, 1984). As a whole, constructions like these are annotated as containing two complements – a preposed NP and an indirect one – as well as two report relations.

Let’s consider some Ancient Greek examples from RAG.

(4) οἱ δὲ άλλοι ἐψηφίσαντο the.NOM PRT others.NOM vote.PST.3PL τε ἐξωμίχαν τοῖς Αθηναίοις PRT alliance.ACC the.DAT Athenians.DAT καὶ τὸ άλλο στράτευμα and the.ACC other.ACC army.ACC ἐκέλευον ἐκ Ῥηγίου κομίζειν invite.PST.3PL from Rhegium.GEN fetch.INF τὸν άλλο στράτευμα ... ἐκ Ῥηγίου κομίζειν; its head is the infinitive κο-

Figure 1 shows the visualization of (4) (with some context) as it is annotated in BRAT. Here, we have a manipulative speech verb (ἐκέλευον) that governs a discontinuous infinitival complement that consists of one chunk (τὸ άλλο στράτευμα ... ἐκ Ῥηγίου κομίζειν); its head is the infinitive κο-

Our second example is more complicated. The annotations in BRAT are shown in Figure 2, again with some context.

(5) [A ship went from Sicily to the Peloponnesus with ambassadors,]

οὔπερ τά τε σημερὰ who.REL.NOM the.ACC PRT own.affairs.ACC γράφονται ότι ἐν ἐλάταις εἰσιν tell.FUT.3PL that in hopes.DAT be.PRS.3PL καὶ τὸν ἐχεῖ πόλεμον ἐτὶ μᾶλλον and the.ACC there war.ACC even more ἐποτρυνοῦσι γίγνεσθαι incite.PRS.3PL become.INF ‘who should tell that their own affairs were hopeful, and should incite [the Peloponnesians] to prosecute the war there even more actively.’ (Thuc. 7.25.1)
Entities

<table>
<thead>
<tr>
<th>embedding entity</th>
<th>speech</th>
<th>normal manner of speech manipulative attitude knowledge belief voluntative other</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>complement</th>
<th>perception direct indirect mixed noun phrase preposed noun phrase</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>complement chunk</th>
<th>head of complement chunk</th>
<th>finite, not optative finite, optative infinitive participle</th>
</tr>
</thead>
</table>

Events (relations)

<table>
<thead>
<tr>
<th>report</th>
<th>chunk-of</th>
<th>head-of</th>
</tr>
</thead>
</table>

Table 1: RAG’s entities, events and their attributes

In the implementation in BRAT there actually is no such entity as an underspecified embedding entity, instead we go straight to the speech, attitude and perception embedded entities. The reason is that BRAT does not allow attributes of attributes, which we would otherwise need for the attributes normal etc.

Figure 1: visualization of annotation in BRAT of the sentence in (4) with some preceding context

Here τά σφέτερα is a preposed NP, the complement clause being marked by the complementizer ὅτι ‘that’. In the second part of the example, however, we find an infinitive construction instead of a finite clause with a complementizer and the whole complement clause is annotated as one (discontinuous) complement span again, like in (4).

4.2 Choices that we made

This basic scheme can be felicitously used for a great deal of the actual data in our corpus, but we also encountered on the one hand practical and on the other hand more complex issues that asked for additional annotation rules. The issues were discussed in the test phase and the rules were spelled out in an elaborate annotation manual. Some examples of the choices we made are the following.
We only made annotations when a complement is explicitly present. In other words, speech or attitude verbs used in an absolute sense (he spoke for a long time) are left out. We did include, however, NP-complements that have a prepositional form, as in περὶ τῆς ἀρχῆς εἰπεῖν (to speak about the empire) or ἐς Συρακοσίους δέος (fear of the Syracusans). With regard to NP-complements in general, we excluded instances of indefinite and demonstrative pronominal NP-objects (e.g. he expects something/this), since they are not interesting for our present research goals due to their lack of meaningful content.

As follows from the definition of a chunk as a subordinated clause, we did not annotate chunks in the case of NP and direct complements (nor heads, since a head is always head of a chunk).

We did not make manual annotation for the attributes of the complement head, i.e. whether it is an indicative, optative, infinitive or participle form. Instead, we used the output from the independently-trained POS tagger (see section 5).

UID As mentioned in the introduction, Ancient Greek reports, even indirect ones, can be very long. Quite frequently we find what is called Unembedded Indirect Discourse (Bary and Maier, 2014), as in (6).

(6) [A general sends messengers to his allies,]

In order that they would not let the enemies through, but would combine themselves and prevent them from passing; for [he said]

UID has a form that is usually associated with a dependent construction (infinitive or the Ancient Greek reportative mood called the optative), but in cases like the second sentence in (6) there is no embedding verb it is syntactically dependent on. As the clause with the infinitive or optative expresses the content of the report, we do annotate it as a complement (although the term complement may be misleading in this case).

We made a different choice in the case of parenthetical report constructions, Xerxes builds a bridge, as it is said (ὡς λέγεται in Greek). Although here we do annotate the parenthetical verbs (since they have an important narrative function – the narrator attributes a thought or story to someone other than himself), we do not annotate the main clause Xerxes builds a bridge as a complement because there is no report morphology (infinitive or optative). In such cases the boundaries of the complement are also often very vague. Thus, while UID is annotated as a report complement without an embedding entity (or report relation), a parenthetical verb is annotated as an embedding entity without a complement.

Some of the embedding entities have multiple meanings, which belong to different semantic categories in our classification of attributes. In some of these cases the choice of the attribute depends on the construction used for the complement clause. Just as English tell, mentioned in the introduction, εἶπον with a bare infinitive means tell someone to and is classified as a manipulative speech verb, whereas εἶπον with a subordinated that-clause means say that and belongs to the category of normal speech. In case of speech verbs governing an accusative constituent and an infinitive, however, there may still be an ambiguity in interpretation between the so-called Accusative plus Infinitive-construction (He told that Xerxes builds a bridge), where the ac-
personal passive report constructions If the embedding entity is a passive verb of speech or thought, as in Xerxes is said to build a bridge, its subject is coreferential with the subject of the complement clause. (This is the so-called Nominative plus Infinitive construction (Rijksbaron, 2002)). What is reported here, of course, is the fact that Xerxes builds a bridge. However, we have decided not to include the subject constituent within the annotated complement in these cases, mainly to warrant consistency with other constructions with coreferential subjects for which it is more natural to exclude the subject from the complement (as in Xerxes promised to build a bridge/that he would build a bridge). There is a similar rule for constructions like ὑπέρηκε μοι ἵνα ἰδεῖ μοι 'X seems to me' and φαίνομαι 'to appear'.

complement boundaries In complex, multi-clause report complements, which are not rare in Ancient Greek, it is sometimes difficult to tell which parts actually belong to the report and which are interjections by the reporting speaker. As a default rule, we only treat material within the span of a report complement as an interjection (i.e. not annotate it as part of the complement) if it is a syntactically independent clause. Thus, for instance, relative clauses in non-final positions always belong to the span of the complement.

These and similar choices that we made in the progress of fine-tuning our annotation were motivated primarily by practical considerations, but they already led to a better conceptualization of some substantial questions, such as complement boundaries or relevant kinds of syntactic and semantic ambiguities.

5 RAG: a Greek corpus annotated for reports

So far we have annotated Thucydides’ History of the Peloponnesian War, books 6 and 7, which consists of 807 sentences and 30891 words. In addition to Thucydides, we are also currently working on Herodotus’ Histories.

The Thucydides digital text is provided by the Perseus Digital Library (Crane, 2016). As it was in betacode we converted it into unicode (utf8) using a converter created by the Classical Language Toolkit (Johnson and others, 2016).

As mentioned before, we combine the manual reports annotation with automated POS-tagging and lemmatization (Bary et al., 2017), which we developed independently and which is open source.

The POS tagger made life easier for the annotator. We only annotated what is the head of the complement chunk and let it to the POS tagger to decide automatically whether this head is e.g. an infinitive, participle or finite verb and if finite, whether it has indicative mood or for example the reportative optative mood.

The lemmatizer enables us to discover whether a specific verb (e.g. all forms of λέγω ‘to say’) occurs with, say, a complement which contains the particle μήν or a complement with an oblique optative, without having to specify the (first, second, third person etc) forms of the verb manually.

For Herodotus, we can also adapt the manual annotations (including syntactic dependencies) made in the PROIEL project (Haug and Jøhndal, 2008; Haug et al., 2009), whose text we use.

All of the corpus has been annotated by two annotators (PhD students with MA in Classics) working independently. An inventory of differences has been made for every chapter by a student assistant (partly extracted from BRAT automatically using the built-in comparison tool). All the errors and differences were then reviewed by
the annotators (the most difficult issues were discussed in project meetings) to arrive at a common and final version. Most often differences between annotators concerned two types of issues, where clear-cut criteria are impossible to define: categorization of embedding verbs and syntactic structure ambiguities. The former issue involved verbs which could, depending on interpretation, be annotated with two or more different attributes. For example, ἐλπίζω may be a ‘voluntative’ verb (‘to hope’) or a ‘belief’ verb (‘to expect’), (cf. discussion of εἶπον above); some verbs are ambiguous between factive (‘knowledge’ attitude entity category) and non-factive (‘belief’ category) senses etc. Even with the use of the more specific rules in the manual, different readings were often possible. The latter issue involved many kinds of ambiguities, most typically concerning relation between the complement clause and other subordinate and coordinate clauses. For example, a final relative clause whose antecedent is within the scope of the complement may, depending on interpretation, belong to the complement as well (its content is part of the content of the reported speech act or attitude) or be an external comment. (Purpose and conditional clauses give rise to similar issues.) A small selection of the results are listed in Table 2. Here we see for example that γάρ, which is taken to come exclusively at the second position within a sentence, quite frequently occurs within a non-direct complement, suggesting that in these cases we have to do with main clauses rather than dependent clauses. Likewise we can easily search for the particle δή within complements to investigate whose perspective it expresses.

Inter annotator agreement

We performed a small experiment to measure the inter annotator agreement for labeling the main labels in this annotation task. We compared the span annotations of the following sample: book one of Thucydides, chapters 138-146, which contain 1932 words and 56 sentences. We counted the main labels (complement, complement chunk, head of chunk, attitude, speech and perception entities). We wielded a strict form of agreement: both the span length and span labels had to match to count as agreement. One annotator labeled 192 spans while the other labeled 182 spans leading to an inter annotator agreement of 83.4% mutual F-score (Hripcsak and Rothschild, 2005).

<table>
<thead>
<tr>
<th># embedding entities</th>
<th>670</th>
</tr>
</thead>
<tbody>
<tr>
<td>speech</td>
<td>189</td>
</tr>
<tr>
<td>attitude</td>
<td>441</td>
</tr>
<tr>
<td>perception</td>
<td>40</td>
</tr>
<tr>
<td># complements</td>
<td>702</td>
</tr>
<tr>
<td>indirect</td>
<td>543</td>
</tr>
<tr>
<td>direct</td>
<td>15</td>
</tr>
<tr>
<td>NP</td>
<td>138</td>
</tr>
<tr>
<td>preposed NP</td>
<td>19</td>
</tr>
<tr>
<td>with speech embedding entities</td>
<td>186</td>
</tr>
<tr>
<td>with attitude embedding entities</td>
<td>460</td>
</tr>
<tr>
<td>with perception embedding entities</td>
<td>39</td>
</tr>
<tr>
<td>unembedded</td>
<td>17</td>
</tr>
<tr>
<td># δή/δὴ in non-direct complements</td>
<td>10</td>
</tr>
<tr>
<td># multisentential complements</td>
<td>9</td>
</tr>
<tr>
<td># γάρ/γὰρ after sentence-boundary in non-direct complements</td>
<td>12</td>
</tr>
<tr>
<td>total # words in complements</td>
<td>17.836</td>
</tr>
<tr>
<td>average # of words per complement</td>
<td>25.41</td>
</tr>
<tr>
<td>indirect</td>
<td>14.25</td>
</tr>
<tr>
<td>direct</td>
<td>630.60</td>
</tr>
<tr>
<td>NP</td>
<td>4.09</td>
</tr>
<tr>
<td>preposed NP</td>
<td>3.89</td>
</tr>
</tbody>
</table>

Table 2: Some numbers for RAG

*Embedded ones counted twice.

6 Evaluation

In this section we evaluate both the BRAT tool and the REPORTS scheme with respect to their convenience and usefulness.

BRAT is a convenient annotation tool, offering perspicuous visualization and easy to use without any prior training or IT skills (although such skills are needed, of course, to set up an annotation scheme in BRAT). It does not even require typing any commands - after selecting a span of text, a window opens from which the annotation can be chosen with a click of the mouse. However, it has its limitations. The following remarks can be seen as suggestions for future versions or extensions of the program.

For example, with complex annotations involving multiple entities and relations (where often one report is embedded in another) the visualization ceases to be easily legible. In this respect, it seems that an annotation scheme of the complexity of
REPORTS reaches the limits of BRAT’s usefulness. Also, since it is currently impossible to assign attributes to attributes, we could not have speech, attitude and perception as attributes of the category embedding entities (see the footnote in Table 1). As a result we need to query the conjunction of speech, attitude and perception entities if we want to draw conclusions about this class in general.

Deleting and correcting complex annotations is not straightforward. Crossing and overlapping spans frequently give rise to errors, which are then impossible to repair from the level of BRAT’s interface and require manual access to source files.

A useful function would be that of creating different annotation layers that could be switched on and off in the visual representation - which is possible in e.g. MMAX2 (Müller and Strube, 2006) and would be helpful in this project to use for the annotations of POS and lemma information.

Finally, it would have been convenient if it had been possible to formulate default features, such as the attribute ‘normal’ in the case of speech embedding entities.

As for the annotation scheme itself, it involves a relatively small number of entities, relations and attributes, but its application is not straightforward and it necessitated the creation of additional documents (described above): a manual containing explicit rules for annotation and a list of embedding verbs in the different categories. Both documents have been extended and amended in the course of work on the annotation. Annotators also required time to get accustomed to the scheme. Nonetheless, after the initial period it was possible to achieve a good level of inter-annotator agreement, as shown by the experiment mentioned above.

The annotation scheme is easily extendable to other languages which share the same typology of complements (direct vs. indirect vs. NP) in speech, attitude and perception reports (that includes at least all major European languages). The categorization of embedding verbs should be universally applicable. Some simplifications are possible in many languages, e.g. removing the category of preposed NP complements or the additional layer of complement chunks (which may not be as useful for many languages as it is for Ancient Greek, where complements often contain several clauses of different types). For modern literary languages it would probably be necessary to create a category for Free Indirect Discourse (but perhaps this would not require more than adding a new attribute of complement entities - the scheme already supports unembedded reports). More substantial changes would be needed for languages which have different typologies of reports (e.g. with no strict distinction between direct and indirect reports) or use other constructions besides embedding verbs to convey reports (e.g. evidential morphemes).

7 Conclusion

BRAT, despite some limitations, is a useful annotation tool that made it possible to implement an annotation scheme which covers all the categories and distinctions that we had wanted to include.

Our annotation scheme REPORTS serves its purpose well, as it makes it possible to easily extract from the corpus information that is relevant to a variety of research questions, concerning e.g. relations between semantics of embedding entities and syntax of complement clauses, factive presuppositions, distribution of vocabulary (including special subsets such as discourse particles, evaluative expressions, deictic elements) in different types of report complements and outside of them, narrative perspective and focalization etc. Both the corpus and the annotation scheme, which are made publicly available, can therefore be a valuable resource for both linguists and literary scholars.

Acknowledgments

This research is supported by the EU under FP7, ERC Starting Grant 338421-Perspective. We thank Anke Kersten, Celine Teeuwen and Delano van Luik for their help.

References

Consistent Classification of Translation Revisions:
A Case Study of English-Japanese Student Translations

Atsushi Fujita
NICT
atsushi.fujita@nict.go.jp

Kikuko Tanabe
Kobe College
kikukotanabe@gmail.com

Chiho Toyoshima
Kansai Gaidai University
c.toyoshimall13@gmail.com

Mayuka Yamamoto
Honyaku Center Inc.
yamamoto.mayuka
@honyakuctr.co.jp

Kyo Kageura
University of Tokyo
kyo@p.u-tokyo.ac.jp

Anthony Hartley
Rikkyo University
A.Hartley@rikkyo.ac.jp

Abstract

Consistency is a crucial requirement in text annotation. It is especially important in educational applications, as lack of consistency directly affects learners’ motivation and learning performance. This paper presents a quality assessment scheme for English-to-Japanese translations produced by learner translators at university. We constructed a revision typology and a decision tree manually through an application of the OntoNotes method, i.e., an iteration of assessing learners’ translations and hypothesizing the conditions for consistent decision making, as well as reorganizing the typology. Intrinsic evaluation of the created scheme confirmed its potential contribution to the consistent classification of identified erroneous text spans, achieving visibly higher Cohen’s κ values, up to 0.831, than previous work. This paper also describes an application of our scheme to an English-to-Japanese translation exercise course for undergraduate students at a university in Japan.

1 Introduction

Assessing and assuring translation quality is one of the main concerns for translation services, machine translation (MT) industries, and translation teaching institutions.1 The assessment process for a given pair of source document (SD) and its translation, i.e., target document (TD), consists of two tasks. The first task is to identify erroneous text spans in the TD. In professional settings, when assessors consider a text span in a TD as erroneous, they generally suggest a particular revision proposal (Mossop, 2014). For instance, in example (1), a transliteration error is corrected.

(1) SD: Mark Potok is a senior fellow at the Southern Poverty Law Center.

TD: マーク・ポットック（⇒ポトク）氏は南部貧困法律センターの上級研究員だ。

(Podok ⇒ Potok)

Henceforth, we refer to a marked text span reflecting the identification of a particular error or deficiency as an issue. The second task is to classify each identified issue into an abstract issue type, such as “omission” or “misspelling.” An inherent problem concerning translation quality assessment is that it inevitably involves human judgments, and thus is subjective.2 The first task, i.e., identifying issues in TDs, relies heavily on assessors’ translation and linguistic competence, as may the subsequent step of making a revision proposal for them, depending on the subtlety of the issue. It therefore seems impractical to create an annotation scheme that enables even inexperienced translators to perform this task at a comparable level to mature translators.

For regulating the second task, several typologies, such as those reviewed in Secară (2005), the Multilingual e-Learning in Language Engineering (MeLLANGE) error typology (Castagnoli et al., 2006), and Multidimensional Quality Metrics (MQM),3 have been proposed. Existing issue typologies show diversity in their granularity and their organization of issue types, owing to the fact that the scope and granularity of issues depend

1These include both private companies and translation-related departments in colleges and universities.

2While automated metrics for MT quality evaluation are often presented as objective, many, including BLEU (Papineni et al., 2002), rely on comparison with a one or more human reference translations whose quality and subjectivity are merely assumed and not independently validated.

3http://www.qt21.eu/launchpad/content/multidimensional-quality-metrics
on the purpose of translations and the aim of human assessments (e.g., formative or summative). However, the typology alone does not necessarily guarantee consistent human assessments (Lommel et al., 2015). For instance, while one may classify the issue in (1) as an “incorrect translation of term,” it could also be regarded as a “misspelling.”

In this paper, we focus on the quality assessment of learners’ translations. Motivated by the increasing demand for translation, translation teaching institutions have been incorporating best practices of professionals into their curricula. When teaching the revision and review processes in such institutions, the assessor’s revision proposal is normally not provided, in order to prevent learners believing that it is the only correct solution (Klaudy, 1996). Thus, issue type plays a crucial role in conveying the assessors’ intention to learners, and its consistency is especially important, since lack of consistency directly affects learners’ motivation and learning performance. Besides the consistency, the applicability of an assessment tool to a wide range of translations is also important. To the best of our knowledge, however, none of the existing typologies have been validated for translations between languages whose structures are radically different, such as English and Japanese. Neither have their applicability to translations produced by less advanced learners, such as undergraduate students, been fully examined.

Aiming at (i) a consistent human assessment, (ii) of English-to-Japanese translations, (iii) produced by learner translators, we manually constructed a scheme for classifying identified issues. We first collected English-to-Japanese translations from learners in order to assure and validate the applicability of our scheme (§3). We then manually created an issue typology and a decision tree through an application of the OntoNotes method (Hovy et al., 2006), i.e., an iteration of assessing learners’ translations and updating the typology and decision tree (§4). We adopted an existing typology, that of MNH-TT (Babych et al., 2012), as the starting point, because its origin (Castagnoli et al., 2006) was tailored to assessing university student learners’ translations and its applicability across several European languages had been demonstrated. We evaluated our scheme with inter-assessor agreement, employing four assessors and an undergraduate learner translator (§5).

We also implemented our scheme in an English-to-Japanese translation exercise course for undergraduate students at a university in Japan, and observed tendencies among absolute novices (§6).

2 Previous Work

To the best of our knowledge, the error typology in the Multilingual e-Learning in Language Engineering (MeLLANGE) project (Castagnoli et al., 2006) was the first tool tailored to assessing learners’ translations. It had been proved applicable to learners’ translations across several European languages, including English, German, Spanish, French, and Italian. The MeLLANGE typology distinguished more than 30 types of issues, grouped into Transfer (TR) issues, whose diagnosis requires reference to both SD and TD, and Language (LA) issues, which relate to violations of target language norms. This distinction underlies the widespread distinction between adequacy and fluency, the principal editing and revision strategies advocated by Mossop (2014), and the differentiation between (bilingual) revision and (monolingual) reviewing specified in ISO/TC27 (2015). Designed for offering formative assessment by experienced instructors to university learner translators, it provided a fine-grained discrimination seen also in, for instance, the framework of the American Translators Association (ATA) with 23 categories.

The MeLLANGE typology was simplified by Babych et al. (2012), who conflated various subcategories and reduced the number of issue types to 16 for their translation training environment, MNH-TT, which differs from MeLLANGE in two respects. First, it is designed for feedback from peer learners acting as revisers and/or reviewers, whose ability to make subtle distinctions is reduced. Second, it is embedded in a project-oriented translation scenario that simulates professional practice and where more coarse-grained, summative schemes prevail.

In our pilot test, however, we found that even the MNH-TT typology did not necessarily guarantee consistent human assessments. We also implemented our scheme in an English-to-Japanese translation exercise course for undergraduate students at a university in Japan, and observed tendencies among absolute novices.

5 [SAE J2450, the standard for the automotive industry, has only seven categories. http://standards.sae.org/j2450_200508/](http://standards.sae.org/j2450_200508/)

6 The latest MQM (as of February 21, 2017) has eight top-level issue types (dimensions) and more than 100 leaf nodes. http://www.qt21.eu/mqm-definition/
Table 1: Priority of coarse-grained issue types for translation training for novices.

<table>
<thead>
<tr>
<th>Level 1: Incompleteness</th>
<th>Translation is not finished.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2: Semantic errors</td>
<td>The contents of the SD are not properly transferred.</td>
</tr>
<tr>
<td>Level 3: TD linguistic issues</td>
<td>The contents of the SD are transferred, but there are some linguistic issues in the TD.</td>
</tr>
<tr>
<td>Level 4: TD felicity issues</td>
<td>The TD is meaning-preserving and has no linguistic issues, but have some flaws.</td>
</tr>
<tr>
<td>Level 5: TD register issues</td>
<td>The TD is a good translation, but not suitable for the assumed text type.</td>
</tr>
</tbody>
</table>

in an English-to-Japanese translation by a learner and two of the authors separately classified them, only 17 of them (43%) resulted in agreement on the classification, achieving Cohen’s κ (Cohen, 1960) of 0.36. This highlighted the necessity of a navigation tool, such as a decision tree, for consistent human decision making, especially given that the issue type serves as feedback to learners.

Multidimensional Quality Metrics (MQM) has been widely used in the MT community and translation industries. However, the consistency of classifying issues had not been guaranteed when only its issue typology was used. Lommel et al. (2014) measured the inter-assessor agreement of identifying erroneous text spans in MT outputs and classifying them, using the MQM typology comprising 20 types. Having obtained low Cohen’s κ values, 0.18 to 0.36, and observed several types of ambiguities, they pointed out the lack of decision making tool. Motivated by this study, MQM later established a decision tree (Burchardt and Lommel, 2014). Nevertheless, MQM has not been validated as applicable to learners’ translations, especially those between distant languages.

3 Collecting English-to-Japanese Translations by Learners

Our study began with collecting English-to-Japanese translations produced by learner translators. Assuming novice learner translators and the very basic competences to teach, we selected journalistic articles as the text type. As the SDs in English, 18 articles with similar conceptual and linguistic difficulties were sampled from the column page of a news program “Democracy Now!” by a professional translator, who also had significant experience in teaching English-to-Japanese translation at universities. The average number of words in the SDs was 781. Then, 30 students (12 undergraduate and 18 graduate students) were employed to translate one of the SDs into Japanese.

All these participants were native Japanese speakers and had attended translation classes at a university in Japan. They were asked to produce a TD that served as a Japanese version of the original article.

The collected pairs of SD and TD were divided into the following three partitions.

Development: Three randomly selected document pairs were used to develop our scheme (§4).

Validation 1: Another 17 sampled document pairs were used to gauge the inter-assessor agreement of the issue classification task, given the identified issues (§5.1).

Validation 2: The remaining ten document pairs were used to examine the stability of identifying erroneous text spans in the TDs, as well as the inter-assessor agreement between a learner and an experienced assessor (§5.2).

4 Development of an Issue Classification Scheme

To alleviate potential inconsistencies, we structuralized the issue types in the MNH-TT typology (Babych et al., 2012), introducing a decision tree. We chose a decision tree as a navigation tool for human decision making, as in MQM (Burchardt and Lommel, 2014), because the resulting issues will be used not only by the instructors in order to evaluate the translation quality but also by learners in order to understand the diagnoses. We also considered that explicit explanation for decisions is critical in such scenarios.

We first determined the priorities of issue types through in-depth interviews with two professional translators, who also had ample experience in teaching English-to-Japanese translation at universities. These priorities were based on both the work-flow of the professionals and the nature of the issues they found in grading learners’ translations. Table 1 shows the coarse-grained figure resulting from the two translators’ agreement. Obvious incompleteness of translations are captured.
Issue types in our typology	MeLLANGE	MQM
Level 1: Incompleteness | |
X4a Content-SD-intrusion-untranslated: The TD contains elements of the SD left untranslated in error | TR-SI-UT | Untranslated
X6 Content-indecision: The TD contains alternative choices left unresolved by the translator | TR-IN | n/a
Level 2: Semantic errors | |
X7 Lexis-incorrect-term: Item is a non-term, incorrect, inconsistent with the glossary or inconsistent within the TD | LA-TL-\{IN,NT,IG,IT\} | Terminology
X1 Content-omission: Content present in the SD is wrongly omitted in the TD | TR-OM | Omission
X2 Content-addition: Content not present in the SD is wrongly added to the TD | TR-AD | Addition
X3 Content-distortion: Content present in the SD is misrepresented in the TD | TR-DI, TR-TI-*, TR-TL-IN | Mistranslation
Level 3: TD linguistic issues | |
X8 Lexis-inappropriate-collocation: Item is not a usual collocate of a neighbor it governs or is governed by | LA-TL-IC | n/a
X10 Grammar-preposition/particle: Incorrect preposition or (Japanese) particle | LA-PR | Grammar
X11 Grammar-inflation: Incorrect inflation or agreement for tense, aspect, number, case, or gender | LA-IA-* | Grammar
X12 Grammar-spelling: Incorrect spelling | LA-HY-SP | Spelling
X13 Grammar-punctuation: Incorrect punctuation | LA-HY-PU | Punctuation
X9 Grammar-others: Other grammatical and syntactic issues in the TD | n/a | Grammar
Level 4: TD felicity issues | |
X16 Text-incohesive: Inappropriate use or non-use of anaphoric expressions, or wrong ordering of given and new elements of information | n/a | n/a
X4b Content-SD-intrusion-too-literal: The TD contains elements of the SD that are translated too literally | TR-SI-TL | Overly literal
X15 Text-clumsy: Lexical choice or phrasing is clumsy, tautologous, or unnecessarily verbose | LA-ST-* | Awkward
Level 5: TD register issues | |
X14 Text-TD-inappropriate-register: Lexical choice, phrasing, or style is inappropriate for the intended text type of the TD | LA-RE-* | Style (except “Awkward”), Local convention, Grammatical register

Table 2: Our issue typology, with prefixes (context, lexis, grammar, and text) indicating their coarse-grained classification in the MNH-TT typology (Babych et al., 2012). The two rightmost columns show the corresponding issue types in the MeLLANGE typology (Castagnoli et al., 2006) and those in MQM (Lommel et al., 2015), respectively, where “n/a” indicates issue types that are not covered explicitly.

at Level 1. While Level 2 covers issues related to misunderstandings of the SD, Levels 3 and 4 highlight issues in the language of the TD. Level 5 deals with violation of various requirements imposed by the text type of the translated document.

Regarding Table 1 as a strict constraint for the shape of the decision tree, and the 16 issue types in the MNH-TT typology as the initial issue types, we developed our issue classification scheme, using the OntoNotes method (Hovy et al., 2006). In other words, we performed the following iteration(s).

Step 1. Annotate issues in the TDs for development, using the latest scheme.

Step 2. Terminate the iteration if we meet a satisfactory agreement ratio (90%, as in Hovy et al. (2006)).

Step 3. Collect disagreed issues among assessors, including those newly found, and discuss the factors of consistent decision making.

Step 4. Update the scheme, including the definition of each issue type, the conditions for decision making, and their organization in the form of a decision tree. Record marginal examples in the example list.

Step 5. Go back to Step 1.

Three of the authors conducted the above process using the three document pairs (see §3), which resulted in the issue typology in Table 2 and the decision tree in Table 3. A total of 52 typical and marginal examples were also collected.

It is noteworthy that our issue typology preserves almost perfectly the top-level distinction of the MeLLANGE typology, i.e., the TR (trans-
<table>
<thead>
<tr>
<th>ID</th>
<th>Question</th>
<th>Determined type or next question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1a</td>
<td>Is it an unjustified copy of the SD element?</td>
<td>X4a True</td>
</tr>
<tr>
<td>Q1b</td>
<td>Do multiple options remain in the TD?</td>
<td>X6 True</td>
</tr>
<tr>
<td>Q2a</td>
<td>Is all content in the SD translated in proper quantities in a proper way?</td>
<td>X7 True</td>
</tr>
<tr>
<td>Q2b</td>
<td>Is the error related to a term in the given glossary?</td>
<td>X1/X2/X3 True</td>
</tr>
<tr>
<td>Q3a</td>
<td>Is it a grammatical issue?</td>
<td>X3b True</td>
</tr>
<tr>
<td>Q3b</td>
<td>Is it predefined specific type?</td>
<td>X8/X10/X11/X12/X13 True</td>
</tr>
<tr>
<td>Q4a</td>
<td>Does it hurt cohesiveness of the TD?</td>
<td>X16 True</td>
</tr>
<tr>
<td>Q4b</td>
<td>Does it hurt fluency?</td>
<td>Q4b True</td>
</tr>
<tr>
<td>Q4c</td>
<td>Is it too literal?</td>
<td>X4b True</td>
</tr>
<tr>
<td>Q5a</td>
<td>Is it unsuitable for the intended text type of the TD?</td>
<td>X14 True</td>
</tr>
<tr>
<td>Q6a</td>
<td>Is it anyways problematic?</td>
<td>“Other issue” “Not an issue”</td>
</tr>
</tbody>
</table>

Table 3: Our decision tree for classifying a given issue: we do not produce questions for distinguishing X1/X2/X3, and X8/X10/X11/X12/X13, considering that their definitions are clear enough.

5.1 Validation 1: Classification of Identified Issues

5.1.1 Inter-Assessor Agreement

We gauged the consistency of classifying identified issues by the inter-assessor agreement.

First, three of the authors who developed our scheme identified erroneous text spans in the 17 TDs (see §3) and made a revision proposal for each, through discussion. Then, four assessors were independently asked to classify each of the resulting 575 issues into one of the 16 issue types, “other issue,” and “not an issue,” following our decision tree in Table 3. Two of them were anonymous paid workers (A and B), while the others (C and D) were two of the above three authors. All four assessors were native Japanese speakers with a strong command of English and an understanding of our scheme and translation-related notions. While they were asked to adhere to our decision making process, we decided to identify and classify only the first occurrence of identical issues in a single TD. For instance, other incorrect translations of “ポッドック” for “Potok” in the same TD as example (1) will not be annotated repeatedly. This is because annotations are made and used by humans, i.e., assessors and learners, and persistent indications of identical issues may waste the time of assessors and discourage learners. This practice differs from ordinary linguistic annotation, especially that aiming to develop training data for machine learning methods, which requires exhaustive annotation of the phenomena of interest within given documents. Although there have been several studies on the use of partial/incomplete annotation, e.g., Tsuboi et al. (2008), our procedure is nevertheless different from these in the sense that we leave issues “unannotated” only when identical ones are already annotated.

5 Intrinsic Evaluation of the Scheme

It is hard to make a fair and unbiased comparison between different annotation schemes that target the same phenomena, employing the same assessors. We thus evaluated whether our issue classification scheme leads to sufficiently high level of inter-assessor agreement, regarding those poor results described in §2 as baselines, and analyzed the tendencies of disagreements and the distribution of issues.
Table 4 summarizes the agreement ratio and Cohen’s κ (Cohen, 1960). The most consistent pair was C and D who agreed on 86.6% (498/575) of the issues and achieved almost perfect agreement, κ = 0.831, although it is indisputable that they had some advantages, having been engaged in developing the scheme and identifying the issues. Both of the two measures draw a clear distinction between the anonymous and identified assessors. As our analysis below illustrates, the anonymous workers made many careless mistakes, presumably because the human resource agency did not offer substantial incentive to pursue accurate and consistent annotations. Nevertheless, even the lowest κ value in our experiment, 0.490, was visibly higher than those achieved using the typologies with the same level of granularity but without a tool for consistent decision making (see §2).

Table 5 shows the most frequent disagreement patterns between each anonymous worker and the two authors (C and D) among the 498 identified issues that C and D classified consistently. The other frequent disagreements concerned the issues classified as X1 (omission) by A and B, whereas C and D classified them as other types. For instance, both C and D classified the issue in (3) as X3 (distortion) since the original word “sailors” was incorrectly translated as “soldiers,” and the issue in (4) as X7 (incorrect translation of terms) since named entities compose a typical subclass of term.

(3) SD: We have filed a class action for approximately a hundred sailors.
TD: およそ 100人の兵士 (⇒ 海兵兵士) のための集団訴訟を起こした。(soldiers ⇒ sailors)

(4) SD: President Ronald Reagan vetoed the bill, but, . . .
TD: レーガン大統領 (⇒ ロナルド・レーガン大統領) はその法案を拒否したが、. . . (President Reagan ⇒ President Ronald Reagan)

These disagreements imply that the anonymous workers might not have strictly adhered to our decision tree, and classified them as X1 after merely

Table 5: Frequent disagreements between anonymous workers (A and B) and two of the authors (C and D) among the 498 identified issues that C and D classified consistently.
Table 6: Total frequency and relative frequency of each issue type (macro average and standard deviation over TDs).

<table>
<thead>
<tr>
<th>Issue type</th>
<th>n</th>
<th>undergrad. (6)</th>
<th>grad. (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>avg. s.d.</td>
<td>avg. s.d.</td>
</tr>
<tr>
<td>Level 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4a</td>
<td>3</td>
<td>0.04 0.11</td>
<td>0.01 0.04</td>
</tr>
<tr>
<td>X6</td>
<td>0</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>33</td>
<td>0.39 0.18</td>
<td>0.26 0.31</td>
</tr>
<tr>
<td>X1</td>
<td>53</td>
<td>0.73 0.54</td>
<td>0.34 0.29</td>
</tr>
<tr>
<td>X2</td>
<td>28</td>
<td>0.33 0.26</td>
<td>0.26 0.32</td>
</tr>
<tr>
<td>X3</td>
<td>240</td>
<td>2.67 1.26</td>
<td>2.24 1.41</td>
</tr>
<tr>
<td>Level 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X8</td>
<td>16</td>
<td>0.19 0.23</td>
<td>0.16 0.24</td>
</tr>
<tr>
<td>X10</td>
<td>22</td>
<td>0.27 0.24</td>
<td>0.21 0.32</td>
</tr>
<tr>
<td>X11</td>
<td>10</td>
<td>0.13 0.11</td>
<td>0.07 0.11</td>
</tr>
<tr>
<td>X12</td>
<td>8</td>
<td>0.11 0.15</td>
<td>0.07 0.11</td>
</tr>
<tr>
<td>X13</td>
<td>18</td>
<td>0.21 0.15</td>
<td>0.17 0.20</td>
</tr>
<tr>
<td>X9</td>
<td>10</td>
<td>0.08 0.10</td>
<td>0.12 0.12</td>
</tr>
<tr>
<td>Level 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X16</td>
<td>18</td>
<td>0.20 0.23</td>
<td>0.14 0.14</td>
</tr>
<tr>
<td>X4b</td>
<td>92</td>
<td>0.87 0.69</td>
<td>1.05 0.93</td>
</tr>
<tr>
<td>X15</td>
<td>14</td>
<td>0.09 0.07</td>
<td>0.21 0.25</td>
</tr>
<tr>
<td>Level 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X14</td>
<td>28</td>
<td>0.34 0.14</td>
<td>0.25 0.32</td>
</tr>
<tr>
<td>Total</td>
<td>393</td>
<td>6.03 2.35</td>
<td>5.58 3.35</td>
</tr>
</tbody>
</table>

5.1.2 Coverage of the Issue Typology

Through a discussion, the disagreements between C and D on the 77 issues were resolved and 18 newly identified issues were also classified. We then calculated relative frequency RF of each issue type, t, in each TD, d, as follows:

$$RF(t, d) = \frac{\text{(frequency of } t \text{ in } d)}{\text{(# of words in the SD of } d)/100}.$$

Table 6 summarizes the frequency of each issue type; the "n" column shows their total frequency across all TDs and the remaining columns compares macro average and standard deviation of the relative frequencies over TDs produced by each group of students. All the identified issues were classified into one of the 16 issue types in our typology, confirming that the MNH-TT typology had also covered various types of issues appearing in English-to-Japanese translations produced by learners. As reviewed in §2 and §4, both of our typology and the MNH-TT typology cover a broader range of issues than the MeLLANGE typology. Thus, we can even insist that our scheme is applicable to translations between several European languages that Castagnoli et al. (2006) have investigated. In our preliminary experiments on assessing English-to-Chinese and Japanese-to-Korean translations using our scheme, we have not observed any novel type of issues.

X3 (distortion) occurred significantly more frequently than the others. This is consistent with the previous investigation based on the MeLLANGE typology (Castagnoli et al., 2006), considering that X3 (distortion) in our typology corresponds to parts of the most frequent type, LA-TL-IN (Language, terminology and lexis, incorrect), and the second-ranked TR-DI (Transfer, distortion). The other frequent types were X4b (too literal) and X1 (omission), which are both listed in the two existing typologies in Table 2, and also frequently observed in the learners’ translations between European languages (Castagnoli et al., 2006).

The annotation results revealed that the graduate students produced issues at Level 2 less frequently than the undergraduate students, while producing more Level 4 issues. Although the relative frequencies of issues vary greatly between individuals, we speculate that less experienced students are more likely to struggle at Level 2, i.e., properly understanding content in SDs.

5.2 Validation 2: Annotation by a Novice Learner Translator

We also evaluated our issue classification scheme in a more realistic setting: the comparison of an undergraduate learner translator with an experienced assessor.

The learner involved in this experiment, referred to as assessor E, was also a native Japanese speaker and had attended some translation classes at a university. The other assessor was D, who had participated in the first experiment. The two assessors separately identified erroneous text spans in the ten TDs (see §3) with a revision proposal, and classified them following our decision tree.

As a result, D and E respectively annotated 561 and 406 issues. Among these, 340 were for identical text spans, with not necessarily identical but similar revision proposals. They consistently classified 289 issues out of 340 (85.0%), achieving a substantial and notably high agreement, $\kappa = 0.794$. These are substantially higher than those achieved by the anonymous workers A and B (see Table 4), although they worked on different TDs. This fact indicates that the identified assessors in the first experiment (C and D) did not necessarily have an advantage. More importantly, this experiment verified the understandability of our scheme by actual learner translators. We expect that learner translators would be able...
Table 7: Frequent disagreements between a learner translator (E) and one of the authors (D) among the 340 issues they identified consistently.

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th># of issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>X4b (Level 4)</td>
<td>X3 (Level 2)</td>
<td>6</td>
</tr>
<tr>
<td>X3 (Level 2)</td>
<td>X15 (Level 4)</td>
<td>6</td>
</tr>
<tr>
<td>X4b (Level 4)</td>
<td>X15 (Level 2)</td>
<td>5</td>
</tr>
<tr>
<td>X1 (Level 2)</td>
<td>X3 (Level 2)</td>
<td>3</td>
</tr>
</tbody>
</table>

Typical disagreement patterns are shown in Table 7. Similarly to the first experiment, disagreement between X3 (distortion) and X4b (too literal) was frequently observed. E also classified as X15 (clumsy) 11 issues which D classified as X3 (distortion) or X4b (too literal). To answer question Q4c consistently, the literalness needs to be confirmed, for instance, by using dictionaries.

There were 221 and 66 issues identified only by D or E, respectively; 171 and 41 out of these were ignored by the other, including missed issues and accepted translations, reflecting the different levels of sensitivity of the assessors. The other 38 and 14 mismatches suggested the necessity of a guideline to consistently annotate single issues. For instance, E identified one X3 (distortion) issue in (5), while D annotated two issues there: “情報量が豊富な（with rich information)” as X2 (addition) and “お天気アプリ（weather application)” as X3 (distortion).

(5) SD: I put the question to Jeff Masters, co-founder at Weather Underground, an Internet weather information service.

TD: 情報量が豊富なお天気アプリ（⇒ 気象情報を提供するウェブサービス）、ウェザー・アンダーグラウンドの共同設立者であるジェフ・マスターズ氏に質問を投げかけた。（a weather application with rich information ⇒ a Web service which provides weather information）

6 Translation Exercise at a University

Having created and validated an annotation scheme, we should ultimately verify its usefulness in actual practice. We implemented our scheme in an English-to-Japanese translation exercise course for undergraduate students at a university in Japan.

6.1 Course Design

Two different types of English texts were used: travel guides from “Travellerspoint” (henceforth, “Travel”) and columns from “Democracy Now!” as in §3 (henceforth, “Column”). For each text type, the instructor of the course sampled three documents with similar conceptual and linguistic difficulties, and excerpted roughly the first 550 words of each document as SDs.

A total of 27 undergraduate students participated in the course held over 15 weeks, from April to July 2015. All of them were native Japanese speakers; eight had attended translation classes at a university, while the other 19 were absolute novices. Each student selected one of the sampled SDs for each text type. Before starting translation, they prepared a glossary and collected background information by themselves, and the instructor added any missing information. Each student first translated a “Travel” SD into Japanese over six weeks, referring to the corresponding glossary and background information, and then a “Column” SD in the same manner.

During the process of translating one SD, students’ translations were assessed every two weeks (three times per SD); a teaching assistant identified erroneous text spans with a revision proposal, and classified them following our decision tree; and then the instructor double-checked them. While the identified erroneous text spans and the assigned issue types were fed back to the students, revision proposals were not shown (Kludy, 1996). When the instructor fed back the assessment results to the students, she also explained our issue typology (Table 2) and decision tree (Table 3), also using the examples collected during the development process.

6.2 Observations

Through the course, 54 TDs were annotated with 1,707 issues, all of which fell into one of the 16 types in our issue typology. Table 8 summarizes the relative frequency of each issue type. X3 (distortion) occurred significantly more frequently than the others in translating both types of SDs, as in the results in Table 6 and previous work (Castagnoli et al., 2006). In other words, transfer-

<table>
<thead>
<tr>
<th>Issue type</th>
<th>Travel avg. s.d.</th>
<th>Column avg. s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4a</td>
<td>0.03 0.07</td>
<td>0.03 0.07</td>
</tr>
<tr>
<td>X6</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>1.14 0.79</td>
<td>0.53 0.39</td>
</tr>
<tr>
<td>X1</td>
<td>0.47 0.42</td>
<td>0.49 0.31</td>
</tr>
<tr>
<td>X2</td>
<td>0.09 0.13</td>
<td>0.16 0.19</td>
</tr>
<tr>
<td>X3</td>
<td>2.20 0.95</td>
<td>2.91 1.03</td>
</tr>
<tr>
<td>Level 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X8</td>
<td>0.11 0.11</td>
<td>0.13 0.18</td>
</tr>
<tr>
<td>X10</td>
<td>0.19 0.24</td>
<td>0.18 0.27</td>
</tr>
<tr>
<td>X11</td>
<td>0.07 0.09</td>
<td>0.12 0.15</td>
</tr>
<tr>
<td>X12</td>
<td>0.15 0.16</td>
<td>0.11 0.11</td>
</tr>
<tr>
<td>X13</td>
<td>0.09 0.16</td>
<td>0.17 0.21</td>
</tr>
<tr>
<td>X9</td>
<td>0.22 0.34</td>
<td>0.03 0.08</td>
</tr>
<tr>
<td>Level 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X16</td>
<td>0.07 0.11</td>
<td>0.03 0.07</td>
</tr>
<tr>
<td>X4b</td>
<td>0.53 0.53</td>
<td>0.24 0.22</td>
</tr>
<tr>
<td>X15</td>
<td>0.10 0.18</td>
<td>0.08 0.13</td>
</tr>
<tr>
<td>Level 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X14</td>
<td>0.30 0.25</td>
<td>0.45 0.31</td>
</tr>
<tr>
<td>Total</td>
<td>3.76 2.17</td>
<td>3.05 1.84</td>
</tr>
</tbody>
</table>

Table 8: Relative frequency of each issue type (macro average and standard deviation over TDs).

The ring content of the given SD is the principal issue for learner translators in general.

Table 8 also highlights that the relative frequencies of X7 (incorrect translations of terms) and X4b (too literal) are drastically different for the “Travel” and “Column” SDs. A student-wise comparison of the relative frequencies in Figure 1 revealed that the students who made these two types of issues more frequently in translating “Travel” SDs (shown in the right-hand side in the figure) produced these types of issues significantly less frequently during translating “Column” SDs. Due to the difference in text types, we cannot claim that this demonstrates students’ growth in learning to translate and that this has been promoted by our scheme. Nevertheless, our scheme is clearly useful for quantifying the characteristics of such students.

7 Conclusion

To consistently assess human translations, especially focusing on English-to-Japanese translations produced by learners, we manually created an improved issue typology accompanied by a decision tree through an application of the OntoNotes method. Two annotation experiments, involving four assessors and an actual learner translator, confirmed the potential contribution of our scheme to making consistent classification of identified issues, achieving Cohen’s κ values of between 0.490 (moderate) to 0.831 (almost perfect). We also used our scheme in a translation exercise course at a university in order to assess learners’ translations. The predefined 16 issue types in our typology covered all the issues that appeared in English-to-Japanese translations produced by undergraduate students, supporting the applicability of our issue typology to real-world translation training scenarios.

Our plans for future work include further improvements of our issue classification scheme, such as clarifying questions in the decision tree and establishing a guideline for annotating single issues. Its applicability will further be validated using other text types and other language pairs. From the pedagogical point of view, monitoring the effects of assessment is also important (Orozco and Hurtado Albir, 2002). Given the high agreement ratio in our second experiment (\S5.2), we are also interested in the feasibility of peer reviewing (Kiraly, 2000). Last but not least, with a view to efficient assessment with less human labor, we will also study automatic identification and classification of erroneous text spans, referring to recent advances in the field of word- and phrase-level quality estimation for MT outputs.10

Acknowledgments

We are deeply grateful to anonymous reviewers for their valuable comments. This work was partly supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (A) 25240051.

References

10http://www.statmt.org/wmt16/quality-estimation-task.html

Representation and Interchange of Linguistic Annotation
An In-Depth, Side-by-Side Comparison of Three Designs

Richard Eckart de Castilho♣, Nancy Ide♠, Emanuele Lapponi♣, Stephan Oepen♣, Keith Suderman♣, Erik Velldal♠, and Marc Verhagen♦

♣ Technische Universität Darmstadt, Department of Computer Science
♦ Vassar College, Department of Computer Science
♠ University of Oslo, Department of Informatics
♦ Brandeis University, Linguistics and Computational Linguistics

Abstract
For decades, most self-respecting linguistic engineering initiatives have designed and implemented custom representations for various layers of, for example, morphological, syntactic, and semantic analysis. Despite occasional efforts at harmonization or even standardization, our field today is blessed with a multitude of ways of encoding and exchanging linguistic annotations of these types, both at the levels of ‘abstract syntax’, naming choices, and of course file formats. To a large degree, it is possible to work within and across design plurality by conversion, and often there may be good reasons for divergent design reflecting differences in use. However, it is likely that some abstract commonalities across choices of representation are obscured by more superficial differences, and conversely there is no obvious procedure to tease apart what actually constitute contentful vs. mere technical divergences. In this study, we seek to conceptually align three representations for common types of morpho-syntactic analysis, pinpoint what in our view constitute contentful differences, and reflect on the underlying principles and specific requirements that led to individual choices. We expect that a more in-depth understanding of these choices across designs may lead to increased harmonization, or at least to more informed design of future representations.

1 Background & Goals
This study is grounded in an informal collaboration among three frameworks for ‘basic’ natural language processing, where workflows can combine the outputs of processing tools from different developer communities (i.e. software repositories), for example a sentence splitter, tokenizer, lemmatizer, tagger, and parser—for morpho-syntactic analysis of running text. In large part owing to divergences in input and output representations for such tools, it tends to be difficult to connect tools from different sources: Lacking interface standardization, thus, severely limits interoperability.

The frameworks surveyed in this work address interoperability by means of a common representation—a uniform framework-internal convention—with mappings from tool-specific input and output formats. Specifically, we will take an in-depth look at how the results of morphosyntactic analysis are represented in (a) the DKPro Core component collection1 (Eckart de Castilho and Gurevych, 2014), (b) the Language Analysis Portal2 (LAP; Lapponi et al. (2014)), and (c) the Language Application (LAPPS) Grid3 (Ide et al., 2014a). These three systems all share the common goal of facilitating the creation of complex NLP workflows, allowing users to combine tools that would otherwise need input and output format conversion in order to be made compatible. While the programmatic interface of DKPro Core targets more technically inclined users, LAP and LAPPS are realized as web applications with a point-and-click graphical interface. All three have been under active development for the past several years and have—in contemporaneous, parallel work—designed and implemented framework-specific representations. These designs are rooted in related but interestingly different traditions; hence, our side-by-side discussion of these particular frameworks provides a good initial sample of observable commonalities and divergences.4

2 Terminological Definitions
A number of closely interrelated concepts apply to the discussion of design choices in the rep-
sentations for linguistic annotations. Albeit to some degree intuitive, there is substantial terminological variation and vagueness, which in turn reflects some of the differences in overall annotation scheme design across projects and systems. Therefore, with due acknowledgement that no single, definitive view exists we provide informal definitions of relevant terms as used in the sections that follow in order to ground our discussion.

Annotations For the purposes of the current exercise we focus on annotations of language data in textual form, and exclude consideration of other media such as speech signals, images, and video. An annotation associates linguistic information such as morpho-syntactic tags, syntactic roles, and a wide range of semantic information with one or more spans in a text. Low-level annotations typically segment an entire text into contiguous spans that serve as the base units of analysis; in text, these units are typically sentences and tokens. The association of an annotation to spans may be direct or indirect, as an annotation can itself be treated as an object to which other (higher level) annotations may be applied.

Vocabulary The vocabulary provides an inventory of semantic entities (concepts) that form the building blocks of the annotations and the relations (links) that may exist between them (e.g. constituent or dependency relations, coreference, and others). The CLARIN Data Concept Registry\(^5\) (formerly ISOcat) is an example of a vocabulary for linguistic annotations.

Schema A schema provides an abstract specification (as opposed to a concrete realization) of the structure of annotation information, by identifying the allowable relations among entities from the vocabulary that may be expressed in an annotation. A schema is often expressed using a diagrammatic representation such as a UML diagram or entity-relationship model, in which entities label nodes in the diagram and relations label the edges between them. Note that the vocabulary and the schema that uses it are often defined together, thus blurring the distinction between them, as for example, in the LAPPSS Web Service Exchange Vocabulary (see Section 3) or any UIMA CAS type system.

Serialization A serialization of the annotations is used for storage and exchange. Annotations following a given schema can be serialized in a variety of formats such as (basic) XML, database (column-based) formats, compact binary formats, JSON, ISO LAF/GrAF (Ide and Suderman, 2014; ISO, 2012), etc.

3 A Simple Example

In the following sections, we will walk through a simple English example with multiple layers of linguistic annotations. Figure 1 shows a rendering of our running example in a compact, graphical visualization commonly used in academic writing. However, even for this simple sentence, we will point out some hidden complexity and information left implicit at this informal level of representation.

For example, there are mutual dependencies among the various layers of annotation: parts of speech and lemmatization both encode aspects of

\(^5\)https://openskos.meertens.knaw.nl/ccr/browser/
token-level morphological analysis; syntactic dependencies, in turn, are plausibly interpreted as building on top of the morphological information; finally, also the semantic dependencies, will typically be based on some or maybe all layers of morpho-syntactic analysis. In practice, on the other hand, various layers of annotation are often computed by separate tools, which may or may not take into account information from ‘lower’ analysis layers. In this respect, the visualization in Figure 1 gives the impression of a single, ‘holistic’ representation, even though it need not always hold that all analysis layers have been computed to be mutually consistent with each other. In Section 4 below, we will observe that a desire to make explicit the provenance of separate annotation layers can provide an important design constraint.

DKPro Core Type System The DKPro Core Type System extends the type system that is built into the UIMA framework (Ferrucci and Lally, 2004). It provides types for many layers of linguistic analysis, such as segmentation, morphology, syntax, discourse, semantics, etc. Additionally, there are several types that carry metadata about the document being processed, about tagsets, etc.

UIMA represents data using the Common Analysis System (CAS) (Götz and Suhre, 2004). The CAS consists of typed feature structures organized in a type system that supports single inheritance. There are various serialization formats for the CAS. The most prominent is based on the XML Metadata Interchange specification (XMI) (OMG, 2002). However, there are also e.g. various binary serializations of the CAS with specific advantages, e.g. built-in compression for efficient network transfer.

The built-in types of UIMA are basic ones, such as TOP (a generic feature structure), $Annotation$ (a feature structure anchored on text via start/end offsets), or $SofA$ (short for ‘subject of analysis’, the signal that annotations are anchored on). A single CAS can accommodate multiple $SofAs$ which is useful in many cases: holding multiple translations of a document; holding a markup and a plaintext version; holding an audio signal and its transcription; etc. $Annotation$ and all types inheriting from it are always anchored on a single $SofA$, but they may refer to annotations anchored on a different $SofA$, e.g. to model word alignment between translated texts. The CAS also allows for feature structures inheriting from TOP that are not anchored to a particular $SofA$.

Figure 2: DKPro Core Zoom
Figure 2 shows a zoom on the sub-string Olympic Committee from Figure 1. All of the shown annotations are anchored on the text using offsets. The Token, PoS (PROPN), and Lemma annotations are anchored each on a single word. The named entity (Organization) annotation spans two words. The Dependency relation annotations anchored by convention on the span of the dependent Token. Syntactic and semantic dependencies are distinguished via the flavor feature. All annotations (except Token) have a feature which contains the original output(s) of the annotation tool (value, posValue, coarseValue, dependencyType). The possible values for these original outputs are not specified in the DKPro Core type system. However, for the convenience of the user, DKPro Core supports so-called elevated types which are part of the type system and function as universal tags. Using mappings, the elevated type is derived from the original tool output. The Penn Treebank tag NNP, for example, is mapped to the type PROP.

For example, for PoS tags DKPro Core uses the Universal Dependency PoS categories.

Lap eXchange Format (LXF) Closely following the ISO LAF guidelines (Ide and Suderman, 2014), LXF represents annotations as a directed graph that references pieces of text; elements comprising the annotation graph and the base segmentation of the text are explicitly represented in LXF with a set of node, edge, and region elements. Regions describe text segmentation in terms of character offsets, while nodes contain (sets of) annotations (and optionally direct links to regions). Edges record relations between nodes and are optionally annotated with (non-linguistic) structural information. Nodes in LXF are typed, ranging for example over sentence, token, morphology, chunk, or dependency types. There are some technical properties common to all nodes (e.g. a unique identifier, sequential index, as well as its rank and receipt, as discussed below), and each node further provides a feature structure with linguistic annotations, where the particular range of features is determined by the node type.

Consider the example of Figure 1. Assuming sentence segmentation prior to word tokenization, the corresponding LXF graph comprises ten regions, one for the full sentence and one for each of the tokens. Figure 3 pictures the LXF version of Figure 2 described in the previous section. For sentence segmentation, LXF includes one node of type sentence, which contains links (represented as dashed edges in Figure 3) to the corresponding regions; similarly, token-typed nodes also directly link to their respective region, effectively treating sentence segmentation and word tokenization equally. If these two annotation types are obtained sequentially as part of an annotation workflow (i.e. the word tokenizer segments one sentence at a time), the LXF graph includes one directed edge from each token node to its sentence node, thus ensuring that the provenance of the annotation is explicitly modeled in the output representation.

Moving upwards to parts of speech, LXF for the example sentence includes one node (of type morphology) per PoS, paired with one edge pointing to the token node it annotates. Similarly to the sentence–token relationship, separate morphology nodes report the result of lemmatization, with direct edges to PoS nodes when lemmatization requires tagged input (or to token nodes otherwise). In general, running a new tool results in new LXF (nodes and) edges linking incoming nodes to the highest (i.e. topologically farthest from segmentation) annotation consumed. This holds true also for the nodes of type dependency in Figure 3; here each dependency arc from Figure 1 is ‘reified’ as a full LXF node, with an incoming and outgoing edge each recording the directionality of the head–dependent relation. The named entity, in turn, is represented as a node of type chunk, with edges pointing to nodes for PoS tags, reflecting that the named entity recognizer operated on tokenized and tagged input.

LXF graph elements (including the annotated media and regions) are in principle serialization-agnostic, and currently implemented in LAP as a multitude of individual, atomic records in a NoSQL database. A specific annotation (sub-)graph, i.e. a collection of interconnected nodes and edges, in this approach is identified by a so-called receipt, essentially a mechanism for group formation. Each step in a LAP workflow consumes one or more receipts as input and returns a new receipt comprising additional annotations. Thus, each receipt uniquely identifies the set of annotations contributed by one tool, as reflected in the receipt properties on the nodes of Figure 3. LAP imposes a strict principle of monotonicity, meaning that existing annotations are never modified by later processing, but rather each tool adds its own, new layer of annotations (which could in principle ‘overlay’ or ‘shadow’
Figure 3: Excerpt from the LXF graph for the running example in Figure 1, zooming in on Olympic Committee. Segmentation regions are shown as dashed boxes, with character offsets for the two tokens and the full sentence, respectively. Nodes display their type (e.g. morphology), part of the feature structure containing the linguistic annotation (e.g. the part of speech), and their receipt, index, and rank properties (‘R4’, ‘@1’ and ‘#0’, respectively).

LAPPS Interchange Format (LIF) The LAPPS Grid exchanges annotations across web services using LIF (Verhagen et al., 2016), an instantiation of JSON-LD (JavaScript Object Notation for Linked Data), a format for transporting Linked Data using JSON, a lightweight, text-based, language-independent data interchange format for the portable representation of structured data. Because it is based on the W3C Resource Definition Framework (RDF), JSON-LD is trivially mappable to and from other graph-based formats such as ISO LAF and UIMA CAS, as well as a growing number of formats implementing the same data model. JSON-LD extends JSON by enabling references to annotation categories and definitions in semantic-web vocabularies and ontologies, or any suitably defined concept identified by a URI. This allows for referencing linguistic terms in annotations and their definitions at a readily accessible canonical web location, and helps ensure consistent term usage across projects and applications. For this purpose, the LAPPS Grid project provides a Web Service Exchange Vocabulary (WSEV; Ide et al. (2014b)), which defines a schema comprising an inventory of web-addressable entities and relations.\footnote{The WSEV links terms in the inventory to equivalent or similar terms defined elsewhere on the web.}

Figure 4 shows the LIF equivalent of Figures 2 and 3 in the previous sections. Annotations in LIF are organized into views, each of which provides information about the annotations types it contains and what tool created the annotations. Views are similar to annotation ‘layers’ or ‘tasks’ as defined by several mainstream annotation tools and frameworks. For the full example in Figure 1, a view could be created for each annotation type in the order it was produced, yielding six consecutive views containing sentence boundaries, tokens, parts of speech and lemmas, named entities, syntactic dependencies, and semantic dependencies.\footnote{The last three views could be in a different order, depending on the sequence in which the corresponding tools were applied.} In Figure 4, a slightly simplified graph is shown with only three views and where token and part of speech information is bundled in one view and where lemmas and semantic relations are ignored. A view

71
Preliminary Observations Each of the three representations has been created based on a different background and with a different focus. For example, LIF is coupled with JSON-LD as its serialization format and uses views to carry along the full analysis history of a document including per-view provenance data. LXF uses explicit relations between annotations to model provenance and has strong support for multiple concurrent annotations and for managing annotation data persisted in a database. The DKPro Core is optimized for ease of use and processing efficiency within analysis workflows and has rather limited support for concurrent annotations, provenance, and stable IDs.

Some technical differences between the three designs actually remain hidden in the abbreviated, diagrammatic representations of Figures 2 to 4. Abstractly, all three are directed graphs, but the relations between nodes in DKPro Core and LIF are established by having the identifier or reference of the target node as a feature value on a source node, whereas LXF (in a faithful rendering of the ISO LAF standard) actually realizes each edge as a separate, structured object. In principle, separate edge objects afford added flexibility in that they could bear annotations of their own—for example, it would be possible to represent a binary syntactic or semantic dependency as just one edge (instead of reifying the dependency as a separate node, connected to other nodes by two additional edges). However, Ide and Suderman (2014) recommend to restrict edge annotations to non-linguistic information, and LXF in its current development status at least heeds that advice. Hence, the DKPro Core and LIF representations are arguably more compact (in the number of objects involved).

A broad view of the three approaches shows that at what we may regard as the ‘micro-level’, that is, the representation of individual annotations, differences are irrelevant in terms of the schema applied, which are trivially mappable based on a common underlying (graph-based) model. At a higher level, however, different goals have led to divergences in the content and organization of the information that is sent from one tool to another in a workflow chain. In the following section, we consider these differences.

4 Pushing a Little Farther

While our above side-by-side discussion of ‘basic’ layers of morpho-syntactic annotations may seem to highlight more abstract similarity than divergence, in the following we will discuss a few more...
intricate aspects of specific annotation design. We expect that further study of such ‘corner cases’ may shed more light on inherent degrees of flexibility in a particular design, as well as on its scalability in annotation complexity.

Media–Tokenization Mismatches Tokens may apply transformations to the original input text that introduce character offset mismatches with the normalized output. For example, some Penn Treebank–compliant tokenizers normalize different conventions for quotation marks (which may be rendered as straight ‘typewriter’ quotes or in multi-character LTX-style encodings, e.g. " or \`\`) into opening (left) and closing (right) Unicode glyphs (Dridan and Oepen, 2012). To make such normalization accessible to downstream processing, it is insufficient to represent tokens as only a region (sub-string) of the underlying linguistic signal.

In LXF, the string output of tokenizers is recorded in the annotations encapsulated with each *token* node, which is in turn linked to a region recording its character offsets in the original media. LIF (which is largely inspired by ISO LAF, much like LXF) also records the token string and its character offsets in the original medium. LIF supports this via the *word* property on tokens. DKPro Core has also recently started introducing a *TokenForm* annotation optionally attached to *Token* feature structures to support this.

Tokenizers may also return more than one token for the same region. Consider the Italian word *del*, which combines the preposition *di* and the definite article *il*. With both tokens anchored to the same character offsets, systems require more than reasoning over sub-string character spans to represent the linear order of tokens. LXF and LIF encode the ordering of annotations in an index property on nodes, trivializing this kind of annotation. DKPro Core presently does not support this.

Alternative Annotations and Ambiguity While relatively uncommon in the manual construction of annotated corpora, it may be desirable in a complex workflow to allow multiple annotation layers of the same type, or to record in the annotation graph more than the one-best hypothesis from a particular tool. Annotating text with different segmenters, for example, may result in diverging base units, effectively yielding parallel sets of segments. In our running example, the contraction *don’t* is conventionally tokenized as ⟨*do*, *n’t*⟩, but a linguistically less informed tokenization regime might also lead to the three-token sequence ⟨*don*, ‘, *t*⟩ or just the full contraction as a single token.

In LXF, diverging segmentations originating from different annotators co-exist in the same annotation graph. The same is true for LIF, where the output of each tokenizer (if more than one is applied) exists in its own view with unique IDs on each token, which can be referenced by annotations in views added later. Correspondingly, alternative annotations (i.e. annotations of the same type produced by different tools) are represented with their own set of nodes and edges in LXF and their own views in LIF. The DKPro Core type system does not link tokens explicitly to the sentence but relies on span offsets to infer the relation. Hence, it is not possible to represent multiple segmentations on a single SofA. However, it is possible to have multiple SofAs with the same text and different segmentations within a single CAS.

A set of alternative annotations may also be produced by a single tool, for instance in the form of an n-best list of annotations with different confidence scores. In LXF, this kind of ambiguous analyses translates to a set of graph elements sharing the same receipt identifier, with increasing values of the *rank* property for each alternative interpretation. Again, the DKPro Core type system largely relies on span offsets to relate annotations to tokens (e.g. named entities). Some layers, such as dependency relations also point directly to tokens. However, it is still not possible to maintain multiple sets of dependency relations in DKPro Core because each relation exists on its own and there is presently nothing that ties them together. The views in LIF are the output produced by any single run of a given tool over the data; therefore, in this case all the variants would be contained in a single view, and the alternatives would appear in a list of values associated with the corresponding feature (e.g. a list of PoS–confidence score pairs). Additionally, LIF provides a *DependencyStructure* which can bind multiple dependency relations together and thus supports multiple parallel dependency structures even within a single LIF view.

Parallel Annotation At times it is necessary to have multiple versions of a text or multiple parallel texts during processing, e.g. when correcting mistakes, removing markup, or aligning translations. DKPro Core inherits from the UIMA CAS
the ability to maintain multiple SofAs in parallel. This features of UIMA is for example used in the DKPro Core normalization framework where SofaChangeAnnotations can be created on one view, stating that text should be inserted, removed, or replaced. These annotations can then be applied to the text using a dedicated component which creates a new Sofa that contains the modified text. Further processing can then happen on the modified text without any need for the DKPro Core type system or DKPro Core components to be aware of the fact that they operate on a derived text. The alignment information between the original text and the derived text is maintained such that the annotations created on the derived text can be transferred back to the original text.

The LXF and LIF designs support multiple layers or views with annotations, but both assume a single base text. In these frameworks, text-level edits or normalizations would have to be represented as ‘overlay’ annotations, largely analogous to the discussion of token-level normalization above. However, the LXF principle of monotonicity in accumulating annotation layers is key to its approach to provenance. For our running example in Section 3 above, we assume that PoS tagging and lemmatization were applied as separate steps; hence, there are separate nodes for these (all of type morphology) and two distinct receipts. Conversely, if a combined tagger–lemmatizer had been used, its output would be recorded as a single layer of morphology nodes—yielding a different (albeit equivalent in linguistic content) graph structure.

The provenance support in DKPro Core is presently rather limited but also distinctly different from LXF or LIF. Presently, for a given type of annotation, e.g. PoS tags, the name of one creator component can be stored. This assumes that every type of annotation is produced by at most one component. Additionally, whenever possible, DKPro Core extracts tagsets from the models provided with taggers, parsers, and similar components and stores these along with the model language, version, and name in a TagsetDescription. This even lists tags not output by the component.

5 Conclusions & Outlook

We have surveyed the differences and commonalities among three workflow analysis systems in order to move toward identifying the needs to achieve greater interoperability among workflow systems for NLP. This preliminary analysis shows that while some basic elements have common models and are therefore easily usable by other systems, the handling of alternative annotations and representation of provenance are among the primary differences in approach. This suggests that future work aimed at interoperability needs to address this level of representation, as we attempt to move toward means to represent linguistically annotated data and achieve universal interoperability and accessibility.

In ongoing work, we will seek to overcome remaining limitations through (a) incremental refinement (working across the developer communities involved) that seeks to eliminate unnecessary, superficial differences (e.g. in vocabulary naming choices) and (b) further exploring the relationships between distinct designs via the implementation of a bidirectional converter suite. Information-preserving round-trip conversion, on this view, would be a strong indicator of abstract design equivalence, whereas conversion errors or information loss in round-trip conversion might either point to contentful divergences or room for improvement in the converter suite.

Acknowledgments

This work was funded in parts from the European Union’s Horizon 2020 research and innovation programme (H2020-EINFRA-2014-2) under grant agreement No. 654021. It reflects only the author’s views and the EU is not liable for any use that may be made of the information contained therein. It was further supported in parts by the German Federal Ministry of Education and Research (BMBF) under the promotional reference 01UG1416B (CEDIFOR) and by the U.S. National Science Foundation grants NSF-ACI 1147944 and NSF-ACI 1147912. LAP development is supported by the Norwegian Research Council through
the national CLARINO initiative, as well as by the Norwegian national computing and storage e-infrastructures, and the Department of Informatics at the University of Oslo. We are grateful to everyone involved, in particular all taxpayers.

References

TDB 1.1: Extensions on Turkish Discourse Bank

Deniz Zeyrek
Middle East Technical University
Ankara, Turkey
dezeyrek@metu.edu.tr

Murathan Kurfalı
Middle East Technical University
Ankara, Turkey
kurfali@metu.edu.tr

Abstract

In this paper we present the recent developments on Turkish Discourse Bank (TDB). We first summarize the resource and present an evaluation. Then, we describe TDB 1.1, i.e. enrichments on 10% of the corpus (namely, added senses for explicit discourse connectives and new annotations for implicit relations, entity relations and alternative lexicalizations). We explain the method of annotation and evaluate the data.

1 Introduction

The annotation of linguistic corpora has recently extended its scope from morphological or syntactic tagging to discourse-level annotation. Discourse annotation, however, is known to be highly challenging due to the multiple factors that make up texts (anaphors, discourse relations, topics, etc.). The challenge may become even more heightened depending on the type of text to be annotated, e.g. spoken vs written, or texts belonging to different genres. Yet, discourse-level information is highly important for language technology and it is more so for languages such as Turkish that are relatively less resource-rich when compared to European languages.

Given that systematically and consistently annotated corpora would help advance state-of-the-art discourse-level annotation, this paper aims to describe the methodology of enriching Turkish Discourse Bank, a multi-genre, 400,000-word corpus of written texts containing annotations for discourse relations in the PDTB style. Thus, the motivation of this paper is to contribute to the empirical analysis of Turkish at the level of discourse relations and enable further LT applications on the corpus. The corpus can also be used by linguists, applied linguists and translators interested in Turkish or Turkic languages in general.

The rest of the paper proceeds as follows. §2 provides an overview of Turkish Discourse Bank, summarizes the linguistic decisions underlying the corpus and presents an evaluation of the corpus. §3 introduces TDB 1.1, explains the added annotations and how the data are evaluated. §4 shows the distribution of discourse relation types and presents a preliminary cross-linguistic comparison with similarly annotated corpora. Finally, §5 summarizes the study and draws some conclusions.

2 An Overview of Turkish Discourse Bank (TDB)

The current release of Turkish Discourse Bank, or TDB 1.0 annotates discourse relations, i.e. semantic relations that hold between text segments (expansion, contrast, contingency, etc.). Discourse relations (DRs) may be expressed by explicit devices or may be conveyed implicitly. Explicit discourse connecting devices (but, because, however) make a DR explicit. These will be referred to as discourse connectives in this paper. Even when a DR lacks an explicit connective, the sense can be inferred. In these cases, native speakers can add an explicit discourse connective to the text to support their inference. These have been known as implicit (discourse) relations. However, TDB 1.0 only annotates DRs with an explicit connective.

While sharing the goals and annotation principles of PDTB, TDB takes the linguistic characteristics of Turkish into account. Here we briefly review some of these characteristics, which have an impact on the annotation decisions (see §2.1 for more principles that guide the annotation procedure).

Turkish belongs to the Altaic language family with the SOV as the dominant word order, though it exhibits all other possible word orders. It is an agglutinating language with rich morphology.

1 https://www.seas.upenn.edu/ pdtb/
Two of its characteristics are particularly relevant for this paper. Firstly, it is characterized (a) by clause-final function words, such as postpositions that select a verb with nominalization and/or case suffixes; (b) by simple suffixes attached to the verb stem (termed as converbs). These are referred to as complex and simplex subordinators, respectively (Zeyrek and Webber, 2008). Both types of subordinators largely correspond to subordinating conjunctions in English (see Ex.1 for a complex subordinator, (1) for its ‘for/in order to’ and the accompanying suffixes on the verb, and Ex.2 for a converb, (2).)

Only the independent part of the complex subordinators have been annotated so far.

(1) Gör¬me¬si için Ankara'ya gel¬dik.
see-NOM-ACC to-Ankara came-we
For him to see her, we came to Ankara.

(2) Kuru¬yunca fırça¬yla¬yaca¬g¬ım.
dry¬when¬ brush¬will¬I
I will brush it when it dries.

Secondly, Turkish is a null-subject language; the subject of a tensed clause is null as long as the text continues to talk about the same topic (Ex.3).

(3) Ali her gün koşar. Sağlıklı yiyecikler yer.
Ali jogs everyday. (He) maintains a healthy diet.

We take postpositions (and converbs) as potential explicit discourse connectives and consider the null subject property of the language as a signal for possible entity relations.

TDB adopts PDTB's lexical approach to discourse as an annotation principle, which means that all discourse relations are grounded on a lexical element (Prasad et al., 2014). The lexically grounded approach applies not only to explicitly marked discourse relations but also to implicit ones; i.e., it necessitates annotating implicit DRs by supplying an explicit connective that would make the sense of the DR explicit, as in Ex.4.

(4) ... bu çocuk’un smurşı bir düş güçü var.
[IMP=bu yüzden] Sen bunu okulundan mahrum etme.
... the child has a vivid imagination. [IMP=for this reason] Don’t stop him from going to school.

2.1 Principles that Guide Annotation

In TDB 1.0, explicit discourse connectives (DCs) are selected from three major lexical classes. This is motivated by the need to start from well-defined syntactic classes known to function as discourse connectives: (a) complex subordinators (postpositions, e.g. rağmen ‘despite’, and similar clause final elements, such as yerine ‘instead of’), (b) coordinating conjunctions (ve ‘and’, ama ‘but’), and (c) adverbials (ayrıca ‘in addition’). TDB 1.0 also annotates phrasal expressions; these are devices that contain a postposition or a similar clause final element taking a deictic item as an argument, e.g. buna rağmen ‘despite this’, as in Ex.5 below. This group of connectives are morphologically and syntactically well-formed but not lexically frozen. Moreover, due to the presence of the deictic element in their composition, they are processed anaphorically. Because of these reasons, phrasal expressions, which are annotated separately in TDB 1.0, are merged with alternative lexicalizations in TDB 1.1 (§3).

It is important to note that connectives may have a DC use as well as a non-DC use. The criterion to distinguish the DC/non-DC use is Asher’s (2012) notion of abstract objects (AO) (events, activities, states, etc.). We take a lexical signal as a DC to the extent it relates text segments with an AO interpretation. The DC is referred to as the head of a DR, the text segments it relates are termed as the arguments. We also adhere to the minimality principle of PDTB (MP), a principle that applies to the length of text spans related by a DC. It means that annotators are required to choose an argument span that is minimally necessary for the sense of the relation (Prasad et al., 2014).

With the MP and the AO criterion in mind, the annotators went through the whole corpus searching for predetermined connectives one by one in each file, determining and annotating their DC use, leaving the non-DC use unannotated. Here, to annotate means that (explicit) DCs and phrasal expressions are tagged mainly for their predicate-argument structure; i.e. for their head (Conn) and two arguments (Arg1, Arg2) as well as the material that supplements them (Supp1, Supp2)².

²Following the PDTB principles, Arg2 is taken as the text segment that syntactically hosts the discourse connective; the other text segment is Arg1. The clause order of sentences with complex subordinators is Arg2-Arg1 while the other relations have the Arg1-Arg2 order. Supp1 and Supp2 stand for text segments that support the interpretation of an argument.
In the examples in the rest of the paper, Arg2 is shown in bold, Arg1 is rendered in italics; the DC itself is underlined. Any null subjects are shown by parenthesized pronouns in the glosses.

(5) Çalışması gerekiyordu. Buna rağmen, üniversiteyi bırakmadı.

(Sh) had to work. Despite this, (she) did not quit university.

2.2 Evaluation of TDB 1.0

TDB 1.0 has a total of 8483 annotations on 77 Conn types and 147 tokens including coordinating conjunctions, complex subordinators, and discourse adverbials. However, it does not contain sense annotations; it does not annotate implicit DRs or entity relations; neither does it annotate alternative lexicalizations as conceived by the PDTB. The addition of these relations and their senses would enhance the quality of the corpus. Thus, this study describes an effort that involves the addition of new annotations to TDB 1.0, part of which involves sense-tagging of pre-annotated explicit DCs.

Before explaining the details about the enrichment of the corpus, we provide an evaluation of TDB 1.0. In earlier work, we reported the annotation procedure and the annotation scheme (Zeyrek et al., 2010) and provided inter-annotator agreement for complex subordinators and phrasal expressions (Zeyrek et al., 2013), but a complete evaluation of the corpus has not been provided. Table 1 presents inter-annotator agreement (IAA) of the connectives by syntactic type. We measured IAA by Fleiss’ Kappa (Fleiss, 1971) using words as the boundaries of the text spans selected by the annotators, as explained in Zeyrek et al. (2013).

The agreement statistics for argument spans are important because they show how much the annotators agreed on the AO interpretation of a text span. Table 1 shows that overall, IAA of both arguments is ≥ 0.7. Although this is below the commonly accepted threshold of 0.8, we take it satisfactory for discourse-level annotation, which is highly challenging due to the ambiguity of coherence relations (Spooren and Degand, 2010).

<table>
<thead>
<tr>
<th>Conn. Syn. Type</th>
<th>DC</th>
<th>Non-DC</th>
<th>Arg1</th>
<th>Arg2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coord.</td>
<td>3609</td>
<td>6947</td>
<td>0.78</td>
<td>0.83</td>
</tr>
<tr>
<td>Subord.</td>
<td>3439</td>
<td>5154</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>Disc. Adv.</td>
<td>698</td>
<td>223</td>
<td>0.74</td>
<td>0.83</td>
</tr>
<tr>
<td>Subtotal</td>
<td>7746</td>
<td>12324</td>
<td>0.76</td>
<td>0.82</td>
</tr>
<tr>
<td>IAA not avl.</td>
<td>737</td>
<td>903</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8483</td>
<td>13227</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: DC/Non-DC counts of connective types in TDB 1.0 (coordinators, complex subordinators, adverbials) and Fleiss’ Kappa IAA results for argument spans (Sevdik-Çalli, 2015)

3 Creating TDB 1.1

Due to lack of resources, we built TDB 1.1 on 10% of TDB (40,000 words). We used PDTB 2.0 annotation guidelines and the sense hierarchy therein (see fn 1).

Four part-time working graduate students annotated the corpus in pairs. We trained them by going over the PDTB guidelines and the linguistic principles provided in §2.1. Each pair annotated 50% of the corpus using an annotation tool developed by Aktas et al. (2010). The annotation task took approximately three months, including adjudication meetings where we discussed the annotations, revised and/or corrected them where necessary.

3.1 Annotation Procedure

The PDTB sense hierarchy is based on four top level (or level-1) senses (TEMPORAL, CONTINGENCY, COMPARISON, EXPANSION) and their second and third level senses. The annotation procedure involved two rounds. First, we asked the annotators to add senses to the pre-annotated explicit DCs and phrasal expressions. The annotators implemented this task by going through each file. In this way, they fully familiarized themselves with the predicate-argument structure of DCs in TDB 1.0, as well as the PDTB 2.0 sense hierarchy.

In the second round, the annotators first tagged alternative lexicalizations (AltLexs) independently of all other DRs in each file. Given that phrasal expressions could be considered as a subset of PDTB-style AltLexs, this step ensured that TDB 1.1 not only includes phrasal expressions but various subtypes of AltLexs as well. Finally, the annotators identified and annotated implicit DRs and entity relations (EntRels) simultaneously in each file by searching them within paragraphs and between adjacent sentences delimited by a full stop, a colon, a semicolon or a question mark.

3Some phrasal expressions are retrieved by the same search token as subordinators; thus, ‘Subord’ indicates IAA for subordinators and phrasal expressions calculated jointly.

4Subtotal’ represents the total of connectives for which IAA could be calculated; ‘IAA not avl.’ (available) means IAA could not be calculated.
Alternative Lexicalizations: This refers to cases which could be taken as evidence for the lexicalization of a relation. The evidence may be a phrasal expression (Ex. 5), or a verb phrase, as in Ex. 6:

(6) ... genç Marx, Paris’de Avrupa’nın en de-
vrimci işçisi sınıfı ile tanıştı. Bu, onun
düşünçesinin oluşmasında en önemli
kilometre taşlarından birini teşkil eder.
... in Paris, young Marx meets Europe’s
the most revolutionary working class.
This constitutes one of the most important
milestones that shapes his thoughts.

Entity Relations: In entity relations, the inferred relation between two text segments is based on an entity, where Arg1 mentions an entity and Arg2 describes it further. As mentioned in §2, a null subject in Arg2 (or in both Arg1 and Arg2) is often a sign of an EntRel (Ex. 7).

(7) Kerem ter içindeydi. “Kurtulamamış
demek,” diye mırıldandı.
Kerem was all sweaty. “So I was not set
free” (he) muttered.

Implicit DRs: For the annotation of implicit
DRs, we provided the annotators with an example
explicit DC or a phrasal expression (in Turk-

ish) for each level of the PDTB 2.0 sense hierar-
chicaly. We told the annotators to insert the example
connective (or another connective of their choice if
needed) between two sentences where they
ferred an implicit DR (Ex. 5 above). While EntRel
were only annotated for their arguments, Altlexs
and implicit DRs required senses as well. While
annotating the senses, the annotators were free to
choose multiple senses where necessary.

3.2 Additional Sense Tags
To capture some senses we came across in Turk-

ish, we added three level-2 senses to the top-level
senses, COMPARISON and EXPANSION.

COMPARISON: Degree. This sense tag cap-
tures the cases where one eventuality is com-
pared to the other in terms of the degree it is
similar to or different from the other eventuality.
The label seemed necessary particularly to capture
the sense conveyed by the complex subordinator
kadar, which can be translated to English as, ‘as
ADJ/ADV as’ or ‘so ADJ/ADV that’. When kadar
is used to compare two eventualities in terms of
how they differ, Arg2 is a negative clause (Ex. 8).
So far, this label has only been used to annotate
explicit DRs.

(8) Tanınmayacak kadar değişmişti.
(He) changed so much that (he) could not
be recognized.

EXPANSION: Correction. The Correction tag
is meant to capture the relations where an incorrect
judgement or opinion gets corrected or rectified in
the other clause. So far, the majority of Correction
relations in TDB 1.1 are implicit. There are poly-
semous tokens (Ex. 10), as well as single-sense
tokens (Ex. 11). These do not convey the PDTB
chosen alternative sense (the sense where one of
the alternatives replaces the other). For example,
to insert onun yerine ‘instead of this’ in Ex. 11
would be odd (though this connective would fit Ex.
10). Although further research is needed, we pre-
dict that Correction relations are characterized by
the negative marker of nominal constituents, değil
(underlined) in Arg1.

(10) Ben yere bakmazdım. (IMP=ama ‘but’)
Gözüne bakardım insanlarım. (Chosen
alternative; Correction)
I wouldn’t look down. (I) would look into
people’s eyes.

(11) O olayları yaşayan ben değilim. (IMP=bi-
kläş ‘to the contrary’) Benim yaşamım
bambaşka. (Correction)
I am not the one who went through those
events. My life is completely different.

3PDTB-3 sense hierarchy (Webber et al., 2016) introduces
Expansion:Manner and Comparison:Similarity, among other
sense tags. The PDTB Manner label conveys the same sense
that we wanted to capture. On the other hand, the PDTB label
‘Similarity’ is similar to Degree only to the extent it conveys
how two eventualities are similar. To the best of our knowl-
edge, the Similarity label does not indicate comparison on the
basis of how two things differ. Finally, we became aware of
the revised PDTB sense hierarchy after we have started our
annotation effort. We decided to continue with PDTB 2.0 la-

tabs (plus our new labels) for consistency.
3.3 Annotation Evaluation

TDB 1.1 was doubly-annotated by annotators who were blind to each other’s annotations. To determine the disagreements, we calculated IAA regularly by the exact match method (Miltsakaki et al., 2004). At regular adjudication meetings involving all the annotators and the project leader, we discussed the disagreements and created an agreed set of annotations with a unanimous decision.

We measured two types of IAA: type agreement (the extent at which annotators agree over a certain DR type), and sense agreement (agreement/disagreement on sense identity for each token). For the senses added to the pre-annotated explicit DCs and phrasal expressions, we only calculated sense agreement. For the new relations, we measured both type agreement and sense agreement. This was done in two steps. Following Forbes-Riley et al. (2016), in the first step, we measured type agreement. Type agreement is defined as the number of common DRs over the number of unique relations, where all discourse relations are of the same type. For example, assume annotator1 produced 12 implicit discourse relations for a certain text whereas annotator2 produced 13, where the total number of unique discourse relations were 15 and the common annotations 11. In this case, type agreement is 73.3%. Then, we calculated sense agreement among the common annotations using the exact match method (see Table 2 and Table 3 below).

<table>
<thead>
<tr>
<th>Relation Type</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit</td>
<td>33.4%</td>
</tr>
<tr>
<td>AltLex</td>
<td>72.6%</td>
</tr>
<tr>
<td>EntRel</td>
<td>79.5%</td>
</tr>
</tbody>
</table>

Table 2: IAA results for type agreement in TDB 1.1

According to Table 2, the type agreement for AltLexs and EntRel is satisfactory (≥ 0.7) but implicit DRs display too low a type agreement. Due to this low score, we evaluated the reliability of the gold standard implicit relations: one year after TDB 1.1 was created, we asked one of our four annotators to annotate the implicit DRs (both for type and sense) by going through 50% of the corpus he had not annotated before. He searched and annotated implicit DRs between adjacent sentences within paragraphs, skipping other kinds of relations. This procedure is different from the earlier one where we asked the annotators to annotate EntRel and implicit DRs simultaneously in each file. We also told the annotator to pay attention to the easily confused implicit EXPANSION:Restatement:specification relations and EntRel. (We stressed that in the former, one should detect an eventuality being further talked about rather than an entity as in the latter.)

Then, we assessed intra-rater agreement between the annotator’s annotations and the gold standard data. In this way, we reached the score of 72.9% for type agreement on implicit DRs. This result shows that implicit DRs have been consistently detected in the corpus; in addition, it suggests that annotating implicit DRs independently of EntRel is a helpful annotation procedure.

Table 3 shows that for explicit DCs, the IAA results for all the sense levels is ≥ 0.7, indicating that the senses were detected consistently. Similarly, the sense agreement results for implicit DRs and AltLexs for all the sense levels are ≥ 0.7, corroborating the reliability of the guidelines.

<table>
<thead>
<tr>
<th>Sense</th>
<th>Explicit</th>
<th>Implicit</th>
<th>AltLex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1</td>
<td>88.4%</td>
<td>85.7%</td>
<td>93.9%</td>
</tr>
<tr>
<td>Level-2</td>
<td>79.8%</td>
<td>78.8%</td>
<td>79.5%</td>
</tr>
<tr>
<td>Level-3</td>
<td>75.9%</td>
<td>73.1%</td>
<td>73.4%</td>
</tr>
</tbody>
</table>

Table 3: IAA results for sense agreement in TDB 1.1

4 Distribution of Discourse Relation Types

This section offers a preliminary cross-linguistic comparison. It presents the distribution of discourse relation types in TDB 1.1 and compares them with PDTB 2.0 (Prasad et al., 2014) and Hindi Discourse Relation Bank (Oza et al., 2009), which also follows the PDTB principles (Table 4).
It is known that implicit relations abound in texts; thus, it is important to reveal the extent of implicitation in discourse-annotated corpora. Table 4 indicates that in TDB 1.1, explicit DRs are highest in number, followed by EntRels and implicit DRs. The ratio of explicit DRs to implicit DRs is 1.96. This ratio is 1.13 for PDTB 2.0, and 1.02 for Hindi DRB. That is, among the corpora represented in the table, TDB displays the largest difference in terms of the explicit-implicit split. However, it is not possible at this stage to generalize the results of this cross-linguistic comparison to tendencies at the discourse level. TDB 1.1 does not annotate simplex subordinators and leaves implicit VP conjunctions out of scope. Thus, when these are annotated, the ratio of explicit DRs to implicit DRs would change. Issues related to the distribution of explicit and implicit relations across genres are also necessary to reveal. We leave these matters for further research.

5 Conclusion

We presented an annotation effort on 10% of Turkish Discourse Bank 1.0 resulting in an enriched corpus called TDB 1.1. We described how PDTB principles were implemented or adapted, and presented a complete evaluation of TDB 1.1 as well as TDB 1.0, which has not been provided before. The evaluation procedure of TDB 1.1 involved measuring inter-annotator agreement for all relations and assessing intra-annotator agreement for implicit relations. The agreement statistics are overall satisfactory. While inter-annotator agreement measurements show reliability of annotations (and hence the re-usability of the annotation guidelines), intra-rater agreement results indicate the reproducibility of gold standard annotations by an experienced annotator. Using the same methodology, we aim to annotate a larger part of the TDB including attribution and no relations in the future.

Acknowledgements We would like to thank our anonymous reviewers for their useful comments. We also thank METU Project Funds (BAP-07-04-2015-004) for their support.

References

Two Layers of Annotation for Representing Event Mentions in News Stories

Maria Pia di Buono¹ Martin Tutek¹ Jan Šnaider¹ Goran Glavaš²
Bojana Dalbelo Bašić¹ Nataša Milić-Frayling³

¹ TakeLab, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
² Data and Web Science Group, University of Mannheim, Germany
³ School of Computer Science, University of Nottingham, United Kingdom

firstname.lastname@fer.hr
goran@informatik.uni-mannheim.de
natasa.milic-frayling@nottingham.ac.uk

Abstract

In this paper, we describe our preliminary study of methods for annotating event mentions as part of our research on high-precision models for event extraction from news. We propose a two-layer annotation scheme, designed to capture the functional and the conceptual aspects of event mentions separately. We hypothesize that the precision can be improved by modeling and extracting the different aspects of news events separately, and then combining the extracted information by leveraging the complementarities of the models. We carry out a preliminary annotation using the proposed scheme and analyze the annotation quality in terms of inter-annotator agreement.

1 Introduction

The task of representing events in news stories and the way in which they are formalized, namely their linguistic expressions (event mentions), is interesting from both a theoretical and practical perspective. Event mentions can be analyzed from various aspects; two aspects that emerge as particularly interesting are the linguistic aspect and the more practical information extraction (IE) aspect.

As far as the linguistic aspect is concerned, news reporting is characterized by specific mechanisms and requires a specific descriptive structure. Generally speaking, such mechanisms convey non-linear temporal information that complies with news values rather than narrative norms (Setzer and Gaizauskas, 2000). In fact, unlike traditional story telling, news writing follows the “inverted pyramid” mechanism that consists of introducing the main information at the beginning of an article and pushing other elements to the margin, as shown in Figure 1 (Ingram and Henshall, 2008). Besides, news texts use a mechanism of gradual specification of event-related information, entailing a widespread use of coreference relations among the textual elements.

On the other hand, the IE aspect is concerned with the information that can be automatically acquired from news story texts, to allow for more efficient processing, retrieval, and analysis of massive news data nowadays available in digital form.

In this paper, we describe our preliminary study on annotating event mention representations in news stories. Our work rests on two main assumptions. The first assumption is that event in news substantially differ from events in other texts, which warrants the use of a specific annotation scheme for news events. The second assumption is that, because news events can be analyzed from different aspects, it makes sense also to use different annotation layers for the different aspects. To this end, in this paper we propose a two-layer annotation scheme, designed to capture the functional and the conceptual aspects of event mentions separately. In addition, we carry out a preliminary annotation using the proposed scheme and analyze the annotation quality in terms of inter-annotator agreement.

The study presented in this paper is part of our research on high-precision models for event extraction from news. We hypothesize that the precision can be improved by modeling and extracting the different aspects of news events separately, and then combining the extracted information by leveraging the complementarities of the models. As a
When electricians wired the home of Mrs Mary Ume in Hohola, Port Moresby, some years ago they neglected to install sufficient insulation at a point in the laundry where a number of wires crossed. A short-circuit occurred early this morning. Contact between the wires is thought to have created a spark, which ignited the walls of the house. The flames quickly spread through the entire house. Mrs Ume, her daughter Peni (aged ten) and her son Jonah (aged five months) were asleep in a rear bedroom. They had no way of escape and all perished.

A Port Moresby woman and her two children died in a house fire in Hohola today. Mrs Mary Ume, her ten-year-old daughter Peni and baby son Jonah were trapped in a rear bedroom as flames swept through the house. The fire started in the laundry, where it is believed faulty electrical wiring caused a short-circuit. The family were asleep at the time. The flames quickly spread and soon the entire house was blazing.

<table>
<thead>
<tr>
<th>Narrative</th>
<th>News</th>
</tr>
</thead>
<tbody>
<tr>
<td>When electricians wired the home of Mrs Mary Ume in Hohola, Port Moresby, some years ago they neglected to install sufficient insulation at a point in the laundry where a number of wires crossed.</td>
<td>A Port Moresby woman and her two children died in a house fire in Hohola today. Mrs Mary Ume, her ten-year-old daughter Peni and baby son Jonah were trapped in a rear bedroom as flames swept through the house. The fire started in the laundry, where it is believed faulty electrical wiring caused a short-circuit. The family were asleep at the time. The flames quickly spread and soon the entire house was blazing.</td>
</tr>
</tbody>
</table>

Table 1: An example of narrative and news styles (Ingram and Henshall, 2008).
This ontology represents events solving two competency questions about the participants in the events and the previous events that caused the event in question. EVENT Model F is based on the foundational ontology DOLCE+DnS Ultra-lite (DUL) (Gangemi et al., 2002) and it focuses on the participants involved in the event and on mereological, causal, and correlative relationships between events.

Most of the proposed ontologies are tailored for financial or economic domains. A case in point is The newsEvent Ontology, a conceptual scheme for describing events in business events (Lösch and Nikitina, 2009).

3 Methodology

Our methodology arises from the idea that events in news call for a representation that is different from event representations in other texts. We believe that a coherent and consistent description and, subsequently, extraction of event mentions in news stories should be dealt with conveying temporal information (When), but also distinguishing other information related to the action (What), the participants (Who), the location (Where), the motivation (Why) and the manner in which the event happened (How). This means that a meaningful news/event description should cover the proverbial 5Ws and one H, regarded basic in information gathering, providing a factual answer for all these aspects.

The above assumption implies that events cannot be considered black boxes or monolithic blocks describable merely by means of the temporal chain description. Instead, it is necessary to capture the functional and conceptual aspects of event mentions. Indeed, as previously claimed, language used in news stories is characterized by mechanisms that differ from the narrative one. Such differences may manifest themselves in both the syntactic structures and the patterns of discursive features that effect the sentence structure.

In line with the above, our approach aims at accomplishing a fine-grained description of event mentions in news stories applying a two-layer annotation scheme. The first layer conveys the different syntactic structures of sentences, accounting the functional aspects and the components in events on the basis of their role. As noted by Papafragou (2015), “information about individual event components (e.g., the person being affected by an action) or relationships between event components that determine whether an event is coherent can be extracted rapidly by human viewers”.

On the other hand, the second layer is suitable also to recognize the general topic or theme that underlies a news story, due to the fact that this layer concerns conceptual aspects. This theme can be described as a “semantic macro-proposition”, namely a proposition composed by the sequences of propositions retrievable in the text (Van Dijk, 1991). Thus, the conceptual scheme makes it possible to recognize these structures reducing the complexity of the information and guaranteeing a summarization process that is closer to users’ representation.

3.1 Functional Layer

Following the previously-mentioned broad definition of an event in news as something that happens or occurs, in the functional annotation layer we focus on the lower level representation of events, closer to the linguistic level.

We represent each event with an event action and a variable number of arguments of different (sub)categories. The event action is most commonly the verb associated with the event (e.g., “destroyed”, “awarded”), however it can also be other parts of speech (e.g., “explosion”) or a multiword expression (e.g., “give up”). The action defines the focus of the event and answers the “What happened” question, and is the main part of an event mention.

Along with the event action, we define four main categories of event arguments to be annotated, which are then split into fine-grained subcategories, as shown in Table 2. We subcategorize the standard Participant category into the AGENT, PATIENT, and OTHERPARTICIPANT subcategories. We further divide each of the aforementioned subcategory into HUMAN and NON-HUMAN subcategories. The AGENT subcategory pertains to the entities that perform an action either deliberately (usually in the case of human agents) or mindlessly (natural causes, such as earthquakes or hurricanes). The PATIENT is the entity that undergoes the action and, as a result of the action, changes its state. The TIME and LOCATION categories serve to further specify the event.
Finally, the OTHER_ARGUMENT category covers themes and instruments (Baker, 1997; Jackendoff, 1985) of an action. Table 3 gives an example of sentence “Barcelona defeated Real Madrid yesterday at Camp Nou” annotated using the functional layer.

The action’s arguments focus on the specifics of the event that occurred. We depart from the standard arguments that can be found in schemes like ECB+ (Cybulska and Vossen, 2014a) or TimeML (Pustejovsky et al., 2003) in that we included the Other_argument category. Furthermore, in TimeML, predicates related to states or circumstances are considered as events, while in the scope of this work, sentences describing a state, e.g., “They live in Maine”, are not annotated. In fact, we argue that they do not represent the focus in news, but merely describe the situation surrounding the event.

Our functional annotation differs from PropBank (Palmer et al., 2005) definitions of semantic roles as we do not delineate our functional roles through a verb-by-verb analysis. More concretely, PropBank adds predicate-argument relations to the syntactic trees of the Penn Treebank, representing these relations as framesets, which describe the different sets of roles required for the different meanings of the verb. In contrast, our analysis aims to describe the focus of an event mention by means of identifying actions, which can involve also other lexical elements in addition to the verb. This is easily demonstrated through the example “fire broke out” from Figure 2a, where we annotate “fire broke out” as an action, since it fully specifies the nature of the event defining in a less general way the action.

Table 3: Sample of functional event annotation.

<table>
<thead>
<tr>
<th>Text span</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcelona</td>
<td>AGENT</td>
</tr>
<tr>
<td>defeated</td>
<td>ACTION</td>
</tr>
<tr>
<td>Real Madrid</td>
<td>PATIENT</td>
</tr>
<tr>
<td>yesterday</td>
<td>TIME</td>
</tr>
<tr>
<td>at Camp Nou</td>
<td>GEOLOCATION</td>
</tr>
</tbody>
</table>

Table 4: Main entity classes and properties.

<table>
<thead>
<tr>
<th>Entity</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSON</td>
<td>IDENTITY</td>
</tr>
<tr>
<td>ORGANIZATION</td>
<td>ASSOCIATION</td>
</tr>
<tr>
<td>ANIMAL</td>
<td>PARTICIPATION</td>
</tr>
<tr>
<td>OBJECT</td>
<td>OCCURRENCE</td>
</tr>
<tr>
<td>PLACE</td>
<td>ATTRIBUTION</td>
</tr>
<tr>
<td>TIME</td>
<td>CONSTRUCTION</td>
</tr>
<tr>
<td>MANIFESTATION</td>
<td>CREATION</td>
</tr>
<tr>
<td>ACTION</td>
<td>MODIFICATION</td>
</tr>
<tr>
<td>LOCATION</td>
<td>SUPPORT</td>
</tr>
<tr>
<td>DEATH</td>
<td>PURPOSE</td>
</tr>
<tr>
<td>DEATH</td>
<td>CLASSIFICATION</td>
</tr>
</tbody>
</table>

3.2 Conceptual Layer

In order to represent semantically meaningful event mentions and, consequently, to develop an ontology of the considered domain, we define also a second layer of annotation, namely a conceptual model for news stories. This model, putting forward a classification of the main concepts retrievable in news stories, defines seven entity classes, six entity subclasses, and eighteen properties (Table 4).

Entities and properties. Entity classes are defined in order to represent a set of different individuals, sharing common characteristics. Thus, being representative of concepts in the domain, entities may be identified by noun phrases. On the other hand, properties describe the relations that link entity classes to each other and can be represented by the verb phrase. For this reason, each property is associated with some association rules that specify the constraints related to both its syntactic behaviors and the pertinence and the intensity of the property itself. In other words, these association rules contribute to the description of the way in which entity classes can be combined through properties in sentence contexts. To formalize such rules in the form of a set of axioms, we take in consideration the possibility of combining semantic and lexical behaviors, suitable for identifying specific event patterns. Thus, for in-
stance, the property MOVEMENT may connect the entity class PERSON and the entity classes PLACE and TIME, but the same property cannot be used to describe the relation between MANIFESTATION and PLACE. The definition of these rules, and the corresponding axioms, relies on word combination principles that may occur in a language, derived from an analysis of work of Harris (1988), and conceptual considerations related to the domain.

Factuality. To represent the factuality in event descriptions, we specify three attributes for each property: polarity, speculation, and passive markers. The polarity refers to the presence of an explicit negation of the verb phrase or the property itself. The speculation attribute for the property identifies something that is characterized by speculation or uncertainty. Such an attribute is associated with the presence of some verbal aspects (e.g., the passive applied to specific verbs as in they were thought to be), some specific constructions/verbs (e.g., to suggest, to suppose, to hypothesize, to propose) or modality verbs. According to Hodge and Kress (1988), the “modality refers to the status, authority and reliability of a message, to its ontological status, or to its value as truth or fact”. Finally, we use an attribute for a passive marker due to the fact that passive voice is used mainly to indicate a process and can be applied to infer factual information. Note that, although the time marker is typically considered to be indicative of factuality, we prefer to avoid annotating time markers in our schema. Thus, we infer the temporal chain in event mentions by means of both temporal references in the sentence, e.g., the presence of adverbs of time, and the syntactic tense of the verb.

Coreference. To account for the coreference phenomenon among entities, we introduce a symmetric-transitive relation taking two entity classes as arguments. This allows for annotation of two types of coreference, identity and apposition, and can be used at inter-sentence level to annotate single or multiple mentions of the same entity; an example is shown in Table 5.

Complex events. In the description of event mentions in news stories we often encounter sentence structures expressing complex events, i.e., events characterized by the presence of more than one binary relation among their elements. Due to the fact that properties generally express binary relationships between two entity classes, we introduce N-ary relations, namely reified relations, in order to describe these complex structures. The reified relations allow for the description of complex events composed by more than two entities and one property. According to the recommendation of the W3C, these additional elements, which contribute to constitute complex events, can be formalized as a value of the property or as other arguments (entity classes) occurring in the sentence. In our scheme, we decide to deal with some of these reified relations creating three additional entity classes – MANNER, SCOPE, and INSTRUMENT – which may hold heterogeneous elements. Nevertheless, these elements present a shared intensive property defined by the main property they refer to.

4 Annotation Task

To calibrate the two annotation schemes, we performed two rounds of annotation on a set of news stories in English. We hired four annotators to work on each layer separately, to avoid interference between the layers.

We set up the annotation task as follows. First, we collected a corpus of news documents. Secondly, we gave each of four annotators per schema the same document set to annotate, along with the guidelines for that schema. We then examined the inter-annotator agreement for the documents, and discussed the major disagreements in person with the annotators. After the discussion, we revised the guidelines and again gave the annotators the

<table>
<thead>
<tr>
<th>Text span</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blasts MANMADEEVENT*</td>
<td></td>
</tr>
<tr>
<td>which MANMADEEVENT*</td>
<td></td>
</tr>
<tr>
<td>killed DEATH</td>
<td></td>
</tr>
<tr>
<td>38 COLLECTIVE</td>
<td></td>
</tr>
<tr>
<td>by stadium PLACE</td>
<td></td>
</tr>
<tr>
<td>claimed by DECLARATION (passive)</td>
<td></td>
</tr>
<tr>
<td>TAK ORGANIZATION</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Sample of coreference and attribute annotation (* denotes coreferring elements).
The motivation for using the F1-score along with Cohen’s kappa coefficient lies in the fact that Cohen’s kappa treats the untagged tokens as true negatives. If the majority of tokens is untagged, the agreement values will be inflated, as demonstrated by Cybulska and Vossen (2014b). In contrast, the F1-score disregards the untagged tokens, and is therefore a more suitable measure for sequence labeling tasks. In our case, the ratio of untagged vs. tagged tokens was less skewed (6:4 and 1:2 for the functional and conceptual layer, respectively), i.e., for both annotation layers a fair portion of text is covered by annotated text spans, which means that the discrepancy between kappa values and F1-scores is expected to be lower.

We compute the IAA across all annotator pairs working on the same document, separately for the same round of annotation, and separately for each annotation layer. We then calculate the IAA averaged across the five documents, along with standard deviations. Table 6 shows the IAA scores.

For the functional layer, the Cohen’s kappa coefficient is above 0.4, which, according to Landis and Koch (1977), is considered a borderline between fail and moderate agreement. Interestingly enough, the kappa agreement dropped between the first and the second round. We attribute this to the fact that the set of labels was refined (extended) between the two rounds, based on the discussion we had with the annotators after the first round of annotations. Apparently, the refinement made the annotation task more difficult, or we failed to cater for it in the guidelines. Conversely, for the conceptual layer, the agreement in first round was lower, but increased to a moderate level in the second round. The same observations hold for the F1-strict and F1-lenient measures. Furthermore, the IAA scores for the second round for the conceptual layer are higher than for the functional layer.

A number of factors could be at play here: the annotators working on the conceptual layer were perhaps more skilled, the guidelines were more comp-
prehensive, or the task is inherently less difficult or perhaps more intuitive.

While the IAA scores may seem moderate at first, one has to bear in mind the total number of different labels, which is 17 and 28 for the functional and conceptual layer, respectively. In view of this, and considering also the fact that this is a preliminary study, we consider the moderate agreement scores to be very satisfactory. Nonetheless, we believe the scores could be improved even further with additional calibration rounds.

6 Comparative analysis

In this section, we provide examples of a couple of sentences annotated in both layers, along with a brief discussion on why we believe that each layer compensates the shortcomings of the other.

Fig. 1 provides an example of a sentence annotated in the functional and conceptual layer. We observe that the last part of the sentence, “reading: Bye all!!!”, is not annotated in the functional layer (Fig. 1a). This is due to the fact that the last part is a modifier of the patient, and not the action. Even though we could argue that in this case the information provided by the modifier is unimportant for the event, we could conceive of a content of the note that would indeed be important. Along with that, any modifier of the event arguments that is not directly linked to the arguments is not annotated in the functional layer, leading to information loss. We argue that in such cases the conceptual layer (Fig. 1b) is more suited towards gathering the full picture of the event along with all the descriptions.

Fig. 2a exemplifies the case where, in the functional layer, the action is a noun phrase. Such cases are intentionally meant to be labeled as actions as they change the meaning of the verb itself. In the conceptual case (Fig. 2b), as the occurrence we label “broke out”, a phrase that, although clear, gives no indication of the true nature of the event, and the conceptual layer relies on the “natural event” argument for the full understanding of the event. We argue that having a noun phrase as an action, such as in the functional layer, is a more natural representation of an event as it fully answers the “What” question. We also argue that making a distinction between “fire broke out” and “broke out” as actions is beneficial for the training of the event extraction model as it emphasizes the distinction between a verb and an action.

7 Conclusions

We have presented a two-layered scheme for the annotation of event mentions in news, conveying different information aspects: the functional aspect and the conceptual aspect. The first one deals with a more general analysis of sentence structures in news and the lexical elements involved in events. The conceptual layer aims at describing event mentions in news focusing on the “semantic macro-propositions”, which compose the theme of the news story.

Our approach to event mentions in news is a part of a research project on high-precision news event extraction models. The main hypothesis, leading the development of our system, is that the precision of models can be improved by modeling and extracting separately the different aspects of news events, and then combining the extracted information by leveraging the complementarities of the models. As part of this examination, we have presented also a preliminary analysis of the inter-annotator agreement.

Acknowledgments

This work has been funded by the Unity Through Knowledge Fund of the Croatian Science Foundation, under the grant 19/15: “EVEnt Retrieval Based on semantically Enriched Structures for Inter-Active user Tasks (EVERBEST)”.

References

A-L Minard, Manuela Speranza, Ruben Urizar, Begona Altuna, MGJ van Erp, AM Schoen, CM van Son, et al. 2016a. MEANTIME, the NewsReader multilingual event and time corpus.

Tdt TDT. 2004. Annotation manual version 1.2. From knowledge accumulation to accommodation: cycles of collective cognition in work groups.

Teun A. Van Dijk. 1991. Media contents: the interdisciplinary study of news as discourse, a handbook of qualitative methodologies for mass communication research.

Word Similarity Datasets for Indian Languages: Annotation and Baseline Systems

Syed S. Akhtar Arihant Gupta Avijit Vajpayee Arjit Srivastava M. Shrivastava
International Institute of Information Technology
Hyderabad, Telangana, India
{syed.akhtar,arihant.gupta,arjit.srivastava}@research.iiit.ac.in, avijit.vajpayee@students.iiit.ac.in, manish.shrivastava@iiit.ac.in

Abstract

With the advent of word representations, word similarity tasks are becoming increasingly popular as an evaluation metric for the quality of the representations. In this paper, we present manually annotated monolingual word similarity datasets of six Indian languages – Urdu, Telugu, Marathi, Punjabi, Tamil and Gujarati. These languages are most spoken Indian languages worldwide after Hindi and Bengali. For the construction of these datasets, our approach relies on translation and re-annotation of word similarity datasets of English. We also present baseline scores for word representation models using state-of-the-art techniques for Urdu, Telugu and Marathi by evaluating them on newly created word similarity datasets.

1 Introduction

Word representations are being increasingly popular in various areas of natural language processing like dependency parsing (Bansal et al., 2014), named entity recognition (Miller et al., 2004) and parsing (Socher et al., 2013). Word similarity task is one of the most popular benchmark for the evaluation of word representations. Applications of word similarity range from Word Sense Disambiguation (Patwardhan et al., 2005), Machine Translation Evaluation (Lavie and Denkowski, 2009), Question Answering (Mohler et al., 2011), and Lexical Substitution (Diana and Navigli, 2009).

Word Similarity task is a computationally efficient method to evaluate the quality of word vectors. It relies on finding correlation between human assigned semantic similarity (between words) and corresponding word vectors. We have used Spearman’s Rho for calculating correlation. Unfortunately, most of the word similarity tasks have been majorly limited to English language because of availability of well annotated different word similarity test datasets and large corpora for learning good word representations, where as for Indian languages like Marathi, Punjabi, Telugu etc. – which even though are widely spoken by significant number of people, are still computationally resource poor languages. Even if there are models trained for these languages, word similarity datasets to test reliability of corresponding learned word representations do not exist.

Hence, primary motivation for creation of these six word similarity datasets has been to provide necessary evaluation resources for all the current and future work in field of word representations on these six Indian languages – all ranked in top 25 most spoken languages in the world, since no prior word similarity datasets have been publicly made available.

The main contribution of this paper is the set of newly created word similarity datasets which would allow for fast and efficient comparison between. Word similarity is one of the most important evaluation metric for word representations and hence as an evaluation metric, these datasets would promote development of better techniques that employ word representations for these languages. We also present baseline scores using state-of-the-art techniques which were evaluated using these datasets.

The paper is structured as follows. We first discuss the corpus and techniques used for training our models in section 2 which are later used for evaluation. We then talk about relevant related work that has been done with respect to word similarity datasets in section 3. We then move on to explain how these datasets have been created in section 4 followed by our evaluation criteria and
experimental results of various models evaluated on these datasets in section 5. Finally, we analyze and explain the results in section 6 and finish this paper with how we plan to extend our work in section 7.

2 Datasets

For all the models trained in this paper, we have used the Skip-gram, CBOW (Mikolov et al., 2013a) and FastText (Bojanowski et al., 2016) algorithms. The dimensionality has been fixed at 300 with a minimum count of 5 along with negative sampling.

As training set of Marathi, we use the monolingual corpus created by IIT-Bombay. This data contains 27 million tokens. For Urdu, we use the untagged corpus released by Jawaid et. al. (2014) containing 95 million tokens. For Telugu, we use Telugu wikidump available at https://archive.org/details/tewiki-20150305 having 11 million tokens.

For testing, we use the newly created datasets. The word similarity datasets for Urdu, Marathi, Telugu, Punjabi, Gujarati and Tamil contain 100, 104, 111, 143, 163 and 97 word pairs respectively.

For rest of the paper, we have calculated the Spearman ρ (multiplied by 100) between human assigned similarity and cosine similarity of our word embeddings for the word-pairs. For any word which was is not found, we assign it a zero vector.

In order to learn initial representations of the words, we train word embeddings (word2vec) using the parameters described above on the training set.

3 Related Work

Multitude of word similarity datasets have been created for English, like WordSim-353 (Finkelstein et al., 2002), MC-30 (Miller and Charles, 1991), Simlex-999 (Hill et al., 2016), RG-65 (Rubenstein and Goodenough, 2006) etc. RG-65 is one of the oldest and most popular datasets, being used as a standard benchmark for measuring reliability of word representations.

RG-65 has also acted as base for various other word similarity datasets created in different languages: French (Joubarne and Inkpen, 2011), German (Zesch and Gurevyc, 2006), Portuguese (Granada et al., 2014), Spanish and Farsi (Camacho-Collados et al., 2015). While German and Portuguese reported IAA (Inter Annotator Agreement) of 0.81 and 0.71 respectively, no IAA was calculated for French. For Spanish and Farsi, inter annotator agreement of 0.83 and 0.88 respectively was reported. Our datasets were created using RG-65 and WordSim-353 as base, and their respective IAA(s) are mentioned later in the paper.

4 Construction of Monolingual Word Similarity datasets

4.1 Translation

English RG-65 and WordSim-353 were used as base for creating all of our six different word similarity datasets. Translation of English data set to target language (one of the six languages) was manually done by a set of three annotators who are native speakers of the target language and are fluent in English. Initially, translations were provided by two of them, and in case of disparity, third annotator was used as a tie breaker.

Finally, all three annotators reached a final set of translated word pairs in target language, ensuring that there were no repeated word pairs. This approach was followed by Camacho-Collados et al. (2015) where they created word similarity datasets for Spanish and Farsi in a similar manner.

4.2 Scoring

For each of the six languages, 8 native speakers were asked to manually evaluate each word similarity data set individually. They were instructed to indicate, for each pair, their opinion of how similar in meaning the two words are on a scale of 0-10, with 10 for words that mean the same thing, and 0 for words that mean completely different things. The guidelines provided to the annotators were based on the SemEval task on Cross-Level Semantic Similarity (Jurgens et al., 2014), which provides clear indications in order to distinguish similarity and relatedness.

The results were averaged over the 8 responses for each word similarity data set, and each data set saw good agreement amongst the evaluators, except for Tamil, which saw relatively weaker agreement with respect to other languages (see table 1).

5 Evaluation

5.1 Inter Annotator Agreement (IAA)

The meaning of a sentence and its words can be interpreted in different ways by different read-
ers. This subjectivity can also reflect in annotation of sentences of a language despite the annotation guidelines being well defined. Therefore, inter-annotator agreement is calculated to give a measure of how well the annotators can make the same annotation decision for a certain category.

<table>
<thead>
<tr>
<th>Language</th>
<th>Inter Annotator Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urdu</td>
<td>0.887</td>
</tr>
<tr>
<td>Punjabi</td>
<td>0.821</td>
</tr>
<tr>
<td>Marathi</td>
<td>0.808</td>
</tr>
<tr>
<td>Tamil</td>
<td>0.756</td>
</tr>
<tr>
<td>Telugu</td>
<td>0.866</td>
</tr>
<tr>
<td>Gujarati</td>
<td>0.867</td>
</tr>
</tbody>
</table>

Table 1: Inter Annotator Agreement (Fleiss Kappa) scores for word similarity datasets created for six languages.

5.1.1 Fleiss’ Kappa

Fleiss’ kappa is a statistical measure for assessing the reliability of agreement between a fixed number of raters when assigning categorical ratings to a number of items or classifying items. This contrasts with other kappas such as Cohen’s kappa, which only work when assessing the agreement between not more than two raters or the intrarater reliability for one appraiser versus himself. The measure calculates the degree of agreement in classification over that which would be expected by chance (Wikipedia contributors, 2017).

We have calculated Fleiss’ Kappa for all our word similarity datasets (see table 1).

6 Result and Analysis

<table>
<thead>
<tr>
<th>System</th>
<th>Score</th>
<th>OOV</th>
<th>Vocab</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBOW</td>
<td>28.30</td>
<td>19</td>
<td>130K</td>
</tr>
<tr>
<td>SG</td>
<td>34.40</td>
<td>19</td>
<td>130K</td>
</tr>
<tr>
<td>FastText</td>
<td>34.61</td>
<td>19</td>
<td>130K</td>
</tr>
<tr>
<td>FastText w/ OOV</td>
<td>45.47</td>
<td>14</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Results for Urdu

We present baseline scores using state of the art techniques – CBOW and Skipgram (Mikolov et al., 2013a) and FastText-SG (Bojanowski et al., 2016), evaluated using our word similarity datasets in tables 2, 3 and 4. As we can see the models trained encountered unseen word pairs when evaluated on their corresponding word similarity datasets. This goes on to show that all word pairs in our word similarity sets are not too common, and contain word pairs with some rarity.

We see that FastText w/ OOV (Out of Vocabulary) performed better than FastText in all the experiments, because character based models perform better than rest of the models since they are able to handle unseen words by generating word embeddings for missing words via character model.

7 Future Work

There are a lot of Indian languages that are still computationally resource poor even though they are widely spoken by significant number of people. Our work is a small step towards generating resources to further the research involving word representations on Indian languages.

To further extend our work, we will create rare-word word similarity datasets for six languages we worked on in this paper, and creating word similarity datasets for other major Indian languages as well.

We will also work on improving word representations for the languages we worked on, hence improve the baseline scores that we present here. This will require us to build new corpus to train our models for three languages that we couldn’t provide baseline scores for – Punjabi, Tamil and Gujarati and build more corpus for Urdu, Telugu and Marathi to train better word embeddings.

References

Alon Lavie, and Michael J. Denkowski. 2009. The METEOR metric for automatic evaluation of ma-

Colette Joubarne and Diana Inkpen. 2011. *Comparison of semantic similarity for different languages using the Google n-gram corpus and second-order co-occurrence measures.* In Advances in Artificial Intelligence – 24th Canadian Conference on Artificial Intelligence, pages 216-221.

The BECauSE Corpus 2.0: Annotating Causality and Overlapping Relations

Jesse Dunietz
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA
jdunietz@cs.cmu.edu

Lori Levin and Jaime Carbonell
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{lsl,jgc}@cs.cmu.edu

Abstract

Language of cause and effect captures an essential component of the semantics of a text. However, causal language is also intertwined with other semantic relations, such as temporal precedence and correlation. This makes it difficult to determine when causation is the primary intended meaning. This paper presents BECauSE 2.0, a new version of the BECauSE corpus with exhaustively annotated expressions of causal language, but also seven semantic relations that are frequently co-present with causation. The new corpus shows high inter-annotator agreement, and yields insights both about the linguistic expressions of causation and about the process of annotating co-present semantic relations.

1 Introduction

We understand our world in terms of causal networks – phenomena causing, enabling, or preventing others. Accordingly, the language we use is full of references to cause and effect. In the Penn Discourse Treebank (PDTB; Prasad et al., 2008), for example, over 12% of explicit discourse connectives are marked as causal, as are nearly 26% of implicit discourse relationships. Recognizing causal assertions is thus invaluable for semantic-oriented applications, particularly in domains such as finance and biology where interpreting these assertions can help drive decision-making.

In addition to being ubiquitous, causation is often co-present with related meanings such as temporal order (cause precedes effect) and hypotheticals (the if causes the then). This paper presents the Bank of Effects and Causes Stated Explicitly (BECauSE) 2.0, which offers insight into these overlaps. As in BECauSE 1.0 (Dunietz et al., 2015, in press), the corpus contains annotations for causal language. It also includes annotations for seven commonly co-present meanings when they are expressed using constructions shared with causality.

To deal with the wide variation in linguistic expressions of causation (see Neeleman and Van de Koot, 2012; Dunietz et al., 2015), BECauSE draws on the principles of Construction Grammar (CxG; Fillmore et al., 1988; Goldberg, 1995). CxG posits that the fundamental units of language are constructions – pairings of meanings with arbitrarily simple or complex linguistic forms, from morphemes to structured lexico-syntactic patterns.

Accordingly, BECauSE admits arbitrary constructions as the bearers of causal relationships. As long as there is at least one fixed word, any conventionalized expression of causation can be annotated. By focusing on causal language – conventionalized expressions of causation – rather than real-world causation, BECauSE largely sidesteps the philosophical question of what is truly causal. It is not concerned, for instance, with whether there is a real-world causal relationship within flu virus (virus causes flu) or delicious bacon pizza (bacon causes deliciousness); neither is annotated.

Nonetheless, some of the same overlaps and ambiguities that make real-world causation so hard to circumscribe seep into the linguistic domain, as well. Consider the following examples (with causal constructions in bold, CAUSES in small caps, and effects in italics):

(1) After I drank some water, I felt much better.
(2) As voters get to know Mr. Romney better, his poll numbers will rise.
(3) The more he complained, the less his captors fed him.
(4) The run on Bear Sterns created a crisis.
(5) The Iraqi government will let Represent-
tative Hall visit next week.

Each sentence conveys a causal relation, but piggybacks it on a related relation type. (1) uses a temporal relationship to suggest causality. (3) employs a correlative construction, and (2) contains elements of both time and correlation in addition to causation. (4), meanwhile, is framed as bringing something into existence, and (5) suggests both permission and enablement.

Most semantic annotation schemes have required that each token be assigned just one meaning. BE-CauSE 1.0 followed this policy, as well, but this resulted in inconsistent handling of cases like those above. For example, the meaning of *let* varies from “allow to happen” (clearly causal) to “verbalize permission” (not causal) to shades of both. These overlaps made it difficult for annotators to decide when to annotate such cases as causal.

The contributions of this paper are threefold. First, we present a new version of the BE-CauSE corpus, which offers several improvements over the original. Most importantly, the updated corpus includes annotations for seven different relation types that overlap with causality: temporal, correlation, hypothetical, obligation/permission, creation/termination, extremity/sufficiency, and context. Overlapping relations are tagged for any construction that can also be used to express a causal relationship. The improved scheme yields high inter-annotator agreement. Second, using the new corpus, we derive intriguing evidence about how meanings compete for linguistic machinery. Finally, we discuss the issues that the annotation approach does and does not solve. Our observations suggest lessons for future annotation projects in semantic domains with fuzzy boundaries between categories.

2 Related Work

Several annotation schemes have addressed elements of causal language. Verb resources such as VerbNet (Schuler, 2005) and PropBank (Palmer et al., 2005) include verbs of causation. Likewise, preposition schemes (e.g., Schneider et al., 2015, 2016) include some purpose- and explanation-related senses. None of these, however, unifies all linguistic realizations of causation into one framework; they are concerned with specific classes of words, rather than the semantics of causality.

FrameNet (Ruppenhofer et al., 2016) is closer in spirit to BE-CauSE, in that it starts from meanings and catalogs/annotates a wide variety of lexical items that can express those meanings. Our work differs in several ways. First, FrameNet represents causal relationships through a variety of unrelated frames (e.g., CAUSATION and THWARTING) and frame roles (e.g., PURPOSE and EXPLANATION). As with other schemes, this makes it difficult to treat causality in a uniform way. (The ASFALDA French FrameNet project recently proposed a reorganized frame hierarchy for causality, along with more complete coverage of French causal lexical units [Vieu et al., 2016]. Merging their framework into mainline FrameNet would mitigate this issue.) Second, FrameNet does not allow a lexical unit to evoke more than one frame at a time (although SALSA [Burchardt et al., 2006], the German FrameNet, does allow this).

The Penn Discourse Treebank includes causality under its hierarchy of contingency relations. Notably, PDTB does allow annotators to mark discourse relations as both causal and something else. However, it is restricted to discourse relations; it excludes other realizations of causal relationships (e.g., verbs and many prepositions), as well as PURPOSE relations, which are not expressed as discourse connectives. BE-CauSE 2.0 can be thought of as an adaptation of PDTB’s multiple-annotation approach. Instead of focusing on a particular type of construction (discourse relations) and annotating all the meanings it can convey, we start from a particular meaning (causality), find all constructions that express it, and annotate each instance in the text with all the meanings it expresses.

Other projects have attempted to address causality more narrowly. For example, a small corpus of event pairs conjoined with *and* has been tagged as causal or not causal (Bethard et al., 2008). The CaTeRS annotation scheme (Mostafazadeh et al., 2016), based on TimeML, also includes causal relations, but from a commonsense reasoning standpoint rather than a linguistic one. Similarly, Richer Event Description (O’Gorman et al., 2016) integrates real-world temporal and causal relations between events into a unified framework. A broader-coverage linguistic approach was taken by Mirza and Tonelli (2014), who enriched TimeML to include causal links and their lexical triggers. Their work differs from ours in that it requires arguments to be TimeML events; it requires causal connectives to be contiguous; and its guidelines define causality less precisely, relying on intuitive notions.
of causing, preventing, and enabling.

2.1 BECauSE 1.0

Our work is of course most closely based on BECauSE 1.0. Its underlying philosophy is to annotate any form of causal language – conventionalized linguistic mechanisms used to appeal to cause and effect. Thus, the scheme is not concerned with what real-world causal relationships hold, but rather with what relationships are presented in the text. It defines causal language as “any construction which presents one event, state, action, or entity as promoting or hindering another, and which includes at least one lexical trigger.” Each annotation consists of a cause span; an effect span; and a causal connective, the possibly discontinuous lexical items that express the causal relationship (e.g., because of or opens the way for).

3 Extensions and Refactored Guidelines in BECauSE 2.0

This update to BECauSE improves on the original in several ways. Most importantly, as mentioned above, the original scheme precluded multiple co-present relations. Tagging a connective as causal was taken to mean that it was primarily expressing causation, and not temporal sequence or permission. (In fact, temporal expressions that were intended to suggest causation were explicitly excluded.) Based on the new annotations, there were 210 instances in the original corpus where multiple relations were present and annotators had to make an arbitrary decision.1 The new scheme extends the previous one to include these overlapping relations.

Second, although the first version neatly handled many different kinds of connectives, adjectives and nouns were treated in a less general way. Verbs, adverbs, conjunctions, prepositions, and complex constructions typically have two natural slots in the construction. For example, the because construction can be schematized as ⟨effect⟩ because ⟨cause⟩, and the causative construction present in so loud it hurt as ⟨so cause⟩ (that) ⟨effect⟩.

Adjective and noun connectives, however, do not offer such natural positions for ⟨cause⟩ and ⟨effect⟩. In the following example, BECauSE 1.0 would annotate the connective as marked in bold: the

cause of her illness was dehydration. But this is an unparsimonious account of the causal construction: the copula and preposition do not contribute to the causal meaning, and other language could be used to tie the connective to the arguments. For instance, it would be equally valid to say her illness’ cause was dehydration, or even the chart listed her illness’ cause as dehydration. The new corpus addresses this by annotating just the noun or adjective as the connective (e.g., cause), and letting the remaining argument realization language vary. A number of connectives were similarly refactored to make them simpler and more consistent.

Finally, version 1.0 struggled with the distinction between the causing event and the causing agent. For example, in I caused a commotion by shattering a glass, either the agent (I) or the agent’s action (shattering a glass) could plausibly be annotated as the cause. The guidelines for version 1.0 suggested that the true cause is the action, so the agent should be annotated as the cause only when no action is described. (In such cases, the agent would be considered metonymic for the action.) However, given the scheme’s focus on constructions, it seems odd to say that the arguments to the construction change when a by clause is added.

The new scheme solves this by labeling the agent as the cause in both cases, but adding a MEANS argument for cases where both an agent and their action are specified.2

4 BECauSE 2.0 Annotation Scheme

4.1 Basic Features of Annotations

The second version of the BECauSE corpus retains the philosophy and most of the provisions of the first, with the aforementioned changes.

To circumscribe the scope of the annotations, we follow BECauSE 1.0 in excluding causal relationships with no lexical trigger (e.g., He left. He wasn’t feeling well); connectives that lexicalize the means or result of the causation (e.g., kill or convince); and connectives that underspecify the nature of the causal relationship (e.g., linked to).

Another possibility would have been to divvy up causes into CAUSE and AGENT arguments. Although FrameNet follows this route in some of its frames, we found that this distinction was difficult to make in practice. For example, a non-agentive cause might still be presented with a separate means clause, as in inflammation triggers depression by altering immune responses. In contrast, MEANS are relatively easy to identify when present, and tend to exhibit more consistent behavior with respect to what constructions introduce them.
As in BECauSE 1.0, the centerpiece of each instance of causal language is the causal connective. The connective is not synonymous with the causal construction; rather, it is a lexical proxy indicating the presence of the construction. It consists of all words present in every use of the construction. For example, the bolded words in enough money for us to get by would be marked as the connective. Annotators’ choices of what to include as connectives were guided by a constructicon, a catalog of constructions specified to a human-interpretable level of precision (but not precise enough to be machine-interpretable). The constructicon was updated as needed throughout the annotation process.

In addition to the connective, each instance includes cause and effect spans. (Either the cause or the effect may be absent, as in a passive or infinitive.) BECauSE 2.0 also introduces the means argument, as mentioned above. Means arguments are annotated when an agent is given as the cause, but the action taken by that agent is also explicitly described, or would be but for a passive or infinitive. They are marked only when expressed as a by or via clause, a dependent clause (e.g., Singing loudly, she caused winces all down the street), or a handful of other conventional devices. If any of an instance’s arguments consists of a bare pronoun, including a relativizing pronoun such as that, a coreference link is added back to its antecedent (assuming there is one in the same sentence).

The new scheme distinguishes three types of causation, each of which has slightly different semantics: consequence, in which the cause naturally leads to the effect; motivation, in which some agent perceives the cause, and therefore consciously thinks, feels, or chooses something; and purpose, in which an agent chooses the effect because they desire to make the cause true. Unlike BECauSE 1.0, the new scheme does not include evidentiary uses of causal language, such as She met him previously, because she recognized him yesterday. These were formerly tagged as inference. We eliminated them because unlike other categories of causation, they are not strictly causal, and unlike other overlapping relations, they never also express true causation; they constitute a different sense of because.

The scheme also distinguishes positive causation (facilitate) from inhibitory causation (inhibit); see Dunietz et al. (2015) for full details.

Examples demonstrating all of these categories are shown in Table 1.

4.2 Annotating Overlapping Relations

The constructions used to express causation overlap with many other semantic domains. For example, the if/then language of hypotheticals and the so (adjective) construction of extremity have become conventionalized ways of expressing causation, usually in addition to their other meanings. In this corpus, we annotate the presence of these overlapping relations, as well.

A connective is annotated an instance of either causal language or a non-causal overlapping relation whenever it is used in a sense and construction that can carry causal meaning. The operational test for this is whether the word sense and linguistic structure allow it to be coerced into a causal interpretation, and the meaning is either causal or one of the relation types below.

Consider, for example, the connective without. It is annotated in cases like without your support, the campaign will fail. However, annotators ignored uses like we left without saying goodbye, because in this linguistic context, without cannot be coerced into a causal meaning. Likewise, we include if as a hypothetical connective, but not suppose that, because the latter cannot indicate causality.

All overlapping relations are understood to hold between an ARGc and an ARGe. When annotating a causal instance, ARGc and ARGe refer to the cause and effect, respectively. When annotating a non-causal instance, ARGc and ARGe refer to the arguments that would be cause and effect if the instance were causal. For example, in a temporal relation, ARGc would be the earlier argument and ARGe would be the later one.

The following overlapping relation types are annotated:

- **temporal**: when the causal construction explicitly foregrounds a temporal order between two arguments (e.g., once, after) or simultaneity (e.g., as, during).
- **correlation**: when the core meaning of the causal construction is that ARGc and ARGe vary together (e.g., as, the more... the more...).
- **hypothetical**: when the causal construction explicitly imagines that a questionable premise is true, then establishes what would hold in the world where it is (e.g., if... then...).
- **obligation/permission**: when ARGe (effect) is an agent’s action, and ARGc (cause)
We are in serious economic trouble because of inadequate regulation.
The new regulations should prevent future crises.

The remainder of the document was not annotated due to constraints on available annotation effort.

Table 1: Examples of every allowed combination of the three types of causal language and the two degrees of causation (with connectives in bold, causes in small caps, and effects in italics).

<table>
<thead>
<tr>
<th>Facilitate</th>
<th>Inhibit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence</td>
<td>Inhibit</td>
</tr>
<tr>
<td>We are in serious economic trouble because of inadequate regulation.</td>
<td>The new regulations should prevent future crises.</td>
</tr>
<tr>
<td>Motivation</td>
<td>Purpose</td>
</tr>
<tr>
<td>We don’t have much time, so let’s move quickly.</td>
<td>Coach them in handling complaints so that they can resolve problems immediately.</td>
</tr>
<tr>
<td>Purpose</td>
<td>Context</td>
</tr>
<tr>
<td>Coach them in handling complaints so that they can resolve problems immediately.</td>
<td>When the construction clarifies the conditions under which the effect occurs (e.g., generate, eliminate).</td>
</tr>
</tbody>
</table>

is presented as some norm, rule, or entity with power that is requiring, permitting, or forbidding ARGE to be performed (e.g., require in the legal sense, permit).

- **Creation/Termination**: when the construction frames the relationship as an entity or circumstance being brought into existence or terminated (e.g., generate, eliminate).
- **Extremity/Sufficiency**: when the causal construction also expresses an extreme or sufficient/insufficient position of some value on a scale (e.g., so... that..., sufficient... to...).
- **Context**: when the construction clarifies the conditions under which the effect occurs (e.g., with, without, when in non-temporal uses). For instance, With supplies running low, we didn’t even make a fire that night.

All relation types present in the instance are marked. For example, **so offensive that I left** would be annotated as both causal (Motivation) and Extremity/Sufficiency. When causality is not present in a use of a sometimes-causal construction, the instance is annotated as Non-Causal, and the overlapping relations present are marked.

It can be difficult to determine when language that expresses one of these relationships was also intended to convey a causal relationship. Annotators used a variety of questions to assess an ambiguous instance, largely based on Grivaz (2010):

- **The “why” test**: After reading the sentence, could a reader reasonably be expected to answer a “why” question about the potential effect argument? If not, it is not causal.
- **The temporal order test**: Is the cause asserted to precede the effect? If not, it is not causal.
- **The counterfactual test**: Would the effect have been just as probable to occur or not occur had the cause not happened? If so, it is not causal.
- **The ontological asymmetry test**: Could you just as easily claim the cause and effect are reversed? If so, it is not causal.

- **The linguistic test**: Can the sentence be rephrased as “It is because (of) X that Y” or “X causes Y?” If so, it is likely to be causal.

Figure 1 showcases several fully-annotated sentences that highlight the key features of the new BECauSE scheme, including examples of overlapping relations.

5 BECauSE 2.0 Corpus

5.1 Data

The BECauSE 2.0 corpus is an expanded version of the dataset from BECauSE 1.0. It consists of:

- 59 randomly selected articles from the year 2007 in the Washington section of the New York Times corpus (Sandhaus, 2008)
- 47 documents randomly selected from sections 2-23 of the Penn Treebank (Marcus et al., 1994)
- 679 sentences transcribed from Congress’ Dodd-Frank hearings, taken from the NLP Unshared Task in PoliInformatics 2014 (Smith et al., 2014)
- 10 newspaper documents (Wall Street Journal and New York Times articles, totalling 547 sentences) and 2 journal documents (82 sentences) from the Manually Annotated Sub- Corpus (MASC; Ide et al., 2010)

The first three sets of documents are the same dataset that was annotated for BECauSE 1.0.

5.2 Inter-Annotator Agreement

Inter-annotator agreement was calculated between the two primary annotators on a sample of 260

3Publicly available, along with the constructicon, at https://github.com/duncanka/BECauSE.

4We excluded WSJ documents that were either earnings reports or corporate leadership/structure announcements, as both tended to be merely short lists of names/numbers.

5The remainder of the document was not annotated due to constraints on available annotation effort.
18 months after the congress approved private enterprise, district authorities allowed Mr. Chan to resume work.

The U.S. is required to notify foreign dictators if it knows of coup plans likely to endanger their lives.

18 months after the congress approved private enterprise, district authorities allowed Mr. Chan to resume work.

The U.S. is required to notify foreign dictators if it knows of coup plans likely to endanger their lives.

Figure 1: Several example sentences annotated in BRAT (Stenetorp et al., 2012). The question mark indicates a hypothetical, the clock symbol indicates a temporal relation, and the thick exclamation point indicates obligation/permission.

<table>
<thead>
<tr>
<th>Causal</th>
<th>Overlapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connective spans (F_1)</td>
<td>0.77</td>
</tr>
<tr>
<td>Relation types (κ)</td>
<td>0.70</td>
</tr>
<tr>
<td>Degrees (κ)</td>
<td>0.92</td>
</tr>
<tr>
<td>Cause/ArgC spans (%)</td>
<td>0.89</td>
</tr>
<tr>
<td>Cause/ArgC spans (J)</td>
<td>0.92</td>
</tr>
<tr>
<td>Cause/ArgC heads (%)</td>
<td>0.92</td>
</tr>
<tr>
<td>Effect/ArgE spans (%)</td>
<td>0.86</td>
</tr>
<tr>
<td>Effect/ArgE spans (J)</td>
<td>0.93</td>
</tr>
<tr>
<td>Effect/ArgE heads (%)</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 2: Inter-annotator agreement for the new version of BECauSE. κ indicates Cohen’s kappa; J indicates the average Jaccard index, a measure of span overlap; and % indicates percent agreement of exact matches. Each κ and argument score was calculated only for instances with matching connectives.

Means arguments were not included in this evaluation, as they are quite rare – there were only two in the IAA dataset, one of which was missed by one annotator and the other of which was missed by both. Both annotators agreed with these two means arguments once they were pointed out.

The corpus contains a total of 5380 sentences, among which are 1803 labeled instances of causal language. 1634 of these, or 90.7%, include both cause and effect arguments. 587 – about a third – involve overlapping relations. The corpus also includes 583 non-causal overlapping relation annotations. The frequency of both causal and overlapping relation types is shown in Table 3.

A few caveats about these statistics: first, PURPOSE annotations do not overlap with any of the categories we analyzed. However, this should not be interpreted as evidence that they have no overlaps. Rather, they seem to inhabit a different part of the semantic space. PURPOSE does share some language with origin/destination relationships (e.g., toward the goal of, in order to achieve my goals), both diachronically and synchronically; see §7.
Table 3: Statistics of various combinations of relation types. Note that there are 9 instances of TEMPORAL+CORRELATION and 3 instances of TEMPORAL+CONTEXT. This makes the bottom totals less than the sum of the rows.

<table>
<thead>
<tr>
<th></th>
<th>CONSEQUENCE</th>
<th>MOTIVATION</th>
<th>PURPOSE</th>
<th>All causal</th>
<th>NON-CAUSAL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>625</td>
<td>319</td>
<td>272</td>
<td>1216</td>
<td>-</td>
<td>1216</td>
</tr>
<tr>
<td>TEMPORAL</td>
<td>120</td>
<td>135</td>
<td>-</td>
<td>255</td>
<td>463</td>
<td>718</td>
</tr>
<tr>
<td>CORRELATION</td>
<td>9</td>
<td>3</td>
<td>-</td>
<td>12</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>HYPOTHETICAL</td>
<td>73</td>
<td>48</td>
<td>-</td>
<td>121</td>
<td>24</td>
<td>145</td>
</tr>
<tr>
<td>Obligation/Permission</td>
<td>67</td>
<td>5</td>
<td>-</td>
<td>72</td>
<td>27</td>
<td>99</td>
</tr>
<tr>
<td>Creation/Termination</td>
<td>37</td>
<td>4</td>
<td>-</td>
<td>41</td>
<td>43</td>
<td>84</td>
</tr>
<tr>
<td>Extremity/Sufficiency</td>
<td>53</td>
<td>9</td>
<td>-</td>
<td>62</td>
<td>-</td>
<td>62</td>
</tr>
<tr>
<td>Context</td>
<td>17</td>
<td>15</td>
<td>-</td>
<td>32</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>Total</td>
<td>994</td>
<td>537</td>
<td>272</td>
<td>1803</td>
<td>583</td>
<td>2386</td>
</tr>
</tbody>
</table>

Second, the numbers do not reflect all constructions that express, e.g., temporal or correlative relationships – only those that can be used to express causality. Thus, it would be improper to conclude that over a third of temporals are causal; many kinds of temporal language simply were not included. Similarly, the fact that all annotated Extremity/Sufficiency instances are causal is an artifact of only annotating uses with a complement clause, such as so loud I felt it; so loud on its own could never be coerced to a causal interpretation.

Several conclusions and hypotheses do emerge from the relation statistics. Most notably, causality has thoroughly seeped into the temporal and hypothetical domains. Over 14% of causal expressions are piggybacked on temporal relations, and nearly 7% are expressed as hypotheticals. This is consistent with the close semantic ties between these domains: temporal order is a precondition for a causal relationship, and often hypotheticals are interesting specifically because of the consequences of the hypothesized condition. The extent of these overlaps speaks to the importance of capturing overlapping relations for causality and other domains with blurry boundaries.

Another takeaway is that most hypotheticals that are expressed as conditionals are causal. Not all hypotheticals are included in BECAUSE (e.g., suppose that is not), but all conditional hypotheticals are\(^6\): any conditional could express a causal relationship in addition to a hypothetical one. In principle, non-causal hypotheticals could be more common, such as if he comes, he’ll bring his wife or if we must cry, let them be tears of laughter. It appears, however, that the majority of conditional hypotheticals (84%) in fact carry causal meaning.

Finally, the data exhibit a surprisingly strong preference for framing causal relations in terms of agents’ motivations: nearly 45% of causal instances are expressed as MOTIVATION or PURPOSE. Of course, the data could be biased towards events involving human agents; many of the documents are about politics and economics. Still, it is intriguing that many of the explicit causal relationships are not just about, say, politicians’ economic decisions having consequences, but about why the agents made the choices they did. It is worth investigating further to determine whether there really is a preference for appeals to motivation even when they are not strictly necessary.

6 Lessons Learned

Our experience suggests several lessons about annotating multiple overlapping relations. First, it clearly indicates that a secondary meaning can be evoked without losing any of the original meaning. In terms of the model of prototypes and radial categories (Lewandowska-Tomaszczyk, 2007), the conventional model for blurriness between categories, an instance can simultaneously be prototypical for one type of relation and radial for another. For instance, the ruling allows the police to enter your home is a prototypical example a permission relationship. However, it is also a radial example of enablement (a form of causation): prototypical enablement involves a physical barrier being removed, whereas allow indicates the removal of a normative barrier.

A second lesson: even when including overlapping semantic domains in an annotation project, it may still be necessary to declare some overlapping domains out of scope. In particular, some adjacent domains will have their own overlaps with meanings that are far afield from the target domain. It

\(^6\)We did not annotate even if as a hypothetical, since it seems to be a specialized concessive form of the construction. However, this choice does not substantially change the conclusion: even including instances of even if, 77% of conditional hypotheticals would still be causal.
would be impractical to simply pull all of these second-order domains into the annotation scheme; the project would quickly grow to encompass the entire language. If possible, the best solution is to dissect the overlapping domain into a more detailed typology, and only include the parts that directly overlap with the target domain. If this is not doable, the domain may need to be excluded altogether.

For example, we attempted to introduce a **TOPIC** relation type to cover cases like *The President is fuming over recent media reports* or *They’re angry about the equipment we broke* (both clearly causal). Unfortunately, opening up the entire domain of topic relations turned out to be too broad and confusing. For example, it is hard to tell which of the following are even describing the same kind of topic relationship, never mind which ones can also be causal: *fought over his bad behavior* (behavior caused fighting); *fought over a teddy bear* (fought for physical control); *worried about being late*; *worried that I might be late*; *I’m skeptical regarding the code’s robustness*. We ultimately determined that teasing apart this domain would have to be out of scope for this work.

7 Contributions and Lingering Difficulties

Our approach leaves open several questions about how to annotate causal relations and other semantically blurry relations.

First, it does not eliminate the need for binary choices about whether a given relation is present; our annotators must still mark each instance as either indicating causation or not. Likewise for each of the overlapping relations. Yet some cases suggest overtones of causality or correlation, but are not prototypically causal or correlative. These cases still necessitate making a semi-arbitrary call.

The ideal solution would somehow acknowledge the continuous nature of meaning – that an expression can indicate a relationship that is not causal, entirely causal, slightly causal, or anywhere in between. But it is hard to imagine how such a continuous representation would be annotated in practice.

Second, some edge cases remain a challenge for our new scheme. Most notably, we did not examine every semantic domain sharing some overlap with causality. Relations we did not address include:

- **Origin/destination** (as mentioned in §5.3; e.g., *the sparks from the fire, toward that goal*)
- **Topic** (see §6)

- Componential relationships (e.g., *As part of the building’s liquidation, other major tenants will also vacate the premises*)
- Evidentiary basis (e.g., *We went to war based on bad intelligence*)
- Having a role (e.g., *As an American citizen, I do not want to see the President fail*)
- Placing in a position (e.g., *This move puts the American people at risk*)

These relations were omitted due to the time and effort it would have taken to determine whether and when to classify them as causal. We leave untangling their complexities for future work.

Other cases proved difficult because they seem to imply a causal relationship in each direction. The class of constructions indicating necessary preconditions was particularly troublesome. These constructions are typified by the sentence *(For us) to succeed, we all have to cooperate.* (Other variants use different language to express the modality of obligation, such as *require or necessary.*) On the one hand, the sentence indicates that cooperation enables success. On the other hand, it also suggests that the desire for success necessitates the cooperation. We generally take the enablement relationship to be the primary meaning, but this is not an entirely satisfying account of the semantics.

Despite the need for further investigation of these issues, our attempt at extending causal language annotations to adjacent semantic domains was largely a success. We have demonstrated that it is practical and sometimes helpful to annotate all linguistic expressions of a semantic relationship, even when they overlap with other semantic relations. We were able to achieve high inter-annotator agreement and to extract insights about how different meanings compete for constructions. We hope that the new corpus, our annotation methodology and the lessons it provides, and the observations about linguistic competition will all prove useful to the research community.

7 Necessary precondition constructions are thus similar to constructions of **PURPOSE**, such as *in order to*. As spelled out in Dunietz et al. (2015), a **PURPOSE** connective contains a similar duality of causations in opposing directions: it indicates that a desire for an outcome causes an agent to act, and hints that the action may in fact produce the desired outcome. However, in **PURPOSE** instances, it is clearer which relationship is primary: the desired outcome may not obtain, whereas the agent is certainly acting on their motivation. In precondition constructions, however, both the precondition and the result are imagined, making it harder to tell which of the two causal relationships is primary.
References

Catching the Common Cause: Extraction and Annotation of Causal Relations and their Participants

Ines Rehbein Josef Ruppenhofer
IDS Mannheim/University of Heidelberg, Germany
Leibniz Science Campus “Empirical Linguistics and Computational Language Modeling”
{rehbein, ruppenhofer}@cl.uni-heidelberg.de

Abstract

In this paper, we present a simple, yet effective method for the automatic identification and extraction of causal relations from text, based on a large English-German parallel corpus. The goal of this effort is to create a lexical resource for German causal relations. The resource will consist of a lexicon that describes constructions that trigger causality as well as the participants of the causal event, and will be augmented by a corpus with annotated instances for each entry, that can be used as training data to develop a system for automatic classification of causal relations. Focusing on verbs, our method harvested a set of 100 different lexical triggers of causality, including support verb constructions. At the moment, our corpus includes over 1,000 annotated instances. The lexicon and the annotated data will be made available to the research community.

1 Introduction

Causality is an important concept that helps us to make sense of the world around us. This is exemplified by the Causality-by-default hypothesis (Sanders, 2005) that has shown that humans, when presented with two consecutive sentences expressing a relation that is ambiguous between a causal and an additive reading, commonly interpret the relation as causal.

Despite, or maybe because of, its pervasive nature, causality is a concept that has proven to be notoriously difficult to define. Proposals have been made that describe causality from a philosophical point of view, such as the Counterfactual Theory of causation (Lewis, 1973), theories of probabilistic causation (Suppes, 1970; Pearl, 1988), and production theories like the Dynamic Force Model (Talmy, 1988).

Counterfactual Theory tries to explain causality between two events C and E in terms of conditionals such as “If C had not occurred, E would not have occurred”. However, psychological studies have shown that this not always coincides with how humans understand and draw causal inferences (Byrne, 2005). Probabilistic theories, on the other hand, try to explain causality based on the underlying probability of an event to take place in the world. The theory that has had the greatest impact on linguistic annotation of causality is probably Talmy’s Dynamic Force Model which provides a framework that tries to distinguish weak and strong causal forces, and captures different types of causality such as “letting”, “hindering”, “helping” or “intending”.

While each of these theories manages to explain some aspects of causality, none of them seems to provide a completely satisfying account of the phenomenon under consideration. The problem of capturing and specifying the concept of causality is also reflected in linguistic annotation efforts. Human annotators often show only a moderate or even poor agreement when annotating causal phenomena (Grivaz, 2010; Gastel et al., 2011). Some annotation efforts abstain altogether from reporting inter-annotator agreement at all.

A notable exception is Dunietz et al. (2015) who take a lexical approach and aim at building a constructicon for English causal language. By constructicon they mean “a list of English constructions that conventionally express causality” (Dunietz et al., 2015). They show that their approach dramatically increases agreement between the annotators and thus the quality of the annotations (for details see section 2). We adapt their approach of framing the annotation task as a lexicon creation process and present first steps towards build-
ing a causal constructicon for German. Our annotation scheme is based on the one of Dunietz et al. (2015), but with some crucial changes (section 3).

The resource under construction contains a lexicon component with entries for lexical units (individual words and multiword expressions) for different parts of speech, augmented with annotations for each entry that can be used to develop a system for the automatic identification of causal language.

The contributions of this paper are as follows.

1. We present a bootstrapping method to identify and extract causal relations and their participants from text, based on parallel corpora.
2. We present the first version of a German causal constructicon, containing 100 entries for causal verbal expressions.
3. We provide over 1,000 annotated causal instances (and growing) for the lexical triggers, augmented by a set of negative instances to be used as training data.

The remainder of the paper is structured as follows. First, we review related work on annotating causal language (section 2). In section 3, we describe our annotation scheme and the data we use in our experiments. Sections 4, 5 and 6 present our approach and the results, and we conclude and outline future work in section 7.

2 Related Work

Two strands of research are relevant to our work, a) work on automatic detection of causal relations in text, and b) annotation studies that discuss the description and disambiguation of causal phenomena in natural language. As we are still in the process of building our resource and collecting training data, we will for now set aside work on automatic classification of causality such as (Mirza and Tonelli, 2014; Dunietz et al., In press) as well as the rich literature on shallow discourse parsing, and focus on annotation and identification of causal phenomena.

Early work on identification and extraction of causal relations from text heavily relied on knowledge bases (Kaplan and Berry-Rogghe, 1991; Girju, 2003). Girju (2003) identifies instances of noun-verb-noun causal relations in WordNet glosses, such as starvation\textsubscript{N1} causes bonyness\textsubscript{N2}. She then uses the extracted noun pairs to search a large corpus for verbs that link one of the noun pairs from the list, and collects these verbs. Many of the verbs are, however, ambiguous. Based on the extracted verb list, Girju selects sentences from a large corpus that contain such an ambiguous verb, and manually disambiguates the sentences to be included in a training set. She then uses the annotated data to train a decision tree classifier that can be used to classify new instances.

Our approach is similar to hers in that we also use the English verb cause as a seed to identify transitive causal verbs. In contrast to Girju’s WordNet-based approach, we use parallel data and project the English tokens to their German counterparts.

Ours is not the first work that exploits parallel or comparable corpora for causality detection. Hidey and McKeown (2016) work with monolingual comparable corpora, English Wikipedia and simple Wikipedia. They use explicit discourse connectives from the PDTB (Prasad et al., 2008) as seed data and identify alternative lexicalizations for causal discourse relations. Versley (2010) classifies German explicit discourse relations without German training data, solely based on the English annotations projected to German via word-aligned parallel text. He also presents a bootstrapping approach for a connective dictionary that relies on distribution-based heuristics on word-aligned German-English text.

Like Versley (2010), most work on identifying causal language for German has been focusing on discourse connectives. Stede et al. (1998; 2002) have developed a lexicon of German discourse markers that has been augmented with semantic relations (Scheffler and Stede, 2016). Another resource for German is the TüBa-D/Z that includes annotations for selected discourse connectives, with a small number of causal connectives (Gastel et al., 2011). Bögel et al. (2014) present a rule-based system for identifying eight causal German connectors in spoken multilogs, and the causal relations REASON, RESULT expressed by them.

To the best of our knowledge, ours is the first effort to describe causality in German on a broader scale, not limited to discourse connectives.
3 Annotation Scheme

Our annotation aims at providing a description of causal events and their participants, similar to FrameNet-style annotations (Ruppenhofer et al., 2006), but at a more coarse-grained level. In FrameNet, we have a high number of different causal frames with detailed descriptions of the actors, agents and entities involved in the event. For instance, FrameNet captures details such as the intentionality of the triggering force, to express whether or not the action was performed volitionally.

In contrast, we target a more generic representation that captures different types of causality, and that allows us to generalize over the different participants and thus makes it feasible to train an automatic system by abstracting away from individual lexical triggers. The advantage of such an approach is greater generalizability and thus higher coverage, the success however remains to be proven. Our annotation scheme includes the following four participant roles:

1. **CAUSE** – a force, process, event or action that produces an effect
2. **EFFECT** – the result of the process, event or action
3. **ACTOR** – an entity that, volitionally or not, triggers the effect
4. **AFFECTED** – an entity that is affected by the results of the cause

Our role set is different from Dunietz et al. (2015) who restrict the annotation of causal arguments to **CAUSE** and **EFFECT**. Our motivation for extending the label set is twofold. First, different verbal causal triggers show strong selectional preferences for specific participant roles. Compare, for instance, examples (1) and (2). The two argument slots for the verbal triggers *erzeugen* (produce) and *erleiden* (suffer) are filled with different roles. The subject slot for *erzeugen* expresses either **CAUSE** or **ACTOR** and the direct object encodes the **EFFECT**. For *erleiden*, on the other hand, the subject typically realises the role of the **AFFECTED** entity, and we often have the **CAUSE** or **ACTOR** encoded as the prepositional object of a **durch** (by) PP.

(1) **Elektromagnetische Felder** *Cause*
Electromagnetic fields können *Krebs* *Effect* erzeugen.
can cancer produce.
“Electromagnetic fields can cause cancer.”

(2) **Länder wie Irland** *Affected* werden
Countries like Ireland will durch die Reform *Cause* massive
by the reform massive
Nachteile *Effect* erleiden
disadvantages suffer.
“Countries like Ireland will sustain massive disadvantages because of the reform.”

Given that there are systematic differences between prototypical properties of the participants (e.g. an **ACTOR** is usually animate and a sentient being), and also in the way how they combine and select their predicates, we would like to preserve this information and see if we can exploit it when training an automatic system.

In addition to the participants of a causal event, we follow Dunietz et al. (2015) and distinguish four different types of causation (**CONSEQUENCE**, **MOTIVATION**, **PURPOSE**, **INFERENCE**), and two degrees (**FACILITATE**, **INHIBIT**). The degree distinctions are inspired by Wolff et al. (2005) who see causality as a continuum from total prevention to total entailment, and describe this continuum with three categories, namely **CAUSE**, **ENABLE** and **PREVENT**. Dunietz et al. (2015) further reduce this inventory to a polar distinction between a positive causal relation (e.g. **cause**) and a negative one (e.g. **prevent**), as they observed that human coders were not able to reliably apply the more fine-grained inventories.\(^2\) The examples below illustrate the different types of causation.

(3) **Cancer** *Cause* is second only to **accidents** *Cause* as a **cause** of **death** *Effect* in children **Consequence**

(4) **I would like to say a few words** in order to **highlight two points** **Purpose**

(5) **She must be home** *Effect* because the light is on **Cause** **Inference**

(6) **The decision is made** *Cause* so let us leave the matter there **Effect** **Motivation**

Epistemic uses of causality are covered by the **INFERENCE** class while we annotate instances **\(^1\)Also see Vieu et al. (2016) for a revised and improved treatment of causality in FrameNet.**

\(^2\)For the polar distinction, they report perfect agreement.
of speech-act causality (7) as MOTIVATION (see Sweetser (1990) for an in-depth discussion on that matter). This is also different from Dunietz et al. (2015) who only deal with causal language, not with causality in the world. We, instead, are also interested in relations that are interpreted as causal by humans, even if they are not strictly expressed as causal by a lexical marker, such as temporal relations or speech-act causality.

(7) And if you want to say no, say no Effect 'Cause there’s a million ways to go Cause MOTIVATION

A final point that needs to be mentioned is that Dunietz et al. (2015) exclude items such as kill or persuade that incorporate the result (e.g. death) or means (e.g. talk) of causation as part of their meaning. Again, we follow Dunietz et al. and also exclude such cases from our lexicon.

In this work, we focus on verbal triggers of causality. Due to our extraction method (section 4), we are mostly dealing with verbal triggers that are instances of the type CONSEQUENCE. Therefore we cannot say much about the applicability of the different annotation types at this point but will leave this to future work.

4 Knowledge-lean extraction of causal relations and their participants

We now describe our method for automatically identifying new causal triggers from text, based on parallel corpora. Using English-German parallel data has the advantage that it allows us to use existing lexical resources for English such as WordNet (Miller, 1995) or FrameNet (Ruppenhofer et al., 2006) as seed data for extracting German causal relations. In this work, however, we focus on a knowledge-lean approach where we refrain from using preexisting resources and try to find out how far we can get if we rely on parallel text only. As a trigger, we use the English verb to cause that always has a causal meaning.

4.1 Data

The data we use in our experiments come from the English-German part of Europarl corpus (Koehn, 2005). The corpus is aligned on the sentence-level and contains more than 1.9 mio. English-German parallel sentences. We tokenised and parsed the text to obtain dependency trees, using the Stanford parser (Chen and Manning, 2014) for English and the RBG parser (Lei et al., 2014) for German. We then applied the Berkeley Aligner (DeNero and Klein, 2007) to obtain word alignments for all aligned sentences. This allows us to map the dependency trees onto each other and to project (most of) the tokens from English to German and vice versa.3

4.2 Method

Step 1 First, we select all sentences in the corpus that contain a form of the English verb cause. We then restrict our set of candidates to instances of cause where both the subject and the direct object are realised as nouns, as illustrated in example (8).

(8) Alcohol

Starting from these sentences, we filter our candidate set and only keep those sentences that also have German nouns aligned to the English subject and object position. Please note that we do not require that the grammatical function of the German counterparts are also subject and object, only that they are aligned to the English core arguments. We then extract the aligned German noun pairs and use them as seed data for step 2 of the extraction process.

For Figure 1, for example, we would first identify the English subject (gentrification) and direct object (problems), project them to their German nominal counterparts (Gentrifizierung, Problemen), the first one also filling the subject slot but the second one being realised as a prepositional object. We would thus extract the lemma forms for the German noun pair (Gentrifizierung → Problemen) and use it for the extraction of causal triggers in step 2 (see Algorithm 1).

3Some tokens did not receive an alignment and are thus ignored in our experiments.
Data: Europarl (En-Ge)
Input: seed word: cause (En)
Output: list of causal triggers (Ge)

STEP 1: if seed in sentence then
 if cause linked to subj, dobj (En) then
 if subj, dobj == noun then
 if subj, dobj aligned with nouns (Ge) then
 extract noun pair (Ge);
 end
 end
 end
end

STEP 2: for n1, n2 in noun pairs (Ge) do
 if n1, n2 in sentence then
 if common ancestor ca (n1, n2) then
 if dist(ca, n1) == 1 & dist(ca, n2) <= 3 then
 extract ancestor as trigger;
 end
 end
 end
end

Algorithm 1: Extraction of causal triggers from parallel text (Step 1: extraction of noun pairs; Step 2: extraction of causal triggers)

Step 2 We now have a set of noun pairs that we use to search the monolingual German part of the data and extract all sentences that include one of these noun pairs. We test two settings, the first one being rather restrictive while the second one allows for more variation and thus will probably also extract more noise. We refer to the two settings as strict (setting 1) and loose (setting 2).

In setting 1, we require that the two nouns of each noun pair fill the subject and direct object slot of the same verb.

In the second setting, we extract all sentences that include one of the noun pairs, with the restriction that the two nouns have a common ancestor in the dependency tree that is a direct parent of the first noun and not further away from the second noun than three steps up in the tree.

This means that the tree in Figure 1 would be ignored in the first setting, but not for setting 2.

Here we would extract the direct head of the first noun, which will give us the verb führen (lead), and extract up to three ancestors for the second noun. As the second noun, Problem, is attached to the preposition zu (to) (distance 1) which is in turn attached to the verb führen (distance 2), we would consider the example a true positive and extract the verb führen as linking our two nouns.

While the first setting is heavily biased towards transitive verbs that are causal triggers, setting 2 will also detect instances where the causal trigger is a noun, as in (9).

(9) **Gentrifizierung**Cause ist die **Ursache**gentrification is the reason **von sozialen Problemen**Effect of social problems.

“Gentrification causes social problems.”

In addition, we are also able to find support verb constructions that trigger causality, as in (10).

(10) **Die gemeinsame Agrarpolitik**Cause gibt stets **Anlass zu**Effect stets rise to **hitzigen**Effect heated **Debatten**Effect

“The common agricultural policy always gives rise to heated debates”

As both the word alignments and the dependency parses have been created automatically, we can expect a certain amount of noise in the data. Furthermore, we also have to deal with translation shifts, i.e. sentences that have a causal meaning in English but not in the German translation. A case in point is example (11) where the English *cause* has been translated into German by the non-causal stattfinden (take place) (12).

(11) [...] that none of the upheaval_nsubj would have been **caused** [...]

(12) [...] dass dieselbe Umwälzungen nicht stattgefunden hätten [...]

Data: Europarl (En-Ge)
Input: seed word: cause (En)
Output: list of causal triggers (Ge)
Using the approach outlined above, we want to identify new causal triggers to populate the lexicon. We also want to identify causal instances for these triggers for annotation, to be included in our resource. To pursue this goal and to minimize human annotation effort, we are interested in i) how many German causal verbs can be identified using this method, and ii) how many false positives are extracted, i.e. instances that cannot have a causal reading. Both questions have to be evaluated on the type level. In addition, we want to know iii) how many of the extracted candidate sentences are causal instances. This has to be decided on the token level, for each candidate sentence individually.

5 Results for extracting causal relations from parallel text

Step 1 Using the approach described in section 4.2, we extracted all German noun pairs from Europarl that were linked to two nouns in the English part of the corpus that filled the argument slots of the verb cause. Most of the noun pairs appeared only once, 12 pairs appeared twice, 3 pairs occurred 3 times, and the noun pair Hochwasser (floodwater) – Schaden (damage) was the most frequent one with 6 occurrences. In total, we extracted 343 unique German noun pairs from Europarl that we used as seed data to identify causal triggers in step 2.

We found 45 different verb types that linked these noun pairs, the most frequent one being, unsurprisingly, verursachen (cause) with 147 instances. Also frequent were other direct translations of cause, namely hervorrufen (induce) and auslösen (trigger), both with 31 instances, and anrichten (wreak) with 21 instances. We also found highly ambiguous translations like bringen (bring, 18 instances) and verbs that often appear in support verb constructions, like haben (have, 11 instances), as illustrated below (examples (13), (14)).

(13) Fundamentalismus$_{N1}$ bringt in fundamentalism brings in Gesellschaften gravierende Probleme$_{N2}$ societies serious problems mit sich with itself “Fundamentalism causes many problems within societies”

(14) Nun weiß man aber, daß die Müllverbrennung$_{N1}$ die Emission$_{N2}$ incineration of waste the emission von Substanzen zur Folge hat of substances to the result has “It is well known that the incineration of waste causes emissions of substances”

Please note that at this point we do ignore the verbs and only keep the noun pairs, to be used as seed data for the extraction of causal triggers in step 2. From examples (13) and (14) above, we extract the following two noun pairs:

<table>
<thead>
<tr>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fundamentalismus</td>
<td>Problem</td>
</tr>
<tr>
<td>cause</td>
<td>problem</td>
</tr>
<tr>
<td>2 Müllverbrennung</td>
<td>Emission</td>
</tr>
<tr>
<td>incineration_of_waste</td>
<td>emission</td>
</tr>
</tbody>
</table>

Step 2 Using the 343 noun pairs extracted in step 1, we now search the monolingual part of the corpus and extract all sentences that include one of these noun pairs as arguments of the same verb. As a result, we get a list of verbal triggers that potentially have a causal reading. We now report results for the two different settings, strict and loose.

For setting 1, we harvest a list of 68 verb types. We manually filtered the list and removed instances that did not have a causal reading, amongst them most of the instances that occurred only once, such as spielen (play), schweigen (be silent), zugeben (admit), nehmen (take), finden (find).

Some of the false positives are in fact instances of causal particle verbs. In German, the verb particle can be separated from the verb stem. We did consider this for the extraction and contracted verb particles with their corresponding verb stem. However, sometimes the parser failed to assign the correct POS label to the verb particle, which is why we find instances e.g. of richten (rather than: anrichten, wreak), stellen (darstellen, pose), treten (auftreten, occur) in the list of false positives.

After manual filtering, we end up with a rather short list of 22 transitive German verbs with a causal reading for the first setting.

For setting 2 we loosen the constraints for the extraction and obtain a much larger list of 406 unique trigger types. As expected, the list also includes more noise, but is still manageable for doing a manual revision in a short period of time.
As shown in Table 1, after filtering we obtain a final list of 79 causal triggers, out of which 48 follow the transitive pattern $<N_1_{subj}$ causes $N_2_{dobj}>$ where the subject expresses the cause and the direct object the effect. There seem to be no restrictions on what grammatical function can be expressed by what causal role but we find strong selectional preferences for the individual triggers, at least for the core arguments (Table 2). The verb *verursachen* (cause), for example, expresses CAUSE/ACTOR as the subject and EFFECT as the direct object while *abhängen* (depend) puts the EFFECT in the subject slot and realises the CAUSE as an indirect object. Often additional roles are expressed by a PP or a clausal complement. While many triggers accept either CAUSE or ACTOR to be expressed interchangeably by the same grammatical function, there also exist some triggers that are restricted to one of the roles. *Zu Grunde liegen* (be at the bottom of), for example, does not accept an ACTOR role as subject. These restrictions will be encoded in the lexicon, to support the annotation.

5.1 Annotation and inter-annotator agreement

From our extraction experiments based on parallel corpora (setting 2), we obtained a list of 79 causal triggers to be included in the lexicon. As we also want to have annotated training data to accompany the lexicon, we sampled the data and randomly selected $N=50$ sentences for each trigger.

We then started to manually annotate the data. The annotation process includes the following two subtasks:

1. Given a trigger in context, does it convey a causal meaning?

2. Given a causal sentence, which roles are expressed within the sentence?

What remains to be done is the annotation of the causal type of the instance. As noted above, the reason for postponing this annotation step is that we first wanted to create the lexicon and be confident about the annotation scheme. A complete lexicon entry for each trigger specifying the type (or types and/or constraints) will crucially support the annotation and make it not only more consistent, but also much faster.

So far, we computed inter-annotator agreement on a subsample of our data with 427 instances (and 22 different triggers), to get a first idea of the feasibility of the annotation task. The two annotators are experts in linguistic annotation (the two authors of the paper), but could not use the lexicon to guide their decisions, as this was still under construction at the time of the annotation.

We report agreement for the following two subtasks. The first task concerns the decision whether or not a given trigger is causal. Here the two annotators obtained a percentage agreement of 94.4% and a Fleiss’ κ of 0.78.

An error analysis reveals that the first annotator had a stricter interpretation of causality than annotator 2. Both annotators agreed on 352 instances being causal and 51 being non-causal. However, annotator 1 also judged 24 instances as non-causal that had been rated as causal by annotator 2. Many of the disagreements concerned the two verbs *bringen* (bring) and *bedeuten* (mean) and were systematic differences that could easily be resolved and documented in the lexicon and annotation guidelines, e.g. the frequent support verb construction in example (15).

Table 1: No. of causal triggers extracted in different settings (Europarl, German-English)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict (1)</td>
<td>22</td>
</tr>
<tr>
<td>Loose (2)</td>
<td>79</td>
</tr>
<tr>
<td>Boost (3)</td>
<td>100</td>
</tr>
</tbody>
</table>

 Table 2: Examples for causal triggers and their roles

<table>
<thead>
<tr>
<th>Example trigger</th>
<th>Cause/Actor</th>
<th>Effect</th>
<th>Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>verursachen (cause)</td>
<td>subj</td>
<td>dobj</td>
<td>for-PP</td>
</tr>
<tr>
<td>abhängen (depend)</td>
<td>iobj</td>
<td>subj</td>
<td>for-PP</td>
</tr>
<tr>
<td>zwängen (force)</td>
<td>subj</td>
<td>to-PP</td>
<td>dobj</td>
</tr>
<tr>
<td>zu Grunde liegen (be at the bottom of)</td>
<td>subj</td>
<td>iobj</td>
<td>dobj</td>
</tr>
<tr>
<td>aus der Welt schaffen (to dispose of once and for all)</td>
<td>subj</td>
<td>dobj</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Annotation of causal transitive verbs: number of instances and IAA (percentage agreement and Fleiss’ κ) for a subset of the data (427 sentences, 352 instances annotated as causal by both annotators).

<table>
<thead>
<tr>
<th>Task</th>
<th>no.</th>
<th>% agr.</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>task 1 causal</td>
<td>427</td>
<td>94.4</td>
<td>0.78</td>
</tr>
<tr>
<td>task 2 N1</td>
<td>352</td>
<td>94.9</td>
<td>0.74</td>
</tr>
<tr>
<td>N2</td>
<td>352</td>
<td>99.1</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 4: The 10 most similar nouns for Unsicherheit (insecurity), based on cosine similarity and word2vec embeddings.

<table>
<thead>
<tr>
<th>Unsicherheit</th>
<th>uncertainty</th>
<th>cos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verunsicherung</td>
<td>uncertainty</td>
<td>0.87</td>
</tr>
<tr>
<td>Unsicherheiten</td>
<td>insecurities</td>
<td>0.80</td>
</tr>
<tr>
<td>Unzufriedenheit</td>
<td>dissatisfaction</td>
<td>0.78</td>
</tr>
<tr>
<td>Frustration</td>
<td>frustration</td>
<td>0.78</td>
</tr>
<tr>
<td>Nervosität</td>
<td>nervousness</td>
<td>0.75</td>
</tr>
<tr>
<td>Ungewissheit</td>
<td>incertitude</td>
<td>0.74</td>
</tr>
<tr>
<td>Unruhe</td>
<td>concern</td>
<td>0.74</td>
</tr>
<tr>
<td>Ratlosigkeit</td>
<td>perplexity</td>
<td>0.74</td>
</tr>
<tr>
<td>Überforderung</td>
<td>excessive demands</td>
<td>0.73</td>
</tr>
</tbody>
</table>

(15) zum Ausdruck bringen
to the expression bring
“to express something”

For the second task, assigning role labels to the first (N1) and the second noun (N2), it became obvious that annotating the role of the first noun is markedly more difficult than for the second noun (Table 3). The reason for this is that the Actor-Cause distinction that is relevant to the first noun is not always a trivial one. Here we also observed systematic differences in the annotations that were easy to resolve, mostly concerning the question whether or not organisations such as the European Union, a member state or a commission are to be interpreted as an actor or rather than as a cause.

We think that our preliminary results are promising and confirm the findings of Dunietz et al. (2015), and expect an even higher agreement for the next round of the annotations, where we also can make use of the lexicon.

5.2 Discussion

Section 4 has shown the potential of our method for identifying and extracting causal relations from text. The advantage of our approach is that we do not depend on the existence of precompiled knowledge bases but rely on automatically preprocessed parallel text only. Our method is able to detect causal patterns across different parts of speech. Using a strong causal trigger and further constraints for the extraction, such as restricting the candidate set to sentences that have a subject and direct object NP that is linked to the target predicate, we are able to guide the extraction towards instances that, to a large degree, are in fact causal. In comparison, Girju reported a ratio of 0.32 causal sentences (2,101 out of 6,523 instances) while our method yields a ratio of 0.74 (787 causal instances out of 1069). Unfortunately, this also reduces the variation in trigger types and is thus not a suitable method for creating a representative training set. We address this problem by loosening the constraints for the extraction, which allows us to detect a high variety of causal expressions, at a reasonable cost.

Our approach, using bilingual data, provides us with a natural environment for bootstrapping. We can now use the already known noun pairs as seed data, extract similar nouns to expand our seed set, and use the expanded set to find new causal expressions. We will explore this in our final experiment.

6 Bootstrapping causal relations

In this section, we want to generalise over the noun pairs that we extracted in the first step of the extraction process. For instance, given the noun pair \{smoking, cancer\}, we would also like to search for noun pairs expressing a similar relation, such as \{alcohol, health problems\} or \{drugs, suffering\}. Accordingly, we call this third setting boost. Sticking to our knowledge-lean approach, we do not make use of resources such as WordNet or FrameNet, but instead use word embeddings to identify similar words. For each noun pair in our list, we compute cosine similarity to all words in the embeddings and extract the 10 most similar words for each noun of the pair. We use a lemma dictionary extracted from the TüBa-D/Z treebank (release 10.0) (Telljohann et al., 2015) to look up the lemma forms for each word, and ignore all words that are not listed as a noun in our dictionary.

Table 4 shows the 10 words in the embedding file that have the highest similarity to all words in the embeddings and extract the 10 most similar words for each noun of the pair. We use a lemma dictionary extracted from the TüBa-D/Z treebank (release 10.0) (Telljohann et al., 2015) to look up the lemma forms for each word, and ignore all words that are not listed as a noun in our dictionary.

Table 4 shows the 10 words in the embedding file that have the highest similarity to the target noun Unsicherheit (uncertainty). To minimise noise, we also set a threshold of 0.75 and exclude

8 We use the pre-trained word2vec embeddings provided by Reimers et al. (2014), with a dimension of 100.
all words with a cosine similarity below that score. Having expanded our list, we now create new noun pairs by combining noun N1 with all similar words for N2, and N2 with all similar words for N1. We then proceed as usual and use the new, expanded noun pair list to extract new causal triggers the same way as in the loose setting. As we want to find new triggers that have not already been included in the lexicon, we discard all verb types that are already listed.

Using our expanded noun pair list for extracting causal triggers, we obtain 131 candidate instances for manual inspection. As before, we remove false positives due to translation shifts and to noise and are able to identify 21 new instances of causal triggers, resulting in a total number of 100 German verbal triggers to be included in the lexicon (Table 1).

7 Conclusions and Future Work

We have presented a first effort to create a resource for describing German causal language, including a lexicon as well as an annotated training suite. We use a simple yet highly efficient method to detect new causal triggers, based on English-German parallel data. Our approach is knowledge-lean and succeeded in identifying and extracting 100 different types for causal verbal triggers, with only a small amount of human supervision.

Our approach offers several avenues for future work. One straightforward extension is to use other English causal triggers like nouns, prepositions, discourse connectives or causal multiword expressions, to detect German causal triggers with different parts of speech. We would also like to further exploit the bootstrapping setting, by projecting the German triggers back to English, extracting new noun pairs, and going back to German again. Another interesting setup is triangulation, where we would include a third language as a pivot to harvest new causal triggers. The intuition behind this approach is, that if a causal trigger in the source language is aligned to a word in the pivot language, and that again is aligned to a word in the target language, then it is likely that the aligned token in the target language is also causal. Such a setting gives us grounds for generalisations while, at the same time, offering the opportunity to formulate constraints and filter out noise. Once we have a sufficient amount of training data, we plan to develop an automatic system for tagging causality in German texts. To prove the benefits of such a tool, we would like to apply our system in the context of argumentation mining.

Acknowledgments

This research has been conducted within the Leibniz Science Campus “Empirical Linguistics and Computational Modeling”, funded by the Leibniz Association under grant no. SAS-2015-IDS-LWC and by the Ministry of Science, Research, and Art (MWK) of the state of Baden-Württemberg.

References

Assessing SRL Frameworks with Automatic Training Data Expansion

Silvana Hartmann†‡ Éva Mújdricza-Maydt+‡ Ilia Kuznetsov†
Iryna Gurevych†‡ Anette Frank+‡

†Ubiquitous Knowledge Processing Lab
Department of Computer Science
Technische Universität Darmstadt
‡Research Training School AIPHES
{hartmann,kuznetsov,gurevych}@ukp.informatik.tu-darmstadt.de

Abstract

We present the first experiment-based study that explicitly contrasts the three major semantic role labeling frameworks. As a prerequisite, we create a dataset labeled with parallel FrameNet-, PropBank-, and VerbNet-style labels for German. We train a state-of-the-art SRL tool for German for the different annotation styles and provide a comparative analysis across frameworks. We further explore the behavior of the frameworks with automatic training data generation. VerbNet provides larger semantic expressivity than PropBank, and we find that its generalization capacity approaches PropBank in SRL training, but it benefits less from training data expansion than the sparse-data affected FrameNet.

1 Introduction

We present the first study that explicitly contrasts the three popular theoretical frameworks for semantic role labeling (SRL) – FrameNet, PropBank, and VerbNet in a comparative experimental setup, i.e., using the same training and test sets annotated with predicate and role labels from the different frameworks and applying the same conditions and criteria for training and testing.

Previous work comparing these frameworks either provides theoretical investigations, for instance for the pair PropBank–FrameNet (Ellsworth et al., 2004), or presents experimental investigations for the pair PropBank–VerbNet (Zapirain et al., 2008; Merlo and van der Plas, 2009). Theoretical analyses contrast the richness of the semantic model of FrameNet with efficient annotation of PropBank labels and their suitability for system training. VerbNet is considered to range between them on both scales: it fulfills the need for semantically meaningful role labels; also, since the role labels are shared across predicate senses, it is expected to generalize better to unseen predicates than FrameNet, which suffers from data sparsity due to a fine-grained sense-specific role inventory. Yet, unlike PropBank and FrameNet, VerbNet has been neglected in recent work on SRL, partially due to the lack of training and evaluation data, whereas PropBank and FrameNet were popularized in shared tasks. As a result, the three frameworks have not been compared under equal experimental conditions.

This motivates our contrastive analysis of all three frameworks for German. We harness existing datasets for German (Burchardt et al., 2006; Hajič et al., 2009; Mújdricza-Maydt et al., 2016) to create SR3de (Semantic Role Triple Dataset for German), the first benchmark dataset labeled with FrameNet, VerbNet and PropBank roles in parallel.

Our motivation for working on German is that – as for many languages besides English – sufficient amounts of training data are not available. This clearly applies to our German dataset, which contains about 3,000 annotated predicates. In such a scenario, methods to extend training data automatically or making efficient use of generalization across predicates (i.e., being able to apply role labels to unseen predicates) are particularly desirable.

We assume that SRL frameworks that generalize better across predicates gain more from automatic training data generation, and lend themselves better to cross-predicate SRL. System performance also needs to be correlated with the semantic expressiveness of frameworks: with the ever-growing expectations in semantic NLP applications, SRL frameworks also need to be judged with regard to their contribution to advanced applications where expressiveness may play a role, such as question answering or summarization.

1See Fillmore et al. (2003), Palmer et al. (2005) and Kipper-Schuler (2005), respectively.
Our work explores the generalization properties of three SRL frameworks in a contrastive setup, assessing SRL performance when training and evaluating on a dataset with parallel annotations for each framework in a uniform SRL system architecture. We also explore to what extent the frameworks benefit from training data generation via annotation projection (Fürstenau and Lapata, 2012).

Since all three frameworks have been applied to several languages, we expect our findings for German to generalize to other languages as well.

Our contributions are (i) novel resources: parallel German datasets for the three frameworks, including automatically acquired training data; and (ii) empirical comparison of the labeling performance and generalization capabilities of the three frameworks, which we discuss in view of their respective semantic expressiveness.

2 Related Work

Overview on SRL frameworks FrameNet defines frame-specific roles that are shared among predicates evoking the same frame. Thus, generalization across predicates is possible for predicates that belong to the same existing frame, but labeling predicates for unseen frames is not possible. Given the high number of frames – FrameNet covers about 1,200 frames and 10K role labels – large training datasets are required for system training.

PropBank offers a small role inventory of five core roles (A0 to A4) for obligatory arguments and around 18 roles for optional ones. The core roles closely follow syntactic structures and receive a predicate-specific interpretation, except for the Agent-like A0 and Patient-like A1 that implement Dowty’s proto-roles theory (Dowty, 1991).

VerbNet defines about 35 semantically defined thematic roles that are not specific to predicates or predicate senses. Predicates are labeled with Levin-type semantic classes (Levin, 1993). VerbNet is typically assumed to range between FrameNet with respect to its rich semantic representation and PropBank with its small, coarse-grained role inventory.

Comparison of SRL frameworks Previous experimental work compares VerbNet and PropBank: Zapirain et al. (2008) find that PropBank SRL is more robust than VerbNet SRL, generalizing better to unseen or rare predicates, and relying less on predicate sense. Still, they aspire to use more meaningful VerbNet roles in NLP tasks and thus propose using automatic PropBank SRL for core role identification and then converting the PropBank roles into VerbNet roles heuristically to VerbNet, which appears more robust in cross-domain experiments compared to training on VerbNet data. Merlo and van der Plas (2009) also confirm that PropBank roles are easier to assign than VerbNet roles, while the latter provide better semantic generalization. To our knowledge, there is no experimental work that compares all three major SRL frameworks.

German SRL frameworks and data sets The SALS project (Burchardt et al., 2006; Rehbein et al., 2012) created a corpus annotated with over 24,200 predicate argument structures, using English FrameNet frames as a basis, but creating new frames for German predicates where required.

About 18,500 of the manual SALSA annotations were converted semi-automatically to PropBank-style annotations for the CoNLL 2009 shared task on syntactic and semantic dependency labeling (Hajič et al., 2009). Thus, the CoNLL dataset shares a subset of the SALSA annotations. To create PropBank-style annotations, the predicate senses were numbered such that different frame annotations for a predicate lemma indicate different senses. The SALSA role labels were converted to PropBank-style roles using labels A0 and A1 for Agent- and Patient-like roles, and continuing up to A9 for other arguments. Instead of spans, arguments were defined by their dependency heads for CoNLL. The resulting dataset was used as a benchmark dataset in the CoNLL 2009 shared task.

For VerbNet, Mújdricza-Maydt et al. (2016) recently published a small subset of the CoNLL shared task corpus with VerbNet-style roles. It contains 3,500 predicate instances for 275 predicate lemma types. Since there is no taxonomy of verb classes for German corresponding to original VerbNet classes, they used GermaNet (Hamp and Feldweg, 1997) to label predicate senses. GermaNet provides a fine-grained sense inventory similar to the English WordNet (Fellbaum, 1998).

Automatic SRL systems for German State-of-the-art SRL systems for German are only available for PropBank labels: Björkelund et al. (2009) developed mate-tools; Roth and Woodsend (2014) and Roth and Lapata (2015) improved on mate-tools SRL with their mateplus system. We base our experiments on the mateplus system.
Sales rose by 14% to 1.9 billion.

Training data generation In this work, we use a corpus-based, monolingual approach to training data expansion. Fürstenau and Lapata (2012) propose monolingual annotation projection for lower-resourced languages: they create data labeled with FrameNet frames and roles based on a small set of labeled seed sentences in the target language. We apply their approach to the different SRL frameworks, and for the first time to VerbNet-style labels.

Other approaches apply cross-lingual projection (Akbik and Li, 2016) or paraphrasing, replacing FrameNet predicates (Pavlick et al., 2015) or PropBank arguments (Woodsend and Lapata, 2014) in labeled texts. We do not employ these approaches, because they assume large role-labeled corpora.

3 Datasets and Data Expansion Method

SR3de: a German parallel SRL dataset The VerbNet-style dataset by Mújdricza-Maydt et al. (2016) covers a subset of the PropBank-style CoNLL 2009 annotations, which are based on the German FrameNet-style SALSA corpus. This allowed us to create SR3de, the first corpus with parallel sense and role labels from SALSA, PropBank, and GermaNet/VerbNet, which we henceforth abbreviate as FN, PB, and VN respectively. Figure 1 displays an example with parallel annotations.

The distribution of role types across frameworks highlights their respective role granularity, ranging from 10 for PB to 30 for VN and 278 for FN. The corpus offers 2,196 training predicates and covers the CoNLL 2009 development and test sets; thus it is a suitable base for comparing the three frameworks. We use SR3de for the contrastive analysis of the different SRL frameworks below.

Training data expansion To overcome the data scarcity of our corpus, we use monolingual annotation projection (Fürstenau and Lapata, 2012) to generate additional training data. Given a set of labeled seed sentences and a set of unlabeled expansion sentences, we select suitable expansions based on the predicate lemma and align dependency graphs of seeds and expansions based on lexical similarity of the graph nodes and syntactic similarity of the edges. The alignment is then used to map predicate and role labels from the seed sentences to the expansion sentences. For each seed instance, the k best-scoring expansions are selected. Given a seed set of size n and the maximal number of expansions per seed k, we get up to n · k additional training instances. Lexical and syntactic similarity are balanced using the weight parameter α.

Our adjusted re-implementation uses the mate-tools dependency parser (Bohnet, 2010) and word2vec embeddings (Mikolov et al., 2013) trained on deWAC (Baroni et al., 2009) for word similarity calculation. We tune the parameter α via intrinsic evaluation on the SR3de dev set. We project the seed set SR3de-train directly to SR3de-dev and compare the labels from the k=1 best seeds for a dev sentence to the gold label, measuring F1 for all projections. Then we use the best-scoring α value for each framework to project annotations from the SR3de training set to deWAC for predicate lemmas occurring at least 10 times. We vary the number of expansions k, selecting k from {1, 3, 5, 10, 20}. Using larger k values is justified because a) projecting to a huge corpus is likely to generate many high-quality expansions, and b) we expect a higher variance in the generated data when also selecting lower-scoring expansions.

Intrinsic evaluation on the dev set provides an estimate of the projection quality: we observe F1 score of 0.73 for PB and VN, and of 0.53 for FN. The lower scores for FN are due to data sparsity in the intrinsic setting and are expected to improve when projecting on a large corpus.

4 Experiments

Experiment setup We perform extrinsic evaluation on SR3de with parallel annotations for the three frameworks, using the same SRL system for each framework, to a) compare the labeling perfor-
performance of the learned models, and b) explore their behavior in response to expanded training data.

We employ the following settings (cf. Table 2):

#BL: Baseline We train on SR3de train, which is small, but comparable across frameworks.

#FB: Full baselines We train on the full CoNLL-training sections for PropBank and SALSA, to compare to state-of-the-art results and contrast the low-resource #BL to full resources.³

#EX: Expanded We train on data expanded via annotation projection.

We train mateplus using the reranker option and the default featureset for German⁴ excluding word embedding features.⁵ We explore the following role labeling tasks: predicate sense prediction (pd in mateplus), argument identification (ai) and role labeling (ac) for predicted predicate sense (pd+ai+ac) and oracle predicate sense (ai+ac). We report F1 scores for all three role labeling tasks.

We assure equivalent treatment of all three SRL frameworks in mateplus and train the systems only on the given training data without any framework-specific information. Specifically, we do not exploit constraints on predicate senses for PB in mateplus (i.e., selecting sense.1 as default sense), nor constraints for licensed roles (or role sets) for a given sense (i.e., encoding the FN lexicon). Thus, mateplus learns predicate senses and role sets only from training instances.

Experiment results for the different SRL frameworks are summarized in Table 2.⁶ Below, we discuss the results for the different settings.

#BL: for role labeling with oracle senses (ai+ac), PB performs best, VN is around 5 percentage points (pp.) lower, and FN again 5 pp. lower. With predicate sense prediction (pd+ai+ac), performance only slightly decreases for VN and PB, while FN suffers strongly: F1 is 17 pp. lower than for VN, despite the fact that its predicate labeling F1 is similar to PB and higher than VN. This indicates that generalization across senses works much better for VN and PB roles. By contrast, FN, with its sense-dependent role labels, is lacking generalization capacity, and thus suffers from data sparsity.

#FB: The full baselines #FB show that a larger training data set widely improves SRL performance compared to the small #BL training sets. One reason is the extended sense coverage in the #FB datasets, indicating the need for a larger training set. Still, FN scores are 6 pp. lower than PB (pd+ai+ac).

#EX: Automatically expanding the training set for PB leads to performance improvements of around 3 pp. to #BL for k=5 (pd+ai+ac and ai+ac), but the scores do not reach those of #FB. A similar gain is achieved for FN with k=1. Contrary to initial expectations, annotation projection tends to create similar instances to the seen ones, but at the same time, it also introduces noise. Thus, larger k (k>5) results in decreased role labeling performance compared to smaller k for all frameworks.

FN benefits most from training data expansion, with a performance increase of 5 pp. to #BL, reach-

| Table 2: F1 scores for predicate sense and role labeling on the SR3de test set; pd: predicate sense labeling; pd+ai+ac: sense and role labeling (cf. official CoNLL scores); ai+ac: role labeling with oracle predicate sense. We report statistical significance of role labeling F1 with expanded data #EX to the respective #BL (*: p < 0.05; **: p < 0.01). |
|---|---|---|---|
| **#BL:** SR3de training corpora | **#FB:** CoNLL training sections | **#EX:** SR3de train with data expansion |
| **#BL-PB** | **#EX-k=1** | **#BL-PB** |
| (1) | (6) | (12) |
| 58.84 | 58.65 | 58.26 |
| 73.70 | 75.09³ | 54.43 |
| 74.76 | 76.65² | 70.19 |
| **#BL-VN** | **#EX-k=3** | **#BL-VN** |
| (2) | (7) | (13) |
| 55.19 | 58.65 | 55.19 |
| 66.91 | 69.41 | 64.72 |
| **#BL-FN** | **#EX-k=5** | **#BL-FN** |
| (3) | (8) | (14) |
| 58.26 | 59.03 | 58.26 |
| 52.76 | 76.30¹ | 74.65 |
| **#EX-k=10** | **#EX-k=20** | **#EX-k=20** |
| (4) | (9) | (15) |
| 57.88 | 59.03 | 58.26 |
| 66.34† | 74.65 | 68.75 |
| **#FB-CoNLL** | **#EX-k=5** | **#FB-CoNLL** |
| (5) | (18) | (19) |
| 84.03 | 57.88 | 82.88 |
| 78.03 | 66.91 | 69.66 |
| **#FB-SALSA** | **#EX-k=10** | **#FB-SALSA** |
| (6) | (19) | (20) |
| 84.03 | 58.26 | 58.84 |
| 84.01 | 54.43 | 74.36 |
| 86.26 | 78.15 | 78.15 |
| **#EX-k=20** | **#EX-k=20** | **#EX-k=20** |
| (7) | (10) | (11) |
| 57.88 | 59.03 | 59.03 |
| 66.34† | 74.65 | 77.95² |
| **#EX-k=3** | **#EX-k=3** | **#EX-k=3** |
| (8) | (11) | (12) |
| 55.19 | 55.00 | 58.65 |
| 66.91 | 68.75 | 69.37 |
| **#EX-k=5** | **#EX-k=5** | **#EX-k=5** |
| (9) | (12) | (13) |
| 55.19 | 55.19 | 55.19 |
| 66.34† | 68.75 | 68.75 |
| **#EX-k=10** | **#EX-k=10** | **#EX-k=10** |
| (10) | (13) | (14) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |
| **#EX-k=20** | **#EX-k=20** | **#EX-k=20** |
| (11) | (14) | (15) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |
| **#EX-k=5** | **#EX-k=5** | **#EX-k=5** |
| (12) | (15) | (16) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |
| **#EX-k=10** | **#EX-k=10** | **#EX-k=10** |
| (13) | (16) | (17) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |
| **#EX-k=20** | **#EX-k=20** | **#EX-k=20** |
| (14) | (17) | (18) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |
| **#EX-k=3** | **#EX-k=3** | **#EX-k=3** |
| (15) | (18) | (19) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |
| **#EX-k=5** | **#EX-k=5** | **#EX-k=5** |
| (16) | (19) | (20) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |
| **#EX-k=10** | **#EX-k=10** | **#EX-k=10** |
| (17) | (20) | (21) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |
| **#EX-k=20** | **#EX-k=20** | **#EX-k=20** |
| (18) | (21) | (22) |
| 55.38 | 59.03 | 59.03 |
| 65.70** | 76.30¹ | 76.30¹ |

³Both #FB training sets contain ≈ 17,000 predicate instances. There is no additional labeled training data for VN.
⁴https://github.com/microth/mateplus/tree/master/featuresets/ger
⁵Given only small differences in mateplus performance when using word embeddings, we report results without them.
⁶Significance is computed using approximation randomization, i.e., SIGF (Padó, 2006) two-tailed, 10k iterations.
ing similar role labeling scores as VN for the oracle sense setting. For predicted senses, performance increase is distinctly smaller, highlighting that the sparse data problems for FN senses do not get solved by training data expansion. Performance improvements are significant for FN and PB for both role labeling settings. Against expectation, we do not observe improved role labeling performance for VN. We believe this is due to the more complex label set compared to PB and perform an analysis supporting this hypothesis below.

Analysis: complexity of the frameworks We estimate the role labeling complexity of the frameworks by computing \(C(d) \), the average ambiguity of the role instances in the dataset \(d \), \(d \in \{ \text{PB, VN, FN} \} \). \(C(d) \) consists of the normalized sum \(s \) over the number \(n \) of role candidates licensed for each role instance in \(d \) by the predicate sense label; for role instances with unseen senses, \(n \) is the number of distinct roles in the framework. The sum \(s \) is then divided by all role instances in dataset \(d \).

Results are \(C(\text{PB}) = 4.3, C(\text{VN}) = 9.7, C(\text{FN}) = 60 \). \(C(d) \) is inversely correlated to the expected performance of each framework, and thus predicts the role labeling performance for #BL (pd+ai+ac).

When considering only seen training instances, complexity is 1.67 for both PB and VN, and 1.79 for FN. This indicates a larger difficulty for FN, but does not explain the difference between VN and PB. Yet, next to role ambiguity, the number of instances seen in training for individual role types is a decisive factor for role labeling performance, and thus, the coarser-grained PB inventory has a clear advantage over VN and FN.

The sense labeling performance is lower for VN systems compared to FN and PB. This correlates with the fact that GermaNet senses used with VN are more fine-grained than those in FN, but more abstract than the numbered PB senses. Still, we observe high role labeling performance independently of the predicate sense label for both VN and PB. This indicates high generalization capabilities of their respective role sets.\(^7\)

The 5 pp. gap between the VN and PB systems is small, but not negligible. We expect that a suitable sense inventory for German VN, analogous to VerbNet’s classes, will further enhance VN role labeling performance. Overall, we conclude that the higher complexity of the FrameNet role inventory causes data sparsity, thus FN benefits most from the training data expansion for seen predicates. For the other two frameworks, cross-predicate projection could be a promising way to increase the training data coverage to previously unseen predicates.

5 Discussion and Conclusion

We perform the first experimental comparison of all three major SRL frameworks on a small German dataset with parallel annotations. The experiment settings ensure comparability across frameworks.

Our baseline experiments prove that the generalization capabilities of the frameworks follow the hypothesized order of FrameNet < VerbNet < PropBank. Comparative analysis shows that PropBank and VerbNet roles generalize well, also beyond predicates. Taking into account the semantic expressiveness of VerbNet, these results showcase the potential of VerbNet as an alternative to PropBank. By contrast, FrameNet’s role labeling performance suffers from data sparsity in the small-data setting, given that its role inventory does not easily generalize across predicates.

While VerbNet generalizes better than FrameNet, it does not benefit from our automatic training data generation setup. Currently, annotation projection only applies to lemmas seen in training. Thus, the generalization capacities of VerbNet – and PropBank – are not fully exploited. Relaxing constraints in annotation projection, e.g., projecting across predicates, could benefit both frameworks.

FrameNet suffers most from sparse-data problems and thus benefits most from automatic training data expansion for seen predicates, yet sense labeling persists as its performance bottleneck.

In future work we plan to a) further evaluate cross-predicate generalization capabilities of VerbNet and PropBank in cross-predicate annotation projection and role labeling, b) explore semi-supervised methods and constrained learning (Akbik and Li, 2016), and c) explore alternative sense inventories for the German VerbNet-style dataset.

We publish our benchmark dataset with strictly parallel annotations for the three frameworks to facilitate further research.\(^8\)

\(^7\)This is confirmed when replacing the predicate sense label with the lemma for training: the role labeling results are fairly close for PB (74.34%) and VN (68.90%), but much lower for FN (54.26%).

\(^8\)http://projects.cl.uni-heidelberg.de/SR3de
Acknowledgements The present work was partially funded by a German BMBF grant to CLARIN-D and the DFG-funded Research Training School “Adaptive Preparation of Information from Heterogeneous Sources” (GRK 1994/1). We thank the anonymous reviewers for their valuable comments and suggestions.

References

Ellie Pavlick, Travis Wolfe, Pushpendre Rastogi, Chris Callison-Burch, Mark Dredze, and Benjamin

Author Index

Akhtar, Syed Sarfaraz, 91
Bary, Corien, 46
Berck, Peter, 46
Buechel, Sven, 1
Carbonell, Jaime, 95
Çetinoğlu, Özlem, 34
Dalbelo Bašić, Bojana, 82
Delamaire, Amaury, 41
Demberg, Vera, 24
di Buono, Maria Pia, 82
Dunietz, Jesse, 95
Eckart de Castilho, Richard, 67
Frank, Anette, 115
Fujita, Atsushi, 57
Glavaš, Goran, 82
Gupta, Arihant, 91
Gurevych, Iryna, 115
Hahn, Udo, 1
Hartley, Anthony, 57
Hartmann, Silvana, 115
Hendrickx, Iris, 46
Hess, Leopold, 46
Ide, Nancy, 67
Kageura, Kyo, 57
Kurfali, Murathan, 76
Kuznetsov, Ilia, 115
Lapponi, Emanuele, 67
Levin, Lori, 95
Martínez Alonso, Héctor, 41
Milic-Frayling, Natasa, 82
Mújdricza-Maydt, Éva, 115
Napoles, Courtney, 13
Oepen, Stephan, 67
Pappu, Aasish, 13
Provenzale, Brian, 13
Rehbein, Ines, 105
Rosato, Enrica, 13
Ruppenhofer, Josef, 105
Sagot, Benoît, 41
Scholman, Merel, 24
Shrivastava, Manish, 91
Šnajder, Jan, 82
Srivastava, Arjit, 91
Suderman, Keith, 67
Tanabe, Kikuko, 57
Tetreault, Joel, 13
Thijs, Kees, 46
Toyoshima, Chiho, 57
Tutek, Martin, 82
Vajpayee, Avijit, 91
Velldal, Erik, 67
Verhagen, Marc, 67
Yamamoto, Mayuka, 57
Zeyrek, Deniz, 76