
A Java Reference Model of Transacted Memory for

Smart Cards∗

Erik Poll

University of Nijmegen, the Netherlands

Pieter Hartel

University of Twente, the Netherlands

Eduard de Jong

Sun Microsystems, Inc., Santa Clara, USA

Abstract

Transacted Memory offers persistence, un-
doability and auditing. We present a
Java/JML Reference Model of the Transacted
Memory system on the basis of our earlier
separate Z model and C implementation. We
conclude that Java/JML combines the advan-
tages of a high level specification in the JML
part (based on our Z model), with a detailed
implementation in the Java part (based on
our C implementation).

1 Introduction

In a previous paper [6] we introduced
Transacted Memory as an efficient means to
implement atomic updates of arbitrarily sized
information on smart cards. Smart cards
need such a facility, as a transaction can be
aborted by a card tear, i.e. by pulling the
smart card out of the Card Acceptance De-
vice (CAD), at any moment. A patent ap-
plication has been filed for this Transacted
Memory [5]. Its design allows a much smaller
implementation overhead than the transac-
tion mechanism in the current Java Card
API1, which does not even provide genera-

∗To appear in the proceedings of Fifth Smart
Card Research and Advanced Application Conference
(CARDIS’02)

1Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun Microsys-
tems, Inc. in the U.S. or other countries, and are used
under license.

tional, logging, or multiple concurrent trans-
actions.

In our earlier paper we provided a succinct
abstract Z specification [13] of the system, a
first Z refinement that takes into account the
peculiarities of EEPROM memory (i.e. byte
read versus block write), a second Z refine-
ment that deals with card tear, and, finally,
an (inefficient) C implementation. (The inef-
ficiency is due to the use of many simple for-
loops that search the memory; we are working
on a VHDL specification of a hardware mod-
ule that will replace the for-loops by efficient
parallel searches but this is beyond the scope
of the present paper.) The C implementation
has been coded in such a way that it also
serves as a SPIN [8] model.

From our earlier work we concluded that a
formal connection between specification and
implementation would have been highly de-
sirable, yet such a connection cannot be ob-
tained using Z and C. While a formal con-
nection can be established using SPIN, we
believe the readability leaves much to be de-
sired, as specification and implementation
tend to be intertwined in a SPIN model.

In the present paper we adopt an inte-
grated approach to specification and imple-
mentation that solves the problems of read-
ability and the lack of a formal connection be-
tween specification and implementation. We
use the Java/JML [9] modelling method and
tools, which means we write formal specifi-
cations by annotating the Java code with in-
variants, preconditions, and postconditions,

1

using the specification language JML (see
www.jmlspecs.org). These formal specifi-
cations can then be compiled into runtime-
checks [4], providing a convenient way of
checking specifications against code. The
Java/JML modelling method and the run-
time assertion checker ensure a strong, formal
connection between Java implementation and
JML specification.

In the present work we apply Java/JML to
what we hope will become a component of a
future version of the Java Card technology.
JML has already been used to specify the en-
tire Java Card API [11, 12], and other tools
than the runtime assertion checker have al-
ready been used to verify JML specifications
of Java Card applets [3, 1].

The contributions of the present paper are:

• Several bugs have been detected and
repaired in the implementation of the
Transacted Memory.

• We make the pre- and postconditions of
the memory operations explicit in the
JML specifications. The readability of
these specifications is better because the
reader does not have to trawl through
the entire Z specification to discover the
pre- and postconditions. The connection
between specification and implementa-
tion is formal, and has been checked us-
ing the runtime assertion checker.

• The previous C implementation cum
SPIN model relied on implicit meth-
ods of modelling the recovery from card
tears. In the Java/JML model we use
exception handling as an explicit, clearer
method for modelling recovery. This al-
lows us to test the behaviour of the Java
implementation in the presence of (simu-
lated) card tears, and to use JML to pre-
cisely specify the conditions that should
hold after a card tear.

• We contribute a reference model of the
Transacted Memory system to SUN’s
collection, instead of just a reference im-

plementation. The difference is in the
presence of the formal JML specification.

In Section 2 we review briefly how Trans-
acted Memory works. Section 3 describes the
Java implementation of the system, Section 4
discusses the JML specification for this Java
implementation. The last section concludes.

' $

Revise

?

Z

�
�

�
�Abstract

?

Refine�
�

�
�Refinement 1

?

Refine�
�

�
�Refinement 2

C/SPIN

�
�

�
�Prototype

?

Informal

Java/JML

�
�

�
�Prototype

?

Informal

Figure 1: The process

2 The Transacted Memory

Figure 1 describes the relationship between
the various specifications and implementa-
tions of the Transacted Memory system. The
Java/JML reference model, which is the sub-
ject of this paper, was derived by hand from
the closely corresponding C implementation
cum SPIN model for the Java part, and from
the final refinement of the Z specification for
the JML part. While Java and C are similar
in many ways, there are some important dif-
ferences, discussed in Section 3 below. Here

2

we concentrate on how Transacted Memory
works, giving excerpts of the abstract Z spec-
ification to make the present paper self con-
tained; the details are in [6, 2].

Transacted Memory is designed around two
notions: tags and information sequences. A
Tag is merely a unique address, i.e. an identi-
fier of a particular information sequence. An
information sequence is a sequence of Info’s,
where Info is the unit of data stored and re-
trieved. A sequence of Info’s would be used
to store a collection of object instances that
are logically part of a transaction.

The abstract Z specification (below) makes
no specific assumptions about either compo-
nent:

[Tag , Info]

The existence of a finite set of available tags
is assumed (tags), as well as limits on the size
of the memory (msize). There may be sev-
eral generations of the information associated
with a tag, and there is a maximum number
of generations that may be associated with
any tag (maxgen):

tags : FTag

msize : N1

maxgen : N1

The abstract Z specification represents the
memory system as two partial functions as-

soc and size and a set committed, as shown
below. We have omitted the constraints on
the partial functions and the set:

AMemSys

assoc : tags 7→ seq(seq Info)
size : tags 7→ N1

committed : P tags

. . .

The assoc function associates a tag with
a sequence of sequences of information. The
first sequence of information represents the
current information associated with a tag.
Any further information sequences give older
generations of this information, in order of
increasing age.

The size function gives the length of the
information sequences associated with a tag.
The committed set records those tags for
which the current state of the transacted data
has been committed.

Operations are provided to write a new
generation, and to read the current or older
generations. All generations associated with
a tag have the same size, although this could
be generalised.

The transaction processing capability of
the memory is supported by a commit oper-
ation, which makes the most recently written
information the current generation. The old-
est generation is automatically purged should
the number of generations for a tag exceed a
preset maximum. It should be noted that the
support for recording multiple generations,
which can be useful for logging, essentially
comes for free, i.e. without any additional im-
plementation cost.

As an example, the abstract Z specifica-
tion of the operation ACommit is shown be-
low. The operation commits the current gen-
eration of information associated with a tag.
The tag must have an associated information
sequence, which is flagged as committed.

ACommit

∆AMemSys

t? : tags

t? ∈ dom assoc

assoc t? 6= 〈〉
committed ′ = committed ∪ {t?}

The Transacted Memory must be used in
such a way that a sequence of operations ei-
ther completes normally, or that a sequence is
interrupted at an arbitrary moment by a card
tear. A recovery operation Tidy is provided
to return the Transacted memory to a known
state. The idea is that each time the card is
inserted in the CAD, the recovery operation
is automatically started.

Transacted Memory thus provides undoa-
bility (by being able to revert to a previ-
ous generation) and persistence (by using
EEPROM technology). These are precisely
the ingredients necessary to support transac-

3

tions [10].

To provide this functionality, Transacted
Memory maintains a certain amount of book-
keeping information. In its most abstract
form, the bookkeeping information records
three items:

• The length of the information sequence
that is associated with a tag.

• The different generations of information
associated with each tag. It is possible
that there is no information associated
with a tag.

• Which tags are currently committed.

The details of the Z specification may be
found in a technical report [2]; here we fo-
cus on the API of the Transacted Memory,
taken from our previous paper [6] and shown
in Figure 2, because this is where the pre- and
postconditions of the Java/JML specification
provide the major contribution to readability
and rigour.

3 A Java implementation of

Transacted Memory

The Java implementation was obtained by
manually transliterating the C code to Java
code. This is not difficult as the languages
are close, and for a program of this size (1200
lines) the effort involved is small. We have
been careful in transliterating the C code,
and we are confident that our Java implemen-
tation closely mimics the C implementation.
There are two essential differences between
the Java implementation and the C imple-
mentation, as explained below.

Static Type Checking

The C implementation contains several
macros to define “types” for the different
kinds of numeric values (bytes) that are used,
such as generations, locations, page numbers,
tags, versions, etc.:

#define Gen byte /* 0 .. maxgen */

#define Loc byte /* 0 .. msize-1 */

#define PageNo byte

#define Tag byte /* 0 .. tsize-1 */

#define Ver byte /* 0 .. 2 */

#define Inf byte /* 0 .. isize-1 */

#define Seq byte /* 0 .. ssize */

These are just macros, and although they in-
crease the readability of the code, they do not
provide any type-safety.

In the Java implementation we have cho-
sen to use different classes for these different
kinds of values. This is inefficient since we
make what is just a simple byte into an ob-
ject. The inefficiency is not a primary concern
here; we believe it to be more important for
a reference model to be as clear and concise
as possible2. Modelling bytes by classes has
the advantage of providing type-safety, as for
instance ‘generations’ and ‘tags’ are no longer
assignment-compatible. Interestingly, this in-
creased type safety immediately revealed a
bug in the C code (and SPIN model): in one
place a ‘version number’ was used in a place
where a ‘page number’ was expected. This
bug seems to have been a simple typo in the
C code. This bug was not discovered in the
model checking using SPIN, nor in testing of
the C implementation, because the test har-
ness for the Transacted Memory used there
was fairly restricted.

The discovery of this bug illustrates the
value of a statically enforced type system.
Especially for code like that of the Trans-
acted Memory, which is littered with differ-
ent ‘kinds’ of bytes, it is easy to confuse a
byte representing a page number with a byte
representing a ‘version’. It is a pity that C
and Java do not have type-safe enumeration
types, and that JML does not improve the
level of expressiveness of the Java/JML com-
bination in this respect.

2Also, the Java Card technology offers the possi-
bility to optimize API components, such as the trans-
acted memory API, in the offcard converter.

4

typedef struct { Gen old, new ; byte cnt ; } GenGenbyte ;

structure used to hold the number of the oldest and newest generation,
and the number of generations.

typedef struct { Size size ; Info data[ssize] ; } InfoSeq ;

structure used to hold an information sequence and its size.

GenGenbyte DGeneration(Tag) ;

Return all available information for the given tag. The result is undefined
if the tag is not in use.

Tag DNewTag(Size) ;

Return an unused tag of the specified size. The result is undefined if no
tag is available.

void DTidy() ;

Recover from an interrupted write operation.

InfoSeq DReadGeneration(Tag, Gen) ;

Read the information sequence of a given tag and generation. The in-
formation sequence is undefined if the tag is not in use.

InfoSeq DRead(Tag) ;

Read the information sequence of the current generation associated with
the given tag.

void DCommit(Tag) ;

Commit the current generation for the given tag. The operation has no
effect if the tag is already committed.

void DRelease(Tag) ;

Release all information associated with the given tag. The operation has
no effect if the tag is not in use.

void DWriteFirst(Tag, InfoSeq) ;

Write to a tag immediately after the DNewTag operation. The result is
undefined if insufficient space is available.

void DWriteUncommitted(Tag, InfoSeq) ;

Write to a tag whose current generation is uncommitted.

void DWriteCommittedAddGen(Tag, InfoSeq) ;

Write to a tag whose current generation has been committed, and whose
maximum number of generations has not been reached.

void DWriteCommittedMaxGen(Tag, InfoSeq) ;

Write to a tag whose current generation has been committed, and whose
maximum number of generations has been written. The oldest genera-
tion will be dropped.

Table 1: Transacted Memory data structures and functions for C.

5

Modelling card tear

The second, and more important, aspect in
which the Java implementation essentially
differs from the C implementation is that
we use Java’s exception mechanism to model
card tears. We introduce a special exception
class CardTearException, and a card tear is
simulated by throwing this exception. This is
useful, because it allows us

1. to test the behaviour of the program
when card tears occur; in the Java
method that models atomic writes to
EEPROM we can easily simulate ran-
dom card tears by randomly choosing to
throw a CardTearException or not, be-
fore or after the atomic write to EEP-
ROM.

2. to specify in JML the properties that
should hold after a card tear occurs; this
will be discussed in Section 4.

In fact, though we will not pursue this point
in this paper, a card tear can be modelled
very accurately as an (uncatchable) Java ex-
ception, for which the power-on mechanism
of the card provides the exception handler;
see [7].

In a later stage we will also introduce Java
exceptions to signal that there is insufficient
free transacted memory to carry out an oper-
ation, as discussed at the end of Section 4.

4 JML specifications for the

Java implementation

The Java Modeling Language (JML) [9] is
a behavioural interface specification language
tailored to Java. JML is developed primarily
by Gary T. Leavens at Iowa State University.
Java programs can be specified using JML
by annotating them with invariants, pre- and
postconditions, and other kinds of assertions.
JML combines features of Eiffel (or ‘Design
by Contract’) and model-based approaches,
such as Larch/LSL and VDM.

JML annotations are written as a special
kind of Java comments. This means they are

ignored by normal Java compilers, but can be
used by special tools for JML. The tools we
have used on our JML-annotated code are the
JML type-checker and the JML runtime as-
sertion compiler [4]. Both these tools can be
downloaded from www.jmlspecs.org. The
runtime assertion compiler turns annotations
into runtime checks, so that any violation of
an annotation at runtime produces an error.

To create the JML specifications for the
Java implementation, elements of the Z speci-
fications and of the informal comments given
in the C code were converted into pre- and
postconditions, class invariants, and loop in-
variants. The JML specifications we have
written are partial in the sense that they do
not give a complete specification of Trans-
acted Memory. Still, the specifications do ex-
press the main properties that should hold for
the Transacted Memory, and have proven to
be sufficiently detailed to find bugs, as we will
discuss later.

Figure 2 gives an example of a JML spec-
ification, namely the specification of the
method DWriteUncommitted. The JML spec-
ification is written between the annotation
markers /*@ and @*/.

The first three lines of the JML specifica-
tion, starting with requires, give the pre-

condition of the method. Here the precon-
dition is that the tag should be in use, the
information sequence i should be of the right
length, and the tag should not be commit-
ted. When doing runtime assertion checking,
any invocation of DWriteUncommitted which
violates these preconditions will produce an
error message3.

The next two lines, starting with ensures,
give the postcondition of the method. The
first of these lines says that if we read back
the value for tag using DRead we get the value
i we just assigned to it, the second says that
the tag is still not committed. When do-
ing runtime assertion checking, any invoca-
tion of DWriteUncommitted which does not

3Actually, JML is so expressive that some JML
assertions are not decidable, e.g. assertions using the
keyword forall to quantify over an infinite domain;
these (parts of) JML assertions are not compiled into
runtime checks.

6

/* Write to a tag whose current generation is uncommitted. */

/*@ requires ddata[tag.value].tagInUse; // tag in use

requires ddata[tag.value].size == i.seq; // i of right length

requires ! ddata[tag.value].committed; // tag uncommitted

ensures DRead(tag).equals(i); // i written successfully

ensures ! ddata[tag.value].committed; // tag still uncommitted

signals (CardTearException) ! ddata[tag.value].committed;

signals (CardTearException) DRead(tag).equals(i)

|| DRead(tag).equals(\old(DRead(tag)))

@*/

public void DWriteUncommitted(Tag tag, InfoSeq i)

throws CardTearException;

Figure 2: JML specification of DWriteUncommitted

establish these postconditions will produce an
error message.

Finally, the last lines of the JML specifi-
cation, starting with signals, give the ex-

ceptional postcondition. Whereas ensures

clauses specify the ‘normal’ postconditions,
i.e. properties that should hold after normal
termination of a method invocation, signals
clauses specify properties that should hold
at the end of a method invocation if an ex-
ception is thrown. The first signals clause
here says that if a CardTearException is
thrown then the tag remains uncommitted.
The second signals clause says that if a
CardTearException is thrown, then either

DRead(tag).equals(i)

or

DRead(tag).equals(\old(DRead(tag)))

i.e. reading back the value for tag either pro-
duces the ‘new’ value i just written or it pro-
duces the ‘old’ value of DRead(tag). The
JML keyword \old is used here to refer to
the value an expression had before execution
of the method.

Note that the information sequence i may
consist of several bytes, and that a single
DWriteUncommitted operation may require
several writes to EEPROM. EEPROM is typ-
ically written block by block, where the block
size depends on the particular EEPROM. So

the second signals clause states the atomic-
ity of the DWriteUncommitted operation!

When doing runtime assertion checking,
any invocation of DWriteUncommitted which
throws a CardTearException and which does
not establish the exceptional postconditions
will produce an error message. Throwing an
exception that is not a CardTearException

will also produce an error message, as there
are no signals clauses allowing other excep-
tions to be thrown.

Everything the runtime assertion checker
does could be programmed by hand, as tests
in the code – the C implementation has a
number of these tests scattered through the
code –, but note that for something like the
second signals clause above this is far from
trivial! It would involve catching and re-
throwing exceptions at the end of the method,
as well as somehow recording the ‘old’ value
that DRead(tag) has in the pre-state. The
JML runtime assertion tool compiles all this
into the code automatically, which is useful,
as it means we can concentrate on the essen-
tials.

The other three write-operations –
DWriteFirst, DWriteCommittedAddGen, and
DWriteCommittedMaxGen – have specifica-
tions very similar to the one discussed above.
The only difference is in their preconditions.

The specification of DWriteUncommitted
7

above is still incomplete. For example, it does
not specify that the older generations of the
tag are left unchanged. Still, specifications
like this turn out to be detailed enough to
give useful feedback when checking them at
runtime. As discussed below, several prob-
lems with the implementation came to light
when performing runtime assertion checks.

Bug 1 – Uncommitting new generations

Performing tests of the Transacted Mem-
ory the runtime assertion checker immedi-
ately reported that DWriteCommittedAddGen
and DWriteCommittedMaxGen do not estab-
lish their postconditions; more specifically,
they fail to establish

ensures !ddata[tag.value].committed;

The implementations of these methods forget
to reset the committed flag of the tag. This
bug was not discovered using SPIN, because
the test harness used there committed every
new generation immediately after the write
operation.

Note that even in the Java/JML model we
could have forgotten this postcondition, and
then we would not have discovered the prob-
lem either. However, by systematically writ-
ing specifications for all the operations we be-
lieve one is less likely to forget something like
this.

Bug 2 - Inadvertent commit

After Bug 1 was repaired, a second bug was
discovered by runtime assertion checking. We
also repaired the SPIN model and re-ran the
model checker on that, and found the same
error there.

The operations DWriteCommittedAddGen

and DWriteCommittedMaxGen start a new,
uncommitted, generation, but a card tear at
a certain point in their execution may inad-
vertently commit the new generation written.
Both DWriteCommittedAddGen and DWrite-

CommittedMaxGen first write the data for the
new generation. This may take several atomic

writes, but the last of these implicitly records
that the whole write has been successful (in
effect, making the whole writing of the data
atomic). Then the commit flag is cleared –
also atomically, but separate from the last
write for the data. If a card tear occurs im-
mediately after the data is written, but before
the commit flag is cleared, the tag will appear
committed to the recovery process, whereas
in reality it should be uncommitted. The
recovery process was not designed to detect
this, and indeed a warning to this effect ap-
pears in the original Z specification [2, page
34].

The solution which we have implemented is
to use not a boolean commit flag, but a three-
valued flag, so that a DWriteCommitted-

AddGen or DWriteCommittedMaxGen inter-
rupted at the precise point above can be de-
tected during recovery. (An alternative solu-
tion would be to store the last of the data
and the commit flag together in the same
EEPROM block, as opposed to storing them
in separate areas, so that writing the last of
the data and the clearing the commit flag be-
comes one atomic operation.)

Optimisations and Improvements in
the Algorithm

In addition to finding the bugs above, the
systematic analysis of the code required to
write the JML specifications also had the ben-
efit of suggesting several optimisations and
improvements to the code.

Efficiency Improvements

The method DGeneration(Tag tag) discov-
ers the generation indices associated with a
tag, and then returns the indices of the old-
est and newest generation, as well as the num-
ber of generations. To better understand the
implementation of this method, it was anno-
tated with JML assert clauses. An assert

clause can occur anywhere in a method body,
and specifies a property that should hold at
this point in the program. When doing run-
time assertion checking, any violation of an
assert clause will produce an error message.

8

Annotating the implementation of
DGeneration(Tag tag) with assert

clauses, we discovered that one for-loop
could be removed, as the value it computed
could already be computed directly from
values already known.

Also, a redundant modulo operation % (i.e.
one where the first argument will always be
smaller than the modulus) was discovered in
the implementation of DGeneration.

Interface Improvements

The four operations for writing to the Trans-
acted Memory are:

• DWriteFirst

• DWriteUncommitted

• DWriteCommittedAddGen

• DWriteCommittedMaxGen

These operations have identical postcondi-
tions, and only differ in their preconditions.
This raises the question whether it is not bet-
ter to have a single method DWrite, which
chooses the ‘right’ write operation and exe-
cutes it. Indeed the original Z specification
offers such a ‘comprehensive’ write operation,
defined by way of a schema conjunction of the
write operations listed above. However, this
operation was forgotten in the development
of the C cum SPIN code.

An unsatisfactory feature of the Transacted
Memory as originally implemented in C is
that if there is insufficient space to perform
a write operation, it may be carried out only
partially, resulting in an inconsistent state,
without any warning. The informal specifica-
tion of DWriteFirst in Table 2 does indeed
say that its effect is undefined if insufficient
space is available. The same can happen in
the other write operations, although their in-
formal specifications do not say this.

Our initial JML specifications for the write
methods, e.g. the one in Figure 2, did not al-
low for this, and the runtime assertion checker
warned about violations of them.

We improved the Java implementation so
that a OutOfTransactedMemoryException is
thrown in case insufficient space is avail-
able to perform a write operation. The
JML specifications were adapted accord-
ingly. For example, in the specification for
DWriteUncommitted in Figure 2 we added

signals

(OutOfTransactedMemoryException)

DRead(tag).equals(is) &&

! ddata[tag.value].committed;

stating that the write operation won’t happen
at all in case an OutOfTransactedMemory-

Exception is thrown.

Similarly, the operation DNewTag was
adapted to throw an OutOfTagsException

when no additional tag is available, rather
than producing an undefined result in this
case.

4.1 Future Work with these JML
specs

We also translated the abstract Z specifi-
cation given in [6] to Java/JML. This was
not difficult, given that JML comes with
a package org.jmlspecs.models that pro-
vides Java implementations of all the stan-
dard mathematical concepts used in the Z
specification. For example, Figure 3 gives the
JML translation of the Z specification of the
operation ACommit shown in Section 2.

One obvious difference is that the Z spec-
ification looks prettier, as in Java/JML we
do not have conventional mathematical nota-
tion, such as ∈ or 6=.

A more important difference is that the
JML/Java specification can be turned into an
executable one, namely

public void ACommit(Tag t)

{ committed = committed.insert(t);

}

We could use this Java implementation of the
abstract specification to give a more detailed

9

//@ import org.jmlspecs.models.*;

/*@ requires assocs.domain().has(t) &&

@ ! assocs.apply(t).isEmpty() ;

@ ensures committed.equals(\old(committed).insert(t));

@*/

public void ACommit(Tag t)

Figure 3: JML specification of ACommit

specification for our current Java implemen-
tation. Basically, the idea would be to define
a Java implementation which executes the
current Java implementation and this more
abstract one side by side, and express the
relation between the two in JML assertions.
However, as the abstract specification does
not consider the possibility of card tears, the
precise relation between this abstract imple-
mentation and the current Java implementa-
tion is not trivial to make precise. This is left
as future work.

5 Conclusions

The work described in this paper, i.e.

• developing a Java implementation based
on a C implementation, and

• developing JML specifications based on
a Z specification, and

• checking the Java implementation
against the JML specification using
runtime assertion checking,

has been successful in finding bugs and im-
proving the implementation. The bugs we
found range from simple typos to more se-
rious errors, and to some misunderstandings
between different people that have been in-
volved in the design of the Transacted Mem-
ory.

It is disappointing that the careful develop-
ment of the system as reported in our previ-
ous paper [6] – starting from a formal abstract
Z specification that was refined to an C/SPIN
implementation, which was model-checked –

did leave these bugs in the final implementa-
tion.

In all fairness, we must admit that the orig-
inal testing scenario for the C/SPIN imple-
mentation with the model-checker SPIN was
too restricted. Conventional testing of the C
implementation would have discovered many
of the bugs that we found, but probably with
more effort. Runtime assertion checking of
JML specifications makes it easier to locate
bugs than conventional testing. Indeed, no
complicated testing scenarios were needed to
find any of the bugs discussed.

Some problems and possible improvements
were found before we even tried runtime as-
sertion checking, but were spotted when try-
ing to come up with good specifications in
the first place. Annotating Java code with
JML specifications provides a systematic way
of performing a thorough code review, which
can help to discover bugs and may point to
possible optimisations or improvements. By
contrast, testing of the code may find the
bugs, but will probably not suggest optimi-
sations or improvements.

There is a fairly standard recipe for anno-
tating Java code with JML. Typically, one
starts by giving pre- and postconditions for
each method; these can be based on existing
informal specifications, on our informal un-
derstanding of the program, and – somewhat
exceptionally here – on the formal Z specifica-
tions. For each method implementation one
then informally checks that any method in-
vocations it contains do not violate their pre-
conditions; this may require further strength-
ening of its precondition, or the introduction
of loop invariants. Then one compares the
different pre- and postconditions that have
been written. Commonalities between pre-

10

and postconditions may suggest class invari-
ants. Differences between them may point
out possible omissions; e.g if the precondi-
tion of DWriteUncommitted (Tag tag) re-
quires a tag to be uncommitted, then its post-
condition should probably state whether this
tag remains uncommitted or not, and pos-
sibly other methods that have a tag as ar-
gument should be specified with similar con-
ditions. Finally, any violations of assertions
found during runtime assertion checking in
test scenarios may of course lead to improve-
ments in the JML specifications.

For the system we considered, a vital ad-
vantage of using Java over using C is that
we can conveniently model card tears using
Java’s exception mechanism. A disadvantage
of using Java instead of C is that C is prob-
ably closer to a realistic implementation in
actual hardware.

Using Java and JML, rather than C and Z,
for implementation and specification, has had
several advantages.

Firstly, it becomes possible to check the
relation between implementation and speci-
fication: runtime assertion checking tells us
where Java implementation and JML specifi-
cation disagree. This may of course just as
well be a mistake in the Java implementation
as a mistake in the JML specification.

Secondly, Java implementation and JML
specification are close together, in the same
file. The usefulness of this is illustrated by
the fact that the Z specification actually dis-
cusses the possibility of bug 2, but in a foot-
note on page 34 of [2], something one is not
likely to notice or remember when working on
the C implementation.

Finally, the JML specifications are a lot
easier to understand than the Z specifica-
tions, except for experts in Z. JML mainly
uses Java notions and notations, and it has
been the overriding design principle in the
design of JML that specifications should be
easy to understand by any Java programmer.
Indeed, a point we would like to stress is that
formal methods need not involve notations
and tools that only specialists can use. Our
formal model is a Java program, that can be

understood by anyone familiar with Java, as
can the formal specifications for it written in
JML. In this respect, it is interesting to note
the contrast with Z and SPIN – or indeed
UML! Developing the kind of JML specifica-
tions we discussed in this paper and using the
runtime assertion checker should not pose any
problem for competent Java programmers.

6 Acknowledgments

The work by Erik Poll is financially sup-
ported by the IST Programme of the Euro-
pean Union, as part of “VerifiCard” project
(IST-2000-26328).

References

[1] C.-B. Breunesse, B. Jacobs, and J. van den
Berg. Specifying and verifying a deci-
mal representation in Java for smart cards.
In 9th Algebraic Methodology and Software
Technology (AMAST), volume LNCS 2422,
pages 304–318, St. Gilles les Bains, Reunion
Island, France, Sep 2002. Springer-Verlag,
Berlin.

[2] M. J. Butler, P. H. Hartel, E. K.
de Jong, and M. Longley. Applying
formal methods to the design of smart
card software. Declarative Systems &
Software Engineering Technical Reports
DSSE-TR-97-8, Univ. of Southampton,
1997. http://www.dsse.ecs.soton.ac.uk/

techreports/97-8.html.

[3] N. Cataño and M. Huisman. Formal spec-
ification of Gemplus’s electronic purse case
study. In L. H. Eriksson and P. A. Lindsay,
editors, Formal Methods: getting IT right
– Formal Methods Europe (FME), volume
LNCS 2391, pages 272 – 289, Copenhagen,
Denmark, Jul 2002. Springer-Verlag, Berlin.

[4] Y. Cheon and G.T. Leavens. A runtime as-
sertion checker for the Java Modeling Lan-
guage (JML). In Hamid R. Arabnia and
Youngsong Mun, editors, Proceedings of the
International Conference on Software Engi-
neering Research and Practice (SERP ’02),
Las Vegas, Nevada, USA, June 24-27, 2002,
pages 322–328. CSREA Press, June 2002.

11

[5] Eduard Karel de Jong and Jurjen Norbert
Bos. Arrangements Storing Different Ver-
sions of a Set of Data in Separate Memory
Areas and Method for Updating a Set of data
in a Memory. Dutch Patent Application,
PCT/NL99/00360, June 10, 1999. Interna-
tional Publication Number WO 00/77640,
2000. WIPO, Vienna.

[6] P. H. Hartel, M. J. Butler, E. K. de Jong Frz,
and M. Longley. Transacted memory for
smart cards. In J. N. Olivieira and P. Zave,
editors, 10th Formal Methods for Increas-
ing Software Productivity (FME), volume
LNCS 2021, pages 478–499, Berlin, Ger-
many, Mar 2001. Springer-Verlag, Berlin.
http://www.dsse.ecs.soton.ac.uk/

techreports/2000-9.html.

[7] P. H. Hartel and E. K. de Jong Frz. A
programming and a modelling perspective
on the evaluation of Java card imple-
mentations. In I. Attali and T. Jensen,
editors, 1st Java on Smart Cards: Pro-
gramming and Security (e-Smart), vol-
ume LNCS 2041, pages 52–72, Cannes,
France, Sep 2000. Springer-Verlag, Berlin.
http://www.dsse.ecs.soton.ac.uk/

techreports/2000-8.html.

[8] G. J. Holzmann. The model checker
SPIN. IEEE Transactions on software en-
gineering, 23(5):279–295, 1997. http://

cm.bell-labs.com/cm/cs/who/gerard/.

[9] G. T. Leavens, A. L. Baker, and C. Ruby.
JML: A notation for detailed design.
In H. Kilov, B. Rumpe, and I. Sim-
monds, editors, Behavioral Specifica-
tions of Business and Systems, pages
175–188. Kluwer Academic Publishers,
Boston/Dordrecht/London, 1999.

[10] S. M. Nettles and J. M. Wing. Persis-
tence+undoability=transactions. In 25th
Hawaii System Sciences (HICS), volume 2,
pages 832–843. IEEE Comput. Soc. Press.,
Los Alamitos, California, 1991.

[11] E. Poll, J. van den Berg, and B. Ja-
cobs. Specification of the JavaCard API
in JML. In J. Domingo-Ferrer and
A. Watson, editors, Fourth Smart Card
Research and Advanced Application Conf.
(CARDIS), pages 135–154, Bristol, UK,
Sep 2000. Kluwer Academic Publishers,
Boston/Dordrecht/London.

[12] E. Poll, J. van den Berg, and B. Jacobs.
Formal specification of the JavaCard API in
JML: the APDU class. Computer Networks,
36(4):407–421, Jul 2001. The JML specs
of the JavaCard API 2.1.1 are available on-

line at http://www.cs.kun.nl/~erikpoll/

publications/jc211_specs.html.

[13] J. M. Spivey. The Z notation. Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

12

