Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale

M. J. A. Christianen,1,6 J. J. Middelburg,2 S. J. Holthuisen,3 J. Jouta,1,3 T. J. Compton,3 T. van der Heide,1,4 T. Pierson,1,3 J. S. Sinninghe Damste,2,5 H. W. van der Veer,3 S. Schouten,2,5 and H. Olff1

1Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC The Netherlands
2Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht 3508 TA The Netherlands
3Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 39, Den Burg 1790 AB The Netherlands
4Institute for Wetland and Water Research, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen 6525 AJ The Netherlands
5Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 39, Den Burg 1790 AB The Netherlands

Abstract. Coastal food webs can be supported by local benthic or pelagic primary producers and by the import of organic matter. Distinguishing between these energy sources is essential for our understanding of ecosystem functioning. However, the relative contribution of these components to the food web at the landscape scale is often unclear, as many studies lack good taxonomic and spatial resolution across large areas. Here, using stable carbon isotopes, we report on the primary carbon sources for consumers and their spatial variability across one of the world’s largest intertidal ecosystems (Dutch Wadden Sea; 1460 km² intertidal surface area), at an exceptionally high taxonomic (178 species) and spatial resolution (9,165 samples from 839 locations). The absence of overlap in δ13C values between consumers and terrestrial organic matter suggests that benthic and pelagic producers dominate carbon input into this food web. In combination with the consistent enrichment of benthic primary producers (δ13C –16.3‰) relative to pelagic primary producers (δ13C –18.8‰) across the landscape, this allowed the use of a two-food-source isotope-mixing model. This spatially resolved modelling revealed that benthic primary producers (microphytobenthos) are the most important energy source for the majority of consumers at higher trophic levels (worms, molluscs, crustaceans, fish, and birds), and thus to the whole food web. In addition, we found large spatial heterogeneity in the δ13C values of benthic primary producers (δ13C –19.2 to –11.5‰) and primary consumers (δ13C –25.5 to –9.9‰), emphasizing the need for spatially explicit sampling of benthic and pelagic primary producers in coastal ecosystems. Our findings have important implications for our understanding of the functioning of ecological networks and for the management of coastal ecosystems.

Key words: carbon subsidy; coastal food web; Dutch Wadden Sea; estuary; macrobenthos; stable carbon isotopes; tidal wetland ecosystem.

INTRODUCTION

The impact of environmental changes (e.g., eutrophication, hypoxia, ocean acidification) on species in ecosystems is often induced from the base of food webs (Paine 1980, Hoegh-Guldberg and Bruno 2010, Middelburg 2014). Food webs of estuarine ecosystems are fueled by a variety of sources. Energy for heterotrophic organisms at higher trophic levels can originate as allochthonous organic matter from land via rivers, or from the sea via tidal currents. Alternatively, energy can be fixed internally by autochthonous pelagic or benthic primary production (Kamermans 1994, Herman et al. 2000) although the contribution of the latter is often undervalued in these systems (Tatara 1981, Barnes and Hughes 1999). In many food webs, the balance between the different energy sources for food webs is likely affected by coastal engineering, bottom disturbance (e.g., dredging, fishing), eutrophication, and land use changes (Tewfik et al. 2005, Howe and Simenstad 2007). Yet, studies quantifying the main energy sources for diverse species of different trophic levels in estuarine food webs across geographic space are rare. Existing studies frequently focus on specific taxonomic groups such as molluscs and worms (Herman et al. 2000), on microbes and microfauna (Middelburg et al. 2000), on phytoplankton and macrozoobenthos, or focus on budget studies of carbon (energy) flow (Kuipers et al. 1981). In addition, despite the increasing evidence of high spatial heterogeneity in coastal ecosystems (Compton et al. 2013), spatial variation in carbon or food sources is generally rarely studied in estuarine intertidal ecosystems, as samples typically cover relatively small areas, and
results are not reported in a spatially explicit manner (Herman et al. 2000, Middelburg et al. 2000, Catry et al. 2016).

Stable carbon isotope measurements provide an important tool for unravelling the energy transfer and carbon sources in food webs (Middelburg 2014). Primary producers often differ in $\delta^{13}C$ values due to differences in carbon substrate (atmospheric carbon dioxide or dissolved inorganic carbon) and in carbon isotope fractionation during photosynthesis (Fry 2006). For example, CO$_2$ limitation during carbon fixation across the stagnant boundary layers of benthic algae explains their less negative $\delta^{13}C$ values compared to pelagic algae (France 1995). Carbon assimilated by higher consumers can be traced back to the basal resource, as the $\delta^{13}C$ of consumers largely reflects the $\delta^{13}C$ of primary producers at the base of the food web (De Niro and Epstein 1978, Fry 2006). As carbon isotopic signatures differ between marine benthic primary producers ($\delta^{13}C = -13$ to $-18\%_{\text{oo}}$; Curri et al. 1995, Stribling and Cornwell 1997, Riera et al. 1999), marine pelagic primary producers (phytoplankton produced locally or imported; $\delta^{13}C = -22$ to $-20\%_{\text{oo}}$; Curri et al. 1995, Creach et al. 1997) and terrestrial, riverine, and estuarine carbon sources ($\delta^{13}C < -27\%_{\text{oo}}$; Middelburg and Herman 2007), they can be used to trace the relative importance of different energy sources for consumers (Herman et al. 2000).

In this study, we investigated what fuels the Wadden Sea food web. We assessed the relative importance of organic carbon derived from pelagic and benthic primary producers and from imported organic matter to animals in the Dutch Wadden Sea food web using stable carbon isotope signatures of species from different trophic levels at the landscape scale. Here we measured the $\delta^{13}C$ values at a high spatial and taxonomic resolution totaling 9,165 analysed samples, from 178 species that were collected at 839 sampling locations spread across 1,460 km2 of intertidal flat. This study is also societally relevant because of the high natural value of the Wadden Sea ecosystem (Boere and Piersma 2012) that currently faces major impacts of human activities (Wolff 1983, Piersma et al. 2001, Eriksson et al. 2010, Davidson 2014), and borders one of the most intensively used shallow seas worldwide: the North Sea. Despite these impacts, the Wadden Sea offers important ecosystem services: functions as a nutrient filter (Verwey 1952); supports high biodiversity and fisheries by providing key habitat to approximately 2,700 marine species, including charismatic seals and porpoises (Zijlstra 1972, Kuipers 1977, Strasser 2002, Compton et al. 2013); and it is a key foraging and resting area along the Atlantic flyway for migratory shorebirds (van de Kam et al. 2004, Blew et al. 2005).

METHODS

Study area

The Wadden Sea is one of the world’s largest intertidal ecosystems (Eisma 1976), bordered by 12 major sandy barrier islands that shelter the tidal area against waves generated by northwesterly and northerly winds (Zagwijn 1986). It spans from The Netherlands to Denmark with an overall surface area of approximately 8,000 km2. The Dutch Wadden Sea accounts for ~2,500 km2 of which 1,460 km2 consist of intertidal mudflats (de Jonge et al. 1993, Wolff 2000). In its present form, it is relatively young (~8,000 yr old).

The Wadden Sea is often described as an estuarine environment due to a distinct input of freshwater and sediment directly from the rivers Eems, Weser, Elbe, IJssel (through sluices from Lake IJsselmeer and Lake Lauwersmeer), and indirect fresh water input from the rivers Meuse and Rhine transported along the Dutch North Sea coast. However, unlike many other estuarine and delta systems, local river influence now is only of minor importance relative to sediment supply from the adjacent coastal zone (Arends 1833, Van Straaten and Kunnen 1957). This is likely the result of the closure of the Zuiderzee estuary (3,200 km2, now Lake IJsselmeer) in 1932 and Lauwerszee (91 km2, now Lake Lauwersmeer) in 1969, leaving the small river Ems as the only river with a still open connection to this estuarine ecosystem. In addition, the Wadden Sea has one of the world’s most heavily modified coastlines (Wolff 1983, Piersma et al. 2001, Eriksson et al. 2010, Davidson 2014), and borders one of the most intensively used shallow seas worldwide: the North Sea. Despite these impacts, the Wadden Sea offers important ecosystem services: functions as a nutrient filter (Verwey 1952); supports high biodiversity and fisheries by providing key habitat to approximately 2,700 marine species, including charismatic seals and porpoises (Zijlstra 1972, Kuipers 1977, Strasser 2002, Compton et al. 2013); and it is a key foraging and resting area along the Atlantic flyway for migratory shorebirds (van de Kam et al. 2004, Blew et al. 2005).

Sampling

Species composition and biomass data were collected during a spatially comprehensive monitoring campaign (Synoptic Intertidal Benthic Survey, SIBES) between June and October of 2008–2012 (Bijleveld et al. 2012, Compton et al. 2013). This sampling program covers the entire intertidal of the Dutch Wadden Sea and consists of gridded samples taken at 500 m intervals and additional random samples (~4,500 samples per year). As samples were collected from June to September, sampling was conducted haphazardly in geographic space over these six weeks to ensure that there was no temporal bias in the sampling and thus in our estimates. Depending on the tide, sampling locations were accessed either by foot or from a small boat. Sediment cores (25 cm depth, core surface of 0.018 m2) were sieved on a 1-mm2 mesh sieve in the field, after which all organisms remaining on the sieve were stored for later identification, to species level or the finest taxonomic level possible, and for counting in the laboratory at the Netherlands Institute for Sea Research (NIOZ, Texel, The Netherlands). In addition, biomass (ash free dry mass; AFDM) of each individual or of multiple individuals of the same species (for shells < 8 mm) was determined. These samples were first dried for 2–3 d at 60°C and then incinerated for 5 h at 560°C. Biomass was then estimated by subtracting the dry from the ash mass (Bijleveld et al. 2012, Compton et al. 2013). Species were selected for stable isotope analysis when they accounted for more than 0.1% of the total average biomass, or when the species occurred (frequency of occurrence) in more than 10% of the sampled sites.
To select the most abundant benthic consumer species for the food source contribution (stable carbon isotope) analysis, we calculated the average biomass (g AFDM/m²) and the percentage of sites where a species was observed and ranked species according to these two criteria (Table 1, Appendix S1: Table S1). In total, 35 species were selected that together accounted for 99% of the total benthic biomass (Table 1).

δ13C analysis

For the stable carbon isotope analysis, we randomly collected samples of benthos, macroalgae, seagrasses, and higher consumers across geographic space, while the SIBES survey was conducted, between June and September of 2011–2014 (see Appendix S1: Table S1 for an overview). Depending on the species type and size, in the laboratory we either used the muscle tissue (fish, crustaceans, and bivalves), soft tissue (other invertebrates), blood plasma (birds), or whole organisms (smaller species or individuals) to estimate the isotope ratios. Fresh leaf material from macroalgae and seagrasses was also used as material for this analysis. All material was rinsed with demineralized water, freeze-dried for up to 96 h, ground, and decalcified (by adding HCl) if required. For each species, both acidified and non-acidified biomass were analyzed for δ13C to determine whether acidification was required. When a significant depletion in δ13C was observed between the acidified and non-acidified biomass for a species, its biomass was acidified for all smaller individuals of the whole data set. Homogenized samples (~0.4–2 mg, depending on species) were weighed into tin cups, or when acidified in silver cups, and analyzed for stable carbon isotope composition with a Flash 2000 elemental analyzer coupled online with a Delta V Advantage-isotope monitoring mass spectrometer (irmaMS, Thermo Scientific, Waltham, Massachusetts, USA). Stable carbon isotope ratios are expressed in the delta (δ) notation (δ13C) relative to Vienna PDB. Average reproducibility based on replicate measurements was ~0.18‰.

To establish benthic and pelagic baselines of δ13C values, we used proxies of long-lived primary consumers (explained further in the last section of this paragraph) of which the diet is well known. This method is often used to indirectly characterize baseline resources because it integrates the variation in δ13C over time (Cabana and Rasmussen 1996, Vander Zanden et al. 1999, Post 2002, Marty and Planas 2008, Middelburg 2014). By using proxies for benthic and pelagic primary producers, we avoided problems often encountered when establishing δ13C baseline values based on direct measurements of small primary producers, for instance, the physical separation of sources, labor-intensive methods (cell-specific or compound specific isotope measurements), and temporal variability caused by high turnover (Middelburg 2014).

As a proxy for pelagic producer δ13C values, we used the δ13C values of Mytilus edulis (blue mussel, an obligatory suspension feeder). M. edulis was collected from buoys set in deep channels where the input of resuspended material and terrestrial detritus was minimal. To validate this proxy, we sampled suspended particulate organic matter (POM). POM was collected by filtering 5 L of water (collected from gullies at neap tide) over pre-combusted Whatman GF/F glass fiber filters. Filters were dried for 48 h at 60°C before analysis. The δ13C values of POM and the blue mussel were similar (average δ13C = −18.9‰ ± 0.1‰ and −18.8‰ ± 0.1‰ [mean ± SE], P > 0.05), supporting the use of blue mussels from buoys as a proxy for pelagic production.

As a proxy for the δ13C values of benthic primary producers (also called microphytobenthos: the microscopic photosynthetic organisms living on the sediment surface that mainly consist of diatoms and cyanobacteria), we used the benthic algal consumer Peringia ulvae (mud snail or Laver spire shell, previously named Hydrobia ulvae; López-Figueroa and Niell 1988). Although P. ulvae might not exclusively feed on microphytobenthos, prior work has shown that microphytobenthos is a primary food source (Herman et al. 2000). To validate this proxy, we scraped benthic diatoms from the sediment surface at a selection of sites. After migration through a mesh (100 μm) into combusted sand, diatoms were collected in filtered seawater and filtered over a Whatman GF/F glass fiber filter (Eaton and Moss 1966) and analyzed for δ13C. The P. ulvae and microphytobenthos δ13C values showed large overlap in their frequency distributions, with P. ulvae having a narrower range (−19.2‰ to −11.5‰; average −16.3‰ ± 0.1‰) than microphytobenthos (−21.7 to −10.7‰, with average of −15.7 ± 0.2‰) (Appendix S1: Fig. SIC), supporting the use of P. ulvae as a proxy for benthic production.

Geographical mapping of δ13C values

δ13C values of benthic primary producers, pelagic primary producers, and three representative consumers were spatially interpolated over the Dutch Wadden Sea using the ordinary kriging function in ArcGIS (version 10.3; ESRI, Redlands, California, USA) based on a spherical semivariogram model. The kriging - output cell size matched the sampling grid (500 m, SIBES), and a δ13C value for each cell was obtained using the values of the six closest sampling points for that organism with a maximum range of 5 km. All interpolated maps, except the map of pelagic primary production, were clipped to intertidal areas and to areas with a maximum distance of 5 km to the nearest sampling location. Sampling locations used for interpolating δ13C values of primary producers amounted to 31 locations (111 samples) for pelagic primary producers and 102 locations (135 samples) for benthic primary producers. To illustrate spatial heterogeneity in primary consumers, three consumers (common cockle, Cerastoderma edule; ragworm, Hediste diversicolor, formerly known as Nereis diversicolor; and Baltic tellin, Limocola balthica formerly known as Macoma balthica)
Table 1. Contribution of benthic primary production (mean ± SE) to the diet of the 35 most common benthos species of the intertidal flats of the Dutch Wadden Sea.

<table>
<thead>
<tr>
<th>Group and species</th>
<th>Benthic contribution (%)</th>
<th>Biomass (g/m²)</th>
<th>Rank by biomass</th>
<th>Sites where observed (%)</th>
<th>Rank by sites where observed</th>
<th>Mean 13C (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molluscs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerastoderma edule</td>
<td><5 ± 5</td>
<td>5.8</td>
<td>1</td>
<td>21</td>
<td>10</td>
<td>−18.6 ± 1.3</td>
</tr>
<tr>
<td>Mya arenaria</td>
<td>63 ± 21</td>
<td>2.7</td>
<td>2</td>
<td>10</td>
<td>17</td>
<td>−17.2 ± 3.5</td>
</tr>
<tr>
<td>E尼斯 directus</td>
<td>23 ± 12</td>
<td>1.7</td>
<td>4</td>
<td>11</td>
<td>16</td>
<td>−18.2 ± 1.5</td>
</tr>
<tr>
<td>Limnocala balthica</td>
<td>>95 ± 13</td>
<td>0.9</td>
<td>8</td>
<td>31</td>
<td>5</td>
<td>−16.0 ± 1.9</td>
</tr>
<tr>
<td>Crassostrea gigas</td>
<td>19 ± 15</td>
<td>0.9</td>
<td>9</td>
<td>0.4</td>
<td>53</td>
<td>−17.8 ± 0.9</td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td>0.8</td>
<td>10</td>
<td>2</td>
<td>35</td>
<td></td>
<td>−18.8 ± 0.1</td>
</tr>
<tr>
<td>Perinlinga ulvae</td>
<td>0.5</td>
<td>11</td>
<td>11</td>
<td>14</td>
<td></td>
<td>−16.3 ± 0.1</td>
</tr>
<tr>
<td>Scrobicularia plana</td>
<td>>95 ± 46</td>
<td>0.3</td>
<td>13</td>
<td>4</td>
<td>28</td>
<td>−15.7 ± 1.8</td>
</tr>
<tr>
<td>Littorina littorea</td>
<td>>95 ± 25</td>
<td>0.1</td>
<td>20</td>
<td>0.5</td>
<td>52</td>
<td>−14.2 ± 1.4</td>
</tr>
<tr>
<td>Petricola pholadiformis</td>
<td>58 ± 54</td>
<td>0.02</td>
<td>26</td>
<td>0.3</td>
<td>57</td>
<td>−18.1 ± 0.6</td>
</tr>
<tr>
<td>Tellina tenuis</td>
<td>55 ± 30</td>
<td>0.02</td>
<td>27</td>
<td>1</td>
<td>44</td>
<td>−16.5 ± 1.0</td>
</tr>
<tr>
<td>Abris tenuis</td>
<td>>95 ± 30</td>
<td>0.02</td>
<td>30</td>
<td>2</td>
<td>36</td>
<td>−13.2 ± 2.5</td>
</tr>
<tr>
<td>Annelids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenicola marina</td>
<td>62 ± 15</td>
<td>2.4</td>
<td>3</td>
<td>28</td>
<td>7</td>
<td>−16.3 ± 1.2</td>
</tr>
<tr>
<td>Lanieconchilega</td>
<td><5 ± 28</td>
<td>1.1</td>
<td>5</td>
<td>19</td>
<td>11</td>
<td>−17.9 ± 1.2</td>
</tr>
<tr>
<td>Scoloplos armiger</td>
<td>84 ± 7</td>
<td>0.9</td>
<td>6</td>
<td>58</td>
<td>1</td>
<td>−16.4 ± 1.3</td>
</tr>
<tr>
<td>Hediste diversicolor</td>
<td>>95 ± 10</td>
<td>0.9</td>
<td>7</td>
<td>31</td>
<td>6</td>
<td>−16.1 ± 1.7</td>
</tr>
<tr>
<td>Marenzelleria viridis</td>
<td><5 ± 19</td>
<td>0.3</td>
<td>12</td>
<td>32</td>
<td>4</td>
<td>−18.1 ± 1.0</td>
</tr>
<tr>
<td>Alitta virens</td>
<td>95 ± 41</td>
<td>0.2</td>
<td>15</td>
<td>2</td>
<td>39</td>
<td>−17.6 ± 0.2</td>
</tr>
<tr>
<td>Nephys hombergii</td>
<td>>95 ± 52</td>
<td>0.2</td>
<td>17</td>
<td>13</td>
<td>13</td>
<td>−15.0 ± 1.0</td>
</tr>
<tr>
<td>Alitta succinea</td>
<td>>95 ± 128</td>
<td>0.1</td>
<td>18</td>
<td>8</td>
<td>21</td>
<td>−17.2 ± 1.5</td>
</tr>
<tr>
<td>Capitella capitata</td>
<td><5 ± 18</td>
<td>0.1</td>
<td>19</td>
<td>38</td>
<td>2</td>
<td>−17.9 ± 0.5</td>
</tr>
<tr>
<td>Heteromastus filiformis</td>
<td><5 ± 8</td>
<td>0.1</td>
<td>21</td>
<td>22</td>
<td>9</td>
<td>−17.7 ± 1.3</td>
</tr>
<tr>
<td>Eunereis longissima</td>
<td>63 ± 45</td>
<td>0.1</td>
<td>23</td>
<td>2</td>
<td>40</td>
<td>−16.8 ± 1.9</td>
</tr>
<tr>
<td>Etoone longa</td>
<td>>95 ± 11</td>
<td>0.05</td>
<td>24</td>
<td>36</td>
<td>3</td>
<td>−15.6 ± 1.2</td>
</tr>
<tr>
<td>Pygospio elegans</td>
<td>62 ± 35</td>
<td>0.02</td>
<td>28</td>
<td>10</td>
<td>18</td>
<td>−16.5 ± 1.9</td>
</tr>
<tr>
<td>Apherlochaeta marioni</td>
<td>27 ± 12</td>
<td>0.02</td>
<td>29</td>
<td>9</td>
<td>20</td>
<td>−17.7 ± 0.7</td>
</tr>
<tr>
<td>Bylgides sarsi</td>
<td>>95 ± 21</td>
<td>0.01</td>
<td>32</td>
<td>6</td>
<td>23</td>
<td>−17.1 ± 1.0</td>
</tr>
<tr>
<td>Phyllodoce mucosa</td>
<td>72 ± 17</td>
<td>0.01</td>
<td>33</td>
<td>11</td>
<td>15</td>
<td>−18.2 ± 1.0</td>
</tr>
<tr>
<td>Polydora cornuta</td>
<td>78 ± 27</td>
<td>0.01</td>
<td>34</td>
<td>9</td>
<td>19</td>
<td>−18.8 ± 1.0</td>
</tr>
<tr>
<td>Oligochaeta sp.</td>
<td>74 ± 42</td>
<td>0.01</td>
<td>35</td>
<td>5</td>
<td>26</td>
<td>−14.7 ± 1.8</td>
</tr>
<tr>
<td>Crustaceans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinus maenas</td>
<td>>95 ± 10</td>
<td>0.3</td>
<td>14</td>
<td>6</td>
<td>22</td>
<td>−15.8 ± 1.2</td>
</tr>
<tr>
<td>Corophium sp.</td>
<td>>95 ± 19</td>
<td>0.2</td>
<td>16</td>
<td>18</td>
<td>12</td>
<td>−18.0 ± 2.3</td>
</tr>
<tr>
<td>Urothoe sp.</td>
<td>>95 ± 17</td>
<td>0.1</td>
<td>22</td>
<td>25</td>
<td>8</td>
<td>−15.9 ± 1.4</td>
</tr>
<tr>
<td>Crangon crangon</td>
<td>>95 ± 18</td>
<td>0.02</td>
<td>25</td>
<td>5</td>
<td>25</td>
<td>−15.0 ± 1.7</td>
</tr>
<tr>
<td>Bathyporeia sp.</td>
<td>>95 ± 101</td>
<td>0.01</td>
<td>31</td>
<td>5</td>
<td>24</td>
<td>−14.8 ± 2.7</td>
</tr>
</tbody>
</table>

Notes: Presented is the average biomass (mean ash-free dry mass [AFDM] ± SE g/m²), and the relative percentages of sites were species were observed for 35 species that together constituted 99.3% of the total biomass across sampling sites in 2008–2012 (nr. sites 3465–4375). The rank of each species according to biomass and species prevalence is shown in superscript. Average δ13C values (± SE) and their range are presented. Note that the use of an average δ13C value of a species does not translate directly into the amount of contribution by benthic food sources for some species. M. edulis samples here are used as a proxy for mussels sampled from intertidal flats that rely on resuspended benthic primary producers, and δ13C values therefore differ from “pelagic” mussels sampled from bays, high up in the water column. P. ulvae values are used as a proxy for contribution of benthic food sources, no contributions were calculated for proxies. We chose to constrain values between 5% and 95% due to the high spatial variability and average extrapolated values.

 were selected because of their high biomass (mean of 5.8, 0.9, and 0.9 g AFDM/m² across years) and high frequency of occurrence (21%, 31%, 31%), their prominent ecological role (Degraer et al. 2008), and their different feeding strategies, i.e., suspension feeder, scavenger, and facultative deposit feeder, respectively.
Food source estimation

The relative contribution of benthic and pelagic food sources was estimated for each consumer at each sampled location to account for the spatial variability in $\delta^{13}C$ of the two food sources. For each coordinate where a consumer was sampled, $\delta^{13}C$ values were extracted from extrapolated benthic and pelagic primary producer maps using the function “add values to points” in ArcGIS (Fig. 3). As the $\delta^{13}C$ of organisms reflects the $\delta^{13}C$ of primary producers at the base of the food web, stable isotope mixing equations can be used to infer the carbon (energy) supply to consumers (Phillips and Gregg 2003, Tewfik et al. 2005). Here, a simple two-end member isotope-mixing model was used to calculate the contribution of benthic primary producer carbon ($f_{\text{benthic primary producers}}$) to each consumer at each sampled location

\[
f_{\text{benthic primary producers}}(\%) = \left(\frac{\delta^{13}C_{\text{consumer}} - \delta^{13}C_{\text{pelagic primary producer}}}{\delta^{13}C_{\text{benthic primary producers}} - \delta^{13}C_{\text{pelagic primary producer}}} \right) \times 100
\]

where $\delta^{13}C_{\text{pelagic primary producer}}$ and $\delta^{13}C_{\text{benthic primary producer}}$ are the carbon values of the proxies for primary producers (buoy-attached blue mussel and mud snail, respectively). The resulting values were averaged over all sampling locations, yielding the average contribution of benthic production for all measured members of the Wadden Sea food web (Fig. 1). The rationale for using this two-end-member mixing model is presented later in Results.

Our simple two-end-member approach neglects trophic fractionation and therefore might overestimate the contribution of the ^{13}C-rich food sources, i.e., benthic primary producers, with about 10–20% (see Discussion). The resulting $f_{\text{benthic primary producers}}(\%)$ was spatially extrapolated using the method described above and presented in maps (Figs. 2 and 3). To obtain the most robust estimation of the relative contribution of the two sources in space and to account for the high spatial variability we chose to constrain values of the food source contribution between 5% and 95% confidence intervals.

RESULTS

Benthic species biomass and density

The selection procedure for the most abundant benthic consumers (see Methods) yielded 35 out of a total of 111 benthic species, which together accounted for 99.3% of the total benthic intertidal biomass. The mean benthos
biomass across sampling points was on average 25 g AFDM/m² yr⁻¹ over the sampling period 2008–2012 (n = 3467–4179). Species ranking, average biomass, and the frequency of occurrence are presented in Table 1. The three benthic primary consumers contributing the highest mean biomass across the Dutch Wadden Sea were the common cockle (Cerastoderma edule; 5.8 g AFDM/m²), the soft-shell clam (Mya arenaria; 2.7 g AFDM/m²), and the lugworm (A. marina: 2.4 g AFDM/m²).

Validation of two-food-source mixing model

The frequency distribution of median δ¹³C values of 178 species (Fig. 1) showed that values varied from
-25% to -11.5%, with 95% of the values falling between -20% and -14.5%. Thus, the $\delta^{13}C$ values of almost all consumers in the Wadden Sea food web fall within the range of the proxies for benthic primary producers (mud snail; $\delta^{13}C$ range -19.2% to -11.5%; $-16.3\% \pm 0.1\%$ [mean \pm SE]) and for pelagic phytoplankton living in the Wadden Sea or imported by tides from the North Sea (buoy-attached blue mussel; $\delta^{13}C$ range -23.5% to -17.3%, $-18.8\% \pm 0.1\%$). To test for temporal variability, relations between $\delta^{13}C$ and time were analysed for some highly dominant species and found to be not significant (e.g., *P. ulvae*; $R = 0.0025$). Naturally, this simplification does not exclude contributions of other food sources on a local scale in this highly dynamic system.

Spatial heterogeneity of $\delta^{13}C$ values: primary producers

The spatial patterns of $\delta^{13}C$ values of our proxies for benthic (*P. ulvae*) and pelagic primary producers (*M. edulis*) were clearly different (Fig. 2) and showed little overlap (Appendix S1: Fig. S1). Isotope data of *M. edulis* (blue mussels collected from buoys) indicated

![Fig. 3](image_url)

Fig. 3. Relative contribution of benthic primary production for key consumers (A) *Hediste diversicolor* ($n = 120$), (B) *Limecola balthica* ($n = 139$), and (C) *Cerastoderma edule* ($n = 346$) extrapolated over the Dutch Wadden Sea. Green, energy predominantly from benthic primary production; red, energy predominantly from pelagic primary production. [Color figure can be viewed at wileyonlinelibrary.com]
that their δ13C values were geographically uniform across the Wadden Sea (averaging −18.8‰ ± 0.12‰). In contrast, benthic primary producers showed a more heterogeneous pattern in space with significantly less negative values of δ13C on average (−16.3‰ ± 0.12‰) than the primary producers. The difference between δ13C values of benthic and pelagic primary producers averaged 2.15‰ ± 0.11‰ (range 0–4.9‰). Although the average δ13C ranges of both primary producers overlapped (Fig. 2), at a landscape scale this overlap in δ13C values was absent due to spatial heterogeneity. This suggests that, although the difference in isotopic composition was relatively small, we could distinguish benthic and pelagic energy sources in consumers.

Spatial heterogeneity of δ13C values: consumers

The stable carbon isotope values of benthic consumers showed high spatial heterogeneity (e.g., Appendix S1: Fig. S2) for species that either foraged on benthic (Fig. S2A and B) or pelagic resources (Fig. S2C) and these patterns varied between different consumers. To illustrate the different types of spatial patterns in δ13C values, we constructed maps of three abundant benthic primary consumers that represent species with three different feeding strategies (Fig. 3). Spatial pattern in the δ13C values of the ragworm (Hediste diversicolor), a scavenger, was heterogeneous (Fig. 3A). Stable carbon isotope values of the common cockle, a suspension feeder, reflected the dominance of pelagic primary production over a large part of the Wadden Sea. Only in a small restricted area (high intertidal muddy areas south of Terschelling Island) δ13C values reflected dominance of benthic producers (>50% benthic contribution; Fig. 3C). The δ13C patterns of the Baltic tellin (Limecola balthica; Fig. 3B), a facultative deposit feeder, showed high spatial heterogeneity mainly with values indicating a high benthic contribution to its diet, but in some areas values indicated a high pelagic contribution to the diet as well.

Estimation of food sources

The results from our spatially resolved, two-food-sources, mixing model showed that benthic primary producers were the dominant food source for 74% of the 35 most abundant benthic species (Fig. 4). Species that depended predominantly on benthic primary production together accounted for 52% of total benthic biomass (see Discussion for an explanation on this conservative estimation).

Our spatially resolved, two-food-sources, mixing model was also used to calculate the δ13C food source contribution for 143 other, less abundant, species (Appendix S1: Table S1). Benthic primary producers were also important for these less abundant species, and their contribution dominated in 42 species. These 42 species were typically more abundant in benthic samples (e.g., see higher “n” values in Appendix S1: Table S1) compared to species that depended more on pelagic primary production. However, the contribution of the two food sources to the total community carbon flow could not be quantified as biomass data was unavailable for many species of higher trophic levels (e.g., fish).

Discussion

Thorough quantifications of the main food sources for heterotrophic species at different trophic levels in coastal food webs are rare, but are needed to understand the functioning of food webs. Tidal systems such as the Wadden Sea are home to many benthic and pelagic primary producers and also receive organic matter from adjacent systems such as the North Sea and rivers (Kuipers et al. 1981, van Raaphorst and van der Veer 1990, Bouillon et al. 2011). With our two-food-source mixing model, based on the pelagic and benthic primary producer proxies, the food contribution was resolved for 91% of the benthic species. Some of the non-resolved species were migrants (e.g., European river lamprey, Lampetra fluviatilis and Brent Goose, Branta bernicla). Others were worms that showed predominant utilization of pelagic carbon sources but actually live buried deep in the mud, out of reach of pelagic sources, and are most likely to feed on bacteria (e.g., spionid polychaete, Marenzelleria viridis; gallery worm, Capitella capitata; red thread worm, Heteromastus filiformis).

Our results showed that benthic primary producers that thrive on the intertidal mudflats (primarily microphytobenthos) supported the majority of consumers in the Wadden Sea food web (Fig. 5). Phytoplanktonic organic matter (POM) had δ13C values higher than −22‰ (range δ13C −22.5‰ to −15.7‰), typical for POM (Middelburg and Herman 2007), but distinctly different from terrestrial, riverine, and estuarine carbon resources (with δ13C values typically in the range from −26‰ to −30‰; Middelburg and Herman 2007). This suggests relatively low contributions of terrestrial organic matter, which is therefore unlikely to be a major resource in the Wadden Sea at present. Another potential food source included macrophytes, e.g., seagrasses (δ13C values ranging between −15.2‰ and −10.9‰; average −13.0‰ ± 0.2‰ [mean ± SE]). Although these values potentially overlapped with some of the consumers they are unlikely to contribute significantly to the carbon flow and thus to consumers in the Dutch Wadden Sea, as seagrasses are nearly ecologically extinct in the Dutch Wadden Sea (Folmer et al. 2016) and extensive macroalgae fields are lacking.

Our findings are fully consistent with the results of Herman et al. (2000) and Middelburg et al. (2000). These small-scale studies combined a natural abundance stable isotope approach with an isotopic tracer study in the Wester Scheldt estuary and showed that benthic consumers in intertidal ecosystems depend heavily on benthic primary production. However, our results appear inconsistent with traditional diet studies in the Wadden...
Sea area that show that benthic consumers in intertidal ecosystems are primarily dependent on imported organic matter or local primary production in the water column. For example, in the Balgzand area of the Wadden Sea, the stomach contents of intertidal deposit and filter feeders (Cerastoderma edule, Mya arenaria, and Mytilus edulis) suggested a dependence on pelagic algae (Kamermans 1994). Furthermore, studies in the same area suggested that phytoplankton production was the most important component to the organic matter budget (Colijn and de Jonge 1984). At this point, we cannot distinguish whether this discrepancy with previous literature is explained by (1) changes in ecosystem functioning between the 1980s and the present (Philippart et al. 2000, Eriksson et al. 2010, van der Veer et al. 2015), (2) the methods used, or (3) the much more spatially restricted location of the Balgzand studies (Beukema et al. 2002), close to a freshwater outlet, a hypothesis that is supported by the more negative δ^{13}C POM values that we found here.

In terms of total available biomass, consumers depending on benthic and pelagic primary producers are similarly dominant in this system (Figs. 4 and 5, Appendix S1: Table S1). However, in terms of harvestable biomass (i.e., the biomass available for species higher up the food chain) benthic primary production is the most dominant food source. Although the common cockle is a pelagic consumer that is important for higher consumers and has a very high biomass (23%, relative to the total, based on 5-yr monitoring data), its harvestable fraction for birds can be low. For example, its harvestable fraction for birds like the Red Knot (*Calidris*...)

![Figure 4](https://example.com/figure4.png)

Fig. 4. (A) Contribution of benthic primary production (%) to the 35 most common benthos species of the intertidal flats of the Dutch Wadden Sea, resulting from the two-food-source mixing model. Presented are values (mean ± SE) of contribution by benthic food sources averaged across sampling locations in the Dutch Wadden Sea for each species. The species’ taxonomic class is presented in brackets; m, molluscs; c, crustacean; a, annelida. *M. edulis* here represent benthic mussels sampled on intertidal flats that rely on resuspended benthic primary producers, and δ^{13}C values therefore differ from the “pelagic” mussels sampled as from buoys as proxies for pelagic producers, high up in the water column. (B) Relative benthic biomass of 35 benthos species. Species that are dependent predominantly (>50%) on benthic primary contribution together account for 52% of total benthic biomass. The percentage of energy from benthic primary production is presented in colors: green: >95%; yellow, 50–95%; orange, 5–50%; red, <5%. Note that the value for *M. edulis* is an underestimation due to the fact that the common cockle that represents 23% of the biomass dependent on pelagic contribution, while in fact only 1% is harvestable (e.g., by shore birds such as Red Knot that only eat shells <12 mm) and available for higher organisms. [Color figure can be viewed at wileyonlinelibrary.com]
canutus) only equates to 1% of the total available biomass, as it depends on the size of the bill (Zwarts et al. 1992, Bijleveld et al. 2015). Examples of consumers that depend on benthic production and might also exhibit size selectivity include *Limosa lapponica* (Duijns et al. 2013) and *Pluvialis squatarola* (Kersten and Piersma 1984), *Calidris alpina* (feeding on *Scoloplos armiger* personal observation T. Piersma). Correcting biomass contributions for other species would likely further increase the proportion of benthic carbon contribution. On the one hand, our estimation of the contribution of benthic food sources in our study may be conservative because a small contribution of terrestrial, riverine, and estuarine carbon resources to food resources (with more negative δ13C values like in the Ems estuary) would increase the percentage of pelagic contribution in our two-food-source mixing model and underestimate the contribution of benthic sources (with more positive δ13C compared to pelagic sources). On the other hand, the contribution of benthic food source may be slightly overestimated (10–20%) for higher trophic levels if carbon is enriched per trophic transfer.

Dominance of benthic food sources in coastal systems - Is it a common phenomenon?

To explore if the dominance of benthic food sources is a general phenomenon in coastal ecosystems worldwide, we compared δ13C of producers and consumers in other coastal systems from data in the literature. In the Westerschelde (The Netherlands), 95% of the benthic macrobenthos (Herman et al. 2000), as well as bacteria and meio-benthos (Middelburg et al. 2000) were found to depend on benthic primary production. In the Seto Inland Sea (Japan), 92% of demersal fish species showed δ13C values between −17‰ and −13‰, likely indicating a high contribution of benthic primary producers to consumers at the top of food webs (Takai et al. 2002). This is further supported by a review on saltmarsh food webs throughout the East and Gulf Coasts of North America that found average δ13C values between −16.3‰ and −13.9‰ for macrofauna species, similar to an average δ13C value for benthic primary producers of −15.5‰ (Currin et al. 1995). Benthic primary production was also found to be dominant in salt marsh consumers in Mont...
forms (De Niro and Epstein 1978, Fry 2006). Source determination of mixed particles in degraded time and unlike stomach analysis is able to bypass the isotope analysis integrates the assimilated diet across benthic contribution by stable isotope analysis. Stable consumed by suspension feeders will be recorded as a energy source and not so much on where the carbon has been consumed. For instance, resuspended benthic algae have a distinct isotopic signature, which generally results in decreased isotopic fractionation (Laws et al. 1995). This indicates that benthic producers on longer exposed areas have different δ13C values than those in areas that are more frequently flooded or permanently submerged. Possibly different diatom species could dominate in different depth zones, and also explain some of the spatial variability (Henley et al. 2012). As thicker stagnant boundary layers around benthic algae increase diffusion limitation of CO2 and consequently decrease overall fractionation (France 1995, Hopkinson et al. 2011), this could result in more positive δ13C values in areas of lower flow velocities. Reduced water depth might also yield more positive δ13C values, as benthic algae living higher on intertidal mudflats are more productive, which generally results in decreased isotopic fractionation (Laws et al. 1995). Regardless of the exact cause, it is clear that benthic primary producers show an isotopic variability that is strongly influenced by geographical, and therefore spatial factors.

Spatial patterning in carbon isotope values: Implications for food web sampling and modelling

Our study has important implications for future food web studies. Spatial heterogeneity in δ13C values of primary producers has been reported for seagrasses (Fourquean et al. 1997), phytoplankton (Boschker et al. 2005, Tamelander et al. 2009), coastal kelp (Parr 2011), and salt marshes (Deegan and Garritt 1997), but has yet to be studied for benthic microalgae in marine environments. Our data showed that stable carbon isotopes of benthic primary producers are location dependent. Consequently, modelling of reliable future food web studies should be adjusted and incorporate high-resolution spatial sampling of benthic primary producers, and not use extrapolations based on a limited number and/or local measurements. The relatively homogeneous stable carbon isotope pattern of cockles (Fig. 2B), as determined here for the Wadden Sea, indicates that isotope food-web modelling for pelagic producers may perhaps be done using one single end-member that is independent of location. However, as this outcome may be specific for the Wadden Sea, we also recommend a high-resolution spatial sampling scheme for pelagic primary producers using proxies that are simple to collect. Specifically, environmental monitoring programs (Parr et al. 2003) need to include spatially explicit sampling of benthic and pelagic primary producers in coastal systems to improve our current understanding of food web functioning.

Consumer carbon isotope values also showed spatial heterogeneity, however, patterns and mechanisms differed between consumers. For example, the polychaete Hediste diversicolor is predominantly dependent on benthic
primary production (Fig. 3A) even though the species is known to be a scavenger that adapts its diet to food availability including phytoplankton, zooplankton, and bacteria (Costa et al. 2006). The bivalve Limexcola balthica showed differential pelagic-benthic consumption with a high pelagic contribution in some areas of the Wadden Sea (Fig. 3B). This facultative deposit feeding bivalve (de Goey et al. 2001) lives buried in the mud and uses its siphon to feed on organic matter from the sediment surface (greenish areas; Fig. 3B) or in the water (more reddish areas; Fig. 3B). Spatial heterogeneity patterns in L. balthica could not be explained by ontogenetic shifts toward more suspension feeding in larger individuals (Rossi et al. 2004) ($R^2 = 0.001$, Appendix S1: Fig. S3). The bivalve Cerastoderma edule is an obligatory suspension feeder (Kamermans 1994) comparable to the mussels collected from buoys in deeper water. Specifically, it feeds much closer to the sediment–water interface and thus, although pelagic primary production dominated the δ13C values in this species (Fig. 3C), this species also incorporated resuspended benthic algae.

The different spatial patterning observed for the different benthic consumers likely results from various factors: (1) spatial variability in benthic production, (2) differential consumption of benthic and pelagic producers, and/or (3) the differential contribution of resuspended benthic primary producers for consumers feeding entirely on pelagic producers. The spatial heterogeneity at multiple trophic levels emphasizes the necessity of location dependent food-web modelling over large spatial scales. For many species of higher trophic levels, food source contribution estimates have to be interpreted with care and more advanced extrapolation techniques may have to be developed to cope with the low spatial sampling resolution of some species and the considerable movement range of individuals.

Implications for nature conservation

The observation that a substantial portion of the food web depends on local benthic primary production in the Dutch Wadden Sea implies that human and naturally induced disturbance of mudflats, and its benthic diatoms, could have cascading effects further up the food web. Current human activities in the Wadden Sea, such as bottom trawling for shrimp, sand supplementation to reduce coastal erosion, drilling for gas, dredging for shells (including the hand-dredging for cockles), and dredging of shipping routes, all potentially affect benthic productivity, as they modify light availability, sediment grain size, air exposure time, surface area available for benthic primary producers, and depth of tidal areas, or destroy diatom mats (Beukema 1995, Piersma et al. 2001, Erftemeijer and Lewis 2006, Eriksson et al. 2010, Mercado-Allen and Goldberg 2011, Compton et al. 2016). Our study underlines the pivotal role of benthic primary producers in this ecosystem and thus the pressing need to preserve and protect these pillars of the food web and the intertidal flats on which they grow. The further inclusion of food web studies and basic food web metrics (Christianen et al. 2016) can support monitoring and management of these ecosystems.

Acknowledgments

For sampling the food web, we thank the SIBES program; volunteers, staff, and students, and the crew of RV Naviacula; the volunteers of Natuurmonumenten; the volunteers of Staatsbosbeheer; Zwannette Jager (Eemscencale power plant) for fish samples; Sophie Brasseur (IMARES) for technical assistance in stable isotope analyses. This study was carried out as part of the project “Waddensleutels” funded by “Waddenfonds” (WF209390). Wilfred Alblas, Quirin Smeek, (both Natuurmonumenten) and Michel Firt (Staatsbosbeheer) played an important role in guarding the progress and links to nature conservation of the Waddensleutels project. SIBES-monitoring was financially supported by NAM, NWO-ALW (ZKO program) and Royal NIOZ. T. Piersma was supported by Waddenfonds project “Metawad” (WF209925), M. J. A. Christianen was also supported by NWO-ALW (Caribbean program 858.14092).

Literature cited

Bouillon, S., R. M. Connolly, and D. P. Gillian. 2011. Use of Stable Isotopes to Understand Food Webs and Ecosystem Functioning in Estuaries. Pages 143–173 in E. Polanski, and

Supporting Information

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10.1002/ecy.1837/suppinfo

Data Accessibility

The data are deposited in Figshare at https://doi.org/10.6084/m9.figshare.4765087.v1