The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/175441

Please be advised that this information was generated on 2020-02-27 and may be subject to change.
Article 25fa pilot End User Agreement

This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet) with explicit consent by the author. Dutch law entitles the maker of a short scientific work funded either wholly or partially by Dutch public funds to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) ‘Article 25fa implementation’ pilot project. In this pilot research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and/or copyrights owner(s) of this work. Any use of the publication other than authorised under this licence or copyright law is prohibited.

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please contact the Library through email: copyright@ubn.ru.nl, or send a letter to:

University Library
Radboud University
Copyright Information Point
PO Box 9100
6500 HA Nijmegen

You will be contacted as soon as possible.
Static and time-resolved mid-infrared spectroscopy of \(\text{Hg}_{0.95}\text{Cd}_{0.05}\text{Cr}_2\text{Se}_4 \) spinel

To cite this article: S Barsaume et al 2017 J. Phys.: Condens. Matter 29 325502

View the article online for updates and enhancements.
1. Introduction

Ferromagnetic semiconductors are often mentioned among promising candidates for future spintronic applications [1–5] due to the fact that the response of electric charges to electric fields in these materials is strongly correlated with the magnetic state of the latter [6]. Optical control of magnetism in such semiconductors is also often predicted to be effective [7]. One of the ultimate goals of the rapidly developing area of photo-induced phase transitions [8] is to find a spectrally narrow electronic excitation a selective pumping of which is able to launch dramatic magnetic changes and hopefully switch the medium into another metastable state without an increase of the kinetic energy of electrons and entropy. Therefore, finding an electronic excitation with the spectral features of excitons and a strong coupling to the magnetic order can be a solution for the problem of the huge heat dissipations in nowadays magnetic recording technology.

A giant effect of magnetic field and temperature on the optical transmissivity of magnetic semiconductors in the proximity of a magnetic phase transition, is one of the manifestations of the spin-charge correlations. In particular, unlike classical semiconductors, the correlations result in a substantial red-shift of the absorption edge and giant magnetorefractive effect in the infrared range [9].

Static and time-resolved mid-infrared spectroscopy of Hg$_{0.95}$Cd$_{0.05}$Cr$_2$Se$_4$ spinel

S Barsaume1, A V Telegin2, Yu P Sukhorukov2, N Stavrias1, V A Fedorov3, T K Menshchikova3 and A V Kimel1

1 Radboud University, Institute for Molecules and Materials, 6525 ED Nijmegen, Netherlands
2 Miheev Institute of Metal Physics, Ural Branch of RAS, 620990 Yekaterinburg, Russia
3 Kurnakov Institute of General and Inorganic Chemistry RAS, Moscow 119991, Russia

E-mail: s.barsaume@science.ru.nl

Received 14 March 2017, revised 14 June 2017
Accepted for publication 15 June 2017
Published 7 July 2017

Abstract

Static and time-resolved mid-infrared spectroscopy of ferromagnetic single crystal Hg$_{0.95}$Cd$_{0.05}$Cr$_2$Se$_4$ was performed below the absorption edge, in order to reveal the origin of the electronic transitions contributing to the magneto-optical properties of this material. The mid-infrared spectroscopy reveals a strong absorption peak around 0.236 eV which formerly was assigned to a transition within the selenide–chromium complexes (ν_{Se}–Cr$^{2+}$). To reveal the sensitivity of the transition to the magnetic order, we performed the studies in a temperature range across the Curie temperature and magnetic fields across the value at which the saturation of ferromagnetic magnetization occurs. Despite the fact that the Curie temperature of this ferromagnetic semiconductor is around 107 K, the intensity of the mid-infrared transition reduces substantially increasing the temperature, so that already at 70 K the absorption peak is hardly visible. Such a dramatic decrease of the oscillator strength is observed simultaneously with the strong red-shift of the absorption edge in the magnetic semiconductor. Employing a time-resolved pump-and-probe technique enabled us to determine the lifetime of the electrons in the excited state of this optical transition. In the temperature range from 7 K to 80 K, the lifetime changes from 3 ps to 6 ps. This behavior agrees with the phenomenon of giant oscillator strength described earlier for weakly bound excitons in nonmagnetic semiconductors.

Keywords: magnetic semiconductors, mid-infrared spectroscopy, time-resolved measurements, Fourier transform infrared spectroscopy

(Some figures may appear in colour only in the online journal)
HgCr₂Se₄ (a chromium-chalcogenide spinel) is a well-known ferromagnetic semiconductor. It is a convenient model system for fundamental spectroscopy and spintronic studies due to its large magnetoresistance and magneto-optical effects [9–13]. In particular, recent studies of absorption of non-polarized infrared radiation in (Hg, Cd)Cr₂Se₄ crystals revealed several mechanisms responsible for the magnetotransmission (magnetoabsorption) and magnetoreflection of light [14–16]. Rather strong spectral lines just below the absorption edge have been reported in these semiconductors. However, the coupling of these features to magnetism, their temperature and magnetic field dependencies as well as their ultrafast dynamics have not been clarified until now.

Here we report the results of mid-infrared static and time-resolved spectroscopy measurements of the ferromagnetic semiconductor Hg₀.₉₅Cd₀.₀₅Cr₂Se₄ below the absorption edge. We pay particular attention to the dependence of the absorption spectrum on magnetic field and temperature. With the help of a time-resolved pump-probe technique we estimate the lifetime of the electrons in the excited state. The observed dependencies of the absorption spectrum and the lifetime on magnetic field and temperature qualitatively agree with the behavior expected for a weakly bound exciton coupled to the magnetic order [17, 18].

The paper is organized as follows. In section 2 we provide a description of the studied sample and employed experimental techniques. In sections 3 and 4, we describe the absorption spectra with and without an external magnetic field respectively. In section 5, we report the results of time-resolved measurements. The findings and conclusions of this paper are then summarized in section 6.

2. Sample and experimental technique

A cubic ferromagnetic spinel belongs to the space group Fd3m (O₁₅) with a general formula AB₂X₄, where A is a divalent non-magnetic cation (e.g. Cd or Hg) and X is a divalent anion (e.g. Se or S). The bonding between A and X is tetrahedral, but the bonding between B (e.g. Cr) and X is octahedral or pyramidal (see figure 1). The exchange interaction depends
on the distance between the chromium ions (Cr\(^{3+}\)) and is dominated by the superexchange mechanism. According to the Goodenough-Kanamori-Anderson rules the interaction is ferromagnetic due to the orthogonality (90°) of the Cr\(^{3+}\)–Se\(^{2−}\)–Cr\(^{3+}\) bonds. A direct overlap of the wavefunctions of the electrons of the Cr\(^{3+}\) ions favors an antiferromagnetic exchange coupling [19, 20].

The chromium-chalcogenide spinel HgCr\(_2\)Se\(_4\) is usually a p-type magnetic semiconductor with the density of holes \(n \approx 10^{19} \text{cm}^{-3}\) and a relatively high mobility of electrons up to \(\sim 10^3 \text{cm}^2 \text{V}^{-1} \text{s}^{-1}\) [21]. The effective mass of the electrons is \(m^* = 0.3 m_0\) at 300 K and \(m^* = 0.15 m_0\) at 4 K [12, 22, 23], where \(m_0\) is the free electron rest mass. The optical properties of HgCr\(_2\)Se\(_4\) are similar to those of direct band gap semiconductors. The band gap of HgCr\(_2\)Se\(_4\) decreases from \(E_g = 0.84 \text{eV}\) at room temperature (RT) to 0.26 eV at 4.2 K [12, 22, 24, 25]. This is of the same order in comparison with the band gap in pure CdCr\(_2\)Se\(_4\) (1.3 eV at RT) [26] and HgGa\(_2\)Se\(_4\) (1.93 eV at RT) [27]. The origin of electronic levels and optical transitions in (Hg, Cd)Cr\(_2\)Se\(_4\) was discussed in [22, 24, 28–32]. HgCr\(_2\)Se\(_4\) and CdCr\(_2\)Se\(_4\) have distinctly different electronic structures [22, 24, 28, 29] and further Cd doping does lead to an almost linear increase of the Curie temperature up to 130 K for CdCr\(_2\)Se\(_4\) spinel.

The single crystals studied here were grown with the help of the chemical transport reaction technique using CrCl\(_3\) as a carrier agent. The data discussed in this paper were obtained for the sample cut from a Hg\(_{0.95}\)Cd\(_{0.05}\)Cr\(_2\)Se\(_4\) single crystal perpendicular to the [100] crystallographic axis, in a form of a square plate \(3 \times 3 \text{mm}^2\) with the thickness \(d = 0.14 \text{mm}\). Magnetometry measurements show that the Curie temperature of the crystal is approximately \(T_C \approx 110 \text{K}\) (at \(H = 5 \text{kOe}\)). The magnetization is saturated at the field of 0.5 kOe.

Absorption measurements were performed in the range 4000–350 cm\(^{-1}\) (0.5–0.04 eV) with a Bruker Vertex Fourier transform infrared (FTIR) spectrometer. The spectral resolution was \(1 \text{ cm}^{-1}\). The measurements were performed at normal incidence. A custom-made magnet was designed and built into this FTIR spectrometer allowing a magnetic field up to approximately 2 kOe to be applied vertically in the plane of the sample. Time-resolved measurements were performed with the help of the free electron laser for infrared experiments (FELIX) facility in Nijmegen (The Netherlands). In the pump-probe experiments, we measured the changes in transmissivity of the sample induced by mid-infrared pumping as a function of time. The measurements were performed with the pump and probe beams having the same central photon energy (around 0.236 eV). Both beams consisted of macropulses with
duration about 8 µs and the repetition rate of 5 Hz. Each macro-pulse contained a train of micro-pulses with duration of 1 ps and the repetition rate of 25 MHz. Each micro-pulse was split into two parts with the help of a beam splitter. The most intense part was used as a pump and the less intense as a probe. The time delay between the pump and pulses was set with the help of a mechanical delay stage. The beams were nearly at normal incidence at an angle less than 10° with respect to the sample normal. Both beams were focused into spots approximately 200 µm in diameter. The fluence of the pump pulse was 1.9 mJ cm⁻² and the fluence of the probe was at least 10 times lower. The detection in the experiment relied on a balanced-detection acquisition scheme. It involved a reference beam, with the same central photon energy, time structure and intensity as the probe beam, undergoing the same optical path as the probe itself, but with pulses delayed by 20 ns [33]. In the measurements, there was a possibility to apply a horizontal magnetic field in the sample plane and change the temperature across the sample from 6 K to 300 K.

3. Absorption spectroscopy

The absorption spectrum of Hg₀.₉₅Cd₀.₀₅Cr₂Se₄ crystal measured without external magnetic field (H = 0 kOe) is shown for the range just below the absorption edge at a temperature of 10 K (figure 2).

The data were fitted by function $\kappa = M_0 \left(1 - \frac{T}{T_C}\right)^{1/2}$ (dashed red line), where M_0 and T_C are fit parameters.
in this spectral range was assumed to be constant \((R = 0.3)\), according to [15, 34].

The band gap energy is found to be around 0.28 eV which is in good agreement with the previous reports [12, 22, 24, 29]. Below the absorption edge several lines can be distinguished. The most pronounced one is at 0.236 eV (5.26 μm)—earlier, this had been assigned to a peak of the doublet formed by the intercenter transition within the selenide vacancies and chromium complexes \((\nu_{Se-Cr^{2+}})\) with an electron bound to it (see inset of figure 2). Note that earlier the signatures of the transition were studied in pure HgCr₂Se₄ and CdCr₂Se₄ spinels [14, 22]. The absorption spectra are similar to those reported previously [14, 22]. Each selenium vacancy \(\nu_{Se}\) provides two electrons. These electrons will be either excited to the conduction band or confined between three nearest-neighbor chromium ions in an octahedral site [35]. The level of vacancies in the Se sublattice is around 0.1–0.15 \((Se_{3.85-4})\) that is typical value for such kind of materials [14, 15]. The small peaks at 0.2 eV and 0.16 eV can be related to vacancy transitions from the valance band \((E_{V}-4p\ Se)\) to the acceptor band \((\nu_{Hg})\) [22]. In the region below 0.16 eV tails of multiple phonon absorptions are seen [34, 36].

In the following we focus on the most pronounced absorption peak in the spectrum of the spinel at 0.236 eV. Figure 3 shows how the absorption depends on temperature in the range from 10 K to 200 K.

In figure 4 we see that the peak amplitude of the transition at 0.236 eV decreases upon a temperature increase. As this decrease in amplitude also occurs simultaneously with a shift of the absorption edge, the behavior is qualitatively similar to the absorption is sensitive to the magnetic order. The complex coefficient of refraction \(n\) must be a function of the net magnetization. According to the Onsager principle the Taylor series of the complex refraction coefficient can contain only even terms with respect to the magnetization \(n = n(0) + aM^2 + bM^4 + \ldots\). According to the Landau theory of phase transitions \(M^2 = M_0 (1 - \frac{T}{T_C})\), where \(M_0\) the saturation magnetization at 0 K and \(T_C\) is the Curie temperature. Consequently, in the lowest order the magnetoabsorption must be proportional to \(1 - \frac{T}{T_C}\) [41]. Fitting this dependence to the experimentally acquired data reveals that the Curie temperature of the studied spinel must be \(T_C = 107 K\) (see figure 7). This is in good agreement with the

4. Magnetoabsorption spectroscopy

Figure 5 shows the absorption spectra of the spinel measured at \(T = 10 K\) for different magnetic fields. It is seen that upon increasing of the strength of the magnetic field the amplitude of the absorption peak decreases significantly. Moreover, the peak around 0.236 eV shifts slightly to lower energies with an increase of the magnetic field up to 0.5 kOe (see figures 5(a) (dashed lines) and (b)) [40].

To emphasize the effect of the field, we determined the magnetoabsorption spectra (see figure 6) defined as the relative change of the absorption coefficient \(\kappa\) for unpolarized light with \((\kappa(H))\) and without \((\kappa(0))\) the external magnetic field, respectively \(\Delta\kappa = \frac{\kappa(H)-\kappa(0)}{\kappa(0)} \cdot 100\%\) [12, 16].

From the shape of the magnetoabsorption spectrum in figure 5 it is seen that the energy of the transition around 0.236 eV experiences a shift to lower energies upon the application of an external magnetic field.

Such a dependence of the absorption peak on the applied magnetic field does not necessarily imply that the effect is sensitive to the magnetic order. We note that if the magnetoabsorption is sensitive to the magnetic order, the complex coefficient of refraction \(n = n + i\kappa\) must be a function of the net magnetization. According to the Onsager principle the Taylor series of the complex refraction coefficient can contain only even terms with respect to the magnetization \(n = n(0) + aM^2 + bM^4 + \ldots\). According to the Landau theory of phase transitions \(M^2 = M_0 (1 - \frac{T}{T_C})\), where \(M_0\) the saturation magnetization at 0 K is and \(T_C\) is the Curie temperature. Consequently, in the lowest order the magnetoabsorption must be proportional to \(1 - \frac{T}{T_C}\) [41]. Fitting this dependence to the experimentally acquired data reveals that the Curie temperature of the studied spinel must be \(T_C = 107 K\) (see figure 7). This is in good agreement with the

Figure 9. The results of the fit of the time dependencies shown in figure 8. (a) Temperature behavior of the amplitudes \(A_1\) and \(A_2\). (b) Relaxation time \(\tau_1\) as a function of temperature.
expected Curie temperature of this compound estimated from the magnetometry measurements, showing that the magneto-absorption is a measure of the order parameter.

5. Time-resolved absorption spectroscopy

Figure 8 reveals the dynamics of the photo-induced absorption in the ferromagnetic spinel Hg0.95Cd0.05Cr2Se4. The measurements were performed with the pump and probe having the same central wavelength of 5.26 μm (matching the photon energy hω = 0.236 eV of the pronounced peak). The magnetic field was applied in the sample plane in the horizontal direction. Each of the measured dependencies is characterized by a sharp increase of the signal during the temporal overlap of the pump and probe pulses, followed by a relaxation. In order to estimate the relaxation times, the signals were fitted using the function $f(t) = A_1 \cdot \exp\left(-\frac{t}{\tau}\right) + A_2$, where τ is the relaxation time, and both A_1 and A_2 are amplitudes (see figure 9(a) and (b)). In a simple model of a two-level system, such behavior can be described in terms of excitation of the electrons into the excited state, followed by a relaxation. The characteristic time of the exponential decay τ corresponds to the lifetime of the electrons in the excited state. The term A_2 represents laser-induced heating, which is often unavoidable in real experiments and relaxes on a time-scale much longer than 100 ps. It is seen that the signal is at its strongest at lower temperatures. Such an observation agrees with the absorption spectrum and, in particular, with the fact that the absorption peak at 0.236 eV increases in intensity upon decreasing the temperature. A noticeable decrease of the amplitudes A_1 and A_2 upon increasing the temperature from 7 K to 20 K can be attributed to the heating-induced change of the energy of the electronic transition. For example, a slight shift of the energy with respect to the spectrum of the laser pulse would lower the efficiency of the excitation and thus reduce the amplitudes of the photo-induced dynamics. After fitting the signals recorded when 7 K and 80 K, we deduce the relaxation time to be $\tau = 3$ ps and $\tau = 6$ ps respectively. Such an increase of the lifetime upon a decrease of the peak intensity is again in good qualitative agreement with the model of giant oscillator strength [17, 18].

6. Conclusions

Mid-infrared static and time-resolved spectroscopy of the ferromagnetic semiconductor Hg0.95Cd0.05Cr2Se4 was performed just below the absorption edge. It was shown that the absorption peak around 0.236 eV, which had been formerly related to intercenter transitions within the selenide vacancies and chromium complexes (ν_{5e}–Cr$^{2+}$), had significant dependence on temperature. Magnetoabsorption measurements showed a sensitivity of the energy of the transition to the magnetic order, suggesting that 3d electrons of Cr ions must play a decisive role in this transition. The lifetime of the electrons in the excited state was found to be in the range from 3 ps to 6 ps, and revealed a correlation with the oscillator strength of the transition. Such a correlation is in qualitative agreement with the behavior expected for weakly bound excitons. Therefore, in this ferromagnetic semiconductor, we discover an electronic excitation that has spectral features of a weakly bound exciton, coupled to the magnetic order.

Acknowledgment

This work was supported by the Netherlands Organization for Scientific Research (NWO) as well as the Ministry of Education and Science of Russian Federation (grant Nr. 14.Z50.31.0025) and partially by the Russian Federal Agency for Scientific Organizations (project no. 0120146330, ‘Spin’). We acknowledge that a part of the results was obtained by the FELIX facility in Nijmegen. The authors are also grateful to A J Toonen for technical support.

References

[6] Iliev M and Arañ T 1997 Thermoreflectance of single-crystal HgCr2Se4 near the ferromagnetic-to-paramagnetic phase transition Solid State Commun. 31 79–81
[10] Vglin N A, Ustinov V V and Tsvetilovskaya V M and Denisov O F 2006 Electric dipole mechanism of the generation of electomagnetic radiation due to the spin transport in an InSb semiconductor JETP Lett. 84 79–84