Cultured keratinocytes obtained from human hair follicles might be a useful tool to study mutagenicity in human epithelial cells. Human hair follicles possess a cytochrome P-450-dependent enzyme system which is capable to metabolize xenobiotics. The preservation of this enzyme in vitro is important for the application of hair follicle cell cultures in genotoxicity studies especially for promutagens and procarcinogens.

We studied the immunolocalization of cytochrome P-450 using monoclonal antibodies (K03 and K07) raised against two isoenzymes. The antigens were present in freshly plucked hair follicles, fibroblasts and the cell line SVK14. In the cultured keratinocytes no staining was observed by the antibodies. Since the cell line SVK14 shows a medium degree of responsiveness to the antibodies, the absence of cytochrome P-450 in the hair follicle keratinocytes is ascribed to the culture conditions. Further studies on the relation between culture media and maintenance of cytochrome P-450 is required.

1. NOTOX Toxicological Research and Consultancy, Hamakkenensingel 31, 5231 HD 's-Hertogenbosch, 2. Dept. Veterinary Pharmacology, Pharmacy and Toxicology, University of Utrecht, Biltstraat 172, 3572 BU Utrecht, The Netherlands

NANOMOLAR CONCENTRATIONS OF CA²⁺ INHIBIT Ca²⁺ TRANSPORT SYSTEMS IN PLASMA MEMBRANE AND INTRACELLULAR Ca²⁺ STORES.


Exposure of fish to cadmium (Cd) in the water causes a spectrum of toxic effects that is well documented. The mechanisms of Cd-toxicity, however, are largely unknown. A transient hypocalemia is observed in fish the first days after Cd-exposure, which is indicative of a disturbed Ca²⁺ homeostasis. For freshwater trout it was demonstrated (1) that active Ca²⁺ transport in BLM's isolated from rat duodenum depends on basolateral plasma membrane Ca²⁺ ATPase activity. In the present study, subcellular markers of cell kinetics were assessed in the rat gastro-intestinal tract after short-term consumption of Cd.

Groups of five male Wistar rats (306±17g) were fed a diet containing 2% BHA or basal diet (control group) for two weeks. Subsequently, rats were injected i.p. with 25 mg/kg 5-bromodeoxyuridine (BrdU), a thymidine analogue, and killed after four hours. The gastro-intestinal tract was removed, opened longitudinally, cleaned and fixed in 70% ethanol. After pepsin digestion of random samples of the fixed tissues, labelled cell nuclei were visualized by means of a monoclonal anti-BrdU antibody technique. Cell kinetic parameters were determined by bivariate BrdU/DNA analysis using flow cytometry.

Forestomach L.I. and potential doubling time (Tpot) in random samples were 10.0±3.4% and 2.7±0.8 days for the control group and 20.7±3.9% and 1.2±0.2 days for the group fed 2% BHA respectively (mean ± SD; n=4). Mean doubling time through the S-phase was not altered. Glandular stomach, ileum, caecum and colon were not affected. Thus, we confirmed proliferative effects of BHA on rat forestomach as indicated by an increase in L.I. and additionally report a decrease in Tpot following short-term dietary BHA administration.

Depts. of 1) Human Biology and 2) Internal Medicine, State University of Limburg, P.O.Box 616, 6200 MD Maastricht, the Netherlands

A TWO-WEEK FEEDING STUDY OF BHA: EFFECT ON CELL KINETIC PARAMETERS IN THE RAT GASTRO-INTESTINAL TRACT.

H. Verhagen, B. Schutte, M.M.J. Reynders

G.M. Bijlham, F. ten Hoor and J.C.S. Kleijnen

The synthetic food antioxidant 2(3)-tert-butyl-4-hydroxyanisole (BHA) is carcinogenic in the forestomach of rats, hamsters and probably mice. Sequential changes are dose-dependent and involve lesions, hyperplasia, papillomas and carcinomas, the development of which is accompanied by an increase in forestomach labelling index (L.I.). In the present study, subcellular markers of cell kinetics were assessed in the rat gastro-intestinal tract after short-term consumption of BHA.

1. N.M. Ames, J. McCann and E. Yamasaki, Mutation Research, 31 (1975) 347

Department of Pharmacology, University of Nijmegen, Geert Grootplein N21, 6525 EZ Nijmegen, The Netherlands