ADOPTANCE IN THE P HASE OF CARCINOGENESIS BY N-HY DROXY-2-ACETYLAMINOFUROEUONE IN MALE RAT LIVER.

E.D. Kroese, M.H. van de Poll, G.J. Mulder and J.H.N. Meerman

The liver is one of the organs in the male rat that is highly susceptible to the carcinogenic action of N-hydroxy-2-acetaminofluoreone (N-OH-AAF). A major route for the formation of reactive intermediates and macromolecular adducts from the carcinogen is N-hydroxylation through sulfo-
transferases. The role of this N-hydroxylation in the promotion phase of carcinogenesis by N-OH-AAF was the objective of this study. We used an initiation-promotion (selection) model for tumor-induction as originally developed by Roberts and colleagues (1). This model consists of treatment with diethylaminoacetic acid (single dose; initiation) followed by N-OH-AAF (several doses) coupled with partial hepatectomy (promotion/selection). The focal liver cell populations (foci), which are the first aberrant cells that appear with this treatment, can be detected by 3-glutamyl-
transpeptidase staining (G7T). The effects of inhibition of sulfo transferase activity towards N-OH-AAF with pentachlorophenol (PCP (2)) during N-OH-AAF treatment on the number and volume of G7T foci was investigated. PCP treatment during promotion with N-OH-AAF reduced the volume occupied by G7T -cells by 65%, without significantly affecting the number of G7T foci found per cubic cm. It is therefore concluded, that promotion (selection) by N-OH-AAF of initiated cells depends for a large part on the sulfo transferase pathway.


Division of Toxicology, Center for Bio-Pharmaceutical Sciences, University of Leiden, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands

CYTOTOXICITY AND BIOTRANSFORMATION STUDIES WITH BROMOBENZENE IN RAT HEPATOCYTE CULTURES

W.C. Mennes, R. den Hartogh and B.J. Blaauwboer

Bromobenzene (BrB) is toxic to hepatocytes in vivo as well as in vitro. This toxicity is related to biotransformation and GSH depletion. BrB hepatotoxicity is elicited by metabolites that are generated by phenobarbital (PB)-induced forms of cytochrome P-450, i.e. isoenzymes belonging to family I1. In hepatocyte primary cultures a loss of cytochrome P-450 level is observed. In rat hepatocytes this loss is greater than in hepatocytes derived from other mammalian species (1). Little is known about the behaviour of the different cytochrome P-450 isoenzymes and their residual activities in primary hepatocyte cultures.

In order to validate the use of hepatocyte cultures as an in vitro model system for studying biotransformation, we investigated BrB cytotoxicity and biotransformation in rat hepatocytes immediately after cell isolation and after 24 h in primary culture. Toxicity (at conc up to 2 mM) was only observed in the freshly isolated cells. In these cells the levels of GSH were considerably lower than in cells after 24 h in culture. A BrB-dependent decrease in GSH was found in cells after exposure for 24 h. GSH/GSSG ratios changed from about 3 in control cells to about 1.5 in cells exposed to 2 mM BrB. BrB was metabolised to 2-, 3-, and 4-bromophenol, which were conjugated with glucuronic acid and sulphate. No changes in the ratio of 4-bromo-
phenol/2-bromophenol were observed.

These results indicate that cytochrome P-450 isoenzymes involved in BrB metabolism belong to family I-I and are approximately equally stable in rat hepatocyte primary culture. Similar studies with liver cells derived from other mammalian species are in progress.


Dept, Pharmaceutical Chemistry/Chemical Pharmacy, Faculty of Pharmacy, University of Utrecht, Catharinesingel 60, 3511 GH Utrecht, The Netherlands.

DNA ALKYLATION AND CROSSLINKING BY REDUCTIVELY ACTIVATED 2,5-BIS[1-AMIDINYL]-1,4-BENZOQUINONE ANTI-TUMOUR COM-

PONDS

K.J. Lusthof, N.J. de Mol, L.H.M. Janssen

Bisaziridinyl benzozquinones are potential antitumour com-

pounds, that are assumed to be bioreductively activated. We investigated a series of bisaziridinyl-benzoquinones synthesized by the Organic Chemistry Department of the Technical University of Twente. Previously, these com-

pounds were shown to kill DNA-repair deficient E.coli and to inactivate bacteriophage-M13 DNA. Alkylation of DNA by the unsubstituted title compound (TW13) was studied by means of UV-absorbance after removal of unbound quinone. Crosslinking of DNA was measured with an ethidium bromide fluorescence assay. DNA alkylation as well as crosslinking appeared to in-

crease strongly with decreasing pH, indicating the role of protonation of the aziridine rings in the alkylation pro-

cess. The increase of alkylation and crosslink formation occurs at higher pH when the quinones are reduced.

This is expected because reduction facilitates protonation of the aziridine groups. At pH 7, DNA alkylation increased linearly with the amount of reduction. The similarity in pH dependency of M13 DNA inactivation and alkylation indi-

icates that DNA inactivation is mainly caused by alky-

lation. The relationship between the extent of crosslinking and alkylation was only weak.

Methylation of the aziridine group was shown to decrease strongly M13 inactivation and DNA crosslinking. Generally, our results are in agreement with the concept that reductive activation is the major mechanism of action by producing modifications at the DNA level.

Dept. Pharmaceutical Chemistry/Chemical Pharmacy, Faculty of Pharmacy, University of Utrecht, Catharinesingel 60, 3511 GH Utrecht, The Netherlands.

THE ROLE OF N-SULFATION IN THE PROMOTION PHASE OF CARCINOGENESIS BY N-HYDROXY-2-ACETYLAMINOFUROEUONE IN MALE RAT LIVER.

R.A.C. Lock, P.M. Verbost, G. Flik and S.E. Wendelaar Bonga

Freshwater fish take up most of the Ca necessary for growth and Ca-homeostasis from the water via their gills. Ca²⁺-inflow is a transcellular process involving an ATP-dependent Ca²⁺-transport mediated by a "high-affinity" Ca²⁺-
ATPase at the basolateral membrane system (1). Exposure of rainbow trout (Salmo gairdneri) to cadmium in the water rapidly leads to hypocalcemia. Experimental evi-
dence is supplied that such disturbance is the result of decreased branchial Ca²⁺-transport due to inhibited Ca²⁺-
ATPase activity.

We have tested the effects of Cd²⁺ in the water on net branchial Ca²⁺-flow (inflow minus efflux) in perfused trout gills (2) and on the Ca²⁺-ATPase activity in the isolated gill plasma membranes. Characteristics of the Ca²⁺-ATPase activity are: an affinity for Ca²⁺ in the uM range, ATP preference, and calsequestrin dependency. The desired Ca²⁺-concentration (10⁻⁷ M) and the free Cd²⁺-concentrations (10⁻⁷ - 10⁻⁶ M) in the Ca²⁺-buffer were calculated on the basis of established (Ca/2) and newly determined (Cd) binding constants of the ligands.

Exposure of trout to 10⁻⁷ M Cd²⁺ reduced the Ca²⁺-inflow by 79%, while the Ca²⁺-efflux remained unaffected. Ca²⁺ also proved to specifically inhibit (in vitro) the "high-
affinity" Ca²⁺-ATPase activity (IC₅₀: 4.10⁻⁷ M Cd²⁺).

This inhibition is apparently not caused by Cd²⁺ binding to calsequestrin but rather by a direct competition with Ca²⁺ for the Ca²⁺-transport site of the Ca²⁺-ATPase.


Dept. of Zoology, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands


1987

1987

354