The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/174125

Please be advised that this information was generated on 2020-02-15 and may be subject to change.
Illness Perceptions of Addiction and Substance Use Patterns among Psychology Students

Astri Parawita Ayu1,2, Cor A J De Jong3, Lucas Pinxten2 and Arnt F A Schellekens1,3

1Department of Psychiatry and Human Behavior, School of Medicine Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
2Nijmegen Institute for Scientist Practitioners in Addiction (NISPA), Radboud University, Nijmegen, the Netherlands
3Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, the Netherlands

Keywords: Perception; Addiction; Substance use; Psychology student

Introduction

Among health professionals, including psychologists, negative attitudes towards patients with substance use disorders (SUDs) are common among psychologists. Perceptions of addiction might affect professionals’ attitudes towards patients. Personal substance use is associated with perceptions.

Objective: To explore perceptions of addiction among psychology students in relation with their substances use.

Methods: Third-year psychology students (N=306) participated in this cross-sectional survey. The IPO-A was used to evaluate perceptions of addiction. Substance use was self-reported with a standardized questionnaire. Differences in perceptions were analysed between students who use substances and do not use. Correlation between perceptions and substance use was explored.

Results: The commonly used substances were alcohol (89%), nicotine (21%) and cannabis (11%). Students who use substances perceived addiction as more controllable (p=0.03) and understandable (p<0.01). Nicotine use correlated with the perception that addiction is understandable.

Conclusions: Substance use is common among psychology students and that they perceive addiction as a condition with severe consequences and as emotionally stressful. The use of psychoactive substances was associated with the perceptions that addiction is controllable and understandable. Future studies need to explore how training can influence illness perceptions and how substance use among these students relates to their future attitude towards patients with SUD/addiction.

Abstract

Background: Negative attitudes towards patients with substance use disorders (SUDs) are common among psychologists. Perceptions of addiction might affect professionals’ attitudes towards patients. Personal substance use is associated with perceptions.

Objective: To explore perceptions of addiction among psychology students in relation with their substances use.

Methods: Third-year psychology students (N=306) participated in this cross-sectional survey. The IPO-A was used to evaluate perceptions of addiction. Substance use was self-reported with a standardized questionnaire. Differences in perceptions were analysed between students who use substances and do not use. Correlation between perceptions and substance use was explored.

Results: The commonly used substances were alcohol (89%), nicotine (21%) and cannabis (11%). Students who use substances perceived addiction as more controllable (p=0.03) and understandable (p<0.01). Nicotine use correlated with the perception that addiction is understandable.

Conclusions: Substance use is common among psychology students and that they perceive addiction as a condition with severe consequences and as emotionally stressful. The use of psychoactive substances was associated with the perceptions that addiction is controllable and understandable. Future studies need to explore how training can influence illness perceptions and how substance use among these students relates to their future attitude towards patients with SUD/addiction.
Methods

Design

This is a cross-sectional study to evaluate psychology students’ illness perception of addiction in relation with their substance use.

Participants

Participants were third year bachelor students from the school of psychology faculty of social sciences Radboud University, Nijmegen, The Netherlands (N=308) that participated in an addiction-training block. The ethics committee faculty of social sciences Radboud University has granted an ethical approval for this study. There were 55 (17.9%) male and 253 (82.1%) female students participated. The mean age of the respondents was 22.4 for males and 21.6 for females (F=2.53 p=0.005).

Measurements

Illness perception questionnaire revised version for addiction (IPQ-A)

The IPQ-A is based on the self-regulation theory from Leventhal [18] and consists of three sections [19]. The first section explores which symptoms are associated with addiction and consist of a list of 14 symptoms. The second part consists of 38 questions focusing on perceptions of addiction, like “The illness will last a short time”. The perceptions section is divided in seven subscales: timeline chronic (addiction is a chronic condition), consequences (addiction has severe consequences), personal control (patient can control addiction), treatment control (treatment can control addiction), illness coherence (I can understand addiction), timeline cyclical (addiction is a cyclical condition), and emotional representation (addiction is emotionally stressful).

The third section explores the respondents’ attributions of addiction, and consists of 18 questions on possible causes of addiction. This section has four subscales: psychological attribution (addiction is caused by psychological factors), risk factor attribution (addiction is caused by specific risk factors, like heritability), immunity attribution (addiction is caused by immunological factors), and accident and chance attribution (addiction happens by chance). All questions are answered on a 5-point Likert scale: strongly disagree, disagree, neither agree nor disagree, agree, and strongly agree.

The IPQ has good psychometric properties, including acceptable test-retest reliability (0.46-0.88) among rheumatoid arthritis and renal dialysis patients [16].

Psychoactive substance use report

To evaluate the history of psychoactive substance use among the respondents, we used a questionnaire listing the most commonly used substances, including coffee, tea, alcohol, nicotine, cannabis, opiates, cocaine, stimulants, ecstasy, GHB and ketamine. The questionnaire evaluates the total days of use over the last 30 days, the amount of substance being used each time, and the total years of use of each substance, inline with the CIDI version 2.1 [20,21].

Procedure

All participants were asked to fill in the questionnaires in the classroom before the first lecture of the addiction block, in order to avoid any effect of training on their perceptions. The questionnaires reflect their perceptions towards addiction and their own substance use patterns. The duration to fill in the questionnaires was around 15–20 minutes. There was no obligation to fill in the questionnaires and they were asked to fill in the questionnaire anonymously.

They also were asked for consent to use the data anonymously for research. The students received feedback as a group about their perceptions towards addiction and substance use patterns. The questionnaires were delivered twice to 2 groups of students (in 2013 and 2014). In 2013, 144 participants handed in the questionnaires, of which five were incomplete. In 2014, 169 completed questionnaires were handed in. Finally, 308 questionnaires could be included in the analyses.

Analyses

The data were analysed with SPSS version 19.0. Descriptive statistics (mean/percentage, standard deviation) were used to describe the history of substance use. Based on the substance use history the group was divided into students who use and do not use drugs. Since coffee and tea are not listed as substances of abuse (Diagnostic Statistical Manual of Mental Disorder, DSM-5) [22], the user-group consisted of students that used nicotine, alcohol, cannabis, cocaine, stimulant, ecstasy, GHB, sedative, and ketamine.

For the IPQ-A, the scores on the subscales of the perceptions and attributions sections were computed according to the algorithm of the IPQ-R [16]. Means and standard deviations for each subscale were calculated for group of students who use and do not use drugs separately. The first section of addiction symptoms was kept out of the analyses, because this part of the questionnaire refers to experienced symptoms as a patient, which is not applicable here.

Differences in illness perceptions between the group of students who use and do not use drugs were analysed using multivariate analyses of variance with perceptions as dependent variable, history of substance use as independent variable, and gender as covariate.

To further explore the association between substances use patterns and perceptions of addiction, we calculated the Pearson correlation between IPQ subscale scores that are significantly different between students who use and do not use drugs with self-reported substance use (days of use over past 30 days, amount of use, and years of use) per substance (with a minimum of ten subjects per group). Since coffee and tea are not listed as substances of abuse (Diagnostic Statistical Manual of Mental Disorder, DSM-5) [22] these were kept out of the correlation analyses.

Results

Drug use among psychology students

The most commonly used substances by psychology students over the last 30 days are presented in Table 1. These were tea (male=81.8%, female=95.3%), alcohol (male=92.7%, female=88.1%), coffee (male=72.7%, female=65.2%), nicotine (male=29.1%, female=19.8%), and cannabis (male=25.5%, female=7.5%). Few participants reported
the use of sedatives (male=1.8%, female=4.3%), ecstasy (male=1.8%, female=2.4%), stimulants (male=7.3%, female=0.8%), cocaine (male=1.8%, female=0.6%), GHB (male=1.8%), and ketamine (female=0.4%). In general, there was a trend that more male students used substances compared to females (male = 96.4%, female = 88.9%, p=0.092).

<table>
<thead>
<tr>
<th>Substance use</th>
<th>Male</th>
<th>Female</th>
<th>t-value(df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee (%)</td>
<td>72.7</td>
<td>65.2</td>
<td>0.29</td>
</tr>
<tr>
<td>days of use</td>
<td>19 (11.0)</td>
<td>18.2 (10.7)</td>
<td>0.69</td>
</tr>
<tr>
<td>amount of use</td>
<td>1.7 (0.7)</td>
<td>1.7 (1.1)</td>
<td>0.8</td>
</tr>
<tr>
<td>years of use</td>
<td>4.8 (3.0)</td>
<td>4.1 (2.9)</td>
<td>0.18</td>
</tr>
<tr>
<td>Tea (%)</td>
<td>81.8</td>
<td>95.3</td>
<td><0.01*</td>
</tr>
<tr>
<td>days of use</td>
<td>15.3 (9.9)</td>
<td>20 (10.3)</td>
<td>0.01*</td>
</tr>
<tr>
<td>amount of use</td>
<td>1.9 (0.9)</td>
<td>2.3 (1.6)</td>
<td>0.06</td>
</tr>
<tr>
<td>years of use</td>
<td>7.1 (6.2)</td>
<td>8.7 (5.4)</td>
<td>0.07</td>
</tr>
<tr>
<td>Alcohol (%)</td>
<td>92.7</td>
<td>88.1</td>
<td>0.33</td>
</tr>
<tr>
<td>days of use</td>
<td>7.4 (6.7)</td>
<td>5.9 (4.1)</td>
<td>0.14</td>
</tr>
<tr>
<td>amount of use</td>
<td>4.9 (3.6)</td>
<td>4.0 (2.3)</td>
<td>0.1</td>
</tr>
<tr>
<td>years of use</td>
<td>5.7 (2.3)</td>
<td>5.2 (2.4)</td>
<td>0.19</td>
</tr>
<tr>
<td>Nicotine (%)</td>
<td>29.1</td>
<td>19.8</td>
<td>0.13</td>
</tr>
<tr>
<td>days of use</td>
<td>13.3 (13.8)</td>
<td>12.9 (12.0)</td>
<td>0.92</td>
</tr>
<tr>
<td>amount of use</td>
<td>4.7 (4.1)</td>
<td>4.4 (4.2)</td>
<td>0.82</td>
</tr>
<tr>
<td>years of use</td>
<td>4.3 (3.6)</td>
<td>3.6 (2.7)</td>
<td>0.4</td>
</tr>
<tr>
<td>Cannabis (%)</td>
<td>25.5</td>
<td>7.5</td>
<td><0.01*</td>
</tr>
<tr>
<td>days of use</td>
<td>7.9 (10.3)</td>
<td>3.9 (6.8)</td>
<td>0.19</td>
</tr>
<tr>
<td>amount of use</td>
<td>1.5 (0.8)</td>
<td>1.2 (0.6)</td>
<td>0.13</td>
</tr>
<tr>
<td>years of use</td>
<td>3.9 (3.2)</td>
<td>2.3 (1.9)</td>
<td>0.11</td>
</tr>
<tr>
<td>Cocaine (%)</td>
<td>1.8</td>
<td>0.8</td>
<td>0.48</td>
</tr>
<tr>
<td>days of use</td>
<td>1</td>
<td>1.5 (0.7)</td>
<td>-</td>
</tr>
<tr>
<td>amount of use</td>
<td>1</td>
<td>1.5 (0.7)</td>
<td>-</td>
</tr>
<tr>
<td>years of use</td>
<td>1</td>
<td>1 (1.4)</td>
<td>-</td>
</tr>
<tr>
<td>Stimulant (%)</td>
<td>7.3</td>
<td>0.8</td>
<td><0.01*</td>
</tr>
<tr>
<td>days of use</td>
<td>7.3 (7.3)</td>
<td>2.1 (4.2)</td>
<td>0.25</td>
</tr>
<tr>
<td>amount of use</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>years of use</td>
<td>3.8 (3.9)</td>
<td>1 (1.4)</td>
<td>0.28</td>
</tr>
<tr>
<td>Ecstasy (%)</td>
<td>1.8</td>
<td>2.4</td>
<td>0.8</td>
</tr>
<tr>
<td>days of use</td>
<td>1</td>
<td>1.2 (0.4)</td>
<td>-</td>
</tr>
<tr>
<td>amount of use</td>
<td>2</td>
<td>0.8 (0.3)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: Population description.

Perception and attribution of addiction among psychology students

In general, psychology students recognize that addiction has severe consequences (students who use substances=4.5, SD=0.4; students who do not use substances=4.4, SD=0.4) and emotionally stressful (students who use substances=4.3, SD=0.6; students who do not use substances=4.3, SD=0.5).

Moreover, they also think that addiction is a condition that is understandable (students who use substances=4.1, SD=0.6; students who do not use substances=3.9, SD=0.6), chronic (students who use substances=3.9, SD=0.3; students who do not use substances=3.9, SD=0.5) and controllable (students who use substances=3.9, SD=0.5; students who do not use substances=3.8, SD=0.5). They also attribute addiction to psychological and general risk factors (students who use substances=4.3, SD=0.4; students who do not use substances=4.3, SD=0.4 and students who use substances=3.6, SD=0.4; students who do not use substances=3.7, SD=0.4, respectively).

Differences in perceptions and attributions of addiction between students who use substances and do not use substances

Differences in perceptions and attributions of addiction between students who use and do not use substances are summarized in Table 2. We observed the difference of perception between students who use and do not use substances (F (11,295)=2.859, p<.01).

Students who regularly use substances believed more that addiction can be controlled and that they understand addiction, compared to those who do not use substances (F(13,305)=4.696, p=0.03; F(1,305)=20.041, p<0.01 respectively). There were no differences between the students who use and do not use substances on any of the attribution subscales.
Addiction is understandable was related to higher nicotine use (days of use of psychoactive substances was associated with the perceptions use over past 30 days: r=0.29, p=0.02; amount of use r=0.32, p=0.01; years of use r=0.29, p=0.02). The perception that patient can control addiction was not related with any substance use.

<table>
<thead>
<tr>
<th>Perception</th>
<th>Use substances (n=91) mean</th>
<th>SD</th>
<th>Do not use substances (n=217) mean</th>
<th>SD</th>
<th>F(1,305)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addiction is a chronic condition</td>
<td>3.9</td>
<td>0.5</td>
<td>3.9</td>
<td>0.5</td>
<td>0</td>
<td>0.98</td>
</tr>
<tr>
<td>Addiction has severe consequences</td>
<td>4.5</td>
<td>0.4</td>
<td>4.4</td>
<td>0.4</td>
<td>0.474</td>
<td>0.49</td>
</tr>
<tr>
<td>Patient can control addiction</td>
<td>3.9</td>
<td>0.5</td>
<td>3.8</td>
<td>0.5</td>
<td>4.696</td>
<td>0.03*</td>
</tr>
<tr>
<td>Treatment can control addiction</td>
<td>3.9</td>
<td>0.4</td>
<td>3.8</td>
<td>0.4</td>
<td>2.617</td>
<td>0.11</td>
</tr>
<tr>
<td>I can understand addiction</td>
<td>4.1</td>
<td>0.6</td>
<td>3.9</td>
<td>0.6</td>
<td>10.041</td>
<td><0.01*</td>
</tr>
<tr>
<td>Addiction is a cyclic condition</td>
<td>3</td>
<td>0.6</td>
<td>3.1</td>
<td>0.6</td>
<td>1.169</td>
<td>0.28</td>
</tr>
<tr>
<td>Addiction is emotionally stressful</td>
<td>4.3</td>
<td>0.6</td>
<td>4.3</td>
<td>0.5</td>
<td>0.004</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 2: Perception and attribution of addiction among participants.

Relationship perceptions and attributions of addiction with substance use patterns. Among students who use substances the correlation between perceptions of addiction that are significantly different with those who do not use substances and substance use patterns were explored. The perceptions are ‘patient can control addiction’ and ‘I can understand addiction’. The perception that addiction is understandable was related to higher nicotine use (days of use over past 30 days: r=0.29, p=0.02; amount of use r=0.32, p=0.01; years of use r=0.29, p=0.02). The perception that patient can control addiction was not related with any substance use.

Discussion

The current study investigated the relationship between illness perceptions of addiction among psychology students and personal experience with substance use. The results show that substance use is common among these students and that they perceive addiction as a condition with severe consequences and as emotionally stressful. The use of psychoactive substances was associated with the perceptions that addiction is controllable and understandable.

Psychology students have the perception that addiction has severe consequences and is emotionally stressful. Moreover, they perceive addiction as an understandable condition that is both chronic and controllable. They also believe that psychological and risk factors are important causes of addiction. Previous study reported that addiction treatment providers in United Kingdom believed that addiction is a way of coping with life [23]. That belief includes items similar as controllable and psychological subscales of IPQ, for example: alcoholics and drug addicts can learn to moderate their drinking or cut down their own drug use and people become addicted to drugs/ alcohol when life is going badly for them [24].

It is unclear how perceptions of addiction among health professionals evolve over time, and how training can influence these perceptions. It has been shown that reflective teaching methods can effectively improve attitudes towards and perceptions of addicted patients among medical doctors [5]. Similarly, few studies explored the effect of interventions aiming to influence illness perceptions among patients [25]. In patients with asthma and myocardial infarction education programs resulted in increased belief that their condition can be controlled, which had positive effects, for example on treatment adherence [26] and functional outcome [27]. How training can influence illness perceptions among health professionals, and how this affects their clinical work remains to be investigated. Nonetheless, the IPQ-A might be a useful instrument to support reflective teaching methods, or to evaluate the effect of training on perceptions of addiction among students.

Students who regularly use substances believed more that addiction can be controlled and that they understand addiction, compared to students who do not use substances. Moreover, among students who use nicotine, higher levels of nicotine use were associated with the perception that addiction is understandable (moderate correlation). These findings are in line with previous findings that medical students with more positive expectancies of the effects of substance use more regularly use alcohol or other psychoactive substances, compared to those with more negative expectancies of the effects of substance use [28]. More positive expectancies on the effects of substance use and illness perceptions of addiction might therefore both relate to increased levels of substance use among students. This suggests that expectancies on the effects of substance use and illness perceptions of addiction could be related. This is of particular relevance in the context of students in training for health professionals, since these students will be future therapists. Indeed, health care professionals with regular use of psychoactive substances showed more negative attitude compared to their colleagues who do not use psychoactive substances [4]. How substance use among psychology students relates to their future attitude towards patients with SUD/addiction remains to be investigated.

It could be speculated that the observation that the relationship between perceptions of addiction and the use of psychoactive substances was mainly observed in nicotine users is related to the addictive potential of nicotine. Nicotine is considered as a highly addictive substance. Though nicotine use is accepted in many societies, regular nicotine use should in fact often be considered as an addiction [29]. It can be expected that regular nicotine users more often display addictive behaviour as compared to those regularly using alcohol or cannabis. This may well explain the observed relationship between level of nicotine use and perception that addiction is understandable, which was not observed for other substances.
The level of substance use among psychology students observed here is comparable with substance use patterns in the general population in the Netherlands (mainly alcohol: 88.1-92.7%, coffee: 65.2-72.7%, nicotine: 19.8-29.1%, and cannabis: 7.5-25.5%) and previous studies on the use of psychoactive substances by Dutch dental students (alcohol use 95%; tobacco 42%; marijuana 24%) [30]. Patterns of substance use among Dutch psychology students are also comparable to other countries. For instance, in the USA and Brazil the most commonly used drugs among college students are also alcohol, cannabis, and nicotine [31,32].

In line with previous studies male students tended to report more substance use compared to females [28,31,33]. It has been shown that among male students the number of students who drink alcohol increases during their college years, but remains stable among females [33]. Since we included third year students, this may explain the increased levels of substance use among males. In contrast, females more often used sedatives compared to male psychology students. Among medical students and medical doctors the use of tranquillizers was also higher among females than among males [32,34].

The results of the current study should be seen in the light of its limitations. First, the IPQ-R is a well-validated instrument, designed to assess illness perceptions in patients. It has been used worldwide to evaluate patients’ perceptions towards their illness in a variety of conditions, including chronic fatigue syndrome, asthma and schizophrenia [25,26]. We applied a novel approach, using the IPQ-R in a group of undergraduate students to assess their perception of addiction, a condition most of them will not have themselves. Future studies should confirm the validity and reliability of the IPQ-R when applied in healthy controls. Second, these findings may not be generalizable to students of other faculties or other countries. Finally, little is known about illness perceptions among health professionals and how these affect the therapeutic relationship. This is a potentially very relevant area of research, since illness perceptions can vary widely among health professionals and the quality of the therapeutic relationship is very relevant in the context of addiction.

Taken together, our findings show that perceptions of addiction may be related to the students’ substance use. To what extent perceptions and attributions of addiction evolve over time, can be influenced by training and how they relate to the attitude towards addicted patients remains to be investigated. These issues should be addressed in future studies using the IPQ-R. The IPQ-R seems to be an instrument that could be used for training purposes, by supporting reflective teaching methods and as a tool to evaluate the effect of addiction training on illness perceptions of addiction.

Acknowledgement

The authors wish to thank W.J. Burk, PhD as our consultant statistic and the psychology student of the faculty of social science Radboud University as our respondent.

Funding

This work is supported by the Indonesian Directorate General of Resources for Research, Technology and Higher Education Ministry of Research, Technology, and Higher Education, no: 94.19/E4.4/2014 to Astri Parawita Ayu. The funder had no role in study design, data collection and analysis, decision to publish, and preparation of the manuscript.

References

