The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/173240

Please be advised that this information was generated on 2020-09-03 and may be subject to change.
Quantum Programs as Kleisli Maps

Abraham Westerbaan
Radboud University Nijmegen
bram@westerbaan.name

Furber and Jacobs have shown in their study of quantum computation that the category of commutative C^*-algebras and PU-maps (positive linear maps which preserve the unit) is isomorphic to the Kleisli category of a comonad on the category of commutative C^*-algebras with MIU-maps (linear maps which preserve multiplication, involution and unit).\[^3\]

In this paper, we prove a non-commutative variant of this result: the category of C^*-algebras and PU-maps is isomorphic to the Kleisli category of a comonad on the subcategory of MIU-maps.

A variation on this result has been used to construct a model of Selinger and Valiron’s quantum lambda calculus using von Neumann algebras.\[^1\]

The semantics of a non-deterministic program that takes two bits and returns three bits can be described as a multimap (= binary relation) from $\{0,1\}^2$ to $\{0,1\}^3$. Similarly, a program that takes two qubits and returns three qubits can be modelled as a positive linear unit-preserving map from $M_2 \otimes M_2 \otimes M_2$ to $M_2 \otimes M_2$, where M_2 is the C^*-algebra of 2×2-matrices over \mathbb{C}.

More generally, the category $\text{Set}_{\text{multi}}$ of multimaps between sets models non-deterministic programs (running on an ordinary computer), while the opposite of the category C^*_{MIU} of PU-maps (positive linear unit-preserving maps) between C^*-algebras models programs running on a quantum computer. (When we write $"C^*$-algebra" we always mean $"C^*$-algebra with unit ".)

A multimap from $\{0,1\}^2$ to $\{0,1\}^3$ is simply a map from $\{0,1\}^2$ to $\mathcal{P}(\{0,1\}^3)$. In the same line $\text{Set}_{\text{multi}}$ is (isomorphic to) the Kleisli category of the powerset monad \mathcal{P} on Set. What about C^*_{PU}?

We will show that there is a monad Ω on $(C^*_{\text{MIU}})^\text{op}$, the opposite of the category C^*_{MIU} of C^*-algebras and MIU-maps (linear maps that preserve the multiplication, involution and unit), such that $(C^*_{\text{PU}})^\text{op}$ is isomorphic to the Kleisli category of Ω. We say that $(C^*_{\text{PU}})^\text{op}$ is Kleislian over $(C^*_{\text{MIU}})^\text{op}$. So in the same way we add non-determinism to Set by the powerset monad \mathcal{P} yielding $\text{Set}_{\text{multi}}$, we can obtain $(C^*_{\text{PU}})^\text{op}$ from $(C^*_{\text{MIU}})^\text{op}$ by a monad Ω.

Let us spend some words on how we obtain this monad Ω. Note that since every positive element of a C^*-algebra \mathcal{A} is of the form a^*a for some $a \in \mathcal{A}$ any MIU-map will be positive. Thus C^*_{MIU} is a subcategory of C^*_{PU}. Let $U: C^*_{\text{MIU}} \rightarrow C^*_{\text{PU}}$ be the embedding.

In Section\[^1\] we will prove that U has a left adjoint $F: C^*_{\text{PU}} \rightarrow C^*_{\text{MIU}}$, see Theorem\[^5\]. This adjunction gives us a comonad $\Omega := FU$ on C^*_{MIU} (which is a monad on $(C^*_{\text{MIU}})^\text{op}$) with the same counit as the adjunction. The comultiplication δ is given by $\delta_{\mathcal{A}} = F\eta_{\mathcal{A}}$ for every object \mathcal{A} from C^*_{MIU} where η is the unit of the adjunction between F and U.

In Section\[^2\] we will prove that $(C^*_{\text{PU}})^\text{op}$ is isomorphic to $\mathcal{H}l(FU)$ if FU is considered a monad on $(C^*_{\text{MIU}})^\text{op}$. In fact, we will prove that the comparison functor $L: \mathcal{H}l(FU) \rightarrow (C^*_{\text{PU}})^\text{op}$ (which sends a MIU-map $f: FU\mathcal{A} \rightarrow B$ to $Uf \circ \eta_{\mathcal{A}}: U\mathcal{A} \rightarrow U(B)$) is an isomorphism, see Corollary\[^10\].

The method used to show that $(C^*_{\text{PU}})^\text{op}$ is Kleislian over $(C^*_{\text{MIU}})^\text{op}$ is quite general and it will be obvious that many variations on $(C^*_{\text{PU}})^\text{op}$ will be Kleislian over $(C^*_{\text{MIU}})^\text{op}$ as well, such as the opposite of the category of subunital completely positive linear maps between C^*-algebras. The flip-side of this generality is that we discover preciously little about the monad Ω which leaves room for future inquiry (see Section\[^3\]).
We will also see that the opposite \((W_{\text{NCPU}}^*)^{\text{op}}\) of the category of normal completely positive subunital maps between von Neumann algebras is Kleislian over the subcategory \((W_{\text{SMIU}}^*)^{\text{op}}\) of normal unital \(*\)-homomorphisms. This fact is used in [1] to construct an adequate model of Selinger and Valiron’s quantum lambda calculus using von Neumann algebras.

1 The Left Adjoint

In Theorem 5 we will show that \(U\) has a left adjoint, \(F: C_{\text{MIU}}^* \rightarrow C_{\text{PU}}^*\), using a quite general method. As a result we do not get any “concrete” information about \(F\) in the sense that while we will learn that for every \(C^*\)-algebra \(\mathcal{A}\) there exists an arrow \(\rho: \mathcal{A} \rightarrow UF\mathcal{A}\) which is initial from \(\mathcal{A}\) to \(U\) we will learn nothing more about \(\rho\) than this. Nevertheless, for some (very) basic \(C^*\)-algebras \(\mathcal{A}\) we can describe \(F \mathcal{A}\) directly, as is shown below in Example 1.

Example 1. Let us start easy: \(C\) will be mapped to itself by \(F\), that is:

the identity \(\rho : C \rightarrow UC\) is an initial arrow from \(C\) to \(U(-)\).

Indeed, let \(\mathcal{A}\) be a \(C^*\)-algebra and let \(\sigma : C \rightarrow U \mathcal{A}\) be a PU-map. Then \(\sigma\) must be given by \(\sigma(\lambda) = \lambda \cdot 1\) for \(\lambda \in C\), where \(1\) is the identity of \(\mathcal{A}\). Thus \(\sigma\) is a MIU-map as well. Hence there is a unique MIU-map \(\tilde{\sigma} : C \rightarrow \mathcal{A}\) (namely \(\tilde{\sigma} = \sigma\)) such that \(\tilde{\sigma} \circ \rho = \sigma\). (\(C\) is initial in both \(C_{\text{MIU}}\) and \(C_{\text{PU}}^*\).)

Example 2. The image of \(C^2\) under \(F\) will be the \(C^*\)-algebra \(C[0,1]\) of continuous functions from \([0,1]\) to \(C\). As will become clear below, this is very much related to the familiar functional calculus for \(C^*\)-algebras: given an element \(a\) of a \(C^*\)-algebra \(\mathcal{A}\) with \(0 \leq a \leq 1\) and \(f \in C[0,1]\) we can make sense of \(f(a)\), as an element of \(\mathcal{A}\).

The map \(\rho : C^2 \rightarrow UC[0,1]\) given by, for \(\lambda , \mu \in C\), \(x \in [0,1]\),

\[\rho(\lambda , \mu)(x) = \lambda x + \mu (1-x)\]

is an initial arrow from \(C^2\) to \(U\).

Let \(\sigma : C^2 \rightarrow U \mathcal{A}\) be a PU-map. We must show that there is a unique MIU-map \(\bar{\sigma} : C[0,1] \rightarrow \mathcal{A}\) such that \(\bar{\sigma} = \tilde{\sigma} \circ \rho\).

Writing \(a := \sigma(1,0)\), we have \(\sigma(\lambda , \mu) = \lambda a + \mu (1-a)\) for all \(\lambda , \mu \in C\). Note that \((0,0) \leq (1,0) \leq (1,1)\) and thus \(0 \leq a \leq 1\). Let \(C^a\) be the \(C^*\)-subalgebra of \(\mathcal{A}\) generated by \(a\). Then \(C^a\) is commutative since \(a\) is positive (and thus normal). Given a MIU-map \(\omega : C^a \rightarrow C\) we have \(\omega(a) \in [0,1]\) since \(0 \leq a \leq 1\). Thus \(\omega \circ (\omega(a)\cdot 1)\) gives a map \(j : \Sigma C^a \rightarrow [0,1]\), where \(\Sigma C^a\) is the spectrum of \(C^a\), that is, \(\Sigma C^a\) is the set of MIU-maps from \(C^a\) to \(C\) with the topology of pointwise convergence. (By the way, the map \(j\) is the spectrum of the element \(a\).) The map \(j\) is continuous since the topology on \(\Sigma C^a\) is induced by the product topology on \(C C^a\). Thus the assignment \(h \mapsto h \cdot 1\) gives a MIU-map \(C_j : C[0,1] \rightarrow C C^a\). By Gelfand’s representation theorem there is a MIU-isomorphism

\[\gamma : C^a \rightarrow C C^a\]

given by \(\gamma(b) = \omega(b)\) for all \(b \in C^a\) and \(\omega \in \Sigma C^a\). Now, define

\[\bar{\sigma} := \gamma^{-1} \circ C_j : C[0,1] \rightarrow C^a \hookrightarrow \mathcal{A}\]

(In the language of the functional calculus, \(\bar{\sigma}\) maps \(f\) to \(f(a)\).) We claim that \(\bar{\sigma} \circ \rho = \sigma\). It suffices to
show that $C_j \circ \rho \equiv \gamma \circ \sigma \circ \rho = \gamma \circ \sigma$. Let $\lambda, \mu \in \mathbb{C}$ and $\omega \in \Sigma C^*(a)$ be given. We have

\[
(C_j \circ \rho)(\lambda, \mu)(\omega) = (C_j)(\rho(\lambda, \mu))(\omega) \\
= \rho(\lambda, \mu)(j(\omega)) \quad \text{by def. of } C_j \\
= \lambda j(\omega) + \mu (1 - j(\omega)) \quad \text{by def. of } \rho \\
= \lambda \omega(a) + \mu (1 - \omega(a)) \quad \text{by def. of } j \\
= \omega(\lambda a + \mu (1 - a)) \quad \text{as } \omega \text{ is a MIU-map} \\
= \omega(\sigma(\lambda, \mu)) \quad \text{by choice of } a \\
= \gamma(\sigma(\lambda, \mu))(\omega) \quad \text{by def. of } \gamma \\
= (\gamma \circ \sigma)(\lambda, \mu)(\omega).
\]

It remains to be shown that $\overline{\sigma}$ is the only MIU-map $\tau : C[0, 1] \to \mathcal{A}$ such that $U \tau \circ \rho = \sigma$. Let τ be such a map; we prove that $\tau = \overline{\sigma}$. By assumption τ and $\overline{\sigma}$ agree on the elements $f \in C[0, 1]$ of the form

\[
f(x) = \lambda x + \mu (1 - x).
\]

In particular, $\overline{\sigma}$ and τ agree on the map $h : [0, 1] \to \mathbb{C}$ given by $h(x) = x$.

Now, since $\overline{\sigma}$ and τ are MIU-maps and h generates the C^*-algebra $C[0, 1]$ (this is Weierstrass’s theorem), it follows that $\overline{\sigma} = \tau$.

Example 3. The image of \mathbb{C}^3 under F will not be commutative, or more formally:

If $\rho : \mathbb{C}^3 \to \mathcal{B}$ is an initial map from \mathbb{C}^3 to U, then \mathcal{B} is not commutative.

Suppose that \mathcal{B} is commutative towards contradiction. Let \mathcal{A} be a C^*-algebra in which there are positive a_1, a_2, a_3 such that $a_1 a_2 \neq a_2 a_1$ and $a_1 + a_2 + a_3 = 1$.

(For example, we can take \mathcal{A} to be the set of linear operators on \mathbb{C}^2 and let

\[
a_1 := 1/2 P_1 \\n= 1/2 P_+ \\n= a_3 := I - 1/2 P_1 - 1/2 P_+
\]

where P_1 denotes the orthogonal projection onto $\{(0, x) : x \in \mathbb{C}\}$ and P_+ is the orthogonal projection onto $\{(x, x) : x \in \mathbb{C}\}$.)

Define $f : \mathbb{C}^3 \to \mathcal{A}$ by, for all $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$,

\[
f(\lambda_1, \lambda_2, \lambda_3) = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3.
\]

Then it is not hard to see that f a PU-map. So as \mathcal{B} is the initial arrow from \mathbb{C}^3 to U there is a (unique) MIU-map $\overline{f} : \mathcal{B} \to \mathcal{A}$ such that $\overline{f} \circ \rho = f$. We have

\[
a_1 \cdot a_2 = f(1, 0, 0) \cdot f(0, 1, 0) \\
= \overline{f}(\rho(1, 0, 0)) \cdot \overline{f}(\rho(0, 1, 0)) \\
= \overline{f}(\rho(1, 0, 0) \cdot \rho(0, 1, 0)) \quad \text{because } \mathcal{B} \text{ is commutative} \\
= \overline{f}(\rho(0, 1, 0) \cdot \rho(1, 0, 0)) \\
= a_2 \cdot a_1.
\]

This contradicts $a_1 \cdot a_2 \neq a_2 \cdot a_1$. Hence \mathcal{B} is not commutative.
Remark 4. Before we prove that the embedding \(C^*_{\text{MIU}} \to C^*_{\text{PU}} \) has a left adjoint \(F \) (see Theorem 5) let us compare what we already know about \(F \) with the commutative case. Let \(\text{CC}_{\text{MIU}}^* \) denote the category of MIU-maps between commutative \(C^* \)-algebras and let \(\text{CC}_{\text{PU}}^* \) denote the category of PU-maps between commutative \(C^* \)-algebras. From the work in [3] it follows that the embedding \(\text{CC}_{\text{MIU}}^* \to \text{CC}_{\text{PU}}^* \) has a left adjoint \(F' \) and moreover that \(F' \sigma = \text{Stat} \sigma \), where \(\text{Stat} \sigma \) is the topological space of PU-maps from \(\sigma \) to \(C \) with pointwise convergence and \(\text{Stat} \sigma \) is the \(C^* \)-algebra of continuous functions from \(\text{Stat} \sigma \) to \(C \).

Let \(x \in [0, 1] \). Then the assignment \((\lambda, \mu) \mapsto x \lambda + (1 - x) \mu \) gives a PU-map \(\tau: C^2 \to C \). It is not hard to see that \(x \mapsto \tau \) gives an isomorphism from \([0, 1]\) to \(\text{Stat} C^2 \). Thus \(F'C^2 \cong C[0, 1] \). Hence on \(C^2 \) the functor \(F \) and its commutative variant \(F' \) agree (see Example 2). However, on \(C^3 \) the functors \(F \) and \(F' \) differ. Indeed, \(F'C^3 \) is commutative while \(FC^3 \) is not (see Example 3).

\[
\begin{array}{ccc}
\text{CC}_{\text{MIU}}^* & \xrightarrow{F} & \text{CC}_{\text{PU}}^* \\
\downarrow & & \downarrow \\
\text{C}_{\text{MIU}}^* & \xrightarrow{F'} & \text{C}_{\text{PU}}^*
\end{array}
\]

Roughly summarised: while in the diagram above the right adjoints commute with the vertical embeddings, the left adjoints do not.

Theorem 5. The embedding \(U: C^*_{\text{MIU}} \to C^*_{\text{PU}} \) has a left adjoint.

Proof. By Freyd’s Adjoint Functor Theorem (see Theorem V.6.1 of [6]) and the fact that all limits can be formed using only products and equalisers (see Theorem V.2.1 and Exercise V.4.2 of [6]) it suffices to prove the following.

(i) The category \(C^*_{\text{MIU}} \) has all small products and equalisers.

(ii) The functor \(U: C^*_{\text{MIU}} \to C^*_{\text{PU}} \) preserves small products and equalisers.

(iii) **Solution Set Condition.** For every \(C^* \)-algebra \(\mathcal{A} \) there is a set \(I \) and for each \(i \in I \) a PU-map \(f_i: \mathcal{A} \to \mathcal{A}_i \) such that for any PU-map \(f: \mathcal{A} \to \mathcal{B} \) there is an \(i \in I \) and a MIU-map \(h: \mathcal{A}_i \to \mathcal{B} \) such that \(h \circ f_i = f \).

Conditions (i) and (ii) can be verified with routine so we will spend only a few words on them (and leave the details to the reader). To see that Condition (iii) holds requires a little more ingenuity and so we will give the proof in detail.

(Conditions (i) and (ii)) Let us first think about small products in \(C^*_{\text{MIU}} \) and \(C^*_{\text{PU}} \).

Let \(I \) be a set, and for each \(i \in I \) let \(\mathcal{A}_i \) be a \(C^* \)-algebra.

It is not hard to see that cartesian product \(\prod_{i \in I} \mathcal{A}_i \) is a \(*\)-algebra when endowed with coordinate-wise operations (and it is in fact the product of the \(\mathcal{A}_i \) in the category of \(*\)-algebras with MIU-maps, and with PU-maps).

However, \(\prod_{i \in I} \mathcal{A}_i \) cannot be the product of the \(\mathcal{A}_i \) as \(C^* \)-algebras: there is not even a \(C^* \)-norm on \(\prod_{i \in I} \mathcal{A}_i \) unless \(\mathcal{A}_i \) is trivial for all but finitely many \(i \in I \). Indeed, if \(\| - \| \) were a \(C^* \)-norm on \(\prod_{i \in I} \mathcal{A}_i \), then we must have \(\| \sigma(i) \| \leq \| \sigma \| \) for all \(\sigma \in \prod_{i \in I} \mathcal{A}_i \) and \(i \in I \), and so for any sequence \(i_0, i_1, \ldots \) of distinct elements of \(I \) for which \(\mathcal{A}_{i_0}, \mathcal{A}_{i_1}, \ldots \) are non-trivial, and for every \(\sigma \in \prod_{i \in I} \mathcal{A}_i \) with \(\sigma(i_n) = 0 \) for all \(n \), we have \(n = \| \sigma(i_0) \| \leq \| \sigma \| \) for all \(n \), so \(\| \sigma \| = \infty \), which is not allowed.

Nevertheless, the \(*\)-subalgebra of \(\prod_{i \in I} \mathcal{A}_i \) given by

\[
\bigoplus_{i \in I} \mathcal{A}_i := \{ \sigma \in \prod_{i \in I} \mathcal{A}_i : \sup_{i \in I} \| \sigma(i) \| < +\infty \}
\]
is a C^*-algebra with norm given by, for $\sigma \in \bigoplus_{i \in I} \mathcal{A}_i$,
\[\|\sigma\| = \sup_{i \in I} \|\sigma(i)\|. \]

We claim that $\bigoplus_{i \in I} \mathcal{A}_i$ is the product of the \mathcal{A}_i in C_{PU}^* (and in C_{MIU}^*).

Let \mathcal{C} be a C^*-algebra, and for each $i \in I$, let $f_i: \mathcal{C} \rightarrow \mathcal{A}_i$ be a PU-map. We must show that there is a unique PU-map $f: \mathcal{C} \rightarrow \bigoplus_{i \in I} \mathcal{A}_i$ such that $\pi_i \circ f = f_i$ for all $i \in I$ where $\pi_i: \bigoplus_{i \in I} \mathcal{A}_i \rightarrow \mathcal{A}_i$ is the i-th projection. It is clear that there is at most one such f, and it would satisfy for all $i \in I$, and $c \in \mathcal{C}$, $f(c)(i) = f_i(c)$.

To see that such map f exists is easy if we are able to prove that, for all $c \in \mathcal{C}$,
\[\sup_{i \in I} \|f_i(c)\| < +\infty. \] \hspace{1cm} (1)

Let $i \in I$ be given. We claim that that $\|f_i(c)\| \leq \|c\|$ for any positive $c \in \mathcal{C}$. Indeed, we have $c \leq \|c\| \cdot 1$, and thus $f_i(c) \leq \|c\| \cdot f(1) = \|c\| \cdot 1$, and so $\|f_i(c)\| \leq \|c\|$. It follows that $\|f_i(c)\| \leq 4 \cdot \|c\|$ for any $c \in \mathcal{A}$ by writing $c = c_1 - c_2 + i c_3 - i c_4$ where $c_1, c_2, c_3, c_4 \in \mathcal{C}$ are all positive. (We even have $\|f(c)\| \leq \|c\|$ for all $c \in \mathcal{C}$, but this requires a bit more effort[1].) Thus, we have $\sup_{i \in I} \|f_i(c)\| \leq 4 \|c\| < +\infty$. Hence Statement (1) holds.

Thus $\bigoplus_{i \in I} \mathcal{A}_i$ is the product of the \mathcal{A}_i in C_{PU}^*. It is easy to see that $\bigoplus_{i \in I} \mathcal{A}_i$ is the product of the \mathcal{A}_i in C_{MIU}^* as well. Hence C_{MIU}^* has all small products (as does C_{PU}^*) and $U: C_{\text{MIU}}^* \rightarrow C_{\text{PU}}^*$ preserves small products.

Let us think about equalisers in C_{MIU}^* and C_{PU}^*. Let \mathcal{A} and \mathcal{B} be C^*-algebras and let $f, g: \mathcal{A} \rightarrow \mathcal{B}$ be MIU-maps. We must prove that f and g have an equaliser $e: \mathcal{E} \rightarrow \mathcal{A}$ in C_{MIU}^*, and that e is the equaliser of f and g in C_{PU}^* as well.

Since f and g are MIU-maps (and hence continuous), it is not hard to see that
\[\mathcal{E} := \{ a \in \mathcal{A}: f(a) = g(a) \} \]
is a C^*-subalgebra of \mathcal{A}. We claim that the inclusion $e: \mathcal{E} \rightarrow \mathcal{A}$ is the equaliser of f, g in C_{PU}^*. Let \mathcal{D} be a C^*-algebra and let $d: \mathcal{D} \rightarrow \mathcal{A}$ be a PU-map such that $f \circ d = g \circ d$. We must show that there is a unique PU-map $h: \mathcal{D} \rightarrow \mathcal{E}$ such that $d = e \circ h$. Note that d maps \mathcal{A} into \mathcal{E}. The map $h: \mathcal{D} \rightarrow \mathcal{E}$ is simply the restriction of $d: \mathcal{D} \rightarrow \mathcal{A}$ in the codomain. Hence e is the equaliser of f, g in C_{PU}^*.

Note that in the argument above h is a PU-map since d is a PU-map. If d were a MIU-map, then h would be a MIU-map too. Hence e is the equaliser of f, g in the category C_{MIU}^* as well.

Hence C_{MIU}^* has all equalisers and $U: C_{\text{MIU}}^* \rightarrow C_{\text{PU}}^*$ preserves equalisers. Hence C_{MIU}^* has all small limits and $U: C_{\text{MIU}}^* \rightarrow C_{\text{PU}}^*$ preserves all small limits.

(Condition [iii]). Let \mathcal{A} be a C^*-algebra. We must find a set I and for each $i \in I$ a PU-map $f_i: \mathcal{A} \rightarrow \mathcal{A}_i$ such that for every PU-map $f: \mathcal{A} \rightarrow \mathcal{B}$ there is a (not necessarily unique) $i \in I$ and $h: \mathcal{A} \rightarrow \mathcal{B}$ such that $f = h \circ f_i$.

Note that if $f: \mathcal{A} \rightarrow \mathcal{B}$ is a PU-map, then the range of the PU-map f need not be a C^*-subalgebra of \mathcal{B}. (If the range of PU-maps would have been C^*-algebras, then we could have taken I to be the set of all ideals of \mathcal{A}, and $f_j: \mathcal{A} \rightarrow \mathcal{A} / J$ to be the quotient map for any ideal J of \mathcal{A}.)

[1] See Corollary 1 of [7].
Nevertheless, given a PU-map $f: \mathcal{A} \to \mathcal{B}$ there is a smallest C^*-subalgebra, say \mathcal{B}', of \mathcal{B} that contains the range of f. We claim that $\#\mathcal{B}' \leq \#(\mathcal{A}^N)$ where $\#\mathcal{B}'$ is the cardinality of \mathcal{B}' and $\#(\mathcal{A}^N)$ is the cardinality of \mathcal{A}^N.\footnote{Although it has no bearing on the validity of the proof one might wonder if the simpler statement $\#\mathcal{B}' \leq \#\mathcal{A}$ holds as well. Indeed, if $\#\mathcal{A} = \#\mathbb{C}$ or $\#\mathcal{A} = \#(2^X)$ for some infinite set X, then we have $\#\mathcal{A} = \#(\mathcal{A}^N)$, and so $\#\mathcal{B}' \leq \#\mathcal{A}$. However, not every uncountable set is of the form 2^X for some infinite set X, and in fact, if $\#\mathcal{A} = \aleph_0$, then $\#(\mathcal{A}^N) > \#\mathcal{A}$ by Corollary 3.9.6 of \cite{2}.}

If we can find proof for our claim, the rest is easy. Indeed, to begin note that the collection of all C^*-algebras is not a small set. However, given a set U, the collection of all C^*-algebras \mathcal{C} whose elements come from U (so $\mathcal{C} \subseteq U$) is a small set. Now, let $\kappa := \#(\mathcal{A}^N)$ be the cardinality of \mathcal{A}^N (so κ is itself a set) and take

$$I := \{ (\mathcal{C}, c): \mathcal{C} \text{ is a } C^*-\text{algebra on a subset of } \kappa \text{ and } c: \mathcal{A} \to \mathcal{C} \text{ is a PU-map} \}.$$

Since the collection of C^*-algebras \mathcal{C} with $\mathcal{C} \subseteq \kappa$ is small, and since the collection of PU-maps from \mathcal{A} to \mathcal{C} is small for any C^*-algebra \mathcal{C}, it follows that I is small.

Let us first take care of pathological case. Note that if \mathcal{A} is trivial, i.e. $\mathcal{A} = \{0\}$, then $\mathcal{B}' = \{0\}$, so $\#(\mathcal{A}^N) = 1 = \#\mathcal{B}'$. Now, let us assume that \mathcal{A} is not trivial. Then we have an injection $\mathbb{C} \to \mathcal{A}$ given by $\lambda \mapsto \lambda \cdot 1$, and thus $\#\mathcal{C} \leq \#\mathcal{A}$.

The trick to prove $\#\mathcal{B}' \leq \#(\mathcal{A}^N)$ is to find a more explicit description of \mathcal{B}'. Let T be the set of terms formed using a unary operation $(\cdot)^*$ (involution) and two binary operations, \cdot (multiplication) and $+$ (addition), starting from the elements of \mathcal{A}. Let $f_T: T \to \mathcal{B}'$ be the map (recursively) given by, for $a \in \mathcal{A}$, and $s, t \in T$,

$$f_T(a) = f(a)$$
$$f_T(s^*) = (f_T(s))^*$$
$$f_T(s \cdot t) = f_T(s) \cdot f_T(t)$$
$$f_T(s + t) = f_T(s) + f_T(t).$$

Let us proof our claim. Let \mathcal{A} and \mathcal{B} be C^*-algebras and let $f: \mathcal{A} \to \mathcal{B}$ be a PU-map. Let \mathcal{B}' be the smallest C^*-subalgebra that contains the range of f. By our claim we have $\#\mathcal{B}' \leq \#(\mathcal{A}^N)$. Let $\varphi: \mathcal{C} \to \mathcal{B}'$ be the isomorphism.

Note that $c := \varphi^{-1} \circ f: \mathcal{C} \to \mathcal{C}'$ is a PU-map. So we have $i := (\mathcal{C}, c) \in I$. Further, the inclusion $e: \mathcal{B}' \to \mathcal{B}$ is a MIU-map, as is φ. So we have:

$$\begin{align*}
\mathcal{A} & \xrightarrow{\text{PU}} \mathcal{B} \\
\mathcal{C} & \xleftarrow{\text{MIU}} \mathcal{B}'
\end{align*}$$

Now, $h := e \circ \varphi: \mathcal{C} \to \mathcal{B}$ is a MIU-map with $f = h \circ f_i$. Hence Cond. \text{(iii)} holds.

Let us proof our claim. Let \mathcal{A} be a C^*-algebra and let $f: \mathcal{A} \to \mathcal{B}$ be a PU-map. Let \mathcal{B}' be the smallest C^*-subalgebra that contains the range of f. We must show that $\#\mathcal{B}' \leq \#(\mathcal{A}^N)$.

Let us first take care of pathological case. Note that if \mathcal{A} is trivial, i.e. $\mathcal{A} = \{0\}$, then $\mathcal{B}' = \{0\}$, so $\#(\mathcal{A}^N) = 1 = \#\mathcal{B}'$. Now, let us assume that \mathcal{A} is not trivial. Then we have an injection $\mathbb{C} \to \mathcal{A}$ given by $\lambda \mapsto \lambda \cdot 1$, and thus $\#\mathcal{C} \leq \#\mathcal{A}$.

The trick to prove $\#\mathcal{B}' \leq \#(\mathcal{A}^N)$ is to find a more explicit description of \mathcal{B}'. Let T be the set of terms formed using a unary operation $(\cdot)^*$ (involution) and two binary operations, \cdot (multiplication) and $+$ (addition), starting from the elements of \mathcal{A}. Let $f_T: T \to \mathcal{B}'$ be the map (recursively) given by, for $a \in \mathcal{A}$, and $s, t \in T$,
Note that the range of \(f_B \), let us call it \(\text{Ran}_B \), is a \(\ast \)-subalgebra of \(\mathcal{B}' \). We will prove that \(\#\text{Ran}_B \leq \#\mathcal{A} \). Since \(f_B \) is a surjection of \(T \) onto \(\text{Ran}_B \) it suffices to prove that \(\#T \leq \#\mathcal{A} \). In fact, we will show that \(\#T = \#\mathcal{A} \).

First note that \(\mathcal{A} \) is infinite, and \(\mathcal{A} \subseteq T \), so \(T \) is infinite as well. To prove that \(\#T = \#\mathcal{A} \) we write the elements of \(T \) as words (with the use of brackets). Indeed, with \(Q := \mathcal{A} \cup \{ \cdot, +, \ast,) \} \), there is an obvious injection from \(T \) into the set \(Q^* \) of words over \(Q \). Since \(\mathcal{A} \) is infinite, and \(Q \setminus \mathcal{A} \) is finite we have \(\#Q = \#\mathcal{A} \) by Hilbert’s hotel. Recall that \(Q^* = \bigcup_{n=0}^{\infty} Q^n \). Since \(Q \) is infinite, we also have \(\#(\mathbb{N} \times Q) = \#Q \) and even \(\#(Q \times Q) = \#Q \) (see Theorem 3.7.7 of [2]), so \(\#Q = \#(Q^n) \) for all \(n > 0 \). It follows that

\[
\#(Q^*) = \#(\bigcup_{n=0}^{\infty} Q^n) = \#(1 + \bigcup_{n=1}^{\infty} Q) = \#(1 + \mathbb{N} \times Q) = \#Q.
\]

Since there is an injection from \(T \) to \(Q^* \) we have \(\#\mathcal{A} \leq \#T \leq \#(Q^*) = \#Q = \#\mathcal{A} \) and so \(\#T = \#\mathcal{A} \).

Hence \(\#\text{Ran}_B \leq \#\mathcal{A} \).

Since \(\text{Ran}_B \) is a \(\ast \)-algebra that contains \(\text{Ran}_f \), the closure \(\overline{\text{Ran}_B} \) of \(\text{Ran}_B \) with respect to the norm on \(\mathcal{B}' \) is a \(C^* \)-algebra that contains \(\text{Ran}_f \). As \(\mathcal{B}' \) is the smallest \(C^* \)-subalgebra that contains \(\text{Ran}_f \), we see that \(\mathcal{B}' = \overline{\text{Ran}_B} \).

Let \(S \) be the set of all Cauchy sequences in \(\text{Ran}_B \). As every point in \(\mathcal{B}' \) is the limit of a Cauchy sequence in \(\text{Ran}_B \), we get \(\#\mathcal{B}' \leq \#S \). Thus:

\[
\#\mathcal{B}' \leq \#S \\
\leq \#(\text{Ran}_B)^N \quad \text{as } S \subseteq (\text{Ran}_B)^N \\
\leq \#(\mathcal{A})^N \quad \text{as } \#\text{Ran}_B \leq \#\mathcal{A}.
\]

Thus we have proven our claim.

Hence Conditions (i)\((i)\) and (iii)\((i)\) hold and \(U : \text{C}_{\text{MUI}U}^{*} \rightarrow \text{C}_{\text{PU}}^{*} \) has a left adjoint. \(\square \)

We have seen that \(U : \text{C}_{\text{MUI}U}^{*} \rightarrow \text{C}_{\text{PU}}^{*} \) has a left adjoint \(F : \text{C}_{\text{PU}}^{*} \rightarrow \text{C}_{\text{MUI}U}^{*} \). This adjunction gives a comonad \(FU \) on \(\text{C}_{\text{MUI}U}^{*} \), which in turns gives us two categories: the Eilenberg–Moore category \(\mathbb{EM}(FU) \) of \(FU \)-coalgebras and the Kleisli category \(\mathbb{K}l(FU) \). We claim that \(\text{C}_{\text{PU}}^{*} \) is isomorphic to \(\mathbb{K}l(FU) \) since \(\text{C}_{\text{MUI}U}^{*} \) is a subcategory of \(\text{C}_{\text{PU}}^{*} \) with the same objects.

This is a special case of a more general phenomenon which we discuss in the next section (in terms of monads instead of comonads), see Theorem 9.

2 Kleislian Adjunctions

Beck’s Theorem (see [6], VI.7) gives a criterion for when an adjunction \(F \dashv U \) “is” an adjunction between \(\text{C} \) and \(\mathbb{EM}(FU) \). We give a similar (but easier) criterion for when an adjunction “is” an adjunction between \(\text{C} \) and \(\mathbb{K}l(UF) \). The criterion is not new; e.g., it is mentioned in [5] (paragraph 8.6) without proof or reference, and it can be seen as a consequence of Exercise VI.5.2 of [6] (if one realises that an equivalence which is bijective on objects is an isomorphism). Proofs can be found in the appendix.
Notation 6. Let $F: C \to D$ be a functor with right adjoint U. Denote the unit of the adjunction by $\eta: \text{id}_D \to U F$, and the counit by $\varepsilon: U F \to \text{id}_C$.

Recall that $U F$ is a monad with unit η and as multiplication, for C from C,

$$\mu_C := U \varepsilon_F: U F U F C \to U F C.$$

Let $\mathcal{K}(U F)$ be the Kleisli category of the monad $U F$. So $\mathcal{K}(U F)$ has the same objects as C, and the morphisms in $\mathcal{K}(U F)$ from C_1 to C_2 are the morphism in C from C_1 to $U F C_2$. Given C from C the identity in $\mathcal{K}(U F)$ on C is η_C.

Let $G: \mathcal{K}(U F) \to C$ be given by, for $f: C_1 \to U F C_2$ from C,

$$G f := \mu_{C_2} \circ U F g \circ f: U F C_1 \to U F C_2.$$

Let $V: C \to \mathcal{K}(U F)$ be given by, for $f: C_1 \to C_2$ from C,

$$V f := \eta_{C_2} \circ f: C_1 \to U F C_2.$$

The following is Exercise VI.5.1 of [6].

Lemma 7. Let $F: C \to D$ be a functor with a right adjoint U.

Then there is a unique functor $L: \mathcal{K}(U F) \to D$ (called the comparison functor) such that $U \circ L = G$ and $L \circ V = F$ (see Notation 6).

Definition 8. Let C and D be categories.

(i) A functor $F: C \to D$ is called Kleislian when it has a right adjoint $U: D \to C$, and the functor $L: \mathcal{K}(U F) \to D$ from Lemma 7 is an isomorphism.

(ii) We say that D is Kleislian over C when there is a Kleislian functor $F: C \to D$.

Theorem 9. Let $F: C \to D$ be a functor with a right adjoint U.

The following are equivalent.

(i) F is Kleislian (see Definition 8).

(ii) F is bijective on objects (i.e. for every object D from D there is a unique object C from C such that $F C = D$).

Corollary 10. The embedding $U^{op}: (C^*_{\text{MIU}})^{op} \to (C^*_{\text{PU}})^{op}$ is Kleislian (see Def. 8).

Proof. By Theorem 9 we must show that U^{op} has a left adjoint and is bijective on objects. Since the embedding $U: C^*_{\text{MIU}} \to C^*_{\text{PU}}$ has a left adjoint $F: C^*_{\text{PU}} \to C^*_{\text{MIU}}$; it follows that $F^{op}: (C^*_{\text{PU}})^{op} \to (C^*_{\text{MIU}})^{op}$ is the right adjoint of U^{op}. Thus U^{op} has a left adjoint. Further, as C^*_{MIU} and C^*_{PU} have the same objects, U is bijective on objects, and so is U^{op}. Hence U^{op} is Kleislian. \square
In summary, the embedding \(U : \mathcal{C}_{\text{MIU}}^* \to \mathcal{C}_{\text{PU}}^* \) has a left adjoint \(F \) and so \(F^{\text{op}} : (\mathcal{C}_{\text{MIU}}^*)^{\text{op}} \to (\mathcal{C}_{\text{PU}}^*)^{\text{op}} \) is right adjoint to \(U^{\text{op}} \), and the unique functor from the Kleisli category \(\mathcal{K}(FU) \) of the monad \(FU \) on \((\mathcal{C}_{\text{MIU}}^*)^{\text{op}} \) to \((\mathcal{C}_{\text{PU}}^*)^{\text{op}} \) that makes the two triangles in the diagram below on the left commute is an isomorphism.

\[
\begin{array}{ccc}
\mathcal{K}(FU) & \cong & (\mathcal{C}_{\text{PU}}^*)^{\text{op}} \\
\downarrow & & \downarrow \\
(\mathcal{C}_{\text{MIU}}^*)^{\text{op}} & \xrightarrow{F^{\text{op}}} & (\mathcal{C}_{\text{PU}}^*)^{\text{op}}
\end{array}
\]

For the category \(\text{Set}_{\text{multi}} \) of multimaps between sets used in the introduction to describe the semantics of non-deterministic programs the situation is the same, see the diagram above to the right.

(The functor \(V \) is the obvious embedding. The right adjoint \(G \) of \(V \) sends a multimap \(f \) from \(X \) to \(Y \) to the function \(Gf : \mathcal{P}(X) \to \mathcal{P}(Y) \) that assigns to a subset \(A \in \mathcal{P}(X) \) the image of \(A \) under \(f \). Note that \(GV = \mathcal{P} \).

3 Discussion

3.1 Variations

Example 11 (Subunital maps). Let \(\mathcal{C}_{\text{PU}}^* \) be the category of \(C^* \)-algebras and the positive linear maps \(f \) between them that are subunital, i.e. \(f(1) \leq 1 \). The morphisms of \(\mathcal{C}_{\text{PU}}^* \) are called PsU-maps.

It is not hard to see that the products in \(\mathcal{C}_{\text{PU}}^* \) are the same as in \(\mathcal{C}_{\text{MIU}}^* \), and that the equaliser in \(\mathcal{C}_{\text{MIU}}^* \) of a pair \(f, g \) of MIU-maps is the equaliser of \(f, g \) in \(\mathcal{C}_{\text{PU}}^* \) as well. Thus the embedding \(U : \mathcal{C}_{\text{MIU}}^* \to \mathcal{C}_{\text{PU}}^* \) preserves limits. Using the same argument as in Theorem 5 but with “PU-map” replaced by “PsU-map” one can show that \(U \) satisfies the Solution Set Condition. Hence \(U \) has a left adjoint by Freyd’s Adjoint Function Theorem, say \(F : \mathcal{C}_{\text{PU}}^* \to \mathcal{C}_{\text{MIU}}^* \).

Since \(\mathcal{C}_{\text{PU}}^* \) has the same objects as \(\mathcal{C}_{\text{MIU}}^* \) (namely the \(C^* \)-algebras) the functor \(U^{\text{op}} : (\mathcal{C}_{\text{MIU}}^*)^{\text{op}} \to (\mathcal{C}_{\text{PU}}^*)^{\text{op}} \) is bijective on objects and thus Kleislian (by Th. \(\ref{thm:kleisli} \)).

Hence \((\mathcal{C}_{\text{PU}}^*)^{\text{op}} \) is Kleislian over \((\mathcal{C}_{\text{MIU}}^*)^{\text{op}} \).

Example 12 (Bounded linear maps). Let \(\mathcal{C}_{\mathcal{P}}^* \) be the category of positive bounded linear maps between \(C^* \)-algebras. We will show that \((\mathcal{C}_{\mathcal{P}}^*)^{\text{op}} \) is not Kleislian over \((\mathcal{C}_{\text{MIU}}^*)^{\text{op}} \). Indeed, if it were then \((\mathcal{C}_{\mathcal{P}}^*)^{\text{op}} \) would be cocomplete, but it is not: there is no \(\omega \)-fold product of \(\mathcal{C} \) in \(\mathcal{C}_{\mathcal{P}}^* \). To see this, suppose that there is a \(\omega \)-fold product \(\mathcal{P} \) in \(\mathcal{C}_{\mathcal{P}}^* \) with projections \(\pi_i : \mathcal{P} \to \mathcal{C} \) for \(i \in \omega \). Since \(\pi_i \) is a bounded linear map for \(i \in \omega \), it has finite operator norm, say \(\| \pi_i \| \). By symmetry, \(\| \pi_i \| = \| \pi_j \| \) for all \(i, j \in \omega \). Write \(K := \| \pi_0 \| = \| \pi_1 \| = \| \pi_2 \| = \cdots \). Define \(f_i : \mathcal{C} \to \mathcal{C} \) by \(f_i(z) = iz \) for all \(z \in \mathcal{C} \) and \(i \in \omega \). Then \(f_i \) is a positive bounded linear map for each \(i \in \omega \). Since \(\mathcal{P} \) is the \(\omega \)-fold product of \(\mathcal{C} \), there is a (unique positive) bounded linear map \(f : \mathcal{C} \to \mathcal{P} \) such that \(\pi_i \circ f = f_i \) for all \(i \in \omega \). For each \(N \in \omega \) we have

\[
N = \| f_N(1) \| \leq \| f_N \| = \| \pi_N \circ f \| \leq \| \pi_N \| \| f \| = K \| f \|.
\]

Thus \(K \| f \| \) is greater than any number, which is absurd.

Example 13 (Completely positive maps). For clarity’s sake we recall what it means for a linear map \(f \) between \(C^* \)-algebras to be completely positive (see [8]). For this we need some notation. Given a \(C^* \)-algebra \(\mathcal{A} \), and \(n \in \mathbb{N} \) let \(M_n(\mathcal{A}) \) denote the set of \(n \times n \)-matrices with entries from \(\mathcal{A} \). We leave it to the
reader to check that $M_n(\mathcal{A})$ is a $*$-algebra with the obvious operations. In fact, it turns out that $M_n(\mathcal{A})$ is a C^*-algebra, but some care must be taken to define the norm on $M_n(\mathcal{A})$ as we will see below. Now, a linear map $f: \mathcal{A} \to B$ is called completely positive when $M_n f$ is positive for each $n \in \mathbb{N}$, where $M_n f: M_n(\mathcal{A}) \to M_n(B)$ is the map obtained by applying f to each entry of a matrix in $M_n(\mathcal{A})$. Of course, “$M_n f$ is positive” only makes sense once we know that $M_n(\mathcal{A})$ and $M_n(B)$ are C^*-algebras.

Let \mathcal{A} be a C^*-algebra. We will put a C^*-norm on $M_n(\mathcal{A})$. Let \mathcal{H} be a Hilbert space and let $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$, be an isometric MIU-map. We get a norm $\| - \|_\pi$ on $M_n(\mathcal{A})$ given by for $A \in M_n(\mathcal{A})$,

$$\| A \|_\pi = \| \xi((M_n \pi)(A)) \|,$$

where $\xi((M_n \pi)(A)): \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ is the bounded linear map represented by the matrix $(M_n \pi)(A)$, and $\| \xi((M_n \pi)(A)) \|$ is the operator norm of $\xi((M_n \pi)(A))$ in $\mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.

It is easy to see that $\| - \|_\pi$ satisfies the C^*-identity, $\| A^* A \|_\pi = \| A \|_\pi^2$ for all $A \in M_n(\mathcal{A})$. It is less obvious that $M_n(\mathcal{A})$ is complete with respect to $\| - \|_\pi$. To see this, first note that $\| A_{ij} \| \leq \| A \|_\pi$ for all i, j. So given a Cauchy sequence A_1, A_2, \ldots in $M_n(\mathcal{A})$ we can form the entrywise limit A, that is, $A_{ij} = \lim_{m \to \infty} A_{ij}$. We leave it to the reader to check that A is the limit of A_1, A_2, \ldots, and thus $M_n(\mathcal{A})$ is complete with respect to $\| - \|_\pi$. Hence $M_n(\mathcal{A})$ is a C^*-algebra with norm $\| - \|_\pi$.

The C^*-norm $\| - \|_\pi$ does not depend on π. Indeed, let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces and let $\pi_1: \mathcal{A} \to \mathcal{B}(\mathcal{H}_1)$ and $\pi_2: \mathcal{A} \to \mathcal{B}(\mathcal{H}_2)$ be isometric MIU-maps; we will show that $\| - \|_{\pi_1} = \| - \|_{\pi_2}$. Recall that the norm $\| - \|_A$ induces an order \leq_A on $M_n(\mathcal{A})$ given by $0 \leq_A A$ if $\| A - \| A \|_\pi \| A \|_\pi \leq \| A \|_\pi$, where $A \in M_n(\mathcal{A})$. Since $\| A \|_{\pi} = \inf \{ \lambda \in [0, \infty]: A^* A \leq \lambda \}$ for all $A \in M_n(\mathcal{A})$, to prove $\| - \|_{\pi_1} = \| - \|_{\pi_2}$ it suffices to show that the orders \leq_{π_1} and \leq_{π_2} coincide. But this is easy when one recalls that $A \in M_n(\mathcal{A})$ is positive iff A is of the form $B^* B$ for some $B \in M_n(\mathcal{A})$.

The completely positive linear maps that preserve the unit are called CPU-maps. Let C_{CPU} be the category of CPU-maps between C^*-algebras. Since $M_n(f)$ is a MIU-map when f is a MIU-map and a MIU-map is positive, we see that any MIU-map is completely positive. Thus C^*_MIU is a subcategory of C^*CPU. We claim that $(C^*CPU)^{op}$ is Kleislian over $(C^*MIU)^{op}$.

Let us show that U preserves limits. To show that U preserves equalisers, let $f, g: \mathcal{A} \to B$ be MIU-maps. Then $\mathcal{E} := \{ x \in \mathcal{A}: f(x) = g(x) \}$ is a C^*-subalgebra of \mathcal{A} and the embedding $e: \mathcal{E} \to \mathcal{A}$ is an isometric MIU-map. Then e is the equaliser of f, g in C^*_MIU; we will show that e is the equaliser of f, g in C^*_CPU. Let \mathcal{E} be a C^*-algebra, and let $c: \mathcal{E} \to \mathcal{A}$ be a CPU-map such that $f \circ c = g \circ c$. Let $d: \mathcal{E} \to \mathcal{E}$ be the restriction of c. It turns out we must prove that d is completely positive. Let $n \in \mathbb{N}$ be given. We must show that $M_n d: M_n(\mathcal{E}) \to M_n(\mathcal{E})$ is positive. Note that $M_n e$ is an injective MIU-map and thus an isometry. So in order to prove that $M_n d$ is positive it suffices to show that $M_n e \circ M_n d = M_n(e \circ d) = M_n c$ is positive, which it is since c is completely positive. Thus e is the equaliser of f, g in C^*_CPU. Hence U preserves equalisers.

To show that U preserves products, let I be a set and for each $i \in I$ let \mathcal{A}_i be a C^*-algebra. We will show that $\bigoplus_{i \in I} \mathcal{A}_i$ is the product of the \mathcal{A}_i in C^*_CPU. Let \mathcal{E} be a C^*-algebra, and for each $i \in I$, let $f_i: \mathcal{E} \to \mathcal{A}_i$ be a CPU-map. As before, let $f: \mathcal{E} \to \bigoplus_{i \in I} \mathcal{A}_i$ be the map given by $f(x)(i) = f_i(x)$ for all $i \in I$ and $x \in \mathcal{E}$. Leaving the details to the reader it turns out that it suffices to show that f is completely positive. Let $n \in \mathbb{N}$ be given. We must prove that $M_n f: M_n(\mathcal{E}) \to M_n(\bigoplus_{i \in I} \mathcal{A}_i)$ is positive. Let $\mathcal{F}: M_n(\bigoplus_{i \in I} \mathcal{A}_i) \to \bigoplus_{i \in I} M_n(\mathcal{A}_i)$ be the unique MIU-map such that $\pi_i \circ \mathcal{F} = M_n(\pi_i)$ for all $i \in I$. Then \mathcal{F} is a MIU-isomorphism and thus to prove that $M_n f$ is positive, it suffices to show that $\mathcal{F} \circ M_n f$ is positive. Let $i \in I$ be given. We must prove that $\pi_i \circ \mathcal{F} \circ M_n f$ is positive. But we have $\pi_i \circ \mathcal{F} \circ M_n f = M_n(\pi_i \circ f) = M_n f_i$, which is positive since f is completely positive. Thus $\bigoplus_{i \in I} \mathcal{A}_i$ is the product of the \mathcal{A}_i in C^*_CPU and hence U preserves limits.
With the same argument as in Theorem 9 the functor \(U \) satisfies the Solution Set Condition and thus \(U \) has a left adjoint. It follows that \(U^{\text{op}}: (C^*_{\text{MIU}})^{\text{op}} \rightarrow (C^*_{\text{CPU}})^{\text{op}} \) is Kleislian.

Example 14 \((W^*\text{-algebras})\). Let \(W_{\text{NMIU}}^* \) be the category of von Neumann algebras (also called \(W^* \)-algebras) and the MIU-maps between them that are normal, i.e., preserve suprema of upwards directed sets of self-adjoint elements. Let \(W_{\text{NPU}}^* \) be the category of von Neumann and normal PU-maps. Note that \(W_{\text{NMIU}}^* \) is a subcategory of \(W_{\text{NPU}}^* \). We will prove that \((W_{\text{NPU}}^*)^{\text{op}} \) is Kleislian over \((W_{\text{NMIU}}^*)^{\text{op}} \).

It suffices to show that \(U \) has a left adjoint. Again we follow the lines of the proof of Theorem 5. Products and equalisers in \(W_{\text{NMIU}}^* \) are the same as in \(C_{\text{MIU}}^* \). It is not hard to see that the embedding \(U: W_{\text{NMIU}}^* \rightarrow W_{\text{NPU}}^* \) preserves limits. To see that \(U \) satisfies the Solution Set Condition we use the same method as before: given a von Neumann algebra \(\mathcal{A} \), find a suitable cardinal \(\kappa \) such that the following is a solution set.

\[
I := \{ (C, c): C \text{ is a von Neumann algebra on a subset of } \kappa \\
\text{ and } c: \mathcal{A} \rightarrow C \text{ is a normal PU-map } \},
\]

Only this time we take \(\kappa = \#(\phi(\mathcal{A})) \) instead of \(\kappa = \#(\mathcal{A}^\mathbb{N}) \). We leave the details to the reader, but it follows from the fact that given a subset \(X \) of a von Neumann algebra \(\mathcal{B} \) the smallest von Neumann subalgebra \(\mathcal{B}' \) that contains \(X \) has cardinality at most \(\#(\phi(\mathcal{B}(X))) \). Indeed, if \(\mathcal{H} \) is a Hilbert space such that \(\mathcal{B} \subseteq \mathcal{B}(\mathcal{H}) \) (perhaps after renaming the elements of \(\mathcal{B} \)), then \(\mathcal{B}' \) is the closure (in the weak operator topology on \(\mathcal{B}(\mathcal{H}) \)) of the smallest \(*\)-subalgebra containing \(X \). Thus any element of \(\mathcal{B}' \) is the limit of a filter — a special type of net, see paragraph 12 of [9] — of \(*\)-algebra terms over \(X \), of which there are no more than \(\#(\phi(\mathcal{B}(X))) \).

By a similar reasoning one sees that the opposite \((W_{\text{NCPU}}^*)^{\text{op}} \) of the category of normal completely positive subunital linear maps between von Neumann algebras is Kleislian over \((W_{\text{NMIU}}^*)^{\text{op}} \). The existence of the adjoint to the inclusion \(W_{\text{NMIU}}^* \rightarrow W_{\text{NCPU}}^* \) is key in our construction of a model of Selinger and Valiron’s quantum lambda calculus by von Neumann algebras, see [11].

3.2 Concrete description

In this note we have shown that the embedding \(U: C_{\text{MIU}}^* \rightarrow C_{\text{CPU}}^* \) has a left adjoint \(F \), but we miss a concrete description of \(F \) for all but the simplest \(C^* \)-algebras \(\mathcal{A} \). What constitutes a “concrete description” is perhaps a matter of taste or occasion, but let us pose that it should at least enable us to describe the Eilenberg–Moore category \(\mathcal{E}/\mathcal{M}(FU) \) of the comonad \(FU \). More concretely, it should settle the following problem.

Problem 15. Writing \(\text{BOUS} \) for the category of positive linear maps that preserve the unit between Banach order unit spaces, determine whether \(\mathcal{E}/\mathcal{M}(FU) \cong \text{BOUS} \).

(An order unit space is an ordered vector space \(V \) over \(\mathbb{R} \) with an element \(1 \), the order unit, such that for all \(v \in V \) there is \(\lambda \in [0, \infty) \) such that \(-\lambda \cdot 1 \leq v \leq \lambda \cdot 1 \). The smallest such \(\lambda \) is denoted by \(\|v\| \). See [4] for more details. If \(v \mapsto \|v\| \) gives a complete norm, \(V \) is called a Banach order unit space.)

3.3 MIU versus PU

A second “problem” is to give a physical description (if there is any) of what it means for a quantum program’s semantics to be a MIU-map (and not just a PU-map). A step in this direction might be to define for a \(C^* \)-algebra \(\mathcal{A} \), a PU-map \(\varphi: \mathcal{A} \rightarrow \mathbb{C} \), and \(a, b \in \mathcal{A} \) the quantity

\[
\text{Cov}_\varphi(a, b) := \varphi(a^* b) - \varphi(a)^* \varphi(b)
\]
and interpret it as the covariance between the observables a and b in state φ of the quantum system \mathcal{A}. Let $T : \mathcal{A} \rightarrow \mathcal{B}$ be a PU-map between C^*-algebras (so perhaps T is the semantics of a quantum program). Then it is not hard to verify that T is a MIU-map if and only if T preserves covariance, that is,

$$\text{Cov}_{\varphi}(Ta, Tb) = \text{Cov}_{\varphi \circ T}(a, b) \quad \text{for all } a, b \in \mathcal{A}.$$

\section{Acknowledgements}

Example2 and Example3 were suggested by Robert Furber. I’m grateful that Jianchao Wu and Sander Uijlen spotted several errors in a previous version of this text. Kenta Cho realised that the results of this paper might be used to construct a model of the quantum lambda calculus. I thank them, and Bart Jacobs, Sam Staton, Wim Veldman, and Bas Westerbaan for their help.

Funding was received from the European Research Council under grant agreement Nº 320571.

\section*{References}

\section*{A Additional Proofs}

\textit{Proof of Lemma}7 Define $L C := FC$ for all objects C of $\mathcal{K}\ell(UF)$ and

$$Lf := \varepsilon_{FC_2} \circ Ff$$

for $f : C_1 \rightarrow UFC_2$ from C. We claim this gives a functor $L : \mathcal{K}\ell(UF) \rightarrow D$.

\textit{(L preserves the identity)} Let C be an object of $\mathcal{K}\ell(UF)$, that is, an object of \mathcal{C}. Then the identity on C in $\mathcal{K}\ell(UF)$ is η_C. We have $L(\eta_C) = \varepsilon_{FC} \circ F\eta_C = \text{id}_{FC}$.
To prove that \(L \) is a functor from \(\mathcal{K} \ell (UF) \) to \(\textbf{D} \).

Let us first prove that \(\mathcal{K} \ell (UF) \) is bijective on objects. Let \(f : C_1 \rightarrow C_2 \) be given, we have

\[
ULf = U(\varepsilon_{\mathcal{C}_2} \circ Ff)
\]

by def. of \(Uf \)

\[
= UF\varepsilon_{\mathcal{C}_2}
\]

by def. of \(\mu_{\mathcal{C}_2} \)

\[
= GFf
\]

by def. of \(Gf \).

Hence \(L \) is a functor from \(\mathcal{K} \ell (UF) \) to \(\textbf{D} \).

Let us prove that \(U \circ L = G \). For \(f : C_1 \rightarrow UFC_2 \) from \(\textbf{C} \) we have

\[
ULf = U(\varepsilon_{\mathcal{C}_2} \circ Ff)
\]

by def. of \(L \)

\[
= U\varepsilon_{\mathcal{C}_2} \circ UFf
\]

by def. of \(\mu_{\mathcal{C}_2} \)

\[
= Gf
\]

by def. of \(Gf \).

Let us prove that \(L \circ V = F \). For \(f : C_1 \rightarrow C_2 \) from \(\textbf{C} \) be given, we have

\[
LVf = L(\eta_{\mathcal{C}_2} \circ f)
\]

by def. of \(V \)

\[
= \varepsilon_{\mathcal{C}_2} \circ F\eta_{\mathcal{C}_2} \circ Ff
\]

by def. of \(L \)

\[
= Ff
\]

by counit–unit eq.

We have proven that there is a functor \(L : \mathcal{K} \ell (UF) \rightarrow \textbf{D} \) such that \(U \circ L = G \) and \(L \circ V = F \). We must still prove that it is as such unique.

Let \(L' : \mathcal{K} \ell (UF) \rightarrow \textbf{D} \) be a functor such that \(U \circ L' = G \) and \(L' \circ V = F \). We must show that \(L = L' \). Let us first prove that \(L' \) and \(L \) agree on objects. Let \(C \) be an object of \(\mathcal{K} \ell (UF) \), i.e., \(C \) is an object of \(\textbf{C} \). Since \(L' \circ V = F \) and \(VC = C \) we have \(L'C = L'VC = FC = LC \). Now, let \(f : C_1 \rightarrow UFC_2 \) from \(\textbf{C} \) be given (so \(f \) is a morphism in \(\mathcal{K} \ell (UF) \) from \(C_1 \) to \(C_2 \)). We must show that \(L'f = LU \varepsilon_{\mathcal{C}_2} \circ Ff \). Note that since \(F \) is the left adjoint of \(U \) there is a unique morphism \(\overline{f} : FC_1 \rightarrow FC_2 \) in \(\textbf{D} \) such that \(UF \circ \eta_{\mathcal{C}_1} = f \). To prove that \(L'f = Lf \), we show that both \(LF \) and \(L'f \) have this property. We have

\[
ULf \circ \eta_{\mathcal{C}_1} = GF \circ \eta_{\mathcal{C}_1}
\]

as \(U \circ L' = G \) by assump.

\[
= \mu_{\mathcal{C}_2} \circ UFf \circ \eta_{\mathcal{C}_1}
\]

by def. of \(G \)

\[
= \mu_{\mathcal{C}_2} \circ \eta_{UFC_2} \circ f
\]

by nat. of \(\eta \)

\[
= f
\]

as \(UF \) is a monad.

By a similar argument we get \(ULf \circ \eta_{\mathcal{C}_1} = f \). Hence \(LF = L'f \).

\(\square \)

Proof of Theorem 9. We use the symbols from Notation 5.

(i)⇒(ii) Suppose that \(L \) is an isomorphism. We must prove that \(F \) is bijective on objects. Note that \(F = L \circ V \), so it suffices to show that both \(L \) and \(V \) are bijective on objects. Clearly, \(L \) is bijective on objects as \(L \) is an isomorphism, and \(V : \textbf{C} \rightarrow \mathcal{K} \ell (UF) \) is bijective on objects since the objects of \(\mathcal{K} \ell (UF) \) are those of \(\textbf{C} \) and \(VC = C \) for all \(C \) from \(\textbf{C} \).
[1 (ii)] Suppose that (ii) holds. We prove that L is an isomorphism by giving its inverse. Let D be an object from \mathbf{D}. Note that since F is bijective on objects there is a unique object C from \mathbf{C} such that $FD = C$. Define $KC := D$.

Let $g: D_1 \rightarrow D_2$ from \mathbf{D} be given. Note that by definition of K we have:

$$KD_1 \xrightarrow{\eta_{KD_1}} UFKD_1 \xrightarrow{Ug} UD_1 \rightarrow UD_2 \rightarrow UFKD_2$$

Now, define $Kg: KD_1 \rightarrow UFKD_2$ in \mathbf{D} by $Kg := Ug \circ \eta_{KD_1}$.

(\textit{K preserves the identity}) For an object D of \mathbf{D} we have

$$\text{Kid}_D = U \text{id}_D \circ \eta_{KD} = \eta_{KD},$$

and η_{KD} is the identity on KD in $\mathcal{K}(\mathcal{U}F)$.

(\textit{K preserves composition}) Let $f: D_1 \rightarrow D_2$ and $g: D_2 \rightarrow D_3$ from \mathbf{D} be given. We must prove that $K(g \circ f) = K(g) \circ K(f)$. We have

$$K(g) \circ K(f) = \mu_{KD_3} \circ UFKg \circ Kf$$

by def. of \circ

$$= \mu_{KD_3} \circ UFUg \circ UF \eta_{KD_2} \circ Uf \circ \eta_{KD_1}$$

by def. of K

$$= Ug \circ U \varepsilon_{D_2} \circ UF \eta_{KD_2} \circ Uf \circ \eta_{KD_1}$$

by def. of μ

$$= Ug \circ Uf \circ \eta_{KD_1}$$

by nat. of ε

$$= K\cdot g \circ f$$

by def of K.

Hence K is a functor from \mathbf{D} to $\mathcal{K}(\mathcal{U}F)$. We will show that K is the inverse of L. For this we must prove that $K \circ L = \text{id}_D$ and $L \circ K = \text{id}_{\mathcal{K}(\mathcal{U}F)}$.

For a morphism $g: D_1 \rightarrow D_2$ from \mathbf{D}, we have

$$LKg = L(Ug \circ \eta_{KD_1})$$

by def. of L

$$= \varepsilon_{FKD_2} \circ UFg \circ F \eta_{KD_1}$$

by def. of L

$$= g \circ \varepsilon_{FKD_1} \circ F \eta_{KD_1}$$

by nat. of ε

$$= g$$

by counit–unit eq.

For a morphism $f: C_1 \rightarrow UFC_2$ in \mathbf{C} we have

$$KLf = K(\varepsilon_{FC_2} \circ Ff)$$

by def. of L

$$KLfd = U \varepsilon_{FC_2} \circ UFf \circ \eta_{KFC_1}$$

by def. of K

$$= U \varepsilon_{FC_2} \circ \eta_{UFC_2} \circ f$$

by nat. of η

$$= f$$

by counit–unit eq.

Hence K is the inverse of L, so L is an isomorphism.