The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/173084

Please be advised that this information was generated on 2019-09-07 and may be subject to change.
Article 25fa pilot End User Agreement

This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet) with explicit consent by the author. Dutch law entitles the maker of a short scientific work funded either wholly or partially by Dutch public funds to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) ‘Article 25fa implementation’ pilot project. In this pilot research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and/or copyrights owner(s) of this work. Any use of the publication other than authorised under this licence or copyright law is prohibited.

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please contact the Library through email: copyright@ubn.ru.nl, or send a letter to:

University Library
Radboud University
Copyright Information Point
PO Box 9100
6500 HA Nijmegen

You will be contacted as soon as possible.

Emina E. Torlakovic, MD, PhD,*†† Carol C. Cheung, MD, PhD,§§ Corrado D’Arrigo, MB, ChB, PhD, FRCPath,¶¶ Manfred Dietel, MD, PhD,** Glenn D. Francis, MBBS, FRCPA, MBA, FFSc (RCPA).†††‡‡‡‡ C. Blake Gilks, MD,¶¶¶ Jacqueline A. Hall, PhD,¶¶¶
Jason L. Hornick, MD, PhD,### Merdol Ibrahim, PhD,#### Antonio Marchetti, MD, PhD,##### Keith Miller, FIBMS,####*, J. Han van Krieken, MD, PhD,##### Soren Nielsen, BMS,$$$,
and the development of reference standards and best practices for analytical validation.18

Immunohistochemistry (IHC) is an in situ immunoassay that detects targeted biomarkers in tissue samples. The role of IHC in clinical practice has become increasingly diverse and the advent of companion diagnostic testing to support precision medicine has only accelerated that trend.1,12,19–22 Similarly, its role in research has become increasingly important in the support of basic research and discovery and its translation to clinical practice through preclinical and clinical trials. IHC has many characteristics that make this assay both widely used and highly appreciated:

- its in situ nature enables detection of protein expression/distribution in different tissues, cell populations and in cell compartments;
- it can be highly sensitive and specific;
- it can be multiplexed;
- it is inexpensive, fast, and can be automated.

The most important challenges of the method are:

- it does not generate any results without human readout;
- its results are mostly descriptive;
- preanalytical conditions, essential to the outcomes of the testing, can be difficult to control or standardize in the clinical setting, where neither ischemic time nor conditions of fixation can necessarily be the same at all times.

This paper builds upon recently issued guidelines for validation of antibodies and clinical IHC assays, supports recommendations for the research use of biomarkers in clinical trials of anticancer drugs and offers a novel approach to our understanding of validation and verification for clinical applications of IHC. Although this paper describes concepts that are focused on IHC methodology, the principles are also immediately applicable to other in situ, cell-based assays.

TERMINOLOGY AND DEFINITIONS

Proper terminology is essential for defining validation in the context of IHC testing and describing how validation needs to be planned and executed. The most important definitions and clarifications relevant to IHC validation are:

1. Definition of “validation” for IHC testing.
2. Definition of “verification” for IHC testing.
3. Characteristics of IHC validation.
5. Who initiates and who performs the validation?
6. The role of external quality assurance (EQA) in validation.
7. The role of comparison with non-IHC methodologies for IHC validation.
8. Planning of Technical Validation of IHC testing

Definition of Validation of IHC Testing

Validation is defined as “confirmation, through the provision of objective evidence, that requirements for a specific intended use or application have been fulfilled” (ISO 9000).23 “Intended use” or “intended application” are synonymous with “purpose.”

Provision of “objective evidence” is fulfilled by collecting evidence that the relevant test performance characteristics (TPCs) have been identified and assessed. Validation provides a “high degree of assurance” that these needs will be met (adapted from the Guideline on General Principles of Process Validation).24–26

- **Purpose:** the first step in validation is establishing the purpose of the IHC test in question. The purpose is critically informed by the needs of the user. Consideration must also be given to whether or not the proposed IHC test is the appropriate one for this purpose. The parameters used in constructing the validation of an IHC test will determine whether that test is appropriate for its purpose (fit-for-purpose). Certain IHC tests are declared fit-for-purpose by regulatory agencies (The US FDA, among many others—see table 3 in part 1 of the Evolution series) after considering various types of evidence in the approval process.27–30 For laboratory developed tests (LDTs), evidence of whether a given IHC test is fit-for-purpose may be found in published literature in the form of diagnostic validation of specific marker(s) or clinical validation of a biomarker in clinical trials,31,32 as both reasonably require the prerequisite development and technical validation of an assay using the antibody intended for that use.

- **Objective evidence:** validation of testing requires planning for how to create objective evidence that a test will reproducibly meet the needs of the user. In clinical IHC testing, similar to any other laboratory test, this evidence is obtained from evaluation and documentation of TPCs.7,33,34 For TPCs relevant to IHC testing, see part 2 of the Evolution series.

- **Level of assurance:** the level of assurance that the needs of the user will be met is generally defined as “high degree of assurance” and relates to test accuracy. In practical terms, it refers to EQA accuracy and/or non-IHC methodology (NIM) accuracy (see part 2 of the Evolution series for definitions) and can be statistically deduced from the performance of the IHC assay against the known comparator. It is on this basis that the CAP Quality Center recommended the use of at least 20 cases with known positive or negative results in a technical validation set for a given type 1-IHC assay (assuming specific validation guidelines do not already exist), arguing that a sufficiently “high degree of assurance” (based on 95% confidence intervals) are achieved with agreements of \(\geq 90\% \) between actual and expected values.35 The level of assurance (or accuracy) for a particular IHC test, has in some instances already been specifically addressed by professional organizations. Examples of the latter include the agreement of \(\geq 95\% \) with alternative validated method or same validated method for HER2.26

Definition of Verification of IHC Testing

Verification is defined as “confirmation, through the provision of objective evidence, that specified requirements have been fulfilled” (ISO 9000).23
Verification requires confirmation that predetermined specifications are consistently met, meaning that the test, an analyte or other IHC test component performs as expected from a technical perspective or that the laboratory is performing an already established test correctly. “Established” refers to those tests that were previously either diagnostically and/or clinically validated for a specific purpose. In other words, verification confirms that the reagents supplied and the protocols used yield the appropriate analytical sensitivity, specificity, and reproducibility. In the “fit-for-purpose” framework, verification of an IHC assay is tier 1 technical validation (see below tiers of validation).

All IHC kits cleared or approved by the FDA and other regulatory agencies need to be verified before being put into clinical use, because while the supplier can provide proof that the kit is designed and performing well if properly used, the supplier cannot ensure that the laboratory performing the test will actually properly use the kit. Therefore, the manufacturer is responsible for validation (manufacturer provides evidence that the test they are selling is appropriate test for the condition to be demonstrated), but not for verification. Verification or demonstration that a validated test is achieving the desired analytical sensitivity, specificity, and reproducibility is the responsibility of the laboratory performing the test. If the manufacturer/supplier provides exact instructions and tools for verification, they should be followed.

Characteristics of Validation

Validation can only be properly designed for any given IHC assay after all characteristics of validation are considered in the planning stage. There are 4 characteristics of validation: sphere, scope, type, and tier.

- Spheres of validation: there are 3 spheres of validation: technical, diagnostic, and clinical. Clinical IHC laboratories typically perform only technical validation. Therefore, the rest of the article will refer to technical validation unless otherwise stated. In principal, “technical validation” is required for all IHC tests (whether they are applied to investigational or clinical questions) and it is the IHC laboratory that performs technical validation of these protocols. Although clinical IHC laboratories generally do not perform “diagnostic validation” or “clinical validation” of IHC tests, evidence for diagnostic validation or clinical validation is required for all tests that will be performed in the clinical IHC laboratory. Such evidence is usually available in peer-reviewed published literature. Neither CLIA’88 nor CAP requires clinical or diagnostic validation to be done by the IHC laboratory before clinical implementation of an IHC assay. Therefore, reliance on the evidence of diagnostic and clinical validations in published peer-reviewed literature is appropriate.

- Scope of technical validation: scope of technical validation (or validation of the analytical phase of IHC testing) includes initial validation and (when appropriate) revalidation. Initial validation is required when a test is first introduced as well as when a new purpose is articulated for an already validated test. Revalidation is required when: (1) there is a change in a critical test component (primary revalidation; for the definition of “critical test components” see below); (2) when there is a change in a test performance characteristic that occurred without any change to critical test components (secondary revalidation); and (3) when there is a change in noncritical test components only (tertiary revalidation). This is summarized in Table 1. One of the most common reasons for primary revalidation is a change in the primary antibody. For example, for a CD3 IHC test that has been validated for detection of T-cell differentiation with a monoclonal antibody that is no longer commercially available, the introduction of a new monoclonal or polyclonal anti-CD3 antibody requires primary revalidation because the test is now functionally an entirely new assay, irrespective of its commercial name. When the supplier has changed, but the primary antibody is of the same clone, only tertiary revalidation is required. So that these changes are transparent to the end user, both the laboratory test method and the pathology reports that detail the readout and interpretation of that test, different clones and different polyclonal antibodies should be referred to by both their clone name (or generic name for a the polyclonal antibody), and by their molecular target. Although using gene names may appear to be universally acceptable, antibodies are developed for the proteins and, on occasion, gene name may be less informative (eg, antibodies for phosphorylated proteins or mutated gene products).36-38 Epitopes detected by different antibodies may have different performance characteristics related to preanalytical parameters. Some CD3 epitopes may be resistant to prolonged cold ischemic times, while others may degrade very quickly after devitalization. Some epitopes significantly change during fixation and embedding and may not be recovered to the same degree as others with a given antigen retrieval protocol.39-42 In principle, IHC assays based on different antibodies against a common target (such as CD3) are different assays that must be validated separately before their introduction to clinical testing.35 Recognition that there is a need for primary revalidation is particularly important for type 2-IHC tests [eg, estrogen receptor (ER) for breast cancer, anaplastic lymphoma kinase for lung cancer, etc]. If a new clone for ER for breast cancer or anaplastic lymphoma kinase for lung cancer is introduced for clinical use in the laboratory that is already using some other ER or anaplastic lymphoma kinase clone, this is another example that represents a change in a critical test component and thus requires primary revalidation. In contrast, secondary revalidation is required when there is observed change in any of the relevant test performance characteristics; these may occur either due to reproducible change in results with on-slide controls or suboptimal results in proficiency testing (PT) (the latter only if there is evidence of previous success in PT by using the same protocol).
Critical Components of the IHC Test

IHC is a complex process, the results of which are influenced by multiple parameters in the preanalytical, analytical, and postanalytical test phases. Potential critical components in all of these steps must be identified and defined based on published evidence along with cumulative clinical and EQA experience. Defining the critical components of clinical laboratory tests is important because if changes are made to any critical component of an already validated IHC test, then primary revalidation of the IHC test needs to be performed. This is why “in-house” changes to an FDA (or other regulatory agency) cleared or approved IHC test automatically transform it into a LDT and, as such, the test no longer carries the imprimatur of the regulatory agency. Similarly, introducing changes to an already validated LDT requires consideration regarding the need for possible revalidation.

(a) Preanalytical phase: While the preanalytical phase is difficult to control, it is reasonably well-defined and its importance is generally agreed upon. There are numerous components in the preanalytical phase. Of these, a subset can be identified for which changes would automatically trigger the need for primary revalidation of the IHC protocol. The critical components of the preanalytical phase include: (1) fixative type, (2) decalcifying reagent type, and (3) instrumentation for tissue processing. Any change in other preanalytical components (ie, noncritical components), while it may not automatically trigger the need for primary revalidation, may still ultimately require secondary or tertiary revalidation if the noncritical component change leads to unacceptable alterations in test performance characteristics.

(b) Analytical phase: Because of intricacies related to its in situ, cell-based, descriptive nature, as well as the dual role of the pathologist (readout and interpretation), the components of the analytical phase of the IHC test are complex and are not immediately self-evident. The analytical phase for formalin-fixed/paraffin-embedded tissues consists of four major components: (1) antigen retrieval method, (2) primary antibody, (3) detection system, and (4) readout (Fig. 3). Although there are other components of the analytical phase, it is any of these four critical components that will necessitate primary revalidation of the IHC protocol if they are changed. When critical components (1), (2), and (3) are combined, they are synonymous with “IHC protocol.” The addition of component 4 (readout) completes the analytical phase (see part 1 from Evolution series) (Fig. 2). Although ultimately the IHC slides will be sent to pathologists for readout and interpretation, the design of the readout validation is under the purview of the IHC laboratory medical director who ensures that readout methods are defined and align with the purpose of the test. Any change in other analytical components (ie, noncritical components), while it may not automatically trigger the need for primary revalidation, may still ultimately require secondary or tertiary revalidation if the noncritical component change leads to unacceptable alterations in monitored test performance characteristics.

Table 1. Scope of Technical Validation

<table>
<thead>
<tr>
<th>Scope</th>
<th>Trigger</th>
<th>Tiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Revalidation</td>
<td>New test or new purpose</td>
<td>Tier 2 or 3</td>
</tr>
<tr>
<td>Primary</td>
<td>Change in critical test components (± change in TPCs)</td>
<td>Tier 2 or 3</td>
</tr>
<tr>
<td>Secondary</td>
<td>Change in TPCs, but no change in critical test components</td>
<td>Tier 1, Tier 2 for type 1-IHC, Tier 2 for type 2-IHC</td>
</tr>
<tr>
<td>Tertiary</td>
<td>Change in noncritical test components only (eg, changes in primary Ab dilution)</td>
<td>Tier 1</td>
</tr>
</tbody>
</table>

Ab indicates antibody; IHC, immunohistochemistry; TPCs, test performance characteristics.

- Type of technical validation: when the term “validation” is used, it is essential to be specific about what is being validated as this defines what type of technical validation is being performed. In IHC, validation may refer to: generic validation of primary antibody, validation of the same clone from a different supplier, lot-to-lot primary antibody validation, validation of buffers, diluents, visualization system, and other reagents, validation of equipment, validation of preanalytical conditions (fixative, fixation time, decalcifying reagents, decalcification time, etc.), validation of controls, technical validation of IHC protocols of biomarkers, and validation of IHC readout.

- Tiers of technical validation: tiers of technical validation relate to TPCs included in validation. Technical validation spans from tier 1 to tier 3. Tier 3 validation (full validation) consists of determining analytical sensitivity and specificity, analytical reproducibility, demonstration of reportable range, determining desired (predetermined) high level of accuracy within reportable range, determining protocol preanalytical robustness, and determining readout accuracy and precision where applicable. Figure 1 summarizes all 3 tiers of technical validation of the IHC protocol. Validation of the entire analytical phase is completed by inclusion of validation of the readout (Fig. 2). The tissue tools required for different tiers of validation are described in part 4 of the Evolution series. Ideally, all IHC tests performed by an accredited clinical laboratory for patient care should have evidence of tier 3 validation; however, this is not always possible. Evidence gathered in tier 2 validation is essential for clinical applications of all IHC tests and applies to initial validation of IHC LDTs.
Postanalytical phase: The postanalytical phase includes interpretation of the readout by the end user for a particular intended use. This is where the “use” of the test results should align with the “purpose” for which the test was validated. If the use of the test results is not linked to the purpose for which the test was originally validated, then initial validation needs to be performed to determine whether the current IHC protocol can fulfill the new purpose (see part 1 of the Evolution series), or whether a new IHC protocol needs to be developed and validated for the new purpose. The use may be altered by either pathologists (for type 1-IHC tests) or by the treating physician (for type 2-IHC tests). In such situations, by changing the use of the test, the end user is effectively relying on an unvalidated IHC testing the same way that a treating physician is using an “unvalidated” clinical management plan by administering a medical therapy “off-label.” It is important to recognize that such a decision with respect to change of “use” of an IHC test may be unknown to the laboratory and thus, the responsibility to initiate validation lies with the end user (pathologist or oncologist).

Who Initiates and Who Performs the Validation?

The responsibility for the validation of various components of the IHC test lies with the party that controls those components. Responsibility for IHC test
It is clear from the above that the validation of IHC testing requires a team approach and that the IHC laboratory can only be responsible for validation of the components of the test over which it has direct control, though it must be prepared to respond appropriately to internal evidence that intended use and readout parameters have been or are being modified in local practice.

The Role of EQA in IHC Validation

EQA has an important role in IHC validation because it may provide important information about various IHC TPCs. It can provide an evidentiary basis for IHC test analytical sensitivity and specificity (ie, whether the test was properly calibrated), IHC test accuracy (ie, agreement of results with designated standard), and accordance (ie, the probability that 2 identical test materials analyzed by the same laboratory under standard repeatability conditions will both yield the same result; for example, such that both are found to be positive or both are found to be negative), concordance (ie, the probability that 2 identical test materials sent to different laboratories will both yield the same result).51–54 It can be performed by participation in PT or by interlaboratory testing as appropriate.55,56 EQA programs often use a small number of tissue samples that are immunohistochemistry critical assay performance controls (ICAPCs) or their equivalent for PT. The results of such PT challenges usually provide good evidence of analytical sensitivity and specificity.15,57–59 Indeed, well-controlled PT exercises can generate a high level of evidence as a basis for defining TPCs. EQA programs or interlaboratory testing that include TMA samples with the sufficient number and proper selection of tissue samples can provide evidence of test accuracy (EQA accuracy).50,61 When EQA samples include tissues that have been subjected to various known preanalytical conditions, they provide evidence of preanalytical IHC protocol robustness. Some EQA programs also provide clinical validation of IHC testing. This is rare, but it has been accomplished by the German EQA program (QuILP—Quality in Pathology) for HER2 in gastric cancer as the PT sample design had been developed by the ToGA Study – A Study of Herceptin (Trastuzumab) in Combination With Chemotherapy Compared With Chemotherapy Alone in Patients With HER2-Positive Advanced Gastric Cancer.62

The Role of Comparison With Non-IHC Methods for IHC Validation

For some IHC tests, comparison with results of non-IHC methodologies can provide evidence of IHC protocol accuracy (NIM accuracy; see part 2 of the Evolution series). The alternative methodology needs to be assessed as to whether it has been already validated for the same intended clinical application and whether there is evidence that it can be considered as the “designated true value.” The alternative methodology should not be used for IHC validation if it has not been properly validated for the same purpose. The comparison can be performed intralaboratory, interlaboratory, or by participation in PT. If the laboratory can internally evaluate...
Planning of Technical Validation for IHC Testing

Validation of IHC testing requires a formal validation plan, which needs to be completed before operational implementation. At the planning stage, all aspects of technical validation need to be considered to determine what scope, type, and tier of validation need to be executed. In other words, whether it is an initial validation or revalidation that is required, what is being validated, and which TPCs will be evaluated for the validation need to be formulated. Furthermore, a “fit-for-purpose” approach requires that any test be validated for specific intended use with an identified end user, as well as identified needs of the end user. This planning and preparation also involves the creation of proper quality tools (as a component of the laboratory’s quality management plan) that will be needed not only for test development, but also for on-going quality monitoring (see part 4 of the Evolution series). Table 2 illustrates steps of the planning stage for initial technical validation. A similar approach may also be feasible for revalidation.

CONCLUSIONS

- “Validation” provides objective evidence at a high level of assurance that a test is fit-for-purpose.
- “Validation” should always be used with a qualifier describing the sphere, scope, type, and tier of validation.
- “Verification” is synonymous with tier 1 technical validation.
- “Revalidation” should always be used with a qualifier describing whether it is primary, secondary, or tertiary and what trigger prompted the reevaluation.

TABLE 2. Planning of Initial Technical Validation of IHC Testing

<table>
<thead>
<tr>
<th>Steps That Need Documentation</th>
<th>Illustrative Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify/designate the name of the test</td>
<td>Melan-A</td>
</tr>
<tr>
<td>2. Identify the purpose of the IHC test*</td>
<td>Detection of melanocytic differentiation Pathologist</td>
</tr>
<tr>
<td>3. Identify end user</td>
<td>The need for a highly sensitive and specific marker of melanocytic differentiation at the diagnostic sensitivity and specificity demonstrated in published literature</td>
</tr>
<tr>
<td>4. Identify needs of the end user</td>
<td>Yes (properly diagnostically validated in published literature)</td>
</tr>
<tr>
<td>5. Identify if the marker has been diagnostically and/or clinically validated†</td>
<td>Yes (properly clinically validated in published literature)</td>
</tr>
<tr>
<td>6. Identify if there is relevant peer-reviewed published evidence on technical validation</td>
<td>No (details of technical validation not available)</td>
</tr>
<tr>
<td>7. Select publication(s) that will guide protocol development†</td>
<td>List relevant PubMed or other peer-reviewed publications</td>
</tr>
<tr>
<td>8. Identify if previously validated primary Ab is available commercially‡</td>
<td>Yes (MART-1) or other as relevant</td>
</tr>
<tr>
<td>9. Identify if tissues required for test development and controls are available</td>
<td>Search revealed that adrenal gland, kidney, strongly positive malignant melanoma, weakly positive melanoma, and ovarian granulosa cell tumor are useful (eg, www.nordiqc.org)</td>
</tr>
<tr>
<td>10. Identify what is required for the new test readout*</td>
<td>Qualitative assessment by pathologist</td>
</tr>
<tr>
<td>11. Identify appropriate EQA program or external laboratory and/or non-IHC method for tier 2 validation</td>
<td>EQA program that provides Melan-A challenges or any laboratory with demonstrated success in EQA testing for Melan-A (laboratories with expertise in melanoma diagnostics are preferred); could be used for EQA accuracy</td>
</tr>
<tr>
<td>12. Develop tools for test development and on-going quality monitoring</td>
<td>See part 4 of Evolution Series Develop iCAPCs, Index and Accuracy TMA for type 1-IHC</td>
</tr>
</tbody>
</table>

*It is assumed that the purpose is clinically justifiable.
†If the marker has not been diagnostically and/or clinically validated, the laboratory cannot use the test or the laboratory needs to perform full diagnostic and/or clinical validation as appropriate; IHC medical director or pathologist(s) that request new test development should provide relevant publications.
‡If primary antibody is not commercially available or tissues are not available, it may not be possible to develop proper test.
Ab indicates antibody; ASCO/CAP, American Society of Clinical Oncology/College of American Pathologists; ER, estrogen receptor; EQA, external quality assurance; IHC, immunohistochemistry; iCAPCs, immunohistochemistry critical assay performance controls; PT, proficiency testing.
The IHC laboratory is responsible for technical validation of all IHC tests that are performed in the IHC laboratory and must be prepared to produce objective evidence of test performance (ie, by evaluating relevant test performance characteristics) at the relevant levels of assurance (as suggested by professional organizations or accrediting bodies).

Planning of technical validation starts with the consideration of what scope, type, and tier of validation need to be executed.

Use the same primary antibodies that have previously been found to be “fit-for-purpose” and introduce/develop and technically validate IHC protocols that can reasonably reproduce results appropriate to previously published or disseminated diagnostic or clinical validation studies. If an IHC test has not been properly diagnostically or clinically validated in published literature and it will be introduced for diagnostic or other clinical purposes, the IHC laboratory needs to perform a diagnostic and/or clinical validation as appropriate. For most clinical laboratories this is not possible, so these tests should not be performed.

The tests that are cleared or approved by the FDA or other regulatory bodies were already validated for a specific purpose and therefore only need verification by the end-user laboratory (tier 1 validation) if a different method of verification is not specifically instructed by the manufacturer or by professional practice guidelines.

Comparison with IHC results from PT and/or inter-laboratory collaboration as well as non-IHC method results can be used to determine IHC protocol accuracy and robustness, which are important for tier 2 validation.

REFERENCES

