The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/17259

Please be advised that this information was generated on 2019-02-27 and may be subject to change.
SYSTEMS OF ILLATIVE COMBINATORY LOGIC
COMPLETE FOR FIRST-ORDER PROPOSITIONAL
AND PREDICATE CALCULUS

HENK BARENDREGT, MARTIN BUNDE, AND WIL DEKKERS

Abstract. Illative combinatory logic consists of the theory of combinators or lambda calculus extended by extra constants (and corresponding axioms and rules) intended to capture inference. The paper considers systems of illative combinatory logic that are sound for first-order propositional and predicate calculus. The interpretation from ordinary logic into the illative systems can be done in two ways: following the propositions-as-types paradigm, in which derivations become combinators or, in a more direct way, in which derivations are not translated. Both translations are closely related in a canonical way. The two direct translations turn out to be complete. The paper fulfills the program of Church [1932], [1933] and Curry [1930] to base logic on a consistent system of \lambda-terms or combinators. Hitherto this program had failed because systems of ICL were either too weak (to provide a sound interpretation) or too strong (sometimes even inconsistent).

§1. Introduction. The theory of combinators (Curry et al. [1958], [1972]) and the lambda calculus (Church [1941], Barendregt [1984]) are theories that successfully analyze the notion of effective computability. However, the original founders of these subjects, Church and Curry, also had aimed to provide a basic for logic (and thereby mathematics). Formal systems intended to achieve this are given in Church [1932], [1933] and Curry [1930], [1931], [1932], [1933], [1934a], [1934b], [1935]. Unfortunately, it was shown in Kleene and Rosser [1935] that these systems are inconsistent. In Curry [1942c] the inconsistency of Curry [1934] was simplified. This derivation, now known as “Curry’s paradox”, is akin to the Russell paradox but requires no properties of negation. It can be written in only a few lines.

Curry and his school then started a program of defining several systems of illative combinatory logic (ICL) of varying strength, see Curry [1942a]. The goal was to “find stronger and stronger systems which are consistent and weaker and weaker systems which are inconsistent but strong enough to interpret logic, hoping to end up with a consistent system in which logic can be interpreted” (quotation from Curry and Feys [1958; §§83, p. 276]).

Following this methodology, Bunder [1969], [1973], [1974] introduced restrictions on the rules of the illative constants so that first-order propositional and
predicate calculus can be interpreted in the resulting systems. Bunder [1983a] also allows much of set theory. In all these systems the usual derivation of Curry’s paradox is blocked, but the consistency of these systems remains an open question. That the question is not academic was shown in Bunder [1976] and [1983a], where related illative systems were proved to be inconsistent.

In the rest of this section we give a short introduction to illative combinatory logic by showing the early inconsistent system of Curry [1934]. In §2 we introduce systems slightly weaker than the ones in Bunder [1973], [1974] but strong enough to interpret logic. We derive roughly the following soundness result

\[A \vdash L A \Rightarrow [A] \vdash C [A], \]

where L represents propositional or predicate logic and [—] one of two possible translations of each system into an ICL system C (there will then be 4 such C’s). Of the interpretations one is the propositions-as-types interpretation due to Curry, Howard, and de Bruijn; the other is a more direct interpretation. Finally, in §2 we show that the two interpretations are canonically related.

In §3 we derive completeness results for 2 of the 4 systems of ICL. These, again roughly, take the following form

\[[A] \vdash C [A] \Rightarrow A \vdash L A. \]

This completeness result implies the consistency of the ICL’s involved.

Illative combinatory logic. Now we will present a simple system I of illative combinatory logic in order to explain the general idea. The system is strong enough to represent the \{ \Rightarrow, \forall \} fragment of first-order intuitionistic predicate calculus.

The intuition behind the system I is as follows. Terms are type-free lambda terms extended by some extra constants. A term \(X \) is considered to have an assertive value. A term \(X Z \) can be seen as a statement saying “\(Z \) is of type \(X \)” or “\(Z \in X \)” or “\(Z \) satisfies the predicate \(X \)”. The term “\(\lambda \xi.X \)” corresponds to the class \(\{ \xi \mid X \} \).

There is a term \(\Xi \) such that the statement ‘\(\Xi X Y \)’ is interpreted as “\(X Y \)” or “\(\forall X \in X \) \(YX \)”. Using this \(\Xi \) one can define implication and quantification.

1.1. Definition. The system I is defined as follows.

(i) \(T \), the set of terms of I, is given by the following abstract grammar:

\[T = V | \Xi | TT | \lambda V.T. \]

Here V is the syntactical category of variables and \(\Xi \) is a constant. We also write

\[T = I(A(\Xi)), \]

since T is obtained from the set A of type-free lambda terms by adding the constant \(\Xi \).

(ii) On T the usual notion of \(\beta \eta \)-reduction is given by the contraction rules

\[(\lambda x.M)N \rightarrow M[x := N], \]

\[\lambda x.Mx \rightarrow M \quad \text{if} \quad x \notin \text{FV}(M). \]

Here FV(M) is the set of free variables of M. The resulting (more step) \(\beta \eta \)-reduction and \(\beta \eta \)-convertibility relation are denoted by \(\rightarrow \) and \(\equiv \). Syntactic equality is denoted by \(\equiv \).
(iii) A statement of \mathcal{J} is just an element of T. A basis is a set of statements.

(iv) Let Γ be a basis, and let X be a statement; then X is derivable from Γ, notation $\Gamma \vdash X$, if $\Gamma \vdash X$ can be produced by the natural deduction system in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \in \Gamma \Rightarrow \Gamma \vdash X$;</td>
</tr>
<tr>
<td>$\Gamma \vdash X, X = Y \Rightarrow \Gamma \vdash Y$;</td>
</tr>
<tr>
<td>$\Gamma \vdash \Xi X Y, \Gamma \vdash X Z \Rightarrow \Gamma \vdash Y Z$;</td>
</tr>
<tr>
<td>$\Gamma, X x \vdash Y x, x \notin \text{FV}(\Gamma, X, Y) \Rightarrow \Gamma \vdash \Xi X Y$.</td>
</tr>
</tbody>
</table>

In the last rule x is some variable. The system is based on $\beta\eta$-conversion. Therefore, this last rule could be replaced by

$$\Gamma, X \vdash Y, x \notin \text{FV}(\Gamma) \Rightarrow \Gamma \vdash \Xi (\lambda x. X)(\lambda x. Y).$$

1.2. DEFINITION. For $X, Y \in T$ write

(i) $X \supset Y \equiv \Xi (K X)(K Y)$,

(ii) $\forall u \in X, Y \equiv \Xi X(\lambda u. Y)$.

1.3. PROPOSITION. The following holds for the system \mathcal{J}.

(i) $\Gamma \vdash X \supset Y, \Gamma \vdash X \Rightarrow \Gamma \vdash Y$.

(ii) $\Gamma, X \vdash Y \Rightarrow \Gamma \vdash X \supset Y$.

(iii) $\Gamma \vdash \forall u \in X, Y, \Gamma \vdash X t \Rightarrow \Gamma \vdash Y[u := t]$.

(iv) $\Gamma, X u \vdash Y, u \notin \text{FV}(\Gamma, X) \Rightarrow \Gamma \vdash \forall u \in X, Y$.

Now it is possible to interpret the $\{\supset, \forall\}$ fragment of first-order intuitionistic predicate logic into \mathcal{J}. For example, a sentence like

$$\forall x (Rx \supset Rx)$$

holding in a universe A is translated as the statement

$$\forall x \in A, Rx \supset Rx$$

which is $\Xi A(\lambda x. \Xi (K (Rx))(K (Rx)))$ and is provable in \mathcal{J}.

Unfortunately, the interpretation is not complete (i.e., if the translation of a formula φ is provable in \mathcal{J}, then φ itself is provable in logic) because the system \mathcal{J} is not consistent; every statement X (i.e., every term) can be derived in \mathcal{J} (from the empty basis).

1.4. PROPOSITION (Curry's paradox). Let X be a statement of \mathcal{J}. Then $\vdash X$.

PROOF. Let X be given. Take

$$Y \equiv (\lambda y. (yy) \supset X)(\lambda y. (yy) \supset X).$$

Then $Y = Y \supset X$. Therefore, the following derivation shows that $\vdash X$.

$$Y \vdash Y;$$

$$Y \vdash Y \supset X, \text{ since } Y = Y \supset X;$$

$$Y \vdash X, \text{ by } 1.3(i);$$
\[
\vdash Y \supset X, \quad \text{by 1.3(ii)};
\]
\[
\vdash Y, \quad \text{since } Y \supset X = Y;
\]
\[
\vdash X, \quad \text{by 1.3(i)}. \quad \square
\]

Note that the derivation of \(X \) is related to the proof of the theorem of Löb [1955].

In the next section the illative system \(\mathcal{I} \) will be formulated more carefully so that the system becomes consistent and in fact complete over ordinary logic.

§2. Sound interpretations of logics in ICL’s. In the introduction we stated that logic can be interpreted in two ways in ICL’s. In fact, this can be done both for the propositional and predicate calculus, so there will be four related illative systems. The interpretation will be done for the \(\{ \supset \} \) (respectively \(\{ \supset, \forall \} \)) fragment of intuitionistic logic. This is the most essential part of logic and the direct interpretation ([—] below) can be extended to include the logical operators \(\neg, \& \), \(\lor \), and \(\exists \).

In second-order logic these operators are definable from \(\supset \), \(\forall \), so both our interpretations can be extended into sound (and probably complete) interpretations of second-order logical calculi.

Now we display the two logical calculi that will be interpreted.

2.1. Definition. Let PROP be the \(\supset \) fragment of intuitionistic propositional logic determined as follows.

(i) The set of formulas of PROP, notation \(\mathcal{F}_{\text{PROP}} \), is defined by the following abstract syntax:

\[
\mathcal{F}_{\text{PROP}} = \forall \mathcal{F}_{\text{PROP}} \supset \mathcal{F}_{\text{PROP}}.
\]

Here \(\forall \) is a set of propositional variables.

(ii) Let \(\Gamma \subseteq \mathcal{F}_{\text{PROP}} \) and \(\phi \in \mathcal{F}_{\text{PROP}} \). Then \(\Gamma \vdash_{\text{PROP}} \phi \) is defined by the system of natural deduction in Table 2.

\[
\begin{array}{c}
\phi \in \Gamma \supset \phi ; \\
\Gamma \vdash \phi \supset \psi, \Gamma \vdash \phi \supset \Gamma \vdash \psi ; \\
\Gamma, \phi \vdash \psi \supset \Gamma \vdash \phi \supset \psi .
\end{array}
\]

2.2. Definition. Let PRED be the \(\{ \supset, \forall \} \) fragment of first-order many-sorted intuitionistic predicate calculus of a given signature \(s \).

Below as an example, we will treat a version of PRED with \(s \) the signature of the structure

\[
\langle A_1, A_2, f, g, P, a \rangle
\]

with

\[
A_1, A_2 \quad \text{nonempty sets};
\]
\[
f: A_1 \rightarrow A_1 \quad \text{a unary function};
\]
g: A₁ → A₂ → A₁ a binary function;
P ⊆ A₁ a unary relation;
a ∈ A₁ a constant.

(All results also hold for arbitrary signatures.)

(i) The set of terms of PRED, notation T_{PRED}, is defined by the following abstract syntax:

\[
T_{PRED} = T_{A_1} \mid T_{A_2},
\]

\[
T_{A_1} = \forall^{A_1} \mid \mathbf{a} \mid f T_{A_1} \mid g T_{A_1} T_{A_2},
\]

\[
T_{A_2} = \forall^{A_2}.
\]

(ii) The set of formulas of PRED, notation F_{PRED}, is defined by the following abstract syntax:

\[
F_{PRED} = P T_{A_1} \mid F_{PRED} \Rightarrow F_{PRED} \mid \forall \forall^{A_1} F_{PRED}.
\]

(iii) $\Gamma \vdash_{PRED} \varphi$ is axiomatised by the system of natural deduction in Table 3.

Table 3 PRED.

- $\varphi \in \Gamma \Rightarrow \Gamma \vdash \varphi$;
- $\Gamma \vdash \varphi \Rightarrow \psi, \Gamma \vdash \varphi \Rightarrow \Gamma \vdash \psi$;
- $\Gamma, \varphi \vdash \psi \Rightarrow \Gamma \vdash \varphi \Rightarrow \psi$;
- $\Gamma \vdash \forall x^{A_1} \varphi, t \in T_{A_1} \Rightarrow \Gamma \vdash \varphi [x^{A_1} := t]$;
- $\Gamma \vdash \varphi, x^{A_1} \notin FV(\Gamma) \Rightarrow \Gamma \vdash \forall x^{A_1} \varphi$.

Now the systems PROP and PRED will be interpreted in ICL's. In order to block the proof of the Curry paradox, Bunder [1969], [1973], [1974] modified the system S by restricting the \exists-introduction rule and adding some other axioms and a rule. The resulting system T_0 was strong enough to provide sound interpretations of PROP and PRED, while the proof of the Curry paradox was blocked. However, the problems of the completeness of the interpretation and even of the consistency of T_0 remained open. (The system T_0 will be described later.)

We will give modified versions of T_0 in which the logics can be embedded in a sound way by two kinds of embeddings. The first kind is “direct”, and the second kind is according to the “propositions-as-types” and “proofs-as-terms” paradigm, see Barendregt [1992; §5.1, §5.4]. As there are two logical systems, PROP and PRED, there will be four systems of ICL. These systems are called T_P, $T_Σ$, T_F, and T_G respectively. Their use for the two kinds of interpretation is as follows. Let $[\]^1$ be the direct and $[\]^2$ the propositions-as-types translation. Then Table 4 (see next page) shows the systems of ICL that are used for the two translations of PROP and PRED.
The four systems ICL will be described now, and moreover, their relative strengths will be compared.

2.3. Definition. Let \(T = \lambda \mathbb{E}, \mathbb{L} \) be the set of type-free lambda terms extended by the extra constants \(\mathbb{E} \) and \(\mathbb{L} \).

(i) Define the following terms in \(T \):

\[
\begin{align*}
\mathbb{P} & \equiv \lambda xy.\mathbb{E}(Kx)(Ky), \\
\mathbb{F} & \equiv \lambda xyz.\mathbb{E}(yoz), \\
\mathbb{G} & \equiv \lambda xyz.\mathbb{E}(Syz), \\
\mathbb{H} & \equiv \mathbb{L} \cdot \mathbb{K},
\end{align*}
\]

where \(\mathbb{K} \equiv \lambda pq. \mathbb{P} \cdot \mathbb{M} \cdot \mathbb{N} \equiv \lambda x. \mathbb{M}(Nx) \), and \(\mathbb{S} \equiv \lambda pqr. \mathbb{P} \cdot \mathbb{R}(qr) \).

Write \(\mathbb{X} \supset \mathbb{Y} \) for \(\mathbb{P} \mathbb{X} \mathbb{Y} \).

(ii) Define the following four systems of illative combinatory logic \(\mathbb{P}, \mathbb{E}, \mathbb{F}, \) and \(\mathbb{G} \). All four systems have as rules those given in Table 5.

The four systems have the specific rules given in Tables 6–9.
Table 8 \$F.\$

\$F_e\$	\$\Gamma \vdash FXYZ, \Gamma \vdash X\emptyset \quad \Rightarrow \Gamma \vdash Y(Z\emptyset);\$
\$F_i\$	\$\Gamma, X\emptyset \vdash Y(Z\emptyset), \Gamma \vdash LX, x \notin \text{FV}(\Gamma, X, Y, Z) \Rightarrow \Gamma \vdash FXYZ;\$
\$F_l\$	\$\Gamma, X\emptyset \vdash LY, \Gamma \vdash LX, x \notin \text{FV}(\Gamma, X, Y) \Rightarrow \Gamma \vdash L(FXY).\$

Table 9 \$G.\$

\$G_e\$	\$\Gamma \vdash GXYZ, \Gamma \vdash X\emptyset \quad \Rightarrow \Gamma \vdash YV(Z\emptyset);\$
\$G_i\$	\$\Gamma, X\emptyset \vdash Yx(Z\emptyset), \Gamma \vdash LX, x \notin \text{FV}(\Gamma, X, Y, Z) \Rightarrow \Gamma \vdash GXYZ;\$
\$G_l\$	\$\Gamma, X\emptyset \vdash L(Yx), \Gamma \vdash LX, x \notin \text{FV}(\Gamma, X, Y) \Rightarrow \Gamma \vdash L(GXY).\$

To get a taste for what will follow, we give some examples of interpretations of tautologies in the ICL’s.

2.4. Examples. (i) The formula \(p \rightarrow p \) of PROP is translated as \(p \rightarrow p \) in \$\text{\Phi}.\$
The fact that \(p \rightarrow p \) is indeed a wff of PROP is expressed in \$\text{\Phi} \ as \ H_p \vdash H(p \rightarrow p), \$ which should be interpreted as “if \(p \) is a proposition, then so is \(p \rightarrow p \).” So \$H\$ functions as the class of propositions. It was used in Curry [1942a], Bunder [1969], and others to block the derivation of Curry’s paradox. Aczel [1980] uses \$H\$ as in Bunder [1969] and in \$\text{\Phi}.\$

The fact that \(p \rightarrow p \) is derivable in PROP is interpreted in \$\text{\Phi}. \$ as \(H_p \vdash H(p \rightarrow p). \$ This should be interpreted as “if \(p \) is a proposition, then \(p \rightarrow p \) is derivable”.

(ii) The same formula \(p \rightarrow p \) is translated in \$\text{\Psi} \ as \ Fpp. \$ The fact that \(p \rightarrow p \) is a wff of PROP is expressed in \$\text{\Psi} \ by \ Lp \vdash L(Fpp) \$ which should be interpreted as “if \(p \) is a type, then \(Fpp \) is a type”. The type \(Fpp \) is intuitively the function space type \(p \rightarrow p. \) The fact that \(p \rightarrow p \) is derivable in PROP is interpreted in \$\text{\Phi}. \$ by making the type \(Fpp \) “inhabited” by the expression \(\lambda y.y \) (formulas-as-types and terms-as-derivations interpretation)

\[Lp \vdash Fpp(\lambda y.y). \]

(iii) Similarly, consider the formula \(\forall x^A(Px \supset Px) \) of PRED. Interpreted in \$\text{\Xi}\$ this becomes

\[L_4, F_4 HP \vdash H(\Xi A(\lambda x.Px \supset Px)). \]

The intuitive meaning of \(F_4 HP \) is “\(P \) is of type \(A \rightarrow H \)”, that is, \(P \) is a map from \(A \) into the propositions and, hence, a predicate on \(A. \) (In generalised type systems the basis \(L_4, F_4 HP \) would be written as the context \(A:*^*, P: A \rightarrow *^*, \) see Barendregt [1992], especially the systems \λPRED and \λP.) The fact that \(\forall x^A(Px \supset Px) \) is derivable in PRED becomes

\[L_4, F_4 HP \vdash \Xi A(\lambda x.Px \supset Px), \]

which is derivable in \$\text{\Xi}.\$

(iv) The formula \(\forall x^A(Px \supset Px) \) in PRED translated in \$\text{\Psi}\$ becomes

\[L_4, F_4 LP \vdash L(\Xi A(\lambda x.Px \supset Px)), \]
which should be interpreted as "if A is a type and P is in $A \rightarrow \mathbf{L}$, then $GA(\lambda x.Px \supset Px)$ is a type". In the PTS language of λP this is

$$A : *, P : A \rightarrow * \vdash \{[x : A.Px \rightarrow Px] : *\}.$$

The fact that $\forall x \forall y (Px \supset Px)$ is a tautology is interpreted in $\mathcal{S} \mathcal{G}$ by the inhabitation of the type $GA(\lambda x.Px \supset Px)$.

$$L\mathcal{A}_1, FA_1 \vdash GA(\lambda x.Px \supset Px)(\lambda x, \lambda y, y).$$

2.5. Notes. (i) \mathcal{L}_0 is essentially $\mathcal{S} \mathcal{E}$ plus the following:

$$\vdash \Xi \mathcal{H}, \; \vdash L\mathcal{A}_1, \; \vdash L\mathcal{A}_2, \; \text{and} \; \vdash L\mathcal{H}.$$

By the axiom "$\vdash L\mathcal{H}$" one can interpret second-order propositional and predicate logic. For example, by rule Ξ_1 one gets

$$\vdash \Xi \mathcal{H}(\lambda p.p \rightarrow p) \quad (\equiv \forall p \in \mathcal{H}.p \rightarrow p).$$

So one can quantify over propositions. By "$\vdash \Xi \mathcal{H}$" one can derive $p \vdash \mathcal{H} p$ and even $p \vdash \mathcal{H}(\mathcal{H} p)$. Here one has a mixture of statements in the language and in the meta-language. This gives problems in the study of completeness and maybe it is better to skip this axiom "$\vdash \Xi \mathcal{H}$", as we have done in the systems $\mathcal{S} \mathcal{P}, \mathcal{S} \mathcal{E}, \mathcal{S} \mathcal{F}$, and $\mathcal{S} \mathcal{G}$.

(ii) In the ICL's not only tautologies can be derived but also so-called syntactical conditions. For example, in signature s one has $f(a) \in TA_1$ and $P(f(a)) \in T_{PRED}$. These translate as $F(A_1.f.A_1.a \vdash A_1(f.a))$ and $F(A_1.A_1.f.A_1.a, FA_1.HP \vdash H(P(f.a)))$, respectively.

The following lemma is useful for determining the relative strength of the four systems.

2.6. Lemma. For all $X, Y \in T$ one has the following in $A(\Xi, \mathbf{L})$:

(i) $F(KY)(KY) = K(PXY)$,

(ii) $G_X(Y) = K(\Xi XY)$,

(iii) $FX Y = G_X(Y)$.

Proof. (i) $F(KY)(KY) = \lambda z.\Xi(XY)(KY)(z) = \lambda z.\Xi(KY)(KY) = K(PXY)$, since $(KY)z = \lambda x.KY(zx) = \lambda x.Y = Y$.

(ii) $G_X(Y) = \lambda z.\Xi(XS(Y)z) = \lambda z.\Xi XY = K(\Xi XY)$, since $S(KY)z = \lambda c.KY(cz) = \lambda c.Y = Y$.

(iii) $FX Y = \lambda z.\Xi(Yz) = \lambda z.\Xi(SKY)(z) = GX(Y)$, since $SKYz = \lambda r.KY(rz) = \lambda r.Y(zr) = Yz$. □

2.7. Proposition. The systems $\mathcal{S} \mathcal{P}, \mathcal{S} \mathcal{E}, \mathcal{S} \mathcal{F}$, and $\mathcal{S} \mathcal{G}$ are related as follows:

$$\mathcal{S} \mathcal{P} \rightarrow \mathcal{S} \mathcal{E} \rightarrow \mathcal{S} \mathcal{F} \rightarrow \mathcal{S} \mathcal{G}$$

where \rightarrow denotes nondecreasing strength, i.e., $s_1 \rightarrow s_2$ means that for all Γ, X

$$\Gamma, \vdash_{s_1} X \Rightarrow \Gamma, \vdash_{s_2} X.$$
Proof. We will show that if \(s_1 \rightarrow s_2 \) in the diagram then every rule of \(s_1 \) can be derived in \(s_2 \).

(i) Case \(\preceq P \rightarrow \preceq \Xi \). The rules \(P_e, P_i, \) and \(P_n \) follow from respectively \(\Xi_e, \Xi_i, \) and \(\Xi_n \) by the substitutions of \(\textbf{K} \textbf{X} \) for \(X \) and \(\textbf{K} \textbf{Y} \) for \(Y \).

(ii) Case \(\preceq P \rightarrow \preceq \textbf{F} \). Then \(P_e, P_i, \) and \(P_n \) follow from \(\textbf{F}_e, \textbf{F}_i, \) and \(\textbf{F}_n \) by the substitutions of \(\textbf{K} \textbf{X} \) for \(X \) and \(\textbf{K} \textbf{Y} \) for \(Y \) and Lemma 2.6(i).

(iii) Case \(\preceq \textbf{F} \rightarrow \preceq \textbf{G} \). Now \(\textbf{F}_e, \textbf{F}_i, \) and \(\textbf{F}_n \) follow from \(\textbf{G}_e, \textbf{G}_i, \) and \(\textbf{G}_n \) by the substitution of \(\textbf{K} \textbf{Y} \) for \(Y \) and Lemma 2.6(iii).

(iv) Case \(\preceq \Xi \rightarrow \preceq \textbf{G} \). Then \(\Xi_e, \Xi_i, \) and \(\Xi_n \) follow from \(\textbf{G}_e, \textbf{G}_i, \) and \(\textbf{G}_n \) by the substitution of \(\textbf{K} \textbf{Y} \) for \(Y \) and Lemma 2.6(ii).

Now we will show formally how the logics PROP and PRED can be interpreted in the illative systems. We start with PROP.

2.8. Definition. Let \(r \) be a closed term in \(\mathcal{A}(\Xi, L) \). Two maps (for \(i = 1, 2 \))

\[
[-]_r^i : \mathbb{F}_{\text{PROP}} \rightarrow \mathcal{A}(\Xi, L)
\]

and two maps

\[
\Gamma^i_r : \mathbb{F}_{\text{PROP}} \rightarrow \text{illative contexts}
\]

are defined by Table 10. (Note that these illative contexts are effectively grammatical conditions on the variables (propositional, individual) that appear in a proposition.)

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>([\varphi]_r^1)</th>
<th>(\Gamma^1_r(\varphi))</th>
<th>([\varphi]_r^2)</th>
<th>(\Gamma^2_r(\varphi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(rp)</td>
<td>(\textbf{H}(rp))</td>
<td>(rp)</td>
<td>(\textbf{L}(rp))</td>
</tr>
<tr>
<td>(\psi \supset \chi)</td>
<td>(\textbf{I}^1(\psi), \textbf{H}^1(\chi))</td>
<td>(\textbf{F}^2(\psi), \textbf{H}^2(\chi))</td>
<td>(\textbf{I}^2(\psi), \textbf{H}^2(\chi))</td>
<td></td>
</tr>
</tbody>
</table>

The \(r \) in the above definition and in 2.12 can be replaced by \(I \) (i.e., omitted). However, in 2.15 we use it to derive a relation between the two interpretations.

2.9. Lemma. Let \(\varphi \in \mathbb{F}_{\text{PROP}} \) and let \(\{ p_1, \ldots, p_n \} \) be the set of (free) propositional variables in \(\varphi \). Then

(i) \(\Gamma^1_r(\varphi) = \{ \textbf{H}(rp_1), \ldots, \textbf{H}(rp_n) \} \).
(ii) \(\Gamma^2_r(\varphi) = \{ \textbf{L}(rp_1), \ldots, \textbf{L}(rp_n) \} \).
(iii) \(\textbf{H}\varphi, \textbf{H}\psi \vdash \textbf{I}_r \textbf{H}(\varphi \supset \psi) \).
(iv) \(\textbf{L}\varphi, \textbf{L}\psi \vdash \textbf{I}_r \textbf{L}(\varphi \supset \psi) \).
(v) \(\Gamma^1_r(\varphi) \vdash \textbf{I}_r \textbf{H}[\varphi]_r^1 \).
(vi) \(\Gamma^2_r(\varphi) \vdash \textbf{I}_r \textbf{L}[\varphi]_r^2 \).

Proof. (i), (ii) follow by induction on the length of \(\varphi \).
(iii), (iv) follow by \(\textbf{P}_n \) and \(\textbf{F}_L \).
(v) follows by (i) and (iii).
(vi) follows by (ii) and (iv).

2.10. Definition. Let \(A \subseteq \mathbb{F}_{\text{PROP}} \).

(i) \([A]^1_r = \{ [\varphi]_r^1 \mid \varphi \in A \} \).
(ii) \([A]^2_r = \{ [\varphi]_r^2 \mid x_\varphi \mid \varphi \in A \} \) with \(x_\varphi \) a fresh variable chosen uniquely for \(\varphi \).
(iii) \(\Gamma_i\phi(A) = \{ \Gamma_i\phi | \phi \in A \}. \)

(iv) \(\Gamma_i\phi(A, \alpha) = \Gamma_i\phi(A), \Gamma_i\phi(\alpha). \)

If \(A \) is a set of assumptions in a deduction in PROP or PRED, then \([A]_r\) is the set of translated assumptions. Note that \([\phi]_F\) in a sense represents a class. Each \([\phi]_F x_a\) then represents the condition that \([\phi]_F\) is inhabited, corresponding to the fact that \(\phi \) is assumed to be true. The \(\Gamma_i\phi(A) \) are grammatical conditions required for the variables of \(A \).

In the proof of the following proposition there is an unexpected difficulty in showing the soundness of modus ponens. The difficulty can be avoided by a trick, which however, does not work for PRED as we will see and explain.

2.11. Proposition (soundness of the interpretations for PROP). Let \(A \cup \{ \phi \} \subseteq F_{\text{PROP}} \). Then one has the following for all closed \(r \).

(i) \(A \vdash_{\text{PROP}} \phi \Rightarrow [A]^2, \Gamma_i\phi(A) \vdash_{FP} [\phi]^2. \)

(ii) \(A \vdash_{\text{PROP}} \phi \Rightarrow \exists M \in A[[A]^2, \Gamma_i\phi(A) \vdash_{F} [\phi]^2 M]. \)

Proof. (i) By induction on the derivation of \(A \vdash_{\text{PROP}} \phi \) in PROP.

If \(\psi \in A \), then the result holds by the first rule for \(\vdash \) in \(FP \).

If \(A \vdash \phi \) is a direct consequence of \(A \vdash \psi \Rightarrow \phi \) and \(A \vdash \psi \), then the induction hypothesis (IH) implies (leaving out the super- and subscripts)

\[
[A], \Gamma_i(A, \psi \Rightarrow \phi) \vdash [\psi] \Rightarrow [\phi],
\]
\[
[A], \Gamma_i(A, \psi) \vdash [\psi].
\]

Therefore, by rule \(P_c \) one has \([A], \Gamma_i(A, \phi) \Gamma_i(\psi) \vdash [\phi] \). If \(\{ q_1, \ldots, q_m \} \) is the set of propositional variables occurring in \(\psi \) but not in \(\phi \) or \(A \) and \(p \) is a propositional variable occurring in \(\phi \), then we have

\[
[A], \Gamma_i(A, \phi), H(rp_1), \ldots, H(rp_m) \vdash [\phi],
\]

where \(H(rp) \in \Gamma_i(A, \phi) \). Substituting \(p \) for each of \(q_1, \ldots, q_m \), we obtain

\[
[A], \Gamma_i(A, \phi) \vdash [\phi].
\]

If \(A \vdash \phi \) is a direct consequence of \(A \vdash \psi \Rightarrow \chi \) and is a direct consequence of \(A, \psi \vdash \chi \), then by the IH one has

\[
[A], \Gamma_i(A, \psi, \chi) \vdash [\chi].
\]

By Lemma 2.9(v)

\[
\Gamma_i(\psi) \vdash H[\psi].
\]

Hence, we have \([A], \Gamma_i(A), \Gamma_i(\psi) \vdash [\psi] \Rightarrow [\chi]. \) So by the definition of \(\Gamma \)

\[
[A], \Gamma_i(A), \Gamma_i(\psi) \vdash [\psi \Rightarrow \chi].
\]

(ii) Same as for (i) except that for every \(p \in A \cup \{ \phi \} \in \) the derivation \([p]_F \) will have attached a variable \(x_p \) and every compound proposition a compound term. For example, if \(\phi \in A \), then \([A]_F \vdash [\phi]_F x_a \) and in the modus ponens case if

\[
[A], \Gamma_i(A, \psi \Rightarrow \phi) \vdash_{FP} (F[\psi][\phi]) M
\]

and

\[
[A], \Gamma_i(A, \psi) \vdash_{FP} [\psi] N.
\]
then

\[[A], \Gamma(A, \psi \Rightarrow \varphi) \vdash_{r \cdot s} [\varphi](MN). \]

2.12. Definition. (i) \(A' \equiv A(\Xi, L) \) is \(A(\Xi, L) \) extended by the extra constants \(A_1, A_2, P, f, g, a \) associated with the signature \(s \) of the many-sorted structure of our example. Because we are going to interpret many-sorted predicate logic with sorts \(A_1, A_2 \), it is useful to have among the free variables of the \(\lambda \)-calculus infinite sets \(\gamma_1, \gamma_2 \), with \(\gamma_i = \{ x_i, y_i, z_i, \ldots \} \). \(x, y, z \) denote arbitrary variables.

(ii) Let \(r \) be a closed term in \(A' \equiv A(\Xi, L) \). Two maps (for \(i = 1, 2 \))

\[[\cdot]^i_r : \mathbb{F}_{\text{PRED}} \to A' \equiv A(\Xi, L) \]

and a map

\[\Gamma : \mathbb{F}_{\text{PRED}} \to \text{illative contexts} \]

are defined by Tables 11 and 12.

Table 11

<table>
<thead>
<tr>
<th>(t)</th>
<th>([t]^i_r)</th>
<th>(\Gamma(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^{A_i})</td>
<td>(x_j)</td>
<td>(A_j x_j)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(f_s)</td>
<td>(f[s]^i_r)</td>
<td>(\Gamma(s))</td>
</tr>
<tr>
<td>(g_st)</td>
<td>(g[s]^i_r)</td>
<td>(\Gamma(s), \Gamma(t))</td>
</tr>
</tbody>
</table>

Table 12

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>([\varphi]^1_r)</th>
<th>([\varphi]^2_r)</th>
<th>(\Gamma(\varphi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_f)</td>
<td>(r(P[t]^1_r))</td>
<td>(r(P[t]^2_r))</td>
<td>(\Gamma(t))</td>
</tr>
<tr>
<td>(\psi \Rightarrow \chi)</td>
<td>([\varphi]^1_r \Rightarrow [\chi]^1_r)</td>
<td>(F[\psi]^2_r[\chi]^2_r)</td>
<td>(\Gamma(\psi), \Gamma(\chi))</td>
</tr>
<tr>
<td>(\forall A^\cdot \psi)</td>
<td>(\Xi A_i(\lambda x_i \cdot [\psi]^1_r))</td>
<td>(\Gamma(\psi) - { A_i x_i })</td>
<td></td>
</tr>
</tbody>
</table>

(iii)

\[
\begin{align*}
\Gamma^{1}_{r,s} & = \langle L.A_1, L.A_2, F.A_1.A_1.f, F.A_1(F.A_2.A_1)g, F.A_1.H(r \cdot P), A_1.a \rangle, \\
\Gamma^{2}_{r,s} & = \langle L.A_1, L.A_2, F.A_1.A_1.f, F.A_1(F.A_2.A_1)g, F.A_1.L(r \cdot P), A_1.a \rangle,
\end{align*}
\]

and

\[
\Gamma^{+}_{r,s} = \Gamma^{i}_{r,s} \cup \{ A_2 x_2 \} \quad \text{where} \quad x_2 \in \gamma_2 \quad \text{is some variable.}
\]

The definitions \(\Gamma^{1}_{r,s} \) and \(\Gamma^{+}_{r,s} \) of course refer to our example of a many-sorted predicate calculus with signature \(s \).

It is essential to add \(A_2 x_2 \) to \(\Gamma^{1}_{r,s} \) (and if required, similarly, for other sorts) to avoid the problem of possibly empty domains. It would be natural that

\[
A \vdash_{\text{PRED}} \varphi \Rightarrow \Gamma^{1}_{r,s}, [A]^1_r, \Gamma(A, \varphi) \vdash_{s \cdot \Xi} [\varphi]^2_r.
\]
However, this is not true. The similar problem for PTS's (see Barendregt [1992]) was first noted by E. Barendsen [1989]. The point is that in ordinary (minimal, intuitionistic, or classical) logic it is always assumed that the universes A_1, A_2, \ldots of the structure are supposed to be nonempty. For example,

$$(\forall x^A(Px \rightarrow Q)) \rightarrow (\forall x^A Px \rightarrow Q)$$

is provable in PRED, but only valid in structures with $A \neq \emptyset$. In so-called free logic one also allows structures with empty domains. This logic has been axiomatised by Peremans [1949] and Mostowski [1951]. What is unexpected is that the problem turns up in the case of modus ponens (cf. the proof of Proposition 2.14).

2.13. Lemma. Let $\varphi \in \mathcal{E}_{\text{PRED}}$.

(i) If $t \in \mathcal{T}_{A_i}$, then in \mathcal{A} or \mathcal{G} one has $\Gamma(t), \Gamma_{r, s} \vdash A_j[t]^r_s$.

(ii) $\Gamma_{r, s}, \Gamma(\varphi) \vdash_{x, Z} H[\varphi]^r_s$.

(iii) $\Gamma_{r, s}, \Gamma(\varphi) \vdash_{x, Z} \mathcal{L}[\varphi]^r_s$.

Proof. (i) By induction on the length of t, using the statements A_1a, F_1A_1, f, and $F_1(A_1A_1, A_1)$ in $\Gamma_{r, s}$.

(ii) If $\varphi = P t$ where $t \in \mathcal{T}_{A_i}$, then by $\Gamma_{r, s} \vdash F_1A_1H(r, P)$, (i), and $\Gamma(\varphi) = \Gamma(t)$ we have $\Gamma_{r, s}, \Gamma(\varphi) \vdash_{x, Z} H(r(P[\varphi]))$ as required. The remaining cases are as in Lemma 2.9(vi).

(iii) As in (ii) and Lemma 2.9(vi).

2.14. Proposition (soundness of the interpretations for PRED). Let $A \cup \{\varphi\} \subseteq \mathcal{E}_{\text{PRED}}$; then the following hold for all closed r.

(i) $A \vdash_{\text{PRED}} \varphi \Rightarrow \Gamma_{r, s}^A[\varphi]^r_s$.

(ii) $A \vdash_{\text{PRED}} \varphi \Rightarrow \Gamma_{r, s}^A[\varphi]^r_s \vdash_{x, Z} \mathcal{H}[\varphi]^r_s M$ for some M.

Proof. (i) The induction on the proof of $A \vdash_{\text{PRED}} \varphi$ is as in the proof of Proposition 2.11(i). When, in the case of modus ponens, terms A_1x_1 for variables $x_1 \in \text{FV}(\varphi) - \text{FV}(\psi)$ need to be removed from the left of the \vdash we replace x_1 by a. If terms A_2x_2 for $x_2 \in \text{FV}(\psi) - \text{FV}(\varphi)$, we replace x_1 by x_2 and note that $A_2x_2 \in \Gamma_{r, s}^A$.

(ii) The induction on the proof of $A \vdash_{\text{PRED}} \varphi$ is as in (i) but also using Lemma 2.6(ii). □

2.15. Proposition (the relation between the two interpretations). (i) For $\varphi \in \mathcal{E}_{\text{PROP}}$ one has $\mathcal{K}[\varphi]^r_s = [\varphi]^r_s$.

(ii) For $\varphi \in \mathcal{E}_{\text{PRED}}$ one has $\mathcal{K}[\varphi]^r_s = [\varphi]^r_s$.

Proof. (i) By induction on the length of φ.

$$K[\varphi]^1_s = K(rp) = [r]^1_s$$

by Lemma 2.6(i), so by the IH

$$K[\varphi \Rightarrow \psi]^1_s = K([\varphi]^1_s \Rightarrow [\psi]^1_s) = F(K[\varphi]^1_s)(K[\psi]^1_s).$$

by Lemma 2.6(i), so by the IH

$$K[\varphi \Rightarrow \psi]^1_s = F([\varphi]^1_s, [\psi]^1_s) = [\varphi \Rightarrow \psi]^1_s.$$

(ii) By induction on the length of φ as in (i) but also using Lemma 2.6(ii). □

§3. Completeness of two of the interpretations. In this section we derive completeness for the interpretations $[\cdot]^1_\mathcal{P}$: PROP$\rightarrow \mathcal{A}$ and $[\cdot]^1_\mathcal{F}$: PRED$\rightarrow \mathcal{A}$. We con-
jecture completeness for the interpretations \([\]^2\,\text{PROP} \to \mathcal{F}\) and \([\]^2\,\text{PRED} \to \mathcal{G}\), but we have not been able to prove it.\(^1\)

We start with the proof of the completeness for \(\mathcal{E}\) relative to \(\text{PRED}\). This occupies subsections 3.1–3.11. The proof for \(\mathcal{P}\) relative to \(\text{PROP}\) in 3.12–3.14 proceeds in a similar way but is much easier.

Completeness for \(\mathcal{E}\) relative to \(\text{PRED}\). We will show

\[
\forall r \left[\Gamma_{s, r}^{+}, [\cdot]^{1}, \Gamma(\Delta, \varphi) \vdash_{\mathcal{E}} [\varphi]^{1} \right] \Rightarrow \Delta \vdash_{\text{PRED}} \varphi.
\]

Here the signature \(s\) and the context \(\Gamma_{s, r}^{+}\) are as in 2.2 and 2.12; again the result can easily be generalised to other signatures.

It is sufficient to show

\[
\Gamma_{s, r}^{+}, [\cdot]^{1}, \Gamma(\Delta, \varphi) \vdash_{\mathcal{E}} [\varphi]^{1} \Rightarrow \Delta \vdash_{\text{PRED}} \varphi
\]

for a special \(r\). We choose \(r = 1\), i.e., we omit \(r\) and we prove

\[
\Gamma_{s}^{+}, [\cdot]^{1}, \Gamma(\Delta, \varphi) \vdash_{\mathcal{E}} [\varphi]^{1} \Rightarrow \Delta \vdash_{\text{PRED}} \varphi,
\]

where the definitions of \(\Gamma_{s}^{+}\) and \([\cdot]^{1}\) are obtained from 2.12 by everywhere omitting \(r\).

The proof goes in two steps. First we define a grammar in order to analyze the terms \(M\) such that \(\Gamma_{s, r}^{+}, [\cdot]^{1}, \Gamma(\Delta, \varphi) \vdash_{\mathcal{E}} M\). Then the completeness is shown by means of this analysis. Instead of \(\vdash_{\mathcal{E}}\) we shall mostly write \(\vdash\).

3.1. Remark. That it is not obvious that completeness holds is because not only translations of tautologies can be derived in the ICL's, but also syntactical statements. Let \(\Gamma = \Gamma_{s, r}^{+}, [\cdot]^{1}, \Gamma(\Delta, \varphi)\). Then we can derive in \(\mathcal{E}\) sequents of the form

\[
\Gamma \vdash [\varphi],
\]

where \([\varphi]\) is (the translation of) a logical formula, but also

\[
\Gamma \vdash H(Pt),
\]

where \(H(Pt)\) corresponds to the syntactical statement \(Pt \in E_{\text{PRED}}\) in the metalanguage. In

\[
\Gamma \vdash L A_i,
\]

\(L A_i\) corresponds to the fact that \(A_i\) is one of the sets in the signature \(s\). Even a mixture is possible

\[
H r \vdash p \Rightarrow H p.
\]

Using the grammar it will be shown that such mixed statements do not interfere with the logic. The translations of logical formulas will form a class \(\bar{\Theta}\) (propositions) in our grammar and the other statements a class \(\bar{G}\) (grammatical conditions).

\(^1\)After the paper had been sent to the journal we succeeded in proving completeness for \([\]^2\,\text{PROP} \to \mathcal{F}\), but completeness for \([\]^2\,\text{PRED} \to \mathcal{G}\) is still open.
3.2. Definition (grammar for derivable statements in $\mathcal{A} \mathcal{E}$).

\[F = F_1 \mid F_2, \]
\[F_1 = \langle \lambda \rangle a f F_1 g, \]
\[F_2 = \langle \tau \rangle. \]
\[\mathcal{P} = P F_1 \mid \mathcal{E} A_1 (\lambda x, \mathcal{P}) \mid \mathcal{E} (K, \mathcal{P})(K, \mathcal{P}). \]
\[\mathcal{G} = L A_1 \mid A_1 F_1 \mid \mathcal{E} A_1 (\lambda x, \mathcal{G}) \mid \mathcal{E} (K, \mathcal{G})(K, \mathcal{G}) \mid L (K, \mathcal{P}). \]
\[\mathcal{C} = \mathcal{G} \cup \mathcal{P}. \]

3.3. Remarks. (i) All elements of \mathcal{C} are in $\beta \eta$-normal form if we read KM as $\lambda y.M$. So all elements of \mathcal{C} have a (unique) $\beta \eta$-normal form.
(ii) \mathcal{P} and \mathcal{G} do not exhaust the possible theorems of $\mathcal{A} \mathcal{E}$, e.g., $H(Hp) \vdash H(Hp \Rightarrow p), Hp, H(Hp) \vdash H(p \Rightarrow Hp)$.

3.4. Notation. Let $M \in \mathcal{C}$ with normal form N, and let u be a variable. Then we write $u \notin FV(M)$ for $u \notin FV(N)$.

Now in 3.5–3.10 we state some technical results that are needed in the completeness proof. The main proposition is 3.10, stating that only terms in \mathcal{C} can be derived from $\mathcal{G} \cup \mathcal{P}$; this gives the required analysis.

3.5. Lemma. (i) Let $w^* = F_1, F_2, \mathcal{P}, \mathcal{G}, \mathcal{C}, \mathcal{C}$. Then

\[w \in w^* ; t_1 \in F_1, x_1 \in F_1 \Rightarrow w[x_1 := t_1, x_2 := t_2] \in w^*. \]

(ii) Let $w^* = F_1, F_2, \mathcal{P}, \mathcal{G}, \mathcal{C}, \mathcal{C}$. Then

\[w \in w^* ; t_1 \in F_1, x_1 \in F_1 \Rightarrow w[x_1 := t_1, x_2 := t_2] \in w^*. \]

Proof. (i) By a simple induction.
(ii) From (i) and

\[M_1 = \beta \eta M_2, N_1 = \beta \eta N_2 \Rightarrow M_1[x := N_1] = \beta \eta M_2[x := N_2]. \]

3.6. Lemma. Let $c X_1 \cdots X_n = \beta \eta M$ for some $M \in \mathcal{C}$ and some constant c. Then $n \in \{1, 2\}$ and $M \equiv c Y_1 \cdots Y_n$ with $Y_i = \beta \eta X_i$.

Proof. By Church-Rosser and the fact that all elements of \mathcal{C} are in $\beta \eta$-normal form.

3.7. Lemma. (i) $\Gamma_{\lambda, \eta}^* \in \mathcal{G}$.
(ii) $\mathcal{G} \cap \mathcal{P} = \emptyset$.
(iii) $\mathcal{G} \cap \mathcal{P} = \emptyset$.

Proof. (i) $F A_1 A_1 f = \mathcal{E} A_1 (\lambda x, A_1 (f x_1)) \in \mathcal{G}$ because $A_1 (f x_1) \in \mathcal{G}$. Moreover,

\[FA_1 (FA_2 A_1)g = \mathcal{E} A_1 (\lambda x_1, \mathcal{E} A_2 (\lambda x_2, A_1 (g x_1 x_2))) \in \mathcal{G}. \]

Finally, $FA_1 HP = \mathcal{E} A_1 (\lambda x_1, H (P x_1)) \in \mathcal{G}$ because $H (P x_1) \in \mathcal{G}$.
(ii) By an easy induction.
(iii) From (ii) by Church-Rosser and the fact that the elements of $\mathcal{C} = \mathcal{G} \cup \mathcal{P}$ are in $\beta \eta$-normal form.
3.8. Lemma. (i) \([-1]^1 : \text{PRED} \rightarrow \Lambda(\Xi, L) \) induces bijections

\[
\begin{align*}
[\cdot] : \mathcal{T}_A & \rightarrow \mathcal{T}_1, \\
[\cdot] : \mathcal{T}_A & \rightarrow \mathcal{T}_2, \\
[\cdot] : \mathcal{T} & \rightarrow \mathcal{T}_3.
\end{align*}
\]

(ii) If \(\varphi \in \mathcal{P}_{\text{PRED}} \), then \([\varphi]^1 \in \mathcal{P} \) and \(\Gamma(\varphi) \subseteq \mathcal{G} \).

(iii) If \(\Delta \subseteq \mathcal{P}_{\text{PRED}} \) and \(\varphi \in \mathcal{P}_{\text{PRED}} \), then \(\Gamma^1 \Delta \cup [\Delta]^1 \cup \Gamma(\Delta, \varphi) \subseteq \mathcal{I} \).

Proof. (i) and (ii) by easy inductions.

(iii) from (ii) and 3.7(i).

\[\square\]

3.9. Lemma. If \(\varphi \in \mathcal{P}_{\text{PRED}} \), \(x^A \in \forall^A \), \(t_A, \in \mathcal{T}_{\Delta} \), \(x_i \in \mathcal{T}_i \),

\[\begin{align*}
[\varphi]^1[x_i := [t_A]^1] & = \text{[\(\varphi[x^A := t_A]\)][1].}
\end{align*}\]

Proof. By an easy induction.

\[\square\]

3.10. Proposition. \(\Gamma \vdash M, \Gamma \subseteq \mathcal{C} \Rightarrow M \in \mathcal{C} \).

Proof. We use induction loading and show

\[(\ast) \quad \Gamma \vdash M, \Gamma \subseteq \mathcal{C} \text{ and } u \notin \mathcal{P}_{\text{p}} \text{ FV}(M) \Rightarrow M \in \mathcal{C} \text{ and } u \notin \mathcal{P}_{\text{p}} \text{ FV}(M) \]

by induction on the derivation of \(\Gamma \vdash M \). We only consider the three \(\Xi \)-rules; the other two rules are easy.

Case \(\Xi_c \). \(\Gamma \vdash M \) is \(\Gamma \vdash YV \) as a direct consequence of \(\Gamma \vdash \Xi XY, \Gamma \vdash XV \).

By the IH one has \(\Xi XY \in \mathcal{C}, u \notin \mathcal{P}_{\text{p}} \text{ FV}(\Xi XY) \) \& \(XV \in \mathcal{C}, u \notin \mathcal{P}_{\text{p}} \text{ FV}(XV) \).

We distinguish two cases according to the form of \(\Xi XY \), using Lemma 3.6.

Subcase \(\Xi_c(a) \). \(X = A_i, Y = \lambda x_i O \) with \(O \in \mathcal{C} \). Now \(A_i, V \in \mathcal{C} \) \& \(u \notin \text{FV}(t_i) \).

So \(V = t_i \) where \(t_i \in \mathcal{T}_i \) and \(u \notin \text{FV}(t_i) \). Hence, by Lemma 3.5(i)

\[
M = (\lambda x_i O) t_i = O[x_i := t_i] \in \mathcal{C}
\]

and

\[
u \notin \mathcal{P}_{\text{p}} \text{ FV}(O[x_i := t_i]).
\]

because \(u \notin \text{FV}(\lambda x_i O) \) \& \(\text{FV}(t_i) \).

Subcase \(\Xi_c(b) \). \(X = Kp, Y = KO \), with \(p \in \mathcal{P}, O \in \mathcal{C} \). Now \(YV = O \), where \(u \notin \text{FV}(O) \).

Case \(\Xi_i \). \(\Gamma \vdash M \) is \(\Gamma \vdash \Xi XY \) as direct consequence of \(\Gamma \vdash LX, \Gamma, X \vdash Yx \) with \(X \notin \text{FV}(\Gamma, X, Y) \).

By the IH one has \(LX \in \mathcal{C} \) and \(u \notin \text{FV}(LX) \). We distinguish two cases according to the form of \(X \).

Subcase \(\Xi_i(a) \). \(X = A_i \), with \(x \) any variable, so we may assume that \(x \in \mathcal{T}_i, u \notin x \).

Then \(A_i, x \in \mathcal{C} \) \& \(u \notin \text{FV}(A_i, x) \); hence, by the IH one has

\[
Yx \in \mathcal{C} \quad \text{and} \quad u \notin \mathcal{P}_{\text{p}} \text{ FV}(Yx).
\]

Let \(Yx = O \in \mathcal{C} \). Then \(M = \Xi A_i(\lambda x O), \) where \(u \notin \mathcal{P}_{\text{p}} \text{ FV}(\lambda x O) \).

Subcase \(\Xi_i(b) \). \(X = Kp \). Then \(\Gamma, p \vdash Yx \). One has \(x \notin \text{FV}(\Gamma, p) \) \& \(u \notin \text{FV}(\Gamma, p) \) because \(u \notin \mathcal{P}_{\text{p}} \text{ FV}(LX) \). So by the IH one has

\[
Yx = O \in \mathcal{C}, \quad \text{where} \ x \notin \text{FV}(O), u \notin \text{FV}(O).
\]

Hence, \(Y = KO \) and \(M = \Xi(Kp)(KO), \) where \(u \notin \text{FV}(pO) \).
Case \(\Xi_h \). \(\Gamma \vdash M \) is a direct consequence of \(\Gamma \vdash L X \).

\[\Gamma, X \vdash H(Yx) \quad \text{with} \; x \notin \text{FV}(\Gamma, X, Y). \]

The proof is similar to the proof for case \(\Xi_i \). We now get \(H(Yx) \in \bar{G} \); hence, \(Yx \in \bar{G} \) and

\[
M = H(\Xi A(\lambda x_, p)) \quad \text{with} \; u \notin \text{FV}(\lambda x_, p) \text{ in case } \Xi_h(a).
\]

\[
M = H(\Xi(\text{Kp}_1)(\text{Kp}_2)) \quad \text{with} \; u \notin \text{FV}(p_1, p_2) \text{ in case } \Xi_h(b). \quad \square
\]

3.11. Proposition (completeness for \(\aleph \Xi \) relative to \(\text{PRED} \)).

\[\Gamma_{\alpha}^{1_1} \vdash \Pi\Xi^{[\phi]_1} \Rightarrow \alpha \vdash_{\text{PRED}} \phi. \]

Proof. \(\Gamma_{\alpha}^{1_1} \subset \bar{G} \) by Lemma 3.7(i) and \(\Gamma(\alpha, \phi) \subset \bar{G} \) by Lemma 3.8(ii). Hence, it is sufficient to prove

\[\text{(**)} \quad \Gamma_{\alpha}^{1_1} \vdash_{\Xi Z} M, \Gamma_{\alpha}^{1} \subset \bar{G}, M = [\phi]^1 \Rightarrow \alpha \vdash_{\text{PRED}} \phi. \]

Write \(\Gamma = \Gamma_{\alpha}^{1_1} \). Then \(\Gamma \subset \bar{G} \); hence, \(M \in \bar{G} \) by Proposition 3.10. The proof of (** goes by induction.

Case 1. \(\Gamma \vdash M \) because \(M \in \bar{G} \).

\[M = [\phi]^1 \in \bar{\phi} \text{ by Lemma 3.8(i), so as } \bar{\phi} \subset \bar{G} \text{ and } \bar{\phi} \cap \bar{G} = \emptyset, \; M \in [\phi]^1. \]

As the elements of \([\cdot]^1\) are in \(\mathfrak{N} \) as are those of \(\bar{\phi} \), one has \([\phi]^1 \in [\cdot]^1\) and by Lemma 3.8(iii) \(\phi \in \bar{\phi} \). Hence, \(\alpha \vdash_{\text{PRED}} \phi \).

Case 2. \(\Gamma \vdash M \) is a direct consequence of \(\Gamma \vdash N \) and \(M = N \).

Now \(N = M = [\phi]^1 \) and by the IH for \(N \) one has \(\alpha \vdash_{\text{PRED}} \phi \).

Case \(\Xi_e \). \(\Gamma \vdash YV \) as a direct consequence of \(\Gamma \vdash E X Y, \Gamma \vdash X V \).

As \(E X Y \in \bar{G} \) by Proposition 3.10, we need consider only 4 cases.

Subcase \(\Xi_e(a) \). \(X = A_1, Y = \lambda x_1, p \). Now \(\Gamma \vdash A_1 V \in \bar{G} \) by Proposition 3.10. Therefore, \(V = t_1 = [t_{A_1}]^1 \). Since \(p \in \bar{\phi} \), we can write \(p = [\psi]^1 \) by 3.8(i). Therefore, \([\phi]^1 = YV = (\lambda x_1, p)[t_{A_1}]^1 = [\psi]^1[t_{x_1} := [t_{A_1}]^1] = [\psi[x_{A_1} := t_{A_1}]]^1 \). So

\[[\phi]^1 \equiv [\psi[x_{A_1} := t_{A_1}]]^1. \]

Hence, \(\phi \equiv \psi[x_{A_1} := t_{A_1}] \). \(E X Y = \Xi A_1(\lambda x_1, p) = \forall x_{A_1} \psi \). By the IH one has \(\alpha \vdash_{\text{PRED}} \forall x_{A_1} \psi. \) So \(\alpha \vdash_{\text{PRED}} \psi[x_{A_1} := t_{A_1}] \equiv \phi \).

Subcase \(\Xi_e(b) \). \(X = \text{Kp}_1, Y = \text{Kp}_2 \). Then \([\phi]^1 = M = YV = p_2 \in \bar{\phi} \) and by 3.8(i), we can write \(p_1 = [\phi_1]^1 \). Therefore, \(E X Y = \Xi(\text{Kp}_1)(\text{Kp}_2) = [\phi_1 \supset \phi]^1 \). By the IH one has

\[\alpha \vdash_{\text{PRED}} \phi_1 \supset \phi. \]

Also, \(X V = p_1 = [\phi_1]^1 \), so by the IH one has

\[\alpha \vdash_{\text{PRED}} \phi_1. \]

Therefore, it follows by modus ponens that

\[\alpha \vdash_{\text{PRED}} \phi. \]

Subcase \(\Xi_e(c) \). \(X = A_1, Y = \lambda x_1, q \). Since \(\Gamma \vdash A_1 V \in \bar{G} \), one has \(V \in \bar{\phi} \). Therefore, \(M = YV = g[x_1 := V] \in \bar{G} \). So \(M \neq [\phi]^1 \) for all \(\phi \) by Lemma 3.7(ii).
Contradiction.

Subcase $\Xi_4(d)$. $X = Kp$, $Y = Kg$. Now $M = YV = g$, so $M \neq [\varphi]^1$ for all φ.

Case Ξ_4. $\Gamma \vdash M$ is $\Gamma \vdash \Xi XY$ as a direct consequence of $\Gamma \vdash LX$, $\Gamma, Xx \vdash Yx$ with $x \notin \text{FV}(\Gamma, X, Y)$.

As $\Xi Y = [\varphi]^1 \in \mathcal{P}$ we need consider only 2 cases.

Subcase $\Xi_4(a)$. $X = A_1$, $Y = \lambda x_1p$. Let $p = [\psi]^1$. Then $M = [\forall x^\lambda \psi]^1$. Now x is any variable, so we may assume $x \in \mathcal{F}$. Then $Xx = A_1x \in \mathcal{G}$.

As $\Gamma, Xx \vdash Yx$ one has $\Gamma, Xx \vdash [\psi]^1$. So $\Delta \vdash_{\text{PRED}} \psi$ by the IH. Now x does not occur in Γ, so

$$\Delta \vdash_{\text{PRED}} \forall x^\lambda \psi.$$

Subcase $\Xi_4(b)$. $X = Kp_1$, $Y = Kp_2$. Let $p_1 = [\varphi_1]^1$, $p_2 = [\varphi_2]^1$. Then $M = [\varphi_1 \Rightarrow \varphi_2]^1$. Now $\Gamma, Xx \vdash Yx$ is $\Gamma, p_1 \vdash p_2$. So by the IH one has $\Delta, \varphi_1 \vdash_{\text{PRED}} \varphi_2$.

Hence,

$$\Delta \vdash_{\text{PRED}} \varphi_1 \Rightarrow \varphi_2.$$

Case Ξ_5. $\Gamma \vdash M$ is $\Gamma \vdash H(\Xi XY)$ as a direct consequence of $\Gamma \vdash LX$, $\Gamma, Xx \vdash H(Yx)$ with $x \notin \text{FV}(\Gamma, X, Y)$.

This case is not applicable because $M \notin \mathcal{P}$. □

Completeness for \mathcal{P} relative to PROP. The proof of this completeness follows the same pattern as the proof of the completeness for \mathcal{E} relative to PRED, but it is easier. As in that proof it is sufficient to take $r \equiv 1$, i.e., we omit r.

3.12. Definition (grammar for derivable statements for \mathcal{P}).

$$\mathcal{P} = \mathcal{V} | \mathcal{P} \supset \mathcal{P},$$
$$\mathcal{G} = \mathcal{H} \mathcal{P} | \mathcal{P} \supset \mathcal{G},$$
$$\mathcal{C} = \mathcal{G} \mathcal{P}.$$

$\mathcal{P}, \mathcal{G},$ and \mathcal{C} are then defined as in Definition 3.2.

3.13. Proposition.

$$\Gamma \vdash_{\mathcal{P}} M, \Gamma \in \mathcal{C} \implies M \in \mathcal{C}.$$

Proof. By induction on the derivation of $\Gamma \vdash_{\mathcal{P}} M$. The various cases correspond to the two initial cases and cases $\Xi_4(b), \Xi_4(b),$ and $\Xi_5(b)$ of the proof of Proposition 3.10. □

3.14. Proposition (completeness for \mathcal{P} relative to PROP).

$$[\Delta]^1, \Gamma'(\Delta, \varphi) \vdash_{\mathcal{P}} [\varphi]^1 \Rightarrow \Delta \vdash_{\text{PROP}} \varphi.$$

Proof. This consists of the initial cases and cases $\Xi_4(b), \Xi_4(d), \Xi_4(b)$ of the proof of Proposition 3.11 and the Ξ_5 case with Kp_1 for X and Kp_2 for Y. As before $[-]^1$ is 1-1 and $\mathcal{G} \cap \mathcal{P} = \emptyset$ and if $X \in \mathcal{C}$ then $\Gamma'(X) = \mathcal{G}$.

§4. Remarks and open problems.

4.1. Remarks. (i) The systems \mathcal{P}, \mathcal{E}, \mathcal{F}, and \mathcal{G} are based on $\beta\eta$-conversion. It is possible to work with variants of these systems based on β-conversion only. Change the rules for \mathcal{E} as in Table 13 (see next page) and similarly.
for \(\mathcal{F} \), \(\mathcal{F} \), and \(\mathcal{G} \). Then in the proof of the completeness for \(\mathcal{E} \) relative to \(\text{PRED} \) only minor changes need to be made, like replacing \(A_1, X, X, \) and \(\beta \eta \) by \(\lambda x. A_1 x_1, \lambda x. X, \lambda x. X, \) and \(\beta \), respectively.

Table 13. \(\mathcal{E} \).

\(X \in \Gamma \)	\(\Rightarrow \Gamma \vdash X \)	
\(\Gamma \vdash X, X =_\beta Y \)	\(\Rightarrow \Gamma \vdash Y \)	
\(\mathcal{E}_c \)	\(\Gamma \vdash \Xi(\lambda x. X)(\lambda x. Y), \Gamma \vdash (\lambda x. X)Y \)	\(\Rightarrow \Gamma \vdash (\lambda x. Y)Y \)
\(\mathcal{E}_i \)	\(\Gamma, X \vdash Y, \Gamma \vdash \mathcal{L}(\lambda x. X), x \notin \text{FV}(\Gamma) \)	\(\Rightarrow \Gamma \vdash \Xi(\lambda x. X)(\lambda x. Y) \)
\(\mathcal{E}_m \)	\(\Gamma, X \vdash H Y, \Gamma \vdash \mathcal{L}(\lambda x. X), x \notin \text{FV}(\Gamma) \)	\(\Rightarrow \Gamma \vdash H(\Xi(\lambda x. X)(\lambda x. Y)) \)

Similar changes should be made in the proof of the completeness for \(\mathcal{P} \) relative to \(\text{PROP} \). The reader is invited to verify all details.

(ii) The additional primitive \(\mathcal{L} \) added to \(\mathcal{L}(\mathcal{E}) \) was not strictly necessary. We could have used the definition \(\mathcal{L} = \mathcal{W} \mathcal{E} \) and simplified our grammar for derivable statements in \(\mathcal{E} \) in Definition 3.2 in the following way:

\[
\mathcal{P} = \mathcal{P}_1 \mid \Xi A_1(\lambda x. \mathcal{P}) \mid \Xi(\mathcal{K} \mathcal{P})(\mathcal{K} \mathcal{P}),
\]

\[
\mathcal{G} = \mathcal{A}_1 \mathcal{F}_1 \mid \Xi A_1(\lambda x. \mathcal{G}) \mid \Xi(\mathcal{K} \mathcal{P})(\mathcal{K} \mathcal{P}).
\]

Note that now \(\mathcal{L}(\mathcal{K} \mathcal{P}) = \Xi(\mathcal{K} \mathcal{P})(\mathcal{K} \mathcal{P}) \), so \(\mathcal{L}(\mathcal{K} \mathcal{P}) \) shifts from \(\mathcal{G} \) to \(\mathcal{P} \) ! Similarly for \(\mathcal{F}, \mathcal{H} \) can be defined as \(\mathcal{W} \mathcal{P} \) as was done in Curry [1942a].

(iii) In the work of Seldin and others \(\mathcal{L} \) is defined as \(\mathcal{F} \mathcal{E} \), where \(\mathcal{E} \) is a universal class. Under this definition \(\mathcal{H} \mathcal{P} \) and \(\mathcal{L}(\mathcal{K} \mathcal{P}) \) are interderivable, but our proof of Proposition 3.10 fails.

(iv) The title of the paper refers to combinatory logic, but the systems used are based on lambda calculus throughout. The illative systems could have been based on combinatory logic using an appropriate bracket abstraction algorithm.

(v) For historical and other remarks concerning the combinators \(\mathcal{E}, \mathcal{P}, \mathcal{F}, \) and \(\mathcal{G} \), see Hindley and Seldin [1986; Chapter 17 for \(\mathcal{E} \) and \(\mathcal{P} \), Chapter 13 and Chapter 15 for \(\mathcal{F} \), and Chapter 16 §§C, D for \(\mathcal{G} \)].

4.2. Open problems. The following is a list of open problems.

(i) Is the interpretation \([]^2 \): \(\text{PROP} \rightarrow \mathcal{F} \) complete? Is the interpretation \([]^2 \): \(\text{PRED} \rightarrow \mathcal{E} \) complete?

(ii) Is \(\mathcal{F} \) a conservative extension of \(\mathcal{P} \) and \(\mathcal{G} \) a conservative extension of \(\mathcal{E} \)?

(iii) Adding as axiom \(\mathcal{L} \mathcal{H} \) to \(\mathcal{E} \) one can interpret second-order propositional and predicate logic. Is this interpretation complete?

(iv) Is the extension \(\mathcal{E}_0 \) of \(\mathcal{E} \) in 2.5 complete? Are similar extensions of \(\mathcal{F} \) and \(\mathcal{G} \) complete?

4.3. Remark. The system \(\mathcal{E}_0 \) is consistent. This can be seen in the following way. Let

\[
\mathcal{G} = \gamma \mid \lambda A_1 \mid \lambda H \mid \Xi H \mid \Xi A_1(\lambda y. \mathcal{G}) \mid \Xi(\mathcal{K} \mathcal{G})(\mathcal{K} \mathcal{G}) \mid \mathcal{A}_1 \mathcal{H},
\]

\[
\bar{\mathcal{G}} = \{ M \mid \exists N \in \mathcal{G} \mid N =_\beta n M \}.
\]
Then one can prove
\[\Gamma \vdash M, \Gamma \subseteq \mathcal{G} \Rightarrow M \in \mathcal{G}. \]
So if \(\vdash M \), then \(M \) has a normal form. Hence, the system is consistent, because \(\Omega \equiv (\lambda x xx)(\lambda x xx) \) cannot be derived. This weak consistency result was proved by a similar method in Bunder [1983b].

REFERENCES

E. Barendsen [1989], Representation of logic, data types and recursive functions in typed lambda calculi, Masters Thesis, Department of Computer Science, Catholic University, Nijmegen.

——— [1941], The calculi of lambda conversion, Princeton University Press, Princeton.

——— [1942b], The combinatory foundations of mathematical logic, this Journal, vol. 7, pp. 49–64.

——— [1942c], The inconsistency of certain formal logics, this Journal, vol. 7, pp. 115–117.

W. Peremans [1949], Een opmerking over intuitionistische logica, Report ZW-16, CWI, Kruislaan 413, 1098 SJ Amsterdam.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
CATHOLIC UNIVERSITY
NIJMEGEN, THE NETHERLANDS
E-mail: henk@cs.kun.nl
E-mail: wil@cs.kun.nl

FACULTY OF INFORMATICS, DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WOLLONGONG
NSW AUSTRALIA
E-mail: Martin._Bunder@info-gw.uow.edu.au

Sorting: The first address is Professor Barendregt's and Professor Dekkers's; the second address is Professor Bunder's.