A FILTER LAMBDA MODEL AND THE COMPLETENESS
OF TYPE ASSIGNMENT

HENK BARENDREGT, MARIO COPPO AND MARIANGIOLA DEZANI-CIANCAGLINI

In [6, p. 317] Curry described a formal system assigning types to terms of the
type-free λ-calculus. In [11] Scott gave a natural semantics for this type assign­
ment and asked whether a completeness result holds.

Inspired by [4] and [5] we extend the syntax and semantics of the Curry types
in such a way that filters in the resulting type structure form a domain in the sense
of Scott [12]. We will show that it is possible to turn the domain of types into a
λ-model, among other reasons because all λ-terms possess a type. This model
gives the completeness result for the extended system. By a conservativity result
the completeness for Curry's system follows.

Independently Hindley [8], [9] has proved both completeness results using term
models. His method of proof is in some sense dual to ours.

For λ-calculus notation see [1].

§1. Curry type assignment.

1.1. Definition. (i) The Curry type schemes form the smallest set T_C such that
1. $\nu_0, \nu_1, \cdots \in T_C$ (type variables).
2. $\sigma, \tau \in T_C \Rightarrow (\sigma \to \tau) \in T_C$.
(ii) A Curry statement is an expression of the form σM where $\sigma \in T_C$ and $M \in \Lambda
(set of type free λ-terms). M is the subject and σ the predicate of σM.

A basis B is a set of Curry statements with only variables as subjects.

(iii) A Curry type assignment is defined by the following natural deduction
system, see e.g. [10, Chapter I, §2A].

\[
\begin{align*}
(\rightarrow I) \quad & \quad \varnothing \vdash \sigma x \\
\vdash \tau M \quad & \quad \vdash (M N) \\
\sigma \rightarrow \tau \lambda x. \ M \quad & \quad (\ast) \\
\sigma M \quad M =_{\beta} N \\
\sigma N
\end{align*}
\]

\[(\ast) \text{ if } x \text{ not free in assumptions on which } \tau M \text{ depends other than } \sigma x. \]

(iv) If σM is derivable from a basis B, then we write $B \vdash \sigma M$. If D is a deriv­

ation showing this, then we write $D : B \vdash \sigma M$.
We assume that the reader is familiar with the notion of λ-model (weakly extensional λ-algebra) and the interpretation of λ-terms in them. See [1] or [7].

1.2. Definition. Let $\mathcal{M} = \langle D, \cdot, \varepsilon \rangle$ be a λ-model.

(i) If ξ is the valuation of variables of λ in D, then $[\lambda\xi]_\mathcal{M} \in D$ is the interpretation of λ in \mathcal{M} via ξ. Usually we omit the superscript \mathcal{M}.

(ii) Let $\gamma: \{\phi_i | i \in \omega\} \rightarrow PD = \{X | X \subseteq D\}$. Then the interpretation of $\sigma \in T_C$ in \mathcal{M} via γ, ε, denoted $[\sigma]_\mathcal{M} \in PD$, is defined as follows.

1. $[\phi_i]_\mathcal{M} = \gamma(\phi_i)$.
2. $[\sigma \rightarrow \tau]_\mathcal{M} = \{d \in D | \forall e \in [\sigma]_\mathcal{M} \cdot d \cdot e \in [\tau]_\mathcal{M}\}$.

We will show the following completeness result: $B \vdash \sigma M \Leftrightarrow B \Rightarrow \sigma M$. The soundness ($\Rightarrow$) has been proved in [2].

§2. Extended type assignment.

2.1. Definition. (i) The set T of extended types is inductively defined by

1. $\sigma_0, \sigma_1, \ldots \in T$ type variables,
2. $a, \tau \in T \Rightarrow (a \rightarrow \tau) \in T, (\tau \cap \tau) \in T$.

(ii) A statement is of the form σM with $\sigma \in T, M \in \Lambda$. A basis is a set of statements with only variables as subjects.

The semantics for T_C is extended to T.

2.2. Definition. (i) Let $\gamma: \{\phi_i \} \rightarrow PD$, where D is the domain of a λ-model \mathcal{M}. Then for $a \in T$ the set $[a]_\mathcal{M}$ is defined by adding to 1.2(ii):

3. $[\omega]_\mathcal{M} = D$.
4. $[\sigma \cap \tau]_\mathcal{M} = [\sigma]_\mathcal{M} \cap [\tau]_\mathcal{M}$.

(ii) As before one defines $\mathcal{M}, \xi, \gamma \Rightarrow \sigma M; \mathcal{M}, \xi, \gamma \Rightarrow B$ and $B \Rightarrow \sigma M$.

In order to introduce the formal system of extended type assignment one first defines a preorder \leq on T. The intended interpretation of $\sigma \leq \tau$ is $\forall \mathcal{M}, \xi, \gamma \Rightarrow [\sigma]_\mathcal{M} \subseteq [\tau]_\mathcal{M}$.

2.3. Definition. (i) The relation \leq on T is inductively defined by (i.e. is the smallest relation satisfying):

1. $\tau \leq \tau$,
2. $\tau \leq \omega$,
3. $\omega \leq \omega \rightarrow \omega$,
4. $\sigma \cap \tau \leq \sigma, \sigma \cap \tau \leq \tau$,
5. $(\sigma \rightarrow \rho) \cap (\sigma \rightarrow \tau) \leq \sigma \rightarrow (\rho \cap \tau),$
6. $\sigma \leq \tau \leq \rho = \sigma \leq \rho,$
7. $\sigma \leq \sigma', \tau \leq \tau' \Rightarrow \sigma \cap \tau \leq \sigma' \cap \tau',$
8. $\sigma' \leq \sigma, \tau \leq \tau' \Rightarrow \sigma \rightarrow \tau \leq \sigma' \rightarrow \tau'.$
9. $\sigma \sim \tau \Rightarrow \sigma \leq \tau \leq \sigma.$

Note that, e.g., $(\sigma \rightarrow \rho) \cap (\sigma \rightarrow \tau) \sim \sigma \rightarrow (\rho \cap \tau); \omega \sim \sigma \rightarrow \omega; \sigma \cap (\rho \cap \tau) \sim (\sigma \cap \rho) \cap \tau$. T may be considered modulo \sim; then \leq becomes a partial order.

2.4. Lemma. (i) $\sigma \rightarrow \tau \sim \omega \Leftrightarrow \tau \sim \omega$.
(ii) \((\mu_1 \rightarrow \nu_1) \cap \cdots \cap (\mu_n \rightarrow \nu_n) \leq \sigma \rightarrow \tau \) and \(\tau \not\sim \omega\), then there are \(i_1, \ldots, i_k \in \{1, \ldots, n\}\) such that \(\mu_{i_1} \cap \cdots \cap \mu_{i_k} \geq \sigma\) and \(\nu_{i_1} \cap \cdots \cap \nu_{i_k} \leq \tau\).

Proof. (i) Define \(\Omega \subseteq T\) inductively by: \(\omega \in \Omega\); \(\rho \in \Omega \Rightarrow \sigma \rightarrow \rho \in \Omega\); \(\sigma, \rho \in \Omega \Rightarrow \sigma \cap \rho \in \Omega\). Note that \(\sigma \in \Omega \Rightarrow \sigma \sim \omega\). By induction on the definition of \(\leq\) one can show \(\sigma \in \Omega\) for all \(\sigma \leq \tau \in \Omega\). It follows that \(\sigma \in \Omega \Rightarrow \sigma \sim \omega\). The rest is clear.

(ii) By induction on the definition of \(\leq\) one can show for \(n, n', m, m' \geq 0\) that for all \(l \in \{1, \ldots, n'\}\) one has

\[
([\mu_1 \rightarrow \nu_1] \cap \cdots \cap [\mu_n \rightarrow \nu_n] \cap \varphi_{i_1} \cap \cdots \cap \varphi_{i_k} \\
\leq ([\sigma_1 \rightarrow \tau_1] \cap \cdots \cap [\sigma_n \rightarrow \tau_n] \cap \varphi'_{i_1} \cap \cdots \cap \varphi'_{i_k} \cap \omega \cap \cdots \cap \omega, \\
\text{and } \tau_l \not\sim \omega \Rightarrow \exists i_1, \ldots, i_k \in \{1, \ldots, n\} \mu_{i_1} \cap \cdots \cap \mu_{i_k} \geq \sigma_l \\
\text{and } \nu_{i_1} \cap \cdots \cap \nu_{i_k} \leq \tau_l)
\]

Then the result follows. ■

2.5. **Definition**

(i) Extended type assignment is defined by the following natural deduction system.

\[
\begin{array}{c}
\frac{\sigma \rightarrow \tau \quad M}{\sigma \rightarrow \tau \lambda x. M} \\
\frac{\sigma, M \tau M}{\sigma \cap \tau M} \\
\frac{\sigma M \sigma \leq \tau}{\tau M} \\
\frac{\omega M}{(\omega)}
\end{array}
\]

(*) if \(x\) not free in assumptions on which \(\tau M\) depends other than \(\sigma x\).

The rule \((\cap E)\) is superfluous, since it is directly derivable from rule \((\leq)\); the rule \((\cup)\) is not included since it is also derivable (see 3.8).

(ii) If \(\sigma M\) is derivable from a basis \(B\) in the extended system, then we write \(B \vdash \sigma M\). Moreover \(D: B \vdash \sigma M\) is as in 1.1(iv).

Example. \(\vdash (\sigma \rightarrow \tau) \cap \sigma \rightarrow \tau \lambda x. xx\).

2.6. **Definition.** A **filter** is a subset \(d \subseteq T\) such that:

(i) \(\omega \in d\);
(ii) \(\sigma, \tau \in d \Rightarrow \sigma \cap \tau \in d\);
(iii) \(\sigma \geq \tau \in d \Rightarrow \sigma \in d\).

2.7. **Lemma.** (i) \(\{\sigma \mid B \vdash \sigma M\}\) is a filter.

(ii) \(B \vdash \sigma x \Rightarrow \sigma\) is in the filter generated by \(\{\tau \mid \tau x \in B\}\).

(iii) If \(\tau M\) is derived from \(\sigma_1 M, \ldots, \sigma_n M\) only by means of rules \((\cap I), (\cap E)\)

and \((\leq)\), then \(\tau \geq \sigma_1 \cap \cdots \cap \sigma_n\).

Proof. (i) By rules \((\omega)\), \((\leq)\) and \((\cap I)\).

(ii) By induction on derivations.

(iii) From (ii) since, in the rules in question, \(M\) behaves like a variable. ■
2.8. Lemma. (i) $B \vdash \tau MN \Rightarrow \exists \sigma \in T: [B \vdash \sigma \rightarrow \tau M$ and $B \vdash \sigma N]$.
(ii) Suppose $\forall \sigma, \tau \in T \ [B \cup \{\sigma x\} \vdash \tau M \Rightarrow B \cup \{\sigma x\} \vdash \tau N]$ and x not in B; then $\forall \rho \in T \ [B \vdash \rho \lambda x.M \Rightarrow B \vdash \rho \lambda x.N]$.
(iii) If x is not in B then $B \vdash \sigma \rightarrow \tau \lambda x.M \Rightarrow B \cup \{\sigma x\} \vdash \tau M$.

Proof. (i) By induction on the derivation of τMN. The only interesting case is when the last applied rule is $(\cap I)$, i.e. $\tau \equiv \tau_1 \cap \tau_2$. Then

\[
\frac{\tau_1 MN \quad \tau_2 MN}{\tau_1 \cap \tau_2 MN}
\]

is the last step.

By the induction hypothesis there are σ_1, σ_2 such that $B \vdash \sigma_i \rightarrow \tau_i M$, $B \vdash \sigma_i N$ for $i = 1, 2$. Then $B \vdash \sigma_1 \cap \sigma_2 N$ and $B \vdash (\sigma_1 \rightarrow \tau_1) \cap (\sigma_2 \rightarrow \tau_2) M$. It is easy to verify that

\[(\sigma_1 \rightarrow \tau_1) \cap (\sigma_2 \rightarrow \tau_2) \leq (\sigma_1 \cap \sigma_2) \rightarrow (\tau_1 \cap \tau_2),\]

so we can take $\sigma \equiv \sigma_1 \cap \sigma_2$.

(ii) Induction on the derivation of $\rho \lambda x.M$. The only nontrivial case is $(\rightarrow I)$. Then the result follows from the assumption.

(iii) (\Leftarrow) By rule $(\rightarrow I)$. (\Rightarrow) We may suppose that $\tau \neq \omega$. Let $D: B \vdash \sigma \rightarrow \tau \lambda x.M$. Let $\mu_i \rightarrow \nu_i \lambda x.M$ ($1 \leq i \leq n$) be all the statements in D on which $\sigma \rightarrow \tau \lambda x.M$ depends and which are conclusions of $(\rightarrow I)$:

\[
\begin{array}{c}
[\mu_i x] \\
\vdots \\
\mu_i M \\
\end{array} \quad \begin{array}{c}
\nu_i M \\
\end{array}
\]

The statement $\sigma \rightarrow \tau \lambda x.M$ is derived from the $\mu_i \rightarrow \nu_i \lambda x.M$ using only rules $(\cap I)$, $(\cap E)$ and (\leq). By 2.7(iii) it follows that $(\mu_1 \rightarrow \nu_1) \cap \cdots \cap (\mu_n \rightarrow \nu_n) \leq \sigma \rightarrow \tau$ and hence, by Lemma 2.4(ii), there are i_1, \ldots, i_p such that $\mu_{i_1} \cap \cdots \cap \mu_{i_p} \geq \sigma$ and $\nu_{i_1} \cap \cdots \cap \nu_{i_p} \leq \tau$. Hence we can construct $D': B \cup \{\sigma x\} \vdash \tau M$ as follows:

\[
\begin{array}{c}
\sigma x \\
\mu_{i_1} \cap \cdots \cap \mu_{i_p} x \\
\end{array} \quad \begin{array}{c}
(\leq) \\
(\cap E) \\
\end{array} \quad \begin{array}{c}
\mu_{i_k} x \\
\vdots \\
\nu_{i_k} M \\
\end{array} \quad \begin{array}{c}
1 \leq k \leq p \\
(\leq) \\
(\cap I) \\
\nu_{i_1} \cap \cdots \cap \nu_{i_p} M \\
\end{array} \quad \begin{array}{c}
(\leq) \\
\tau M \\
\end{array}
\]
2.9. Lemma. If $B \vdash \sigma M$, then $B \uparrow M \vdash \sigma M$, where $B \uparrow M = \{\sigma x \in B \mid x \in FV(M)\}$.

Proof. Induction on the derivations.

2.10. Remark. If $M \rightarrow_{B} M'$ and $B \vdash \tau M$, then $B \vdash \tau M'$ (subject reduction theorem). We do not need this fact, however.

§3. The filter model.

3.1. Proposition. (i) $\sigma \leq \tau = \forall M, \forall^* [\sigma]_{\mathcal{F}} \subseteq [\tau]_{\mathcal{F}}$.
(ii) (Soundness). $B \vdash \sigma M \Rightarrow B \models \sigma M$.

Proof. (i) Induction on the definition of \leq.
(ii) Induction on derivations, using (i).

3.2. Definition. (i) $\mathcal{F} = \{d \mid d$ is a filter$\}$.
(ii) For $d_1, d_2 \in \mathcal{F}$ define
$$d_1 \cdot d_2 = \{\tau \in T \mid \exists \sigma \in d_2 \sigma \rightarrow \tau \in d_1\}.$$

3.3. Lemma. $d_1, d_2 \in \mathcal{F} \Rightarrow d_1 \cdot d_2 \in \mathcal{F}$.

Proof. Easy.

It will be shown that $\langle \mathcal{F}, \cdot, [\] \rangle$ is a λ-model. In order to do so we apply the method of Hindley and Longo by defining directly $[M]_{\xi}$ and show that this satisfies conditions (i)-(vi) in [7].

3.4. Definition. (i) Let ξ be a valuation in \mathcal{F}. Then $B_{\xi} = \{\sigma x \mid \sigma \in \xi(x)\}$.
(ii) For $M \in A$ define $[M]_{\xi} = \{\sigma \mid B_{\xi} \vdash \sigma M\} (\in \mathcal{F}$ by 2.7(i)).

3.5. Theorem. $\langle \mathcal{F}, \cdot, [\] \rangle$ is a λ-model, i.e.

(i) $[x]_{\xi} = \xi(x)$;
(ii) $[MN]_{\xi} = [M]_{\xi} \cdot [N]_{\xi}$;
(iii) $[\lambda x. M]_{\xi} \cdot d = [M]_{\xi(x/d)}$;
(iv) $(\forall x \in FV(M). [x]_{\xi} = [x]_{\xi}) \Rightarrow [M]_{\xi} = [M]_{\xi}$;
(v) $[\lambda x. M]_{\xi} = [\lambda y. M[x := y]]_{\xi}, \text{ if } y \text{ not in } M$;
(vi) $[M]_{\xi(x/d)} = [N]_{\xi(x/d)} \Rightarrow [\lambda x. M]_{\xi} = [\lambda x. N]_{\xi}$.

Proof. (i) If $\tau \in [x]_{\xi}$, i.e., $B_{\xi} \vdash \tau x$, then by 2.7(ii) τ is in the filter (generated by) $\xi(x)$. The converse is trivial.

(ii) If $\tau \in [MN]_{\xi}$, i.e. $B_{\xi} \vdash \tau MN$, then by 2.8(i) $\exists \sigma \in [N]_{\xi} \sigma \rightarrow \tau \in [M]_{\xi}$, i.e. $\tau \in [M]_{\xi} \cdot [N]_{\xi}$. The converse is trivial.

(iii) $\tau \in [M]_{\xi(x/d)} \Leftrightarrow B_{\xi(x/d)} \vdash \tau M$

$\Leftrightarrow B_{\xi} \cup \{\sigma x \mid \sigma \in d\} \vdash \tau M$, \quad where $B_{\xi} = B_{\xi} - \{\sigma x \mid \sigma \in \xi(x)\}$

$\Leftrightarrow B_{\xi} \cup \{\sigma x\} \vdash \tau M$ \quad for some $\sigma \in d$ (use compactness and that d is a filter)

$\Leftrightarrow B_{\xi} \vdash \sigma \rightarrow \tau \lambda x. M$ \quad for some $\sigma \in d$ (use 2.8(iii))

$\Leftrightarrow B_{\xi} \vdash \sigma \rightarrow \tau \lambda x. M$ \quad (use 2.9)

$\Leftrightarrow \sigma \rightarrow \tau \in [\lambda x. M]_{\xi}$ \quad for some $\sigma \in d$

$\Leftrightarrow \tau \in [\lambda x. M]_{\xi} \cdot d$.

(iv) Trivial by 2.9.

(v) Trivial.
(vi) Assume the LHS and \(\rho \in [\lambda x. M]_\xi \). Then \(\rho \in [\lambda x. N]_\xi \) by 2.8(ii). By symmetry we are done. ■

3.6. Definition. (i) \(\gamma_0(\varphi_i) = \{ d \in \mathcal{F} \mid \varphi_i \in d \} \).
(ii) Given a basis \(B \), define
\[
\xi_B(x) = \{ \sigma \in T \mid B \vdash \sigma x \} \quad (\in \mathcal{F}).
\]

3.7. Lemma. (i) \(\forall \sigma \in T \left[[\sigma]_{\gamma_0} \right] = \{ d \in \mathcal{F} \mid \sigma \in d \} \).
(ii) \(B \vdash \sigma M \iff B_{(\xi_B)} \vdash \sigma M \).
(iii) \(\mathcal{F}, \xi_B, \gamma_0 \vdash B \).
Proof. (i) By induction on \(\sigma \).
(ii), (iii). Easy. ■

3.8. Corollary. The following is a derived rule for extended type assignment

\[
\begin{align*}
\frac{\sigma M = \beta N}{\sigma N}.
\end{align*}
\]

Proof. Suppose \(M = \beta N \) and \(B \vdash \sigma M \). Then \(B_{(\xi_B)} \vdash \sigma M \), hence \(\sigma \in [M]_{\xi_B} = [N]_{\xi_B} \) since \(\mathcal{F} \) is a \(\lambda \)-model. So \(B \vdash \sigma N \). ■

3.9. Corollary. (i) \(\sigma \leq \tau \iff \forall . \mathcal{U}, \gamma^* [\sigma]_{\gamma^*} \subseteq [\tau]_{\gamma^*} \).
(ii) \(\sigma \sim \tau \iff \forall . \mathcal{U}, \gamma^* [\sigma]_{\gamma^*} = [\tau]_{\gamma^*} \).
Proof. (i) (\(\Rightarrow \)) 3.1(i). (\(\Leftarrow \)) Take \(. \mathcal{U} = \mathcal{F}, \gamma^* = \gamma_0 \) and note that \(\{ \rho \mid \sigma \leq \rho \} \) is a filter \(\in [\sigma]_{\gamma_0} \).
(ii) By (i). ■

3.10. Completeness theorem. \(B \vdash \sigma M \iff B \vdash \sigma M \).
Proof. (\(\Rightarrow \)) 3.1(ii). (\(\Leftarrow \))

\[
\begin{align*}
B \vdash \sigma M \Rightarrow \mathcal{F}, \xi_B, \gamma_0 \vdash \sigma M & \quad \text{by 3.7(iii)} \\
& \Rightarrow [M]_{\xi_B} \in [\sigma]_{\gamma_0} \\
& \Rightarrow \sigma \in [M]_{\xi_B} \quad \text{by 3.7(i)} \\
& \Rightarrow B_{(\xi_B)} \vdash \sigma M \\
& \Rightarrow B \vdash \sigma M \quad \text{by 3.7(ii)}. \quad ■
\end{align*}
\]

It is interesting to compare Hindley’s completeness proof with ours. He takes as a model a term model (cf. [1, 4.1.17]) and as valuations
\[
\gamma^*_B(\varphi_i) = \{ [M] \mid B^+ \vdash \varphi_i M \}, \quad \xi_0(x) = [x],
\]
where \([M] = \{ N \in M \mid M \cong N \} \) and \(B^+ \) is a particular extension of \(B \). Then he shows
\[
[\sigma]_{\gamma^*_B} = \{ [M] \mid B^+ \vdash \sigma M \}, \quad [M]_{\xi_0} = [M].
\]

Remark. It is easy to prove that the filter model is a continuous \(\lambda \)-model; see [1, §19.3], (\(\mathcal{F} \) is even an algebraic complete lattice). By an argument similar to the one in [3], we have \(\text{Th}(\mathcal{F}) = \beta \) (cf. [1, §16.4]). For the partial order \(\leq \) in the model \(\mathcal{F} \) one has \(\mathcal{Q} \leq 1 \leq I \). Therefore \((\mathcal{F}, \leq) \) is different from \((P\omega, \subseteq) \) and \((\beta, \subseteq) \equiv (I^\omega, \subseteq) \).
§4. Conservativity. Using a Prawitz normalization argument it will be shown that extended type assignment is conservative over that of Curry. Then the completeness for the latter theory follows from 3.10.

First we modify the extended type assignment theory.

4.1. Definition. (i) A large basis is an arbitrary set of statements \(\sigma M \) with \(\sigma \in T \) and \(M \in A \). To emphasize the difference, bases as in 1.1(i) and 2.1(ii) are called small.

(ii) Consider the type assignment system of 2.5 and replace rule \((\leq)\) by

\[
\frac{\sigma M \quad M \rightarrow \eta N}{\sigma N} \tag{\(\beta\eta\)}
\]

\(B \vdash ^* \sigma M \) denotes derivability in the resulting system where we allow \(B \) to be large.

4.2. Lemma. \(B \vdash \sigma M \Rightarrow B \vdash ^* \sigma M \).

Proof. The only thing to show is that \((\leq)\) is a derived rule in the \(\vdash ^* \) system: if \(\sigma \leq \tau \), then \(\sigma M \vdash ^* \tau M \). This is done by induction on the definition of \(\leq \) using rule \((\beta\eta)\).

Example. Let \(\sigma \rightarrow \tau \leq \sigma' \rightarrow \tau' \) be a consequence of \(\sigma' \leq \sigma \) and \(\tau \leq \tau' \). Then one has the following deduction:

\[
\frac{\sigma' x}{\vdash \sigma x} \quad \text{ind. hyp.} \quad \frac{\sigma x}{\vdash \sigma' \tau M} \quad (\rightarrow E) \quad \frac{\tau M x}{\vdash \tau' M x} \quad (\rightarrow I) \quad \frac{\sigma' \rightarrow \tau' \lambda x. M x}{\vdash \sigma' \rightarrow \tau' M} \tag{\(\beta\eta\)}.
\]

Remark. By Remark 2.10 the converse of 4.2 is also true if \(B \) is a small basis. We do not need this result, however. For large bases the modified system is somewhat stronger than the system of §2 with large bases: \(\varphi_0 \lambda x.zx \vdash ^* \varphi_0 z, \varphi_0 \lambda x. zx \vdash \varphi_0 z \).

4.3. Definition. Let \(D : B \vdash ^* \sigma M \).

(i) An \(\rightarrow \)-cut in \(D \) is a statement occurrence \(pZ \) in \(D \) which is the major premise of \((\rightarrow E)\) and is obtained by \((\rightarrow I)\) and immediately followed by \(k \geq 0 \) applications of \((\beta\eta)\). The length of this cut is \(k + 1 \).

(ii) An \(\cap \)-cut and its length are defined similarly.

(iii) The degree of a cut \(pZ \) is \(|\rho| \), the number of symbols in \(\rho \).

(iv) The ordinal of \(D \) is \(O(D) = \omega \cdot |\rho| + m \), where \(|\rho| \) is the highest degree of a cut in \(D \) and \(m \) is the sum of the lengths of cuts with degree \(|\rho| \); \(O(D) = 0 \) if \(D \) does not contain a cut.

(v) \(D \) is normal if \(O(D) = 0 \).

4.4. Example. The following two derivations are not normal:
4.5. Lemma (Subformula Principle). Let $D : B \vdash * \sigma M$ be normal. Then each predicate in D is subtype of σ or of a predicate in B.

Proof. Well known; see e.g. [10, pp. 41, 42].

4.6. Lemma Let $D : B \vdash * \sigma M$. Then there is a deduction $D[x := L] : B[x := L] \vdash * \sigma M[x := L]$ by replacing all free occurrences of x by L. Moreover $D[x := L]$ has the same tree structure and same ordinal as D (e.g. D is normal iff $D[x := L]$ is normal).

Proof. Obvious.

4.7. Lemma.

$$(\lambda x. M) N \xrightarrow{\beta \eta} PN$$

Proof. Since \rightarrow_{β} commutes with $\rightarrow_{\beta \eta}$, see [1, §3.3].

4.8. Lemma. Let $D : B \vdash * \sigma M$ have ordinal $O(D) \neq 0$. Then there is an M' and D' with

1. $M \rightarrow_{\beta} M'$,
2. $D' : B \vdash * \sigma M'$,
3. $O(D') < O(D)$.

Proof. Since $O(D) \neq 0$, there is a cut in D. Let $|\rho|$ be the highest cut degree in D and consider an innermost cut ρZ with this degree (i.e. in the subderivation of this cut there are only cuts of lower degree).

If the length of ρZ is > 2, then one can perform two consecutive applications of $\beta |\eta|$ at once obtaining a derivation $D' : B \vdash * \sigma M$ with lower ordinal.

If the length of ρZ is $= 2$, then D has a subderivation D_1 or D_2 as in 4.4 with the cut ρZ being $\sigma_1 \cap \sigma_2 M$ or $\sigma \rightarrow \tau \lambda x. M$.

If ρZ is the \cap-cut $\sigma_1 \cap \sigma_2 M$, then replace D_1 by

$${\sigma_1 M \over \sigma_1 N} \hspace{1cm} (\beta |\eta)$$

and one obtains a derivation $D' : B \vdash * \sigma M$ with lower ordinal (the only possibly created cut has degree $|\sigma| < |\sigma_1 \cap \sigma_2 | = |\rho|$).
If \(\rho Z \) is the \(\rightarrow \)-cut \(\sigma \to (\lambda x.M) \), then replace \(D_2 \) by

\[
\begin{align*}
\vdots & \\
\sigma N & \\
\tau M \ [x := N] & \\
\tau L &
\end{align*}
\]

(\(\beta \eta \))

using 4.6 and 4.7. Since \(PN \leftrightarrow L \) the subjects in part of the rest of \(D \) have to be reduced (by \((\beta \eta) \)) in order to match \(\tau L \). In this way one obtains a derivation \(D' \): \(B \vdash \sigma M' \) with \(M \leftrightarrow M' \) and \(O(D') < O(D) \). Duplicated cuts have degree \(<|\rho| \) (since \(\rho Z \) is innermost); possibly created cuts have degree \(|\sigma| \) or \(|\tau| < |\sigma \to \tau| = |\rho| \). Some extra applications of \((\beta \eta) \) may be needed in \(D' \) but only if \(\tau PN \) is followed by \((\land 1) \). But then no cut will be longer.

If the length of \(\rho Z \) is 1, then the argument is slightly simpler. \(\square \)

4.9. COROLLARY (NORMALIZATION THEOREM). If \(B \vdash \sigma M \), then there is a normal \(D \) and \(M' \) such that \(M \leftrightarrow M' \) and \(D: B \vdash \sigma M' \).

PROOF. Immediate by 4.8. \(\square \)

4.10. COROLLARY (CONSERVATIVITY). Let \(B, \sigma M \) be Curry statements. Then

\(B \vdash \sigma M \Rightarrow B \vdash \sigma M \).

PROOF. By 4.2 and 4.9 there is a normal \(D: B \vdash \sigma M' \) with \(M \leftrightarrow M' \). By 4.5 \(D \) is good as a Curry derivation. Hence \(B \vdash \sigma M' \). But then \(B \vdash \sigma M \) by \((Eq_\beta) \). \(\square \)

4.11. THEOREM (COMPLETENESS FOR CURRY TYPE ASSIGNMENT). Let \(B, \sigma M \) be Curry statements. Then

\(B \vdash \sigma M \Leftrightarrow B \vdash \sigma M \).

PROOF. \(B \vdash \sigma M \Leftrightarrow B \vdash \sigma M \) by 3.8, 4.10

\(\Rightarrow B \vdash \sigma M \) by 3.10. \(\square \)

The extended types allow us to characterize terms having a normal form or head normal form; the proof follows \([5]\).

4.12. LEMMA. Let \(D: B \vdash \tau M \) with \(D \) normal, \(\tau \not\in \omega \) and \(\tau M \) not obtained by \((\rightarrow 1) \) or \((\land 1) \) immediately followed by \(k \geq 0 \) applications of \((\beta \eta) \). Then \(M \) is of the form \(xM_1 \cdots M_n \).

PROOF. Induction on \(D \). The only interesting cases are when the last steps in \(D \) are \((\rightarrow E) \) or \((\land E) \) followed by \(k \geq 0 \) applications of \((\beta \eta) \). If it is \((\rightarrow E) \) then \(\tau M \) comes from \(\sigma \to \tau P, \sigma Q \), with \(\sigma \to \tau P \) either an assumption in \(B \) (then \(P \) is a variable); or the induction hypothesis applies \((\sigma \to \tau P \) is not obtained by \((\rightarrow I) \) since \(D \) is normal, nor by \((\land I) \)). The case \((\land E) \) is treated similarly. \(\square \)

4.13. THEOREM. (i) \(\exists B \exists \tau \not\in \omega \ B \vdash \tau M \Leftrightarrow M \) has a head normal form.
(ii) \(\exists B, \tau \{ B \vdash \tau M \) and \(\omega \) not in \(B, \tau \} \Leftrightarrow M \) has a normal form.

PROOF. (i) \((\Leftarrow) \) Induction on \(M \).

\((\Rightarrow) \) Let \(B \vdash \tau M, \tau \not\in \omega \). By 4.2 and 4.3 there is a normal \(D: B \vdash \tau M' \). Induction on \(D \). If \(\tau M' \) is obtained in \(D \) by \((\rightarrow E) \), then 4.12 applies. If it is obtained by \((\rightarrow I), (\land I) \) or \((\land E) \), then the induction hypothesis applies.
(ii) Similarly. ■

REMARKS. (i) A semantical proof of 4.13(ii) using soundness and the model P_ω is also possible.

(ii) It is easy to show that $\vdash \varphi_0 \rightarrow \varphi_0 M \iff M = \beta x.x$. Therefore type assignment is a recursively enumerable but not recursive theory (in fact Σ_1^0-complete).

REFERENCES