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Opposing Roles of JNK and p38 in
Lymphangiogenesis in Melanoma

Emmi Puujalka1, Magdalena Heinz1, Bastian Hoesel2, Peter Friedl1, Bernhard Schweighofer1,
Judith Wenzina1, Christine Pirker3, Johannes A. Schmid2, Robert Loewe1, Erwin F. Wagner4,
Walter Berger3 and Peter Petzelbauer1
In primary melanoma, the amount of vascular endothelial growth factor C (VEGF-C) expression and
lymphangiogenesis predicts the probability of metastasis to sentinel nodes, but conditions boosting VEGF-C
expression in melanoma are poorly characterized. By comparative mRNA expression analysis of a set of 22
human melanoma cell lines, we found a striking negative correlation between VEGF-C and microphthalmia-
associated transcription factor (MITF) expression, which was confirmed by data mining in GEO databases of
human melanoma Affymetrix arrays. Moreover, in human patients, high VEGF-C and low MITF levels in primary
melanoma significantly correlated with the chance of metastasis. Pathway analysis disclosed the respective
c-Jun N-terminal kinase and p38/mitogen-activated protein kinase activities as being responsible for the inverse
regulation of VEGF-C and MITF. Predominant c-Jun N-terminal kinase signaling results in a VEGF-Clow/MITFhigh

phenotype; these melanoma cells are highly proliferative, show low mobility, and are poorly lymphangiogenic.
Predominant p38 signaling results in a VEGF-Chigh/MITFlow phenotype, corresponding to a slowly cycling, highly
mobile, lymphangiogenic, and metastatic melanoma. In conclusion, the relative c-Jun N-terminal kinase and
p38 activities determine the biological behavior of melanoma. VEGF-C and MITF levels serve as surrogate
markers for the respective c-Jun N-terminal kinase and p38 activities and may be used to predict the risk of
metastasis in primary melanoma.
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INTRODUCTION
Most solid primary tumors induce lymphangiogenesis
and use the lymphatic network to seed to distant sites
(Podgrabinska and Skobe, 2014; Stacker et al., 2014). Among
skin tumors, melanoma is the most efficient in inducing
lymphangiogenesis (Shields et al., 2004). Even thin lesions
may metastasize (Balch et al., 2009) and number of tumor-
associated lymphatic vessels clearly correlate with the risk
for metastasis (Dadras et al., 2003; Pastushenko et al., 2014).

Vascular endothelial growth factor C (VEGF-C) is the most
potent inducer of lymphangiogenesis (Jeltsch et al., 1997).
Inhibition of lymphangiogenesis by blockade of VEGF-C or
its receptor VEGFR-3 prevents lymph node metastases in
animal models without affecting primary tumor growth
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(Podgrabinska and Skobe, 2014). Also in human cancer,
VEGF-C expression was found to correlate with metastasis
(Cianfarani et al., 2012; Doeden et al., 2009; Schietroma
et al., 2003).

Transcriptional regulation of VEGF-C gene involves
PI3K-Akt, extracellular signal-regulated kinase 1/2, NFkB,
and p38 pathways (Chen et al., 2013; Luangdilok et al.,
2011). In melanoma, Wnt1 (Niederleithner et al., 2012),
EGF (Bracher et al., 2013), and the met proto-oncogene
(Swoboda et al., 2012) regulate VEGF-C expression, but a
profound understanding for the heterogeneity of VEGF-C
expression in melanoma is missing. Characterization of
pathways regulating VEGF-C expression may define markers
in primary melanoma for predicting metastasis, thereby
avoiding sentinel node biopsy. Moreover, it may specify
novel targets for adjuvant treatment for advanced melanoma
as there is evidence that inhibition of lymphangiogenesis by
blocking VEGFR-3 in combination with VEGFR-2 diminishes
distant metastasis in animal models (Matsui et al., 2008;
Roberts et al., 2006).

Microphthalmia-associated transcription factor (MITF) is a
key protein involved in melanocyte-specific pathway regu-
lation (Mort et al., 2015). In melanoma, expression levels are
highly heterogeneous. High expression results in melanocyte
differentiation, intermediate levels in proliferation, and low
levels in an invasive cell phenotype. The amount of MITF
expression is at least partially responsible for a phenomenon
called “phenotype switching,” which describes the difference
between tumor cells growing locally with poor metastatic
potential and cells that have acquired a slow proliferating,
stem cell-like phenotype with high invasive potential
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(Carreira et al., 2006; Cheli et al., 2012; Hoek and Goding,
2010; Koludrovic and Davidson, 2013).

On the basis of mRNA expression arrays from 22 human
melanoma lines, we found a striking negative correlation
between expression of VEGF-C and MITF in human mela-
noma cell lines. These data were confirmed by GEO database
screening and by immunohistochemistry from human sam-
ples. Here we describe how the inverse expression pattern of
VEGF-C and MITF in melanoma is under the control of c-Jun
N-terminal kinase (JNK) and p38-mitogen-activated protein
kinase (MAPK) signaling pathways.

RESULTS
Negative correlation between VEGF-C and MITF in cell lines
and clinical samples

To understand mechanisms underlying the wide range of
constitutively expressed VEGF-C levels in 22 human mela-
noma cell lines (Supplementary Figure S1a online), Pearson
correlation analysis of Agilent microarray mRNA data was
performed (probe IDs in Supplementary Figure S1b) revealing
a single best negative correlation of VEGF-C with MITF
(Figure 1a). Also genes involved in MITF regulation and MITF
target genes (Hartman and Czyz, 2015; Hoek et al., 2008a,
2008b; Howlin et al., 2015) negatively correlated with
VEGF-C and positively with MITF (Supplementary Table S1
online). The BRAF and NRAS status as well as the origin
of cell lines did not correlate with VEGF-C or MITF
levels (Supplementary Figure S1d). The negative correlation
between VEGF-C and MITF mRNA expression was confirmed
in Affymetrix arrays from the GEO database analyzing human
melanoma samples (11 datasets, Figure 1b; the correspond-
ing scatter plots are presented in Supplementary Figure S1f).

Next, VEGF-C and MITF protein expression levels were
semiquantitatively analyzed in human melanoma metastasis
samples (n ¼ 103) by immunohistochemistry and staining
intensities were scored on a scale 1e3 (exemplified in
Figure 1c). Results exhibit that MITF protein expression
negatively correlates with VEGF-C protein expression
(Figure 1d). IgG isotype controls for antibodies and positive
controls (A375 cells overexpressing VEGF-C) are shown in
Supplementary Figure S1e.

Finally, VEGF-C and MITF protein expression levels were
semiquantitatively analyzed in a retrospective study from
human primary melanoma samples diagnosed between 2008
and 2010. Patients without subsequent metastasis (n ¼ 22;
age 65 þ 16 years, Breslow 2 þ 1.7 mm) had a documented
tumor-free follow-up of 5.5 þ 1 years. In patients with
metastasis (n ¼ 9; age 69 þ 10 years, Breslow 5.7 þ 5.2 mm),
the interval between excision and metastasis was 3 þ 3.7
months. Patients with metastasis had significantly higher
VEGF-C and lower MITF expression levels in primary lesions
compared with the patients without metastasis (Figure 1e).

Thus, these four independent approaches consistently
establish the negative correlation of MITF and VEGF-C mRNA
and protein expression.

The JNK pathway determines VEGF-C and MITF expression
levels in melanoma

To understand regulatory mechanisms of VEGF-C and
MITF, Agilent microarray mRNA data were subjected to
pathway analysis. We found a negative correlation between
Journal of Investigative Dermatology (2016), Volume 136
JNK/MAPK pathway target genes with VEGF-C and a positive
correlation with MITF. In contrast, p38/MAPK targets, nega-
tive regulators of JNK/MAPK activity, and NFkB targets
positively correlated with VEGF-C and negatively with MITF
mRNA expression. A positive correlation with VEGF-C was
also found for VEGF-C cleavage genes and with matrix
metalloproteinases (Supplementary Table S1). For VEGF-C,
MITF, sex determining region Y-box 10 (SOX10), and SOX9
genes, the correlation analysis based on microarrays was
confirmed by RT-PCR (Supplementary Figure S1c).

Assessing JNK and p38 pathway activities revealed high
JNK phosphorylation (p-JNK) in VEGF-Clow cells and promi-
nent p38 phosphorylation (p-p38) in VEGF-Chigh cells
(Figure 2a). Expression of total JNK or p38 proteins did not
correlate with the VEGF-C expression (Supplementary
Figure S2a online). Treatment of cells with specific in-
hibitors confirmed the regulatory role of these pathways: the
JNK inhibitor JNK-IN-8 increased and the p38 inhibitor
SB202190 decreased VEGF-C mRNA expression in most of
the cell lines (Supplementary Figure S2b and c). The func-
tionality of the inhibitors was confirmed, and the effects were
dose dependent (Supplementary Figure S2deg).

Silencing of JNK1/2 expression in melanoma cells with
lentiviral shRNA confirmed the data with JNK-IN-8. The
cell lines selected for JNK1/2 silencing were both p-JNKhigh/
p-p38low (VM41) and p-JNKlow/p-p38high (VM47 and VM24)
(Figure 2a). The knockdown was effective (Figure 3a) and
significantly increased VEGF-C mRNA and protein expres-
sion (Figure 2b and c) compared with shControl cells.
T-5224, which inhibits the JNK downstream target c-Fos
(FBJ murine osteosarcoma viral oncogene homolog) (Guinea-
Viniegra et al,. 2012), also increased VEGF-C mRNA
expression similarly to JNK silencing (Figure 2d). Silencing
JNK1 or JNK2 alone did not alter VEGF-C expression
(Supplementary Figure S2h). Unexpectedly, overexpression
of JNK1/2 did also not change VEGF-C mRNA expression
(Supplementary Figure S2iek), implying that VEGF-C is not
directly regulated by the JNK pathway.

Conversely, silencing JNK1/2 significantly decreased
MITF mRNA and protein expression, as well as mRNA
levels of the MITF upstream regulator SOX10 and the MITF
downstream target BCL2A1 (Figure 2e and f) (Hartman and
Czyz, 2015). Accordingly, JNK1/2 overexpression increased
MITF expression (Supplementary Figure S2i), indicating that
the JNK pathway regulates MITF gene transcription. More-
over, the c-Fos inhibitor T-5224 also reduced MITF mRNA
expression (Figure 2g). Taken together, JNK1/2 regulates
MITF expression by involving c-Fos. Of note, MITF does
not regulate VEGF-C expression; overexpression did not
alter VEGF-C mRNA or protein levels (Supplementary
Figure S2leo).

VEGF-C expression is upregulated by p38/NFkB
On the basis of the correlation analysis in Supplementary
Table S1, we analyzed the effects of the JNK knockdown
on p38 and NFkB activities. Silencing of JNK increased
phosphorylation of p38, as previously described (Wagner and
Nebreda, 2009), and also of p65/NFkB, whereas p44/42
phosphorylation remained unchanged compared with the
controls (Figure 3a and b, Supplementary Figure S3a online).



Figure 1. Negative correlation between VEGF-C and MITF expression. (a) Fitted regression between MITF and VEGF-C mRNA expression from Agilent arrays

in 22 human melanoma cell lines. (b) Correlation between VEGF-C and MITF mRNA in Affymerix melanoma arrays from the GEO repository; *P < 0.05.

(c) Examples of IHC-staining scoring of VEGF-C (top) and MITF (bottom) protein expression in serial sections of human melanoma; bar ¼ 100 mm. (d) VEGF-C

and MITF expression in human melanoma metastasis tissues (n ¼ 103) scored as exemplified in (c); *P < 0.05, mean � SD. (e) VEGF-C and MITF expression

in human primary melanoma tissues (n ¼ 33) scored as exemplified in (c). The difference between VEGF-C and MITF expression in primary lesions

of patients with (n ¼ 9) and without (n ¼ 24) metastasis during the follow-up is significant; *P < 0.05, mean � SD. IHC, immunohistochemistry; MITF,

microphthalmia-associated transcription factor; VEGF-C, vascular endothelial growth factor C.
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Figure 2. The ratio of JNK and p38

activities determines VEGF-C and

MITF expression levels. (a) Phospho/

total protein ratios for JNK and p38 in

melanoma lines quantified from

western blots (n ¼ 3). Cells are ranked

according to VEGF-C expression;

mean � SD. (b) VEGF-C mRNA

expression determined by RT-PCR in

indicated cells; *P < 0.05, mean �
SD. (c) VEGF-C protein expression

assayed by ELISA in indicated cells;

*P < 0.05, mean � SD. (d) VEGF-C

mRNA expression determined by

RT-PCR in indicated cells with 10 mM
c-Fos inhibitor or DMSO for 24 hours;

*P < 0.05, mean � SD. (e) MITF

mRNA expression determined by

RT-PCR in indicated cells; *P < 0.05,

mean � SD. (f) RT-PCR for indicated

MITF pathway genes in indicated

cells; mean � SD. (g) MITF mRNA

expression determined by RT-PCR in

indicated cells with 10 mM c-Fos

inhibitor or DMSO for 24 hours;

*P < 0.05, mean � SD. JNK, c-Jun

N-terminal kinase; MITF,

microphthalmia-associated

transcription factor; VEGF-C, vascular

endothelial growth factor C.
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Activation of the p38 pathway by shJNK1/2 or by JNK-IN-8
was confirmed by showing increased mRNA levels of the
p38 target SOX9 (Sosa et al., 2014) (Figure 3c,
Supplementary Figures S2h and S3b). Of note, over-
expression of SOX9 did not change VEGF-C expression
(Supplementary Figure S3c and d).

Importantly, JNK silencing not only increased VEGF-C
expression, but also the expression of NFkB targets IL6 and
IL8 (Figure 3c). Moreover, the expression of these genes was
reduced by treating cells with p38 or NFkB inhibitors
(Supplementary Figure S3e), supporting the role of p38/NFkB
Journal of Investigative Dermatology (2016), Volume 136
in their regulation. Also total p65 protein levels follow the
pattern of VEGF-C expression in melanoma cells
(Supplementary Figure S3f). To confirm the role of NFkB in
regulating VEGF-C, we determined the DNA-binding activity
of p65 by pulldown (avidin-biotin complex-DNA [ABCD]
assay). We found significantly higher p65 binding to oligo-
nucleotides carrying the NFkB consensus site, or to oligo-
nucleotides containing a stretch of the VEGF-C promoter
including the putative NFkB site in shJNK1/2 cells as
compared with the shControls (Figure 3d). Appropriate
controls are depicted in Figure 3e.



Figure 3. Increased p38 and NFkB

activity in shJNK1/2 cells. (a)

Representative western blots for

indicated proteins in shJNK1/2

and control cells. (b) Quantification

of phospho-p65 in shJNK1/2

and control cells by immuno-

fluorescence (as exemplified in

Supplementary Figure S3a online);

n ¼ 10/group; *P < 0.05, mean �
SD. (c) RT-PCR for p38- (SOX9) and

NFkB-pathway targets (IL6, IL8);

mean � SD. (d) DNA-binding

activity of p65 by pulldown (ABCD

assay) in shJNK1/2 and control

samples from VM41 (NFkB oligos)

and VM47 (VEGF-C oligos) cells.

Top: representative p65 pulldowns

with biotinylated oligonucleotides.

Bottom: corresponding quantifica-

tion of bound p65 from the

pulldowns; n ¼ 3, *P < 0.05,

mean � SD. (e) Specificity controls

for the ABCD assays with p65/GFP

overexpressing HEK293 cells. Top:

NFkB consensus. Bottom: NFkB-
binding site from the VEGF-C

promoter. ABCD, avidin-biotin

complex-DNA; CC, cold control;

GFP, green fluorescent protein; HEK,

human embryonic kidney; Input, cell

lysate; JNK, c-Jun N-terminal kinase;

MPD, mutated oligonucleotide;

NC, no oligonucleotides; PD,

biotinylated oligonucleotide, SOX,

sex determining region Y; VEGF-C,

vascular endothelial growth factor C.
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Inhibition of JNK1/2 reduces proliferation but induces an
invasive phenotype in vitro

Characterizing the effects of the JNK1/2 knockdown
on growth profiles, we found significantly reduced
proliferation and reduced entering to the S-cell cycle
phase in shJNK1/2 cells (Figure 4a and b, Supplementary
Figure S4a online). In contrast, cell migration in a
wound healing assay and cell invasion in a Matrigel assay
were significantly increased in shJNK1/2 cells (Figure 4c
and d, Supplementary Figure S4b). JNK1/2 silencing also
caused increased expression of matrix metalloproteinase
7 and/or matrix metalloproteinase 9 mRNA expression
(Supplementary Figure S4c). Moreover, supernatants of
shJNK1/2 cells induced significantly increased sprouting
of human lymphatic endothelial cells in 3D lymphatic
endothelial cell-spheroid sprouting assay as compared
with spheroids treated with shControl supernatants
(Figure 4e and f). Taken together, shJNK1/2 cells are
poorly proliferative, but highly invasive and lymphangio-
genic in vitro.
www.jidonline.org 971
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Figure 4. Inhibition of JNK1/2

reduces proliferation but induces

an invasive phenotype. (a) Cell

proliferation as determined by the

Quant-it PicoGreen method in

shJNK1/2 and control cells; mean �
SD. (b) Cell cycle analysis as

determined by FACS in shJNK1/2 and

control cells. (c) Cell migration assays

quantified as percentage of cell free

growth surface area (exemplified in

Supplementary Figure S4b online) in

shJNK1/2 and control cells; *P < 0.05,

mean � SD. (d) Matrigel invasion

assays (16 hours) in shJNK1/2 and

control cells; *P < 0.05, mean � SD.

(e) Quantification of cumulative

sprout length (mm) of spheroids

composed of lymphatic endothelium

treated with supernatants from

shJNK1/2 or control VM41 cells.

Positive control: supernatants of A375

cells overexpressing VEGF-C; negative

control: unconditioned medium;

n ¼ 10/group, *P < 0.05, mean � SD.

(f) Representative images of spheroids

treated with indicated supernatants

for 6 hours; original

magnification �20. JNK, c-Jun

N-terminal kinase; VEGF-C, vascular

endothelial growth factor C.
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Lymphangiogenic properties of melanomas depend on JNK
activity in vivo

To define lymphangiogenic capabilities of melanomas with
different p-JNK/p-p38 ratios in vivo, we employed a mouse
xenograft and a chicken chorioallantoic membrane model.
Lymphangiogenesis was quantified by Prox1 (Prospero
homeobox protein 1) mRNA expression as a marker for the
amount of lymphatic vessels (Niederleithner et al., 2012). In
both in vivo models, JNKhigh/p38low cells produced signifi-
cantly less VEGF-C and had less Prox1 expression,
compared with JNKlow/p38high cells (Figure 5a). There was
no correlation between tumor growth and VEGF-C
Journal of Investigative Dermatology (2016), Volume 136
expression (Supplementary Figure S5a online). We
confirmed the relationship between low JNK activity and
high lymphangiogenesis in VM41 and VM47 xenografts
after JNK1/2 silencing. shJNK1/2 tumors grew slowly and
were hardly palpable even after 43 days (Supplementary
Figure S5b and c), but even these small tumors showed
significantly increased VEGF-C and Prox1 but decreased
MITF expression compared with shControls (Figure 5b). On
the basis of our results, we propose that the ratio of JNK/p38
activity is responsible for the opposing regulation of VEGF-
C and MITF leading to alternative melanoma phenotypes
(Figure 5c).



Figure 5. JNK activity determines

VEGF-C expression and

lymphangiogenesis in melanoma

in vivo. (a) Xenograft mouse (left

panel) and chicken CAM (right panel)

model with indicated human

melanoma cells. Human VEGF-C

mRNA (left y-axis) and mouse or

chicken Prox1 mRNA (right y-axis)

was quantified by RT-PCR; n ¼ 3/

group, mean � SD. (b) Xenograft

mouse model with indicated

melanoma cells carrying JNK1/2

knockdown (shJNK1/2) or control

vector (shControl), harvested after

43 days. Human VEGF-C and mouse

Prox1 mRNA was quantified by

RT-PCR (left panel). Mouse Prox1

and human MITF protein expression

determined by western blotting and

quantified as Prox1/b-actin or MITF/

b-actin ratios (right panel). VM41,

n ¼ 8/group; VM47, n ¼ 4/group;

*P < 0.05, mean � SD. (c) Diagram

of the proposed regulatory pathways

for MITF and VEGF-C expression in

human melanoma. CAM,

chorioallantoic membrane; JNK, c-Jun

N-terminal kinase; MITF,

microphthalmia-associated

transcription factor; VEGF-C, vascular

endothelial growth factor C.
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DISCUSSION
VEGF-C is the best studied and strongest lymphangiogenic
growth factor (Alitalo and Detmar, 2012), and as expected,
the lymphangiogenic potential of our melanoma cells
directly correlates with VEGF-C levels. VEGF-D, another
potent lymphangiogenic growth factor (Tammela et al.,
2005), is poorly expressed in our melanoma cells and
expression does not correlate with VEGF-C or MITF (data not
shown). MITF is involved in melanocyte-specific pathway
regulation (Mort et al., 2015). MITF expression levels deter-
mine the growth rate and invasive potential of melanoma;
MITFlow melanomas display a migratory and invasive
phenotype (Carreira et al., 2006; Cheli et al., 2012; Hoek and
Goding, 2010; Koludrovic and Davidson, 2013). Thus, low
MITF expression associated with high levels of VEGF-C re-
sults in cells with high migratory potential combined with
strong induction of lymphangiogenesis, thereby multiplying
chances of metastasis. Here we modulate JNK/p38 pathway
activities and create conditions recapitulating the melanoma
phenotype switch in an experimental model. We show
that high JNK activity results in high MITF levels and in a
proliferative, but poorly migratory and lymphangiogenic
phenotype, whereas high p38 activity results in low MITF
and high VEGF-C expression, resulting in highly mobile
www.jidonline.org 973
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and lymphangiogenic phenotype. Using MITF and VEGF-C
expression levels as surrogate markers for the respective
JNK and p38 activities, we found a VEGF-Chigh/MITFlow

phenotype mostly in primary lesions of those patients that
exhibited metastasis to sentinel nodes at the time of excision
or shortly thereafter.

Our studies demonstrate that MITF is a downstream target
of JNK. The knockdown decreases and upregulation of JNK
increases MITF levels. Furthermore, by inhibiting the JNK
downstream target c-Fos, MITF expression was reduced
likewise. The link between JNK and MITF is strengthened by
the fact that both are known regulators of cell proliferation
and target the anti-apoptotic oncogene BCL2 (Deng et al.,
2001; McGill et al., 2002). Accordingly, in shJNK1/2 cells,
not only MITF but also BCL2A1 was significantly down-
regulated. Of note, in other cell types such as osteoclasts, p38
may increase MITF activity, albeit on a posttranslational level
(Mansky et al., 2002).

The regulation of VEGF-C via JNK activity is more
complex. On the basis of the JNK-IN-8-inhibitor effects,
we initially assumed that JNK might act as a suppressor of
VEGF-C expression, but overexpression of JNK1/2 did not
alter VEGF-C expression. We also excluded the extracellular
signal-regulated kinase pathway as being responsible for
changes in VEGF-C and MITF expression, because inhibition
of JNK in our cells did not lead to changes in p44/42 activity
and cell lines with BRAFV600E mutation did not show
increased VEGF-C expression. Given the clear antipodal
phosphorylation pattern of JNK and p38 in our cells, we
considered a p38-dependent regulation of VEGF-C expres-
sion. p38 signaling is known to increase VEGF-C expression
through NFkB activation in breast cancer cells (Tsai et al.,
2003). This was reproducible in our melanoma cells. We
found increased p38 and p65 phosphorylation in shJNK1/2
cells. Moreover, on silencing JNK, p65 bound more effi-
ciently to oligonucleotides carrying the NFkB site within the
VEGF-C promoter (Du et al., 2014) when compared with the
controls.

The mutual interference between the JNK and p38 path-
ways has been described (Wagner and Nebreda, 2009). In
our experiments, this interdependence between the JNK/p38
pathways does not appear to be an artifact of the JNK
knockdown, because the basal phosphorylation levels of JNK
or p38 in our cell lines concur with this pattern: high basal
phosphorylation levels of JNK correlated with low p38
phosphorylation and vice versa, indicating that this is an
intrinsic regulatory signal. The interdependence of JNK and
p38 is mirrored by the fact that both may compete for
proteins of the AP1 complex to form signaling-competent
heterodimers; enhanced JNK signaling may reduce p38
signaling and vice versa (Karin, 1995). Interestingly, the c-
Fos/AP1 inhibitor T-5224 inhibited expression of MITF and
concomitantly augmented VEGF-C expression. Although the
specificity of T-5224 for c-Fos is not well characterized, it is
possible that T-5224 impairs the formation of JNK-induced
c-Jun-c-Fos heterodimers and favors p38 signaling through
increased availability of c-Jun for the formation of c-Jun-ATF2
(activating transcription factor 2) heterodimers. We have not
directly addressed this issue, but in our melanoma cells c-Fos
mRNA expression correlates positively with MITF and
Journal of Investigative Dermatology (2016), Volume 136
negatively with VEGF-C, whereas ATF2 mRNA expression
correlates negatively with MITF and positively with VEGF-C
expression (Supplementary Figure S6 online). This negative
relationship between ATF2 and MITF was previously
described in melanocytes expressing transcriptionally inac-
tive ATF2 resulting in increased MITF expression (Shah et al.,
2010).

Another interesting aspect is that SOX10 expression fol-
lows MITF levels and SOX9 those of VEGF-C. For SOX10 and
MITF, this is not unexpected as SOX10 transactivates MITF
gene expression and both are markers of proliferative
phenotype (Verfaillie et al., 2015). SOX9 is a p38 down-
stream target (Tew and Hardingham, 2006) that is upregu-
lated on downregulation of SOX10 (Shakhova et al., 2015).
We found the respective JNK and p38 activities responsible
for two phenotypes of melanoma: JNKlow/p38high activity
results in a SOX9high/VEGF-Chigh phenotype, which is inva-
sive and lymphangiogenic. In contrast, JNKhigh/p38low activ-
ity results in a MITFhigh/SOX10high phenotype, which is
proliferative. This raises the question whether a therapeutic
increase in JNK activity in advanced melanoma may switch
cells into a proliferative, but poorly mobile and lym-
phangiogenic phenotype, which may then be less able to
undergo hypoxia-induced mesenchymal transition and be
better targeted by, for example, DNA alkylating agents.
Nonetheless, using MITF and VEGF-C expression levels as
surrogate markers for the respective JNK and p38 activities,
we show that high VEGF-C and low MITF levels in primary
lesions allow predicting metastasis. This conclusion is based
on a retrospective analysis of a limited number of cases and
requires confirmation in a prospective study, but underscores
the relevance of the JNK and p38 for melanoma progression.

METHODS
Methods for cell culture, Western, ELISA, proliferation assay, cell

cycle analysis, migration and invasion assays, spheroid sprouting

assay, and immunofluorescence are described in Supplementary

Materials online.

Microarrays analysis

mRNA expression patterns of 22 patient-derived melanoma cell

lines were determined by Agilent.SingleColor.14850 (4 � 44K

format) (Mathieu et al., 2012) and analyzed with GeneSpringGX

software (Agilent Technologies, Santa Clara, CA) using default pa-

rameters (Guided Workflow). Samples were thresholded to 1, shifted

to 75% percentile, and the baseline was set to medians of all sam-

ples. The normalized mRNA values, deposited under accession

number GSE71122 at GEO/NCBI database (http://www.ncbi.nlm.

nih.gov/geo/), were used in the Pearson correlation analysis with

IBM SPSS Statistics 21 (Armonk, NY). For probe IDs see

Supplementary Figure S1c.

The GEO/NCBI database was also used to correlate VEGF-C and

MITF mRNA expression in 11 different studies encompassing 429

patients. Probes IDs were 209946_at for VEGF-C and 207233_s_at

for MITF.

Antibodies and reagents

Antibodies were anti-phospho-JNK (#4668), anti-stress-activated

protein kinase/JNK (#9258), anti-phospho-p38 (#4511), anti-p38

MAPK (clone D13E1, #8690), anti-phospho-p44/42 (#9101), anti-

phospho-c-Jun (#3270), and anti-phospho-p65 (#3033) (all Cell

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Signaling Technology, Danvers, MA). Anti-MITF (ab12039) (Abcam,

Cambridge, UK), NCL-MITF (MITF-S) (Leica Biosystems, Wetzlar,

Germany), anti-p65 (sc-109) (Santa Cruz, Dallas TX), anti-Prox1

(DP3501PX) (Acris, Herford, Germany), anti-b-actin (A2228), DAPI

(D9542) (Sigma-Aldrich, St. Louis, MO), biotinylated secondary

antibodies from Vector Laboratories (Burlingame, CA), and Alexa

Fluor488 labeled secondary antibody (A11070) (Life Technologies,

Thermo Fisher Scientific, Waltham, MA). For immunohistochemistry

we used NCL-MITF (Leica Biosystems) and anti-VEGF-C (AF752)

(R&D Systems, Minneapolis, MN).

Kinase inhibitors used were JNK-IN-8, NFkB-activation inhibitor

481406 (both Merc Millipore, Billerica, MA) and SB202190 (Sigma-

Aldrich), and AP1/c-Fos inhibitor T-5224 was described earlier

(Aikawa et al., 2008).

Immunohistochemistry

Melanoma metastases used in Figure 1d were from an unselected

group of patients (primary tumors had a mean Breslow of 3 � 2.2

mm). From paraffin blocks, tissue arrays were produced as published

previously (Guinea-Viniegra et al., 2012). In brief, 0.5-mm punches

were taken out of the paraffin-embedded melanoma metastasis by

parallel viewing of hematoxylin and eosin stained sections,

embedded into a new paraffin block and processed as described

above.

Human primary melanoma tissue samples used in Figure 1e were

from patients diagnosed between 2008 and 2010 and selected based

on a Breslow of > 1 mm. Tissues were cut into 5 mm sections,

deparaffinized and subjected to standard immunohistochemistry

(Heinz et al., 2014). Slides were digitalized with ScanScope CS2

(Aperio Technologies, Vista, CA) and the stainings were quantified

by a trained dermatopathologist blinded to the clinical status of the

patient as exemplified in Figure 1c.

Real time PCR

RNA extracted with an RNeasy Mini kit (Qiagen, Hilden, Germany)

was reverse transcribed to cDNA with a Revert Aid H First Strand

cDNA kit (Life Technologies) using random hexamer primers. For RT-

PCR, the TaqMan RT-PCR master mix and FAM primers (both

Applied Biosystems, Foster City, CA) were used. Cycling parameters

were 50 �C for 2 minutes, 95 �C for 10 minutes, followed by 40

cycles at 95 �C for 10 seconds and 60 �C for 1 minute. Glyceral-

dehyde-3-phosphate dehydrogenase (human or chicken) and b2
microglobulin (mouse) were run as housekeeping genes. The mean

Ct-value of the housekeeping gene was subtracted from the mean

Ct-value of gene of interest (DCt). The DCt of “treatment” samples

was subtracted from the DCt of control samples (DDCt) and fold

changes were calculated by the formula 2^(-DDCt). RT-PCRs were

ran on the StepOnePlus program and analyzed with the StepOnePlus

v2.0 software (Applied Biosystems).

Chicken mRNA was quantified with the QuantiTect SYBR Green

(Qiagen) reagent. Chicken Prox1 primers: forward 50-GTCGCCGAA

CCACCACTTGAAAA-30, reverse 50-CCACTTGATGAGCTGAGAG

GT-30; chicken glyceraldehyde-3-phosphate dehydrogenase primers:

forward 50-CCTGCTGCCTAGGGAAGG-30, reverse 50-CAGATCAGT

TTCTATCAGCCTCT-30 (Eurofins Genomics, Luxembourg).

Plasmid constructs, cloning, transfection, and viral infection

JNK1/2 silencing was done with shRNA constructs from S. Andreadis

carrying the sequences: JNK1/2: AAAGAATGTCCTACCTTCT, JNK1:

GGGCCTACAGAGAGCTAGTTCTTAT, JNK2: GCCAACTGTGAGG

AATTATGTCGAA embedded in a second generation lentiviral
pLVTHM backbone coexpressing green fluorescent protein (GFP)

(Lee et al., 2011). The packaging plasmid psPAX2 and the envelope

plasmid pMD2.G (Addgene plasmids #12260 and #12259, from

Didier Trono) were cotransfected using Lipofectamine2000 (Invi-

trogen, Carlsbad, CA) into 293T-cells. The GFP-pLVTHM vector was

used as a negative control (Addgene #12247). Media containing

lentiviral particles were collected 48 hours after infection and added

to melanoma cells in 2/1 ratio with RPMI and 6 mg/ml Polybrene

(Santa Cruz). Cells were then sorted for GFP expression.

Plasmids for JNK1/2 overexpression (JNK1a1/1b1 and JNK2a1/

2b1 pCDNA3-Flag) were from Roger Davis (Addgene #13753,

#13754, #13756, and #13798), and the MITF-Flag-pCMV plasmid

was from J. Vachtenheim, Charles University Prague. Transient

overexpression was achieved by using Lipofectamine2000; cells

were analyzed for mRNA and protein expression 72 hours later. The

MITF-Flag insert was cut out of the pCMV backbone and cloned into

retroviral pBABE-puro backbone (Hartmut Land, Jay Morgenstern,

and Bob Weinberg, Addgene #1764). Retroviral particles were

collected from 293T-cells expressing the MITF-pBABE plasmid,

together with pUMVC and pCMV-VSV-G (Bob Weinberg, Addgene

#8449 and #8454), as described above. The SOX9-pcDNA-50-UT

used for transient SOX9 overexpression was from Benoit de

Crombrugghe, University of Texas, USA. The plasmid used for

overexpression of VEGF-C was described earlier (Niederleithner

et al., 2012). P65-pEGFP-C1 used for the ABCD assay was

described earlier (Schmid et al., 2000). pBABE-puro-hTERT-HA was

from Bob Weinberg, Addgene #1772.

ABCD assays

The ABCD assay was used to determine p65 DNA binding activity

using oligonucleotides with an NFkB consensus sequence and

oligonucleotides with a stretch of VEGF-C promoter sequence

including the putative NFkB site (Du et al., 2014). The sequences

of 50 biotinylated NFkB consensus were: forward 50-GGGAAA

TTCCCGGAAATTCCCGGAAATTCCCGGAAATTCC-30, reverse 50-
GGAATTTCCGGGAATTTCCGGGAATTTCCGGGAATTTCCC-30. The
sequences of 50 biotinylated VEGF-C promoter sequence were:

forward 50-GAGGGAAACGGGGAGCTCCAGGGAGGAGGGAA

ACGGGGAGCTCCAGGGAGGAGGGAAACGGGGAGCTCCAGG

GA-30, reverse 50-TCCCTGGAGCTCCCCGTTTCCCTCCTCCCTGG

AGCTCCCCGTTTCCCTCCTCCC TGGAGCTCCCCGTTTCCCTC-30.
The sequences of 50 biotinylated mutant VEGF-C promoter sequence

were: forward 50-GAGGGAAACGGTTCGCTCCAGGGAGGAGGG

AAACGGTTCGCTCCAGGGAGGAGGGAAACGGTTCGCTCCAGG

GAG-30, reverse 50-CTCC CTGGAGCGAACCGTTTCCCTCCTCCCTG

GAGCGAACCGTTTCCCTCCTCCCTGGAGCGAACCGTTTCCCTC-30.
The protocol was described earlier (Sahin et al., 2014). Briefly, cells

were lysed and incubated in Buffer H containing 50 mM KCl and

oligonucleotides. Specificity of the oligonucleotides was assessed

using nonbiotinylated oligonucleotides (cold control) at 10-fold

excess and oligonucleotides with a mutated NFkB site for the

VEGF-C promoter sequence.

In vivo experiments

The mouse xenograft model was described earlier (Loewe et al.,

2006; Niederleithner et al., 2012). Briefly, melanoma cells (2 �
106 cells/mouse) were injected intradermally to the flanks of 8

weeks’ female hairless severe combined immunodeficient mice

(Crl:SHO-PrkdcscidHrhr, Charles River Laboratories, Wilmington,

MA). Tumors were measured with a caliper and the volume was

calculated with the formula V ¼ (p/6) � (length) � (width)2. The
www.jidonline.org 975
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tumors were excised at sizes of 400 mm3. The tumors from mela-

noma cell lines expressing either shControl or shJNK1/2 plasmids

were excised after 43 days because of growth retardation of the

shJNK1/2 tumors.

Eggs were from white Leghorn chickens (regional farmer,

Gloggnitz, Austria). Melanoma cells (0.5 � 106) in RPMI (without

supplements) were placed onto the chorioallantoic membrane of

10-day-old embryos. Five days later, visible tumors with a diameter

of approximately 5 mm that had formed (sizes indistinguishable

between groups) were excised, lysed in RLT buffer (Qiagen) with 1%

b-ME, mRNA extracted, and quantified by RT-PCR.

Statistics

All data are results of at least three independent experiments per-

formed at least twice; data are expressed as mean � SD. When

comparing two groups, significance was assessed by two-sided

Student’s t-test. For comparison of more than two groups, one-way

ANOVA followed by Tukey’s honestly significant difference test

was used. For the statistical analysis of immunohistochemistry

stainings in correlation with metastasis (Figure 1e), the Mann-

Whitney U-test was performed. The correlations between two vari-

ables were assessed as the Pearson product-moment correlation

coefficient. All statistical analysis was done with IBM SPSS

Statistics 21.

Study approval

All in vivo experiments followed the Declaration of Helsinki pro-

tocols. Retrieval of human melanoma sections for immunohistology

was according to ethics committee permission 405/2006 and

extension 075/09/2014 after written informed consent. All animal

experiments were approved and executed according to the guide-

lines of the animal care and use committee of Medical University of

Vienna, ethics permissions BMBWK-66.009/0192-II/3b/2012 and

BMBWK-66.009/0211-WF/II/3b/2014.
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Uluckan (Spanish National Cancer Research Centre) for critically reading the
manuscript, Karin Neumüller, Monika Weiss, and Ingrid Fae for technical
assistance, and the staff of the Department of Biomedical Research at the
Medical University of Vienna.

SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at www.
jidonline.org, and at http://dx.doi.org/10.1016/j.jid.2016.01.020.

REFERENCES

Aikawa Y, Morimoto K, Yamamoto T, Chaki H, Hashiramoto A, Narita H,
et al. Treatment of arthritis with a selective inhibitor of c-Fos/activator
protein-1. Nat Biotechnol 2008;26:817e23.

Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in
cancer progression. Oncogene 2012;31:4499e508.

Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR,
et al. Final version of 2009 AJCC melanoma staging and classification.
J Clin Oncol 2009;27:6199e206.

Bracher A, Cardona AS, Tauber S, Fink AM, Steiner A, Pehamberger H, et al.
Epidermal growth factor facilitates melanoma lymph node metastasis by
influencing tumor lymphangiogenesis. J Invest Dermatol 2013;133:230e8.

Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf
regulation of Dia1 controls melanoma proliferation and invasiveness.
Genes Dev 2006;20:3426e39.
Journal of Investigative Dermatology (2016), Volume 136
Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P, et al.
Hypoxia and MITF control metastatic behaviour in mouse and human
melanoma cells. Oncogene 2012;31:2461e70.

Chen JC, Chang YW, Hong CC, Yu YH, Su JL. The role of the VEGF-C/VEGFRs
axis in tumor progression and therapy. Int J Mol Sci 2013;14:88e107.

Cianfarani F, Mastroeni S, Odorisio T, Passarelli F, Cattani C,
Mannooranparampil TJ, et al. Expression of vascular endothelial growth
factor-C in primary cutaneous melanoma predicts sentinel lymph node
positivity. J Cutan Pathol 2012;39:826e34.

Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, et al.
Tumor lymphangiogenesis. Am J Pathol 2003;162:1951e60.

Deng X, Xiao L, Lang W, Gao F, Ruvolo P, May WS. Novel role for JNK as a
stress-activated Bcl2 kinase. J Biol Chem 2001;276:23681e8.

Doeden K, Ma Z, Narasimhan B, Swetter SM, Detmar M, Dadras SS.
Lymphatic invasion in cutaneous melanoma is associated with sentinel
lymph node metastasis. J Cutan Pathol 2009;36:772e80.

Du Q, Jiang L, Wang X, Wang M, She F, Chen Y, et al. Tumor necrosis factor-a
promotes the lymphangiogenesis of gallbladder carcinoma of vascular
endothelial growth factor-C. Cancer Sci 2014;105:1261e71.

Guinea-Viniegra J, Zenz R, Scheuch H, Jiménez M, Bakiri L, Petzelbauer P,
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