Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis

Summary

Background Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and meta-analyses, namely inadequate sample size and methodological heterogeneity. We aimed to investigate whether there are structural differences in children and adults with ADHD compared with those without this diagnosis.

Methods In this cross-sectional mega-analysis, we used the data from the international ENIGMA Working Group collaboration, which in the present analysis was frozen at Feb 8, 2015. Individual sites analysed structural T1-weighted MRI brain scans with harmonised protocols of individuals with ADHD compared with those who do not have this diagnosis. Our primary outcome was to assess case-control differences in subcortical structures and intracranial volume through pooling of all individual data from all cohorts in this collaboration. For this analysis, p values were significant at the false discovery rate corrected threshold of p=0.0156.

Findings Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range 4–63 years). The volumes of the accumbens (Cohen’s d=–0.15), amygdala (d=–0.19), caudate (d=–0.11), hippocampus (d=–0.11), putamen (d=–0.14), and intracranial volume (d=–0.10) were smaller in individuals with ADHD compared with controls in the mega-analysis. There was no difference in volume size in the pallidum (p=0.95) and thalamus (p=0.39) between people with ADHD and controls. Exploratory lifespan modelling suggested a delay of maturation and a delay of degeneration, as effect sizes were highest in most subgroups of children (≤15 years) versus adults (>21 years): in the accumbens (Cohen’s d=–0.19 vs –0.10), amygdala (d=–0.18 vs –0.14), caudate (d=–0.13 vs –0.07), hippocampus (d=–0.12 vs –0.06), putamen (d=–0.18 vs –0.08), and intracranial volume (d=–0.14 vs –0.01). There was no difference between children and adults for the pallidum (p=0.79) or thalamus (p=0.89). Case-control differences in adults were non-significant (all p>0.03). Psychostimulant medication use (all p>0.15) or symptom scores (all p>0.02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p>0.5).

Interpretation With the largest dataset to date, we add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD. We extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. Lifespan analyses suggest that, in the absence of well powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of ages provides a means to generate hypotheses about lifespan trajectories in brain phenotypes.

Funding National Institutes of Health.

Introduction

Attention deficit hyperactivity disorder (ADHD) is a common neuropsychiatric disorder with a prevalence of 5–3% in childhood (younger than 18 years old). Two-thirds of patients with an ADHD diagnosis in childhood continue to have persistent, impairing symptoms in adulthood. ADHD is characterised by age-inappropriate symptoms of inattention or hyperactivity...
and impulsivity. Many imaging studies, often in small samples, have reported brain structural and functional differences between individuals with ADHD and controls, both in childhood and adulthood. Five meta-analyses of structural neuroimaging studies in patients with ADHD have been published (appendix). One meta-analysis pooled region-of-interest brain volume studies, whereas the others pooled voxel-based morphometry studies. The most consistent results across studies, such as age and medication; and they included studies with different segmentation software and quality control procedures, contributing to heterogeneity across samples.

Research in context
Evidence before this study
We searched PubMed from the start of the database until Feb 1, 2015, for meta-analyses of brain volume differences in patients with attention deficit hyperactivity disorder (ADHD), including the subcortical regions, with the search terms “ADHD”, “structural”, “brain”, and “meta-analysis [Title]”, and “English” [Language]. We found four published meta-analyses before we started the study. The largest dataset of those meta-analyses was of 565 cases and 583 controls (children only—in, individuals younger than 18 years). The published meta-analyses had three major limitations: the power was only sufficient to detect effect sizes of Cohen’s d of 0·15 and higher, which we know to be insufficient on the basis of results in other psychiatric disorders; they used only published data as source material, which limited their ability to address covariates that might vary among studies, such as age and medication; and they included studies with different segmentation software and quality control procedures, contributing to heterogeneity across samples.

Added value of this study
The present multisite study, with data of 1713 cases and 1529 controls, is the largest and best-powered study to date on brain volumes in patients with ADHD. Data for all sites were newly analysed with harmonised methods. Our work implicates new structural differences in patients with ADHD in the amygdala and hippocampus, and provides unprecedented precision in effect size estimates. Our results, covering most of the lifespan, showed that the most pronounced effects were in childhood.

Implications of all the available evidence
We confirm, with high-powered analysis, that patients with ADHD have altered brains; therefore ADHD is a disorder of the brain. This message is clear for clinicians to convey to parents and patients, which can help to reduce the stigma of ADHD and improve understanding of the disorder. As for major depressive disorder, for example, clinicians can label ADHD as a brain disorder. Also, finding the most pronounced effects in childhood provides a relevant model of ADHD as a disorder of brain maturation delay. Finding the biggest effect in the amygdala is another important message because this area links ADHD to emotional regulation problems. Those symptoms are frequently reported in patients with ADHD but have not (yet) made it into the official DSM criteria. Our work shows neurobiological support for the inclusion of emotional regulation in the core ADHD phenotype.

Identification of structural brain differences in people with ADHD is important to further insights into the neural substrates of ADHD. So far, analyses of brain structures in ADHD have been small in size and statistical power (appendix); the sample size of the largest published meta-analysis of brain volume (565 cases and 583 controls) allowed for the identification of differences in brain volume with Cohen’s d effect sizes of 0·15 or higher with 80% power (G*Power, version 3.1). Analyses of other psychiatric disorders show that smaller effects are likely. Existing meta-analyses for ADHD only used published data as source material, which limited their ability to address covariates that might vary among studies, such as age and medication. Additionally, the existing meta-analyses included studies with variable methods and protocols such as the segmentation software and quality control.

To overcome such limitations and to do collaborative studies of maximal power, we founded the ENIGMA ADHD Working Group in 2013 to aggregate structural MRI data from participants with ADHD and healthy controls across the lifespan. This worldwide collaboration enabled analyses of existing individual data, improving on earlier meta-analyses by basing analyses on the use of harmonised segmentation and quality control protocols. Our increased sample size compared with earlier studies supported both mega-analysis and meta-analysis (appendix) designs across 60 years of the lifespan. We selected subcortical brain volumes as our target, because of neurodevelopmental theories hypothesising that ADHD is linked to early-emerging, persistent subcortical abnormalities, and building on the results of earlier meta-analyses, which showed that deviations in these subcortical volumes were most consistently observed. Additionally, we investigated intracranial volume as a measure of total brain volume. The meta-analysis design allowed investigation of associations with...
symptom scores, age, psychostimulant medication use, and comorbidity with other psychiatric disorders.

Methods
Study design
This cross-sectional mega-analysis was done with the ENIGMA ADHD Working Group; details about the diagnostic procedures for each site are listed in the appendix. The group adopted a rolling inclusion design, in which new groups can join at any time, but data freezes allowed for analysis at fixed timepoints. The data freeze for the present subcortical analysis was set at Feb 8, 2015. Each participating site had approval from its local ethics committee to do the study and to share de-identified, anonymised individual data. Part of the protocol is published online.

Neuroimaging
Structural T1-weighted brain MRI data were acquired and processed at the individual sites. The images were analysed with standardised protocols to harmonise analysis and quality control processes (appendix).14 We used fully-automated and validated neuroimaging segmentation algorithms based on FreeSurfer versions 5.1 or 5.3 (appendix). To make sure FreeSurfer version did not affect the results,12 we did an additional analysis, adding version number as a covariate to our main model. For each participant, we computed intracranial volume and left and right volumes of the accumbens, putamen, pallidum, caudate, thalamus, amygdala, and hippocampus. For further analysis, we used the mean of the left and right volume. For an overview of single site subcortical structures, see appendix. Outliers were identified at above and below one and a half times the interquartile range per cohort and group (case and control) and were excluded (appendix).20

Differences in subcortical brain volumes and intracranial volume
By pooling available individual data from all cohorts in a mega-analysis, we were able to investigate as our primary outcome differences between cases and controls of subcortical volumes and intracranial volume. After excluding collinearity of age, sex, and intracranial volume (variance inflation factor <1.2) and normality testing, the mega-analysis of each subcortical volume was done with a linear mixed model with the package nlme in R (version 3.1-117). The model included diagnosis (case=1 and control=0) as a factor of interest, age, sex, and intracranial volume as fixed factors, and site as a random factor. In the analysis of intracranial volume, this variable was omitted as a covariate from the model. Handedness was added to the model to correct for possible effects of lateralisation, but was excluded from the model when there was no significant contribution of this factor. To calculate Cohen’s d effect size estimates, adjusted for age, sex, site, and intracranial volume, we used the t statistic from the factor diagnosis in the model. In a post-hoc analysis, left and right volumes were studied separately.

To make sure that no unobserved factor biased our analysis of case-control differences, a meta-analysis was also done by linear regression analysis for each volume and for each sample separately, taking age, sex, and intracranial volume into account. We characterised heterogeneity with the I² statistic. The R package metaphor (version 1.9-1) was used to do an inverse variance-weighted, random-effects meta-analysis, in accordance with other ENIGMA Working Groups (appendix).21,22

Effects of age
The prespecified secondary outcome of the effect of age on subcortical volume and intracranial volume was studied by running the above described model for groups stratified by age: in children aged 14 years or younger, adolescents aged 15–21 years, and adults aged 22 years and older. We removed samples that were left with ten patients or fewer because of the stratification. Because the effects of age probably do not strictly follow a linear model, we report linear effects of age and the effect of age by diagnosis. More explorative modelling was done to better understand the effects

<table>
<thead>
<tr>
<th>Site, country of origin</th>
<th>Total (n=3242)</th>
<th>Cases (n=1713)</th>
<th>Controls (n=1529)</th>
<th>Age</th>
<th>Sex</th>
<th>Site</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD-WUE Würzburg, Germany</td>
<td>118</td>
<td>32</td>
<td>30</td>
<td>26</td>
<td>30</td>
<td>39.7 (11.4)</td>
<td></td>
</tr>
<tr>
<td>ADHD-DUB1 Dublin, Ireland</td>
<td>75</td>
<td>27</td>
<td>9</td>
<td>31</td>
<td>8</td>
<td>23.3 (5.3)</td>
<td></td>
</tr>
<tr>
<td>ADHD-DUB2 Dublin, Ireland</td>
<td>20</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>33.7 (10.2)</td>
<td></td>
</tr>
<tr>
<td>ADHD-Mattos Rio de Janeiro, Brazil</td>
<td>17</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>22.9 (1.4)</td>
<td></td>
</tr>
<tr>
<td>ADHD200-KKI Baltimore, USA</td>
<td>94</td>
<td>51</td>
<td>43</td>
<td>18</td>
<td>28</td>
<td>10.2 (1.2)</td>
<td></td>
</tr>
<tr>
<td>ADHD200-NYU* New York, USA</td>
<td>260</td>
<td>115</td>
<td>56</td>
<td>44</td>
<td>55</td>
<td>11.5 (2.9)</td>
<td></td>
</tr>
<tr>
<td>ADHD200-Peking Peking, China</td>
<td>245</td>
<td>90</td>
<td>12</td>
<td>84</td>
<td>59</td>
<td>11.7 (2.0)</td>
<td></td>
</tr>
<tr>
<td>ADHD200-OHSU Oregon, USA</td>
<td>109</td>
<td>29</td>
<td>13</td>
<td>30</td>
<td>37</td>
<td>9.1 (1.3)</td>
<td></td>
</tr>
<tr>
<td>ADHD-UKA Aachen, Germany</td>
<td>181</td>
<td>97</td>
<td>9</td>
<td>53</td>
<td>26</td>
<td>11.2 (2.7)</td>
<td></td>
</tr>
<tr>
<td>Bergen-adultADHD Bergen, Norway</td>
<td>81</td>
<td>22</td>
<td>16</td>
<td>55</td>
<td>27</td>
<td>31.2 (6.7)</td>
<td></td>
</tr>
<tr>
<td>Bergen-SV Bergen, Norway</td>
<td>54</td>
<td>20</td>
<td>5</td>
<td>34</td>
<td>5</td>
<td>10.1 (1.2)</td>
<td></td>
</tr>
<tr>
<td>DAT-London London, UK</td>
<td>56</td>
<td>27</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>15.8 (2.1)</td>
<td></td>
</tr>
<tr>
<td>ImpACT-NL Nijmegen, Netherlands</td>
<td>245</td>
<td>49</td>
<td>76</td>
<td>49</td>
<td>71</td>
<td>35.5 (11.4)</td>
<td></td>
</tr>
<tr>
<td>MGH-ADHD New York, USA</td>
<td>148</td>
<td>42</td>
<td>37</td>
<td>29</td>
<td>40</td>
<td>35.8 (12.0)</td>
<td></td>
</tr>
<tr>
<td>NICE Utrecht, Netherlands</td>
<td>158</td>
<td>68</td>
<td>10</td>
<td>67</td>
<td>13</td>
<td>10.4 (2.00)</td>
<td></td>
</tr>
<tr>
<td>NYU ADHD New York, USA</td>
<td>80</td>
<td>22</td>
<td>18</td>
<td>22</td>
<td>18</td>
<td>31.6 (9.4)</td>
<td></td>
</tr>
<tr>
<td>UAB-ADHD Barcelona, Spain</td>
<td>198</td>
<td>82</td>
<td>21</td>
<td>64</td>
<td>31</td>
<td>25.8 (13.0)</td>
<td></td>
</tr>
<tr>
<td>Zi-CAPS Mannheim, Germany</td>
<td>35</td>
<td>17</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>12.7 (1.2)</td>
<td></td>
</tr>
<tr>
<td>ADHD-Rubia London, UK</td>
<td>77</td>
<td>44</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>14.0 (2.2)</td>
<td></td>
</tr>
<tr>
<td>Neuroimage-ADAM Amsterdam, Netherlands</td>
<td>182</td>
<td>73</td>
<td>24</td>
<td>57</td>
<td>28</td>
<td>17.2 (3.2)</td>
<td></td>
</tr>
<tr>
<td>Neuroimage-NIJM Nijmegen, Netherlands</td>
<td>178</td>
<td>89</td>
<td>50</td>
<td>23</td>
<td>16</td>
<td>16.9 (3.4)</td>
<td></td>
</tr>
<tr>
<td>NIH Bethesda, USA</td>
<td>502</td>
<td>168</td>
<td>83</td>
<td>168</td>
<td>31</td>
<td>10.0 (2.1)</td>
<td></td>
</tr>
<tr>
<td>MTA Irvine, USA</td>
<td>129</td>
<td>73</td>
<td>35</td>
<td>31</td>
<td>10</td>
<td>25.6 (1.4)</td>
<td></td>
</tr>
</tbody>
</table>

Data are n or mean (SD). For a more detailed description and references for the assessments and neuroimaging procedures, see appendix. *One patient was excluded because of a missing sex status.

Table 1: Overview of cohort characteristics by sample
of age, by plotting of moving averages and use of fractional polynomials to fit non-linear models to the data (appendix).

Corrections for multiple comparisons for 32 tests (eight volumes and four groups: all, children, adolescents, and adults) were applied by use of a false discovery rate with q=0.05, resulting in a p value significance threshold of p=0.0156.

Effects of sex, psychostimulant medication, and clinical measures
In an exploratory analysis, we investigated the effects of sex on brain volume from the main model. To examine associations between previous psychostimulant treatment and regional brain volume, the mega-analysis model was run again, including only patients with medication information available (appendix). To test whether acute effects of psychostimulant medication confounded possible brain-volume differences between participants with ADHD and healthy controls, we excluded patients treated with stimulants at the time of their participation in the study (participants receiving other types of treatment were retained). Additionally, as previous meta-analyses had shown an association between stimulants and brain volumes, we compared patients who had ever used stimulant medication to patients who had never used stimulant medication. We explored the effects of ADHD symptom scores and the presence or absence of comorbid disorders on those brain volumes that differed significantly between participants with ADHD and healthy controls (appendix).

Role of funding sources
The funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all of the data and the final responsibility to submit for publication.

<table>
<thead>
<tr>
<th>Cases (n=1712)</th>
<th>Controls (n=1529)</th>
<th>p value for diagnosis</th>
<th>Cohen’s d (95% CI)*</th>
<th>Other significant factors in the model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumbens</td>
<td>1652</td>
<td>1471</td>
<td><0.0001†</td>
<td>−0.15 (−0.22 to −0.08)</td>
</tr>
<tr>
<td>Amygdala</td>
<td>1598</td>
<td>1463</td>
<td><0.0001†</td>
<td>−0.19 (−0.26 to −0.11)</td>
</tr>
<tr>
<td>Caudate</td>
<td>1659</td>
<td>1489</td>
<td>0.0014†</td>
<td>−0.11 (−0.18 to −0.05)</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>1599</td>
<td>1436</td>
<td>0.0041†</td>
<td>−0.11 (−0.18 to −0.03)</td>
</tr>
<tr>
<td>Pallidum</td>
<td>1651</td>
<td>1471</td>
<td>0.95</td>
<td>−0.00 (−0.07 to 0.07)</td>
</tr>
<tr>
<td>Putamen</td>
<td>1660</td>
<td>1497</td>
<td><0.0001†</td>
<td>−0.14 (−0.21 to −0.07)</td>
</tr>
<tr>
<td>Thalamus†</td>
<td>1495</td>
<td>1242</td>
<td>0.39</td>
<td>−0.03 (−0.04 to 0.11)</td>
</tr>
<tr>
<td>Intracranial volume</td>
<td>1693</td>
<td>1513</td>
<td>0.0065†</td>
<td>−0.10 (−0.17 to −0.03)</td>
</tr>
</tbody>
</table>

*Adjusted mean volumes of subcortical brain volumes by site are described in the appendix. †p values are significant at the false discovery rate corrected threshold of p=0.0156. ‡Thalamus volume was not available from the National Institutes of Health sample.

Table 2: Results of the mega-analysis of subcortical brain volumes in the total sample

<table>
<thead>
<tr>
<th>Children (<15 years)</th>
<th>Adolescents (15–21 years)</th>
<th>Adults (>21 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>Controls</td>
<td>p value for diagnosis</td>
</tr>
<tr>
<td>Accumbens</td>
<td>810</td>
<td>827</td>
</tr>
<tr>
<td>Amygdala</td>
<td>767</td>
<td>820</td>
</tr>
<tr>
<td>Caudate</td>
<td>825</td>
<td>840</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>764</td>
<td>802</td>
</tr>
<tr>
<td>Pallidum</td>
<td>816</td>
<td>831</td>
</tr>
<tr>
<td>Putamen</td>
<td>836</td>
<td>854</td>
</tr>
<tr>
<td>Thalamus†</td>
<td>604</td>
<td>616</td>
</tr>
<tr>
<td>Intracranial volume</td>
<td>837</td>
<td>854</td>
</tr>
</tbody>
</table>

*Due to a sample size lower than ten, the data for the following cohorts in analysis of the adolescent group were omitted: ADHD-Matts (n=2), ADHD-WUE (n=2), BergenAdultADHD (n=4), MTA (n=2), Niche (n=7), and 2i-CAPS (n=2). †p values are significant at the false discovery rate corrected threshold of p=0.0156. ‡Thalamus volume was not available from the National Institutes of Health sample.

Table 3: Results of the mega-analysis of subcortical brain volumes in the stratified age groups
Articles

Centre Zurich, University of Zurich, Zurich, Switzerland (Prof D Brandeis); ETH Zurich, Zurich, Switzerland (Prof Di Brandeis); Trinity College Institute of Neurosciences, Dublin, Ireland (C Kelly); Center for the Developing Brain, Child Mind Institute, New York, NY, USA (M P Milham PhD); Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA (M P Milham); Division of Child and Adolescent Psychiatric Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA (Prof F X Castellanos); Department of Psychiatry and Psychotherapy, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany (M Zentis, T Freidl PhD); Department of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands (Prof P K Lesch); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany (Prof A Rief PhD); Departments of Cognitive Science, Psychiatry, Radiology, and Center for Human Development, University of California, San Diego, CA, USA

Results

We included data from 23 cohorts with a sample size of 3242 (1713 participants with ADHD and 1529 healthy controls; table 1) and a median age of 14·0 (range 4–63) years. As shown in table 2, the mega-analysis indicated that participants with ADHD had significantly smaller volumes for the accumbens, amygdala, caudate, hippocampus, putamen, and intracranial volume. Post-hoc analyses for the subcortical regions showed these effects to be bilateral (appendix). No effect of FreeSurfer version or handedness was present (appendix). Heterogeneity (d²) across samples was low to moderate; heterogeneity was highest for the hippocampus (appendix) and might be indicative of non-linear effects of study site for this structure.

Age-stratified analyses showed significant case-control differences in children for the accumbens, amygdala, caudate, hippocampus, putamen, and intracranial volume (table 3, figure 1). Effect sizes were higher in children than those for the entire sample. In the adolescent group, there was a significant case-control difference in the hippocampus (table 3). In adults, none of the case-control comparisons were significant. Figure 1 suggested an interaction effect for age-group and diagnosis on hippocampus volume; this was not statistically supported by linear interaction statistics (p=0·03; appendix). Exploratory modelling with moving averages also showed that the age effects cluster early in life, with older age participants attaining peak volumes in the ADHD group (figure 2). The moving averages also suggested a potential later onset of volume decrease in the ADHD group, most clearly seen in accumbens and putamen (figure 2). Sample sizes after age 50 years were small (appendix), and resulted in wider confidence intervals in the moving average analyses. The fractional polynomial analyses also supported different developmental models for patients with ADHD and controls for amygdala, hippocampus, putamen, thalamus, and intracranial volume (appendix).

All but two subcortical structures, accumbens and caudate, showed effects of sex in the mega-analysis (table 2). None of the volumes showed differential sex effects for participants with ADHD and controls (table 2).

Information about medication use was available for 1254 (73%) of 1713 participants with ADHD; 455 (27%) of 1713 participants with ADHD were on psychostimulant medication (methylphenidate or amphetamine) at the time of scanning, with more than half (19 [83%] of 23) of the studies with a washout period of 24 h or 48 h (appendix); 799 (47%) of 1713 participants with ADHD were not taking stimulant medication at scan time. Case-control differences in brain volumes after excluding participants on stimulant medication were similar in effect sizes to those observed in the main analysis (table 4).

For 719 (42%) of 1713 participants with ADHD, information was available on lifetime usage of stimulant medication. Of these, 82 (11%) participants had never taken stimulant medication, compared with 637 (89%) patients, who used stimulant medication somewhere in their lifetime for a period of more than 4 weeks. No differences in any of the volumes were recorded by directly comparing these two groups.

Meta-analysis of the correlation between ADHD symptom scores in cases and brain volumes showed no significant effects (p=0·02; appendix). Nor were there any significant correlations when only the childhood samples were used in the meta-analysis. Also, the observed case-control brain volume differences were not explained by the presence of another comorbid psychiatric disorder (p=0·5; appendix).

Discussion

We report the largest study to date of brain volume differences between participants with ADHD and healthy individuals. Compared with previous meta-analyses, our study newly identified amygdala, accumbens, and hippocampus volumes to be smaller in participants with ADHD than in healthy controls, and extended earlier findings for reduced caudate and putamen volumes by showing those effects to be bilateral rather than unilateral.5,7 Significant volume differences had small effect sizes (ranging from \(d=–0·19\) to \(d=–0·10\) to \(d=0·08\); appendix). Significant volume differences had small effect sizes (ranging from \(d=0·08\) to \(d=0·19\)) and the meta-analysis confirmed these results. Age stratification

Figure 1: Cohen’s d effect sizes of differences between patients with ADHD and healthy controls for subcortical volumes and intracranial volume, for all patients, children only (<15 years), adolescents only (15–21 years), and adults only (>21 years). Error bars denote standard error. *Significant after false discovery rate correction. †Nominally significant at p<0·05.

Figure 2: The moving averages, corrected for age, sex, intracranial volume, and site for the subcortical volumes. Error bars denote standard error.
A Hippocampus

B Accumbens

C Putamen

D Amygdala

E Caudate

F Pallidum

G Thalamus

H Intracranial volume

ADHD

Controls
showed that volume differences clustered in children and no differences were reported in adults. The volume differences were equally apparent in those treated with psychostimulant medication and in those naive to psychostimulants. Additionally, no correlations with quantitative scores of ADHD symptoms were reported in cases, nor did comorbidity with other psychiatric disorders explain the findings. All but two subcortical brain volumes were smaller in women; this is consistent with published literature.16

Our findings contain several important messages for clinicians. First, the data from our highly powered analysis confirm that patients with ADHD do have altered brains and therefore that ADHD is a disorder of the brain. This message is clear for clinicians to convey to parents and patients, which can help to reduce the stigma that ADHD is just a label for difficult children and caused by incompetent parenting. We hope this work will contribute to a better understanding of ADHD in the general public, and that it becomes as apparent as major depressive disorder. Second, finding the most pronounced effects in childhood and showing delayed peaks of subcortical volume maturation provides a relevant model of ADHD as a disorder of brain maturation delay. Third, the brain differences we have reported are not caused by any comorbid disorders, medication effects, or ADHD symptom severity, but are exclusively related to the ADHD diagnosis. Fourth, finding the largest effect in the caudate volume are the most consistent finding for ADHD,6 and smaller putamen volumes have been frequently reported.5–7 Our study provides robust effect size estimates for those structural differences and shows that effects are bilateral. Although identified before in one study,18 our findings extend the meta-analytics literature to the third striatal volume, the nucleus accumbens. We identified novel meta-analytical findings for the amygdala and hippocampus. Previous work in single studies had found effects in these structures,20–23 but did not replicate in others.22,23 For amygdala volume, which showed the largest effect size in our study (d=−0.19 in the whole cohort; d=−0.18 in children), and for accumbens, the scarcity of earlier meta-analytical evidence for its role in ADHD might be due to the fact that these are small structures, for which automatic segmentation does less well.24 A more highly powered analysis might therefore have been necessary to overcome the experimental inaccuracy of these measures. Previous work provides functional evidence for a role of amygdala, accumbens, and hippocampus in patients with ADHD. Dysfunction of the amygdala is associated with difficulties in recognition of emotional stimuli, in callous unemotional traits, and with emotional regulation in general.22,23 Difficulties in recognition of emotional stimuli, diminished emotional reactions to pleasant stimuli, and high levels of callous, unemotional traits have all been linked to ADHD,22,23 and amygdala volume has been associated with hyperactivity.19 The accumbens, with its prominent role in reward processing, is central to motivational and emotional dysfunction in patients with ADHD. The results of the hippocampus are less straightforward, because there is not so much evidence for a deficit in long-term memory, the main function of the hippocampus, in patients with ADHD.24 The results of the hippocampus are less straightforward, because there is not so much evidence for a deficit in long-term memory, the main function of the hippocampus, in patients with ADHD.24 However, there are also reports on the hippocampus having a role in the regulation of motivation and emotion, which is impaired in patients with ADHD.24

Importantly, effect sizes observed in our study were similar to those reported for other psychiatric disorders

<table>
<thead>
<tr>
<th>Currently not taking stimulants*</th>
<th>Stimulant use in patients with ADHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases (n=799)</td>
<td>Controls (n=1529)</td>
</tr>
<tr>
<td>Accumbens</td>
<td>776</td>
</tr>
<tr>
<td>Amygdala</td>
<td>753</td>
</tr>
<tr>
<td>Caudate</td>
<td>777</td>
</tr>
<tr>
<td>Putamen</td>
<td>757</td>
</tr>
<tr>
<td>Pallidum</td>
<td>776</td>
</tr>
<tr>
<td>Thalamus</td>
<td>692</td>
</tr>
<tr>
<td>Intracranial volume</td>
<td>793</td>
</tr>
</tbody>
</table>

*Within this group, 152 patients were lifetime positive for the use of stimulant medication, 82 were lifetime negative; for 657 participants no lifetime information was available.
analysed with the ENIGMA procedures, in particular major depression and bipolar disorder. The scale of the effects is consistent with expectations for a heterogeneous disorder such as ADHD. The specific pattern of findings might partially differentiate ADHD from the other psychiatric disorders analysed with similar procedures, ie, schizophrenia, bipolar disorder, and major depressive disorder. In particular, effects on caudate and putamen seem to be ADHD specific among the four disorders. However, as mostly adults were assessed for the other three disorders, formal analyses taking age into account will need to be done to make valid statements.

The results of the age-stratified analysis indicate that subcortical volume differences in ADHD are most prominent in children, and non-existent in adults. Our additional exploratory models suggest that this finding is not the entire story on age effects, although care in interpretation of this result is needed because of the cross-sectional design of this study. On the basis of our findings across different approaches, we propose a model of altered trajectories of subcortical volume in patients with ADHD. Our data suggest a delayed peak volume in participants with ADHD, which is reminiscent of earlier reports that showed altered velocity of cortical development in a longitudinal sample. This model should be confirmed by longitudinal analyses, especially because the childhood and adult ADHD samples included in this study represent different subgroups of the population: childhood ADHD samples include those who will later remit and those who will persist having ADHD in adulthood; the adult ADHD samples include only the latter. In addition to the delays in subcortical brain maturation at early age, our exploratory work tentatively suggests later onset of decreases in subcortical volumes beyond the fourth decade of life in ADHD. However, because sample sizes in our analysis dropped dramatically above age 25 years, and we had insufficient data to study age effects after 60 years, this work is hampered by not having sufficient patients per site to rule out site-bias in those age ranges. As long as ADHD in old age is still a blind spot in ADHD research, it will be difficult to test the validity of such findings.

Previous meta-analyses showed associations between the proportion of treated patients and right caudate and amygdala and uncus (an anterior extremity of the parahippocampal gyrus) volumes. In our analysis, in which we were able to compare treated to non-treated participants with ADHD directly in a sample more than four times larger than that of the samples in two previous meta-analyses, we did not confirm such associations with brain volume. Our findings support those of the most recent meta-analysis. However, because our study had a non-randomised, cross-sectional design, some caution in the interpretation of these results is warranted because the design of this study was not optimal to test for medication effects. Also, because both previous meta-analyses used voxel-wise maps, there is a possibility that the observed normalising effects of medication were too local to be picked up by volumetry.

We did not note associations between brain volumes and clinical measures, ie, comorbidity or ADHD symptom scores. The absence of an association with comorbidity suggests that the brain volume reductions are robustly linked to ADHD itself, rather than being a secondary phenomenon caused by comorbidity. The absence of significant associations between brain volumes and symptom ratings is not surprising, given that brain function is based on distributed networks of brain regions rather than individual brain regions. Still, previous studies did find single volume–function associations, which we do not replicate here. We also could not replicate an earlier reported (modest) correlation of a total brain volume measure highly related to intracranial volume with ADHD symptom severity in a similarly sized population sample. Not finding effects of symptom scores might also be due to the heterogeneity of the instruments used for different cohorts in our study or differences in raters (ie, clinicians, teachers, and parents). Additionally, the sample size was halved in this case-only analysis, and the distribution of scores was skewed to the clinical range. In agreement with models of frontostriatal dysfunction in patients with ADHD, one hypothesis could be that cortical structures have a more important role in the severity of symptoms in these patients than the subcortical structures.

A clear strength of this study is the sample size, being the largest mega-analysis and meta-analysis to date, with enough power to detect effects as small as $d=0.08$. Another strength is the harmonisation of segmentation protocols across all contribution sites, reducing imprecision caused by differences in methods. Nonetheless, diagnostic routines and acquisition of imaging data still differed between sites, a limitation contributing to heterogeneity across samples. A strength was also the opportunity for mega-analysis. Although effect sizes were similar to the meta-analysis, the mega-analysis allowed a more powerful detection of case-control volume differences. The mega-analysis also enabled effects of age, sex, comorbidity, and medication to be studied, although accounting for site in these analyses might have somewhat masked age effects (as many studies had a restricted age range). Modelling age in a cross-sectional study is challenging but we have used several approaches to understand the effects of age. However, we should be cautious and interpret our findings as hypothesis-generating for future studies.

To conclude, these data are the first results of our worldwide collaboration and confirm and extend previous findings of reduced striatal volume in patients with ADHD. Optimisation of sample size and harmonisation of methods across studies allowed us to identify additional differences in amygdala and hippocampal volumes between cases and controls, potentially contributing to problems in emotional regulation, motivation, and
memory in patients with ADHD. Brain volume differences were most prominent in children. We invite interested researchers to join the next studies of the ENIGMA ADHD Working Group. In this way, we might optimally benefit from efforts already invested in individual studies to better understand this common yet still vexing disorder.

Contributors
MH, JB, DPH, MM, MPZ, LSJS, KJEvH, SEM, ES, NJ, SVF, PMT, and BF designed the protocol, and did the quality testing and analysis. All authors took part in the data collection, processing, analysis, or funding. MH, JB, MM, MPZ, LSJS, KJEvH, SEM, ES, NJ, SVF, PMT, and BF prepared the manuscript. All authors contributed edits and approved the content of the manuscript.

Declaration of interests
TGMcE consulted for Roche Pharmaceuticals and has a contract with Asteca Pharmaceutical, Ltd. AD is a founder of CorTechs Labs, Inc and is on the Scientific Advisory Boards of CorTechs Labs and Human Longevity, Inc., and receives research funding through a Research Agreement with General Electric Healthcare. PM was on the speakers’ bureau or acted as consultant for Janssen-Cilag, Novartis, and Shire in the previous 5 years; he also received travel awards to participate in scientific meetings from those companies. The ADHD outpatient programme (Grupo de Estudios del Deficit de Atencion/Institute of Psychiatry) chaired by PM has also received research support from Novartis and Shire. TB served in an advisory or consultancy role for Hexal Pharma, Lilly, Medice, Novartis, Oxford outcomes, PCM scientific, Shire, and ViforPharma. He received conference support or speaker’s fee by Janssen McNeil, Lilly, Medice, Novartis, and Shire. He is or has been involved in clinical trials done by Shire and ViforPharma, outside of this paper. KR received speaker’s fees from Shire and Medice, and a grant from Lilly from another project. JH has received speaker fees from Lilly, Novartis, and Janssen Cilag. SVF has received income, travel expenses or research support from, has been on an advisory board for, or participated in continuing medical education programmes sponsored by: Pfizer, Ironshore, Shire, Akihi Interactive Labs, CoGubed, Alcobra, VAYA Pharma, Neurovance, Impax, NeuroLifeSciences, Otsuka, McNeil, Janssen, Novartis, Eli Lilly, and the National Institutes of Health (NIH). With his institution, SVF has a US patent (US20100217707 A1) for the use of sodium-hydrogen exchange inhibitors in the treatment of ADHD. SVF also receives royalties from books published by Guilford Press, Oxford University Press, and Elsevier. JB receives research support from the following sources: The Department of Defense, US Food and Drug Administration, Ironshore, Lundbeck, Magceutics Inc., Merck, PamLab, Pfizer, Shire Pharmaceuticals Inc., SPRITES, Sunovion, Vaya Pharma/Enzymotec, and NIH. JB received honoraria from the MGH Psychiatry Academy for tuition-funded continuing medical education courses. He has a US patent application pending (provisional number #61/233,686) through Massachusetts General Hospital corporate licensing, on a method to prevent stimulant abuse. JB received honoraria from the MGH Psychiatry Academy for tuition-funded continuing medical education courses. He received research support from AACAP, Alcobra, Forest Research Institute, and Shire Pharmaceuticals Inc. JB also received departmental royalties from a copyrighted rating scale used for ADHD diagnoses, paid by Ingenix, Prophase, Shore, Bracket Global, Sunovion, and Theravance; these royalties were paid to the Department of Psychiatry at MGH. KK received speaking fees from Medice, Lilly, and Shore; JAR-Q was on the speakers’ bureau or acted as consultant for Eli-Lilly, Janssen-Cilag, Novartis, Shore, Lundbeck, Almirall, and Rubió in the last 1 years. He also received travel awards (air tickets and hotel) for taking part in psychiatric meetings from Janssen-Cilag, Rubio, Shire, and Eli- Lilly. The ADHD Program chaired by him received unrestricted educational and research support from the following pharmaceutical companies in the past 3 years: Eli-Lilly, Rovi, Ferrer, Lundbeck, Shore, and Rubió. PJJ received a research grant from Shire and was part of the advisory board of Shore. JKB has been in the past 3 years a consultant to, member of advisory board of, or speaker for Janssen Cilag BV, Eli Lilly, Medice, Shore, Roche, and Servier. BF received educational speaking fees from Merz and Shore. DB is an unpaid scientific advisor for a European Union funded neurofeedback study. All other authors declare no competing interests.

Acknowledgments
ENIGMA received funding from the National Institute of Health (NIH) Consortium grant U54 EB020033, supported by a cross-NIH alliance that funds Big Data to Knowledge Centers of Excellence (BD2K). Funding was received from the intramural programmes of the NIH (NIGRI and NIMH) and also supported by the European College for Neuropsychopharmacology (ECNP) by a grant for the ECNP Network ADHD across the lifespan. For the ADHD-WUE study group, data collection and analysis was supported by the Deutsche Forschungsgemeinschaft (KFO 125, TRR 58/A1 and A5, TFR SFB 58 806, SFB-TRR 58/801, and Z02, REI 16125/1–5) and the research leading to these results also received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602805 (“Aggressoftex”).

ADHD-DUB1 and DUB2 study groups received funding from the Health Research Board Ireland. For the ADHD-Mattos study, JB, PM, and FT-M were supported by an IDOR intramural grant. All authors took part in the data collection, processing, analysis, or funding. MH, JB, MM, MPZ, LSJS, KJEvH, SEM, ES, NJ, SVF, PMT, and BF prepared the manuscript. All authors contributed edits and approved the content of the manuscript.

For the acknowledgments of study groups ADHD200-IRI, ADHD200NYU, ADHD200Peking, and ADHD200OHSU see http://fcon_1000.projects.nitrc.org/indi/adhd200

Ellison-Wright I, Ellison-Wright Z, Bullmore E. Structural brain change in attention deficit hyperactivity disorder identified by meta-analysis. BMC Psychiatry 2008; 8: 51.

