Competing Exchange Interactions in the Multiferroic and Ferrimagnetic CaBaCo$_4$O$_7$*

1Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
2Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111 Budapest, Hungary
3National Institute of Chemical Physics and Biophysics, Akadémiai ter 23, 12618 Tallinn, Estonia
4High Field Magnet Laboratory (HFML-EMFL), Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
5RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
6Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561, Japan and
7Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan

(Dated: January 25, 2017)

Competing exchange interactions can produce complex magnetic states together with spin-induced electric polarizations. With competing interactions on alternating triangular and kagome layers, the swedenborgite CaBaCo$_4$O$_7$ may have one of the largest measured spin-induced polarizations of ~ 1700 nC/cm2 below its ferrimagnetic transition temperature at 70 K. Upon rotating our sample about $c = [0, 0, 1]$ while the magnetic field is fixed along $[1, 0, 0]$, the three-fold splitting of the spin-wave frequencies indicates that our sample is hexagonally twinned. Magnetization measurements then indicate that roughly 20% of the sample is in a domain with the a axis along $[1, 0, 0]$ and that 80% of the sample is in one of two other domains with the a axis along either $[-1/2, \sqrt{3}/2, 0]$ or $[-1/2, -\sqrt{3}/2, 0]$. Powder neutron-diffraction data, magnetization measurements, and THz absorption spectroscopy reveal that the complex spin order in each domain can be described as a triangular array of bitetrahedral c-axis chains ferrimagnetically coupled to each other in the ab plane. The electric-field dependence of bonds coupling those chains produces the large spin-induced polarization of CaBaCo$_4$O$_7$.

I. INTRODUCTION

Competing exchange interactions produce complex magnetic states with a wide range of interesting behavior found in spin glass [1], spin ice [2], and magnetic skyrmions [3]. In multiferroic materials, complex spin states can exhibit a spin-induced electric polarization P due to either the spin current, p-d orbital hybridization, or magnetostriction [4]. Because the coupling between the electrical and magnetic properties in multiferroic materials is both scientifically and technologically important, the effects of competing exchange interactions have been investigated in a wide range of multiferroic materials such as $RMnO_3$ [5, 6], CoCrO$_2$ [7], CuCrO$_2$ [8], CuFeO$_2$ [9], and MnWO$_4$ [10]. While the first four materials [6-9] are geometrically frustrated due to competing interactions on a triangular lattice, MnWO$_4$ [10] exhibits long-range competing interactions [11] on a highly-distorted monoclinic lattice.

Compounds in the “114” swedenborgite family [12] RBaM_3O$_7$ ($M = Co$ or Fe) contain alternating triangular and kagome layers, both of which are geometrically frustrated when undistorted. The “114” cobaltites [13-16] were initially studied to find charge ordering among the Co$^{2+}$ and Co$^{3+}$ ions. An important member of this family, YBaCo$_4$O$_7$ exhibits antiferromagnetic ordering below 110 K and diffuse scattering [13, 14] indicative of spin disorder below 60 K. The magnetic state between 110 K and 60 K is stabilized by a structural transition [18] that relieves the geometric frustration. Both structural and magnetic transitions are quite sensitive to excess oxygen and no magnetic order [19, 20] appears in YBaCo$_4$O$_{7-\delta}$ for $\delta \geq 0.12$. Another family member, YbBaCo$_4$O$_7$ undergoes a structural transition at 175 K that stabilizes an antiferromagnetic state below 80 K [21].

A particularly interesting “114” cobaltite, CaBaCo$_4$O$_7$ undergoes an orthonhombic distortion [22, 23] that relieves the geometric magnetic frustration on both the kagome and triangular layers sketched in Fig. 1 above the magnetic transition temperature $T_c = 70$ K. Below T_c, CaBaCo$_4$O$_7$ develops a very large spin-induced polarization ~ 1700 nC/cm2 [24], second only to the conjectured [25] spin-induced polarization ~ 3000 nC/cm2 of BiFeO$_3$. Also unusual, CaBaCo$_4$O$_7$ displays a substantial ferrimagnetic moment of about 0.9 μ_B per formula unit (f.u.) [26], which could allow magnetic control of the...
This paper examines the magnetic properties of CaBaCo$_4$O$_7$. New magnetization and optical measurements are presented in Section III. Fitting results are discussed in Section IV. In Section V, we predict the spin-induced electric polarization. Section VI contains a conclusion.

II. MICROSCOPIC MODEL

Each magnetic unit cell of CaBaCo$_4$O$_7$ contains 16 Co ions on two kagome and two triangular layers with orthorhombic lattice constants $a = 6.3$ Å, $b = 11.0$ Å, and $c = 10.2$ Å. Four crystallographically distinct Co ions have three different valences.[22,28] Triangular layers contain mixed-valent Co$^{3+}$/Co$^{2+}$ (L is a ligand hole) spins 1, 5, 9, and 13 with moments $M_1 = 2.9$ µB. Kagome layers contain Co$^{2+}$ spins 2, 3, 6, 7, 10, 11, 14, and 15 with moments $M_2 = M_3 = 2$ µB and mixed-valent Co$^{3+}$/Co$^{2+}$ spins 4, 8, 12, and 16 with $M_4 = 2.4$ µB. Because adjacent kagome or triangular layers are related by symmetry, $S_{i'} = S_{i+4}$ on layer two is identical to S_i on layer one. With $S_i = S_i(\cos \phi_i, \sin \phi_i, 0)$ constrained to the ab plane, the ferrimagnetic moment lies along b if $\phi_{i+4} = \pi - \phi_i$ ($i = 1, \ldots, 4$).

The 12 different nearest-neighbor exchange couplings J_i are drawn in Figs. 1(a-b) and 2. Six of these (J_1 through J_6) couple the kagome and triangular layers as shown in Fig. 2; the other six (J_7 through J_{12}) couple the spins within a kagome layer as shown in Figs. 1(a) and (b). The dominance of nearest-neighbor exchange over next-nearest neighbor exchange[27] justifies setting the exchange interactions between spins on the triangular layers to zero. Our model also includes easy-plane anisotropies D, easy-axis anisotropies C within both kagome and triangular layers, and hexagonal anisotropy A on the triangular layers.

With magnetic field B along m, the Hamiltonian is

$$\mathcal{H} = -\sum_{\langle i,j \rangle} J_{ij} S_i \cdot S_j + D_{\text{tri}} \sum_{i,\text{tri}} S_{ic}^2 + D_{\text{kag}} \sum_{i,\text{kag}} S_{ic}^2 - C_{\text{kag}} \sum_{i,\text{kag}} (S_{ic} + S_{hb})^2 - C_{\text{tri}} \sum_{i,\text{tri}} (n_{i} \cdot S_{i})^2 - A_{\text{tri}} \Re \sum_{i,\text{tri}} (S_{ic} + i S_{ib})^6 - g \mu_B B \sum_i m \cdot S_i, \quad (1)$$

where S_i is a spin S operator on site i. For simplicity, we set $g = 2$ for all spins.

The easy-axis anisotropy terms proportional to C_{kag} and C_{tri} involve unit vectors \mathbf{o}_i along the “bowtie” directions $\phi_i = \pi/2$ (spins 2 and 6), $5\pi/6$ (spins 3 and 8)
and $7\pi/6$ (spins 4 and 7) for the kagome layers and n_i along the $\phi_i = \pi/6$ (spin 1) and $-\pi/6$ (spin 5) directions for the triangular layers. The hexagonal anisotropy on the triangular layers has expectation value

$$-A_{tri}S_i^6 \sum_{i,tri} \sin^6 \theta_i \cos 6\phi_i.$$

All anisotropy terms may act to constrain the spins to the ab plane.

Spin amplitudes S_n are fixed at their observed values $M_n/2\mu_B$ after performing a $1/S$ expansion about the classical limit. Alternatively, the spins S_n could all have been taken as $3/2$ but with different g-factors for different sets of spins. As discussed below, that would reduce the estimated exchange coupling J_{ij} by a factor of $4S_iS_j/9$.

Static properties are obtained by minimizing the classical energy (\mathcal{H}) (the zeroth-order term in this expansion) with respect to the 16 spin angles. The eigenvalues and eigenvectors of a 32×32 equations-of-motion matrix [29] produced by the second-order term in the $1/S$ expansion give the optical mode frequencies and absorptions, respectively.

III. MAGNETIZATION AND OPTICAL MEASUREMENTS

Perhaps due to excess or deficient oxygen [30] or different domain populations (see below), previous magnetization measurements [22,26,31,32] on CaBaCo$_2$O$_7$ are rather scattered. Consequently, new magnetization measurements were performed at 4 K on hexagonally-twinned crystals with a common $c = [0,0,1]$ axis. In domain I, a lies along the laboratory direction $x = [1,0,0]$ and b lies along $y = [0,1,0]$; in domain II, $a = [-1/2,\sqrt{3}/2,0]$ and $b = [-\sqrt{3}/2,-1/2,0]$; and in domain III, $a = [-1/2,-\sqrt{3}/2,0]$ and $b = [\sqrt{3}/2,-1/2,0]$. If p_1 are the domain populations, then the magnetizations M_x and M_y measured with fields along x and y only depend on p_1 and $p_2 + p_3 = 1 - p_1$. Of course, M_z measured with field along z is independent of p_1. Fig. 3 indicates that all three magnetizations increase monotonically up to at least 32 T.

Previous optical measurements [34] at the ordering wavevector Q found two conventional spin-wave modes that couple to the ground state through the magnetization operator $M = 2\mu_B \sum_i S_i$. These magnetic-resonance (MR) modes are degenerate in zero field with a frequency of 1.07 THz and split almost linearly with increasing field along y, as shown in Fig. 4. For $m = y$, the MR modes are excited in two geometries: (i) with THz fields $E_\omega||x$ and $B_\omega||z$ and (ii) with $E_\omega||z$ and $B_\omega||x$. Those measurements also found an electromagnon (EM) that couples to the ground state through the polarization operator P. The EM with zero-field frequency 1.41 THz is only excited in geometry ii.

Because the exchange couplings already break every degeneracy in the unit cell, the 16 predicted modes for a single domain are non-degenerate. Therefore, the split MR modes must come from different domains. This was verified by measuring [35] the MR mode frequencies as a function of the rotation angle θ for field $B = B(\cos \theta, \sin \theta, 0) = B(x \cos \theta + y \sin \theta)$ in the laboratory reference frame. In practice, this is accomplished by rotating the sample about c while keeping the field fixed.
TABLE I: Exchange and anisotropy parameters in meV.

<table>
<thead>
<tr>
<th>p_1</th>
<th>$J_1 = J_5$</th>
<th>$J_2 = J_4$</th>
<th>$J_3 = J_6$</th>
<th>J_7</th>
<th>J_8</th>
<th>J_9</th>
<th>J_{10}</th>
<th>$J_{11} = J_{12}$</th>
<th>D_{kag}</th>
<th>D_{tri}</th>
<th>C_{kag}</th>
<th>C_{tri}</th>
<th>S_{tri}^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.185</td>
<td>-91.5</td>
<td>-10.8</td>
<td>41.4</td>
<td>-29.9</td>
<td>187.8</td>
<td>7.9</td>
<td>108.0</td>
<td>-6.7</td>
<td>-0.67</td>
<td>-1.24</td>
<td>3.70</td>
<td>0.77</td>
<td>0.00064</td>
</tr>
<tr>
<td>error</td>
<td>±0.071</td>
<td>±3.6</td>
<td>±0.5</td>
<td>±1.9</td>
<td>±7.5</td>
<td>±0.1</td>
<td>±4.5</td>
<td>±0.06</td>
<td>±0.03</td>
<td>±0.15</td>
<td>±0.09</td>
<td>±0.0004</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 4: (Color online) The predicted MR (solid) and EM (dashed) modes for domain I (thick) and domains II and III (thin). Measured modes are indicated by solid points.

FIG. 5: (Color online) The measured (solid circles) and predicted (blue, red, and green curves for domains I, II, and III, respectively) angular dependence of the MR mode frequencies for 12 and 15 T. The inset to (a) sketches the angular dependence of B_{SF} (dashed curve), which separates low-field (LF) and high-field (HF) states. The inset to (b) shows the net magnetization of any domain for angles ψ on either side of 0. Flips of the b-axis spin at $\psi = 0$ and π produce cusps in the mode frequencies.

IV. FITTING RESULTS

Fits for the coupling parameters utilize the field dependence of M, the zero-field powder-diffraction data [22], the field dependence of the MR and EM modes at $\theta = \pi/2$ [34], and the MR mode frequencies at $\theta = 0$ and $\pi/3$ for 7, 12 and 15 T. The resulting exchange and anisotropy constants are provided in Table I and the corresponding zero-field spin state is plotted in Figs. 1(a-b). In contrast to the previously proposed [22] spin state with zig-zag chains in the ab plane containing spins 2, 3, 6, and 7, our spin state can be better described as an array of c-axis chains or connected bitetrahedra [12,30] containing spins \{1,2,3,4\} (chain α) or \{5,6,7,8\} (chain β) as sketched in Fig. 2. Chains are coupled by exchanges J_9, along x. As shown in Fig. 5 for 12 and 15 T, each hexagonal domain then contributes one MR branch with a period of π.

With field $B_{\text{loc}} = B(\cos \psi, \sin \psi, 0) = B(a \cos \psi + b \sin \psi)$ in the domain reference frame, the upper MR mode in Fig. 4 corresponds to the $\psi = \pi/2$ mode for domain I while the lower MR mode corresponds to the degenerate $\psi = \pm \pi/6$ modes for domains II and III. Previously measured MR frequencies plotted in Fig. 4 at 12 T correspond to the diamond and triangular points in Fig. 5(b) at $\theta = \pi/2$. Cusps in the MR curves for each domain at $\psi = 0$ and π are caused by flipping the b component of the magnetization (see inset to Fig. 5(b)).
What explains the wide range of J_i values? An orthorhombic distortion
h/$(\alpha \sqrt{3}) \rightarrow 0.018$
$T \rightarrow 0$ breaks the hexagonal symmetry of the ab plane
and explains the difference between the pairs $\{J_1, J_2\}$,
$\{J_5, J_11\}$, and $\{J_{10}, J_{12}\}$. The difference between couplings like $\{J_7, J_8\}$ is caused by charge ordering:
whereas J_7 couples moments 2 and 3 with $M_2 = M_3$, J_8 couples
moments 2 and 4 with $M_2 \neq M_4$. Charge ordering also explains
the difference between the pairs $\{J_2, J_3\}$ and
$\{J_9, J_{10}\}$. Although not demanded by symmetry, we set
$J_1 = J_5$, $J_2 = J_4$, $J_3 = J_6$, and $J_{11} = J_{12}$ because the spin
state and excitations at Q only depend on their averages.

Given other conditions, our fit chooses the spin state
that matches the powder-diffraction data closely
as closely as possible. At zero field, the predicted spin state has angles
$\phi_1 = -0.83\pi$, $\phi_2 = 0.40\pi$, $\phi_3 = -0.23\pi$, and
$\phi_4 = 0.62\pi$. Based exclusively on powder-diffraction data
and symmetry constraints, the previously proposed spin state
had $\phi_1 = -0.24\pi$, $\phi_2 = \phi_3 = 0.67\pi$, and $\phi_4 =
-0.44\pi$. In both cases, $\phi_{i+4} = 2\pi - \phi_i$ ($i = 1, \ldots, 4$) so that the moment M_i lies along the b axis. As shown in Table II,
our spin state does not satisfy the powder diffraction data quite as well as the earlier state, primarily because it
underestimates the powder diffraction peak $I(112)$.

For the previous spin state, χ^2 is minimized by
Lorentzian form factors with $Q_1/4\pi = 0.088 \AA^{-1}$,
$Q_2/4\pi = Q_3/4\pi = 0.095 \AA^{-1}$, and $Q_4/4\pi = 0.088 \AA^{-1}$
for spins S_n. For the new spin state, $Q_1/4\pi = 0.052 \AA^{-1}$,
$Q_2/4\pi = Q_3/4\pi = 0.224 \AA^{-1}$, and $Q_4/4\pi = 0.102 \AA^{-1}$.
All are smaller than the scale $Q_0/4\pi \approx 0.3 \AA^{-1}$ measured
by Khan and Erickson [38] for Co$^{2+}$ in CoO.

Our results indicate that the exchange coupling J_8
≈ 188 meV between moments 2 (Co$^{2+}$, $S_2 = 1$) and 4
(Co$^{3+}$/Co$^{2+}$L, $S_4 = 1.2$) is strongly ferromagnetic and
larger in magnitude even than the 155 meV antiferromagnetic
magnon ≈ -1720 or -890 K, the larger
than expected Curie constant [26], and the susceptibility
anomaly at 360 K suggestive of short-range magnetic
order far above T_c.

Comparison between the theoretical and experimental
results for the magnetization in Fig. 3 suggests that
roughly 20% of the sample is in domain I. Different
domain populations or even orthorhombic twinning in other
samples may explain the discrepancies between the reported
magnetization measurements [22,20,31,63].

Easy-axis anisotropies A and C favor ferrimagnetic
alignment along b rather than a. The spin-flop (SF) field
required to flip the spins towards the a direction must
increase as the field along b increases [40]. As shown in the inset to Fig. 5(a), $B_{SF}(\psi)$ then increases with ψ. If $B_{SF}(\psi = 0) < 15$ T, then the MR spectrum for 15 T
would show a discontinuity at the transition from a low-field
(LF) to a high-field (HF) state below some critical value of ψ. Since the MR mode frequencies in Fig. 5(a)
do not exhibit any discontinuities as a function of ψ, we conclude that $B_{SF}(\psi = 0)$ exceeds 15 T and probably,
based on the smooth dependence of the magnetizations
on field, exceeds 32 T as well. The apparent small size of B_{SF} [24,11]
must reflect the net magnetization of all three domains.

Predicted modes below 5 THz are plotted in Fig. 4. The Goldstone modes for all three domains are lifted by
in-plane anisotropies to become the MR modes with zero-field
frequencies of 1.07 THz. As remarked earlier, the lower MR mode comes from domains II and III while the
upper MR mode comes from domain I. Below 3.5 THz, one EM mode is produced in domain I and another
in domains II and III. The degenerate EM modes from
domains II and III dominate the optical absorption. The
predicted field dependence of the upper MR mode is quite
close to the observed dependence. But the predicted curvatures of the lower MR mode and the EM mode,
both from domains II and III, is not observed.

V. SPIN-INDUCED ELECTRIC POLARIZATION

Below the ferrimagnetic transition, CaBaCo$_4$O$_7$ is reported [24] to develop a very large spin-induced polarization
~ 1700 nC/cm2, which is surpassed in type I
multiferroics only by the conjectured spin-induced polarization ~ 3000 nC/cm2 of BiFeO$_3$. Other measurements indicate that the spin-induced polarization of CaBaCo$_4$O$_7$ ranges from 320 nC/cm2 to 900 nC/cm2.

The electric-field dependence of any interaction term in
the spin Hamiltonian \mathcal{H} can induce an electric polarization below T_c. However, the electric-field dependence
of the easy-plane anisotropy D cannot explain the spin-induced polarization along c because the expectation
value of $P_i = \kappa S_i c^2$ with $\kappa = -\partial D/\partial E_c$ would vanish in zero magnetic field when all the spins lie in the
plane. Easy-axis anisotropy A or C in the ab plane could produce a spin-induced electric polarization perpendicular to c. But the EM mode would then become observable for a THz electric field in the ab plane, contrary to measurements.

As conjectured previously [24], the spin-induced polarization in CaBaCo$_2$O$_7$ must then be generated by the dependence of the exchange interactions J_{ij} on an electric field, called magnetostriction. Coupling constant $\lambda_{ij} = \partial J_{ij} / \partial E_c$ for bond \{i, j\} is associated with a spin-induced polarization [13] per site of $P_{ij}^\lambda = \lambda_{ij} \mathbf{S}_i \cdot \mathbf{S}_j / 4$, which accounts for the four equivalent bonds per unit cell. Expanding in the electric field E_c yields an interaction term $-E_c \lambda_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$, linear in the electric field and quadratic in the spin operators.

Taking $|0\rangle$ as the ground state and $|n\rangle$ as the excited spin-wave state, the MR matrix element $\langle n | M_a | 0 \rangle$ mixes with the EM matrix element $\langle n | P_{ij}^\lambda | 0 \rangle$ for domains II and III but not for domain I. Therefore, our model can explain the strong asymmetry [44] $\sim \text{Re} \{ \langle n | \mathbf{M} \cdot \mathbf{B}_n | 0 \rangle \langle 0 | \mathbf{P} \cdot \mathbf{E}_n | n \rangle \}$ in the absorption of counter-propagating light waves [24] for the lower observed MR mode in geometry ii with $\mathbf{E}_n \perp \mathbf{c}$. But it cannot explain the observed asymmetry of this mode in geometry i with $\mathbf{E}_n \parallel \mathbf{c}$. How can we estimate the coupling constants λ_{ij} and the spin-induced electric polarization? The optical absorption of any mode in domain l is proportional to p_l^2 because each matrix element is separately proportional to p_l. At nonzero field, the EM mode absorption is proportional to $p_{2x}^2 + p_{3z}^2$ while the upper MR mode absorption is proportional to p_1^2. At zero field, all domains have the same mode spectrum so that both the MR and EM mode absorptions are proportional to $p_1^2 + p_{2x}^2 + p_{3z}^2$. Experimentally, the ratio r of the absorption of the EM mode to the absorption of the upper MR mode rises from $r = 7.5$ at 0 T to $r = 35$ at 10 T. This growth is explained by the $B > 0$ ratio $(p_{2x}^2 + p_{3z}^2) / p_1^2 \approx 10 \pm 5$ for $p_1 = 0.185 \pm 0.071$ and $p_2 = p_3 = (1 - p_1^2) / 2$.

At both 0 and 10 T, the only sets of bonds that generate spin-induced polarizations of the right magnitude are \{2,7\} and \{3,4\}. Each of those bonds couples adjacent c-axis chains through pairs of spins that are almost anti-parallel. From the relative absorptions at 0 or 10 T, we estimate that $\langle P_{ij}^{2x} \rangle \approx 2350$ or 1960 nC/cm2 and $\langle P_{ij}^{3z} \rangle \approx 2110$ or 1730 nC/cm2. Results for both sets of bonds are consistent with the recently observed [24] polarization of 1700 nC/cm2. By contrast, density-functional theory [27] predicts that the spin-induced polarization along c is 460 nC/cm2. The spin-induced polarization should remain fairly constant with applied magnetic field, decreasing by about 1% for a 10 T field along b.

VI. CONCLUSION

We have presented a nearly complete solution for the magnetization, spin state, and mode frequencies of the swedenborgite CaBaCo$_2$O$_7$. An orthorhombic distortion above T_c partially relieves the geometric frustration on the kagome and triangular layers and allows ferromagnetism and ferroelectricity to coexist below T_c. Although occupying a triangular lattice, bitetrahedral c-axis chains are ferrimagnetically ordered in the ab plane. Competing interactions within each chain produce non-collinear spin states. Sets of bonds coupling those chains are responsible for the large spin-induced polarization of CaBaCo$_2$O$_7$.

Despite its fixed permanent electric polarization, this swedenborgite may yet have important technological applications utilizing the large changes [24] in the spin-induced polarization when a modest magnetic field < 1 T is applied along b just below T_c. A big jump in the polarization should also be produced just below T_c by rotating a fixed magnetic field about the c axis. Above all, our work illuminates a pathway to develop other functional materials with sizeable magnetic moments and electrical polarizations.

Acknowledgments

Research sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (RF), by the Hungarian Research Funds OTKA K 108918, OTKA PD 111756, and Bolyai 00565/14/11 (SB, VK, and IK), and by the institutional research funding IUT23-3 of the Estonian Ministry of Education and Research and the European Regional Development Fund project TK134 (TR and UN).
5 S.-W. Cheong and M. Mostovoy, Nat. Mat. 6, 13 (2007).
17 The THz spectra of CaBaCo$_2$O$_{4+δ}$ were measured at 2.5 K with linear light polarization using Fourier-transform spectrosopy [32]. The reference spectrum was taken in zero field.
19 Spin excitations away from $q = Q$ depend separately on these exchange constants. The stability of the coplanar ground state requires that each pair of exchange constants be sufficiently close to one another.
22 While the coplanar LF spin state has a lower energy than the HF state below 32 T, it becomes locally unstable to a buckled state with spins canted out of the ab plane between 16 and 32 T for field along a. Based on the smooth dependence of the magnetizations on field, the transition from the coplanar to the buckled state must be second order.
25 Based on the symmetry of adjacent layers, it is easy to show that the polarization operator P^{12} associated with bond $\{1, 2\}$ has components

\[P^{12}_a \propto C_{12} - C_{56} - C_{1'2'} + C_{5'6'}, \]

\[P^{12}_b \propto C_{12} + C_{56} - C_{1'2'} - C_{5'6'}, \]

\[P^{12}_c \propto C_{12} + C_{56} + C_{1'2'} + C_{5'6'}, \]

where $C_{ij} = S_i \cdot S_j$. Similar relations hold for other bonds. Only the component P^{ij}_c can produce a static polarization but all three components may contribute to the off-diagonal polarization matrix elements $\langle 0|P^{ij}_c|n \rangle (n \neq 0)$.