Article 25fa pilot End User Agreement

This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet) with explicit consent by the author. Dutch law entitles the maker of a short scientific work funded either wholly or partially by Dutch public funds to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) ‘Article 25fa implementation’ pilot project. In this pilot research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. Please note that you are not allowed to share this article on other platforms, but can link to it. All rights remain with the author(s) and/or copyrights owner(s) of this work. Any use of the publication or parts of it other than authorised under this licence or copyright law is prohibited. Neither Radboud University nor the authors of this publication are liable for any damage resulting from your (re)use of this publication.

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please contact the Library through email: copyright@ubn.ru.nl, or send a letter to:

University Library
Radboud University
Copyright Information Point
PO Box 9100
6500 HA Nijmegen

You will be contacted as soon as possible.
Facile pentagon formation in the dissociation of polyaromatics†

Arjen J. de Haas,ab Jos Oomensa and Jordy Bouwman‡a

Energetic processing of gaseous polycyclic aromatic hydrocarbons (PAHs) plays a pivotal role in the chemistries of inter- and circumstellar environments, certain planetary atmospheres, and also in the chemistry of combustion and soot formation. Although the precursor PAH species have been extensively characterized, the products from these gaseous breakdown reactions have received far less attention. It has been particularly challenging to accurately determine their molecular structure in gas-phase experiments, where comparisons against theoretical modeling are best made. Here we report on a combined experimental and theoretical study of the dissociative ionization of two nitrogen containing polycyclic aromatic hydrocarbons of C13H9N composition, acridine and phenanthridine. The structures of HCN-loss fragments are resolved by infrared multiple-photon dissociation (IRMPD) spectroscopy of the mass-isolated products in an ion trap mass spectrometer. Quantum-chemical computations as well as reference IRMPD spectra are employed to unambiguously identify the molecular structures. Furthermore, computations at the density functional level of theory provide insight into chemical pathways leading to the observed products. Acenaphthylene* and benzopentalene* – two aromatic species containing pentagons – are identified as the main products, suggesting that such species are easily formed and may be abundant in regions where thermal or photoprocessing of polyaromatics occurs.

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) and their nitrogen containing analogs (PANHs) are known as very stable molecular entities explaining their pivotal role in the chemistries of diverse environments, ranging from the interstellar medium (ISM), planetary atmospheres, to combustion environments.1–7 Here we focus on these gas-phase environments, where energetic processing of PA(N)Hs induced by photo- and/or collisional excitation is common on these gas-phase environments, where energetic processing of to the formation of fullerenes,9–11 but spectroscopic evidence dissociation of large PAHs in the ISM has been suggested to lead to the formation of fullerences,9–11 but spectroscopic evidence supporting this hypothesized conversion has not yet been reported. The loss of C2H2 units from PAHs or the loss of an isoelectronic HCN unit constitutes the most common carbon loss channel for irregular PAHs. Recently, our group identified the structure of the product formed in the dissociative ionization of the smallest PAH, naphthalene, by infrared multiple-photon dissociation (IRMPD) spectroscopy.12 We confirmed theoretical predictions that suggest that isomerization of the underlying dissociation mechanism. Additionally, the high degree of symmetry of homocyclic PAHs consisting of three or more aromatic rings hampers unique identification of the underlying chemical mechanism, as a number of indistinguishable C2H2 units can be removed. Here, we address this challenge by investigating the loss of an isoelectronic HCN-unit from N-heterocyclic PAHs (PANHs). The nitrogen atom is placed at a specific position in the molecule and traced back in the mass loss channel, allowing for an unambiguous determination of the underlying dissociation mechanism. Additionally, the loss of HCN from nitrogen heterocycles typically requires less energy than C2H2 removal from their carbon-only counterparts20,21 having the added advantage of enhanced dissociation resulting in larger ion intensities in the experiment.

We chose to study HCN-loss products from two PANHs of C13H9N composition, acridine and phenanthridine (Fig. 1), as they comprise the smallest representatives of two classes of polyaromatics: PAHs with zigzag and with armchair edges,
respectively. Experimental and theoretical investigations of PAHs and graphene have revealed the profound influence of edge topology on electronic and structural properties of the species.\(^22-26\) Both acridine and phenanthridine have received considerable attention in the past,\(^19,27\) but their precise dissociation mechanisms are poorly characterized.

In this work we determine the molecular structures of the products formed after HCN-loss from the PANHs through their IRMPD spectra. Unambiguous identifications are made by comparing the IRMPD spectra of the dissociation products with spectra of possibly formed products. The chemical pathways leading to these products are characterized by quantum-chemical computations of the potential energy surfaces (PES).

2 Methods

2.1 Experimental

The experiments have been performed on an ion trap mass spectrometer coupled to the free electron laser for infrared experiments (FELIX) at Radboud University.\(^28\) The experimental apparatus has been described in detail previously\(^12,29\) and a brief description is provided below.

The apparatus consists of a radio-frequency quadrupole ion trap (QIT) assembly (R. M. Jordan Co.) mounted inside a vacuum chamber that is pumped by a turbopump to a pressure of \(\leq 10^{-7}\) mbar. A flow of helium is supplied to the ion trap and raises the pressure to \(\sim 5 \times 10^{-5}\) mbar. This reduces the size of the ion-cloud, resulting in improved mass resolution and better overlap with the focused IR laser beam from the free electron laser.

Acridine and phenanthridine (Sigma-Aldrich, 97 and 98%, respectively) are placed in a pyrex tube that is positioned inside the vacuum chamber in a ceramic oven heated to \(\sim 45\) °C. The \(C_{12}H_{8}\) species (acenaphthylene (ACN), biphenylene (BPh), 1-ethynyl-naphthalene (1EN), 2-ethynyl-naphthalene (2EN) – Sigma-Aldrich, 99, 99, 99, and 97%, respectively) are more volatile and are connected on the outside of the vacuum chamber and introduced effusively via a dosing valve.

An ArF excimer laser (193 nm) with a pulse energy of \(\sim 3.5\) mJ is focused in the center of the ion trap through a MgF\(_2\) lens to (dissociatively) ionize the species under investigation. The three electrodes of the trap are kept at ground potential and a 1 MHz radio-frequency (RF) signal with a peak-to-peak amplitude of \(\sim 1375\) V is supplied to the ring-electrode. Ions generated in the focus of the laser are captured in the RF-field, provided their mass-to-charge ratio \((m/z)\) has a stable trajectory in the ion trap.

Mass selection of the ions is achieved by applying an 80 ms long stored waveform inverse Fourier transform (SWIFT) pulse to the repeller endcap electrode.\(^30\) The SWIFT pulses have been constructed following the method described by Doroshenko and Cotter,\(^31\) using quadratic phase modulation for the frequency components.\(^32\) The SWIFT pulse excites the mass-selective axial secular frequencies of all ions inside the trap except for the ion of interest, thereby ejecting unwanted species from the trap while leaving the species under investigation unaffected.

Ions are ejected from the trap through a hole in the extractor endcap by simultaneously applying high voltage pulses of \(+800\) and \(-800\) V to the repeller and extractor endcap electrodes, respectively. After the ions exit the trap they are further accelerated into a time-of-flight (TOF) mass spectrometer by an extraction grid biased at \(-2375\) V. The 40 cm long TOF tube contains a concentric liner biased at the same negative potential as the extraction grid. The field free flight tube is terminated by the front grid of the Z-gap microchannel plate detector that is also kept at the same potential. This configuration yields a mass resolution of \(m/\Delta m \approx 300\).

Mid-IR spectra have been recorded by measuring the fragmentation yield induced by the intense radiation from FELIX as a function of IR laser wavelength.\(^33\) The fragmentation yield is defined as the total integrated intensity of IR-induced fragment ions divided by the total integrated ion intensity, i.e. the sum of the fragment and precursor ion intensities. Typical FELIX macro-pulse energies range from 50 to 70 mJ with a spectral resolution that is Fourier limited by the duration of the FELIX micropulse and amounts to about 0.5% of the central wavelength.\(^28\) The IR radiation is tightly focused into the center of the ion trap in a double-pass configuration created by two concave mirrors with a focal length of 7.5 cm. The experiment is operated at a repetition rate of 10 Hz that is provided by FELIX. Further details on the measurement cycle are given in Fig. S1 of the ESI.\(^3\)

2.2 Computational

Density functional theory (DFT) calculations have been performed with the Gaussian09 software package\(^34\) employing the B3LYP functional.\(^35,36\) Reaction coordinates have been scanned at the 6-31+G* level of theory to locate transition states and intermediates. The identified structures have been re-optimized with the 6-311++G(2d,p) basis set to obtain more accurate energies. Vibrational frequencies of the possible reaction product structures have also been computed at the B3LYP/6-311++G(2d,p) level of theory. The frequencies of the computed spectra are scaled uniformly with a factor of 0.96 to correct for anharmonicities and are subsequently convoluted with a Gaussian line shape with a full width at half maximum (FWHM) of 30 cm\(^{-1}\) to facilitate comparison between the experimental and computational spectra.

3 Results

3.1 Mass spectrometry

The mass spectrum resulting from the UV multiphoton dissociative ionization of phenanthridine is shown in Fig. 2A.
Mass peaks are observed at $m/z = 180, 179, 152, 151$ and 150. The peak at $m/z = 179$ is attributed to the phenanthridine radical cation. The intense peak at $m/z = 180$ is likely due to protonated phenanthridine that is formed by a self-protonation reaction of the radical cation Phe$^+$ with neutral phenanthridine present as a background vapor.

$$\text{Phe}^+ + \text{Phe} \rightarrow \text{H}^+\text{Phe} + [\text{Phe}\text{--H}]^+$$ (1)

The very weak signal observed at $m/z = 153$ corresponds to C_2H_2-loss from phenanthridine and contains a contribution of the ^{13}C component of the product at $m/z = 152$. The mass observed at $m/z = 152$ is clearly more intense and corresponds primarily to the HCN-loss channel:

$$C_{11}H_{10}N^+ \rightarrow C_{12}H_8^+ + \text{HCN}$$ (2)

This signal also possibly contains a small contribution of a product formed through C_2H_2-loss accompanied by dehydrogenation, as was observed in high mass resolution experiments. Mass peaks at $m/z = 151$ and 150 represent (further) dehydrogenation of products formed from HCN- and/or C_2H_2-loss.

The middle trace in Fig. 2 shows the normalized mass spectrum that is recorded after applying the SWIFT-pulse to the repeller endcap of the ion trap. SWIFT excitation results in a clean isolation of the product at $m/z = 152$, with only a small fraction of the initial (protonated) phenanthridine left in the trap. Finally, the bottom trace in Fig. 2 shows the normalized mass spectrum that is obtained when FELIX is tuned to 750 cm$^{-1}$, which is resonant with a vibrational transition in the ^{13}C component of the product at $m/z = 152$. The mass spectrum that is obtained when FELIX is tuned to 750 cm$^{-1}$, which is resonant with a vibrational transition in the ^{13}C component of the product at $m/z = 152$.

The peak at $m/z = 179$ is attributed to the phenanthridine radical cation. The intense peak at $m/z = 180$ is likely due to protonated phenanthridine that is formed by a self-protonation reaction of the radical cation Phe$^+$ with neutral phenanthridine present as a background vapor. The peak at $m/z = 179$ is attributed to the phenanthridine radical cation. The intense peak at $m/z = 180$ is likely due to protonated phenanthridine that is formed by a self-protonation reaction of the radical cation Phe$^+$ with neutral phenanthridine present as a background vapor.

3.2 IRMPD spectroscopy

3.2.1 $C_{12}H_8^+$ isomers. A number of isomeric forms of the $C_{12}H_8^+$ species are conceivable that could potentially represent the molecular structures of the fragments formed in the dissociative ionization of phenanthridine and acridine. Reference IRMPD spectra were recorded for the radical cations of four candidate structures that are commercially available:acenaphthylene (AcN$^+$), 2-ethylhexynaphthalene (2EN$^+$), 1-ethylhexynaphthalene (1EN$^+$) and biphenylene (BPh$^+$). These spectra, shown in Fig. 3, are corrected for fluctuations in the mid infrared laser pulse energies emitted by the FEL by scaling the IRMPD induced fragment ion intensities to the measured FEL pulse energy (see Fig. S3 of the ESI†).

The bottom panels in Fig. 3 show the vibrational spectra of these compounds computed at the B3LYP/6-311++G(2d,p) level of theory (stick diagram). A uniform frequency scaling factor of 0.96 is applied and the spectra are convoluted with a Gaussian line shape function with a full width at half maximum (FWHM) of 30 cm$^{-1}$. Generally, the recorded IRMPD spectra match the calculated spectra very well, although relative intensities of the calculated spectra exhibit deviations from the measured intensities, which is not uncommon for IRMPD spectra. Summaries of calculated and measured frequencies and the assignments of the vibrational modes are listed in Tables S1–S4 in the ESI.†

3.2.2 HCN-loss fragments. The IRMPD spectra of the HCN loss fragments of acridine and phenanthridine have been recorded and are displayed in Fig. 5. A comparison of the fragment ion spectra with those of the five possible $C_{12}H_8^+$ structures is shown in Fig. S4 of the ESI.† The IR spectrum of the $[M–27]^+$ fragment from acridine (Fig. 5A) shows the best match with the computed spectrum of BP$^+$ that is overplotted in green onto the acridine fragment spectrum in panel (A). While the band at 752 cm$^{-1}$ matches reasonably well with the mode at 732 cm$^{-1}$ in the spectrum of BPh$^+$ in Fig. 3B, the small mismatch in peak position combined with the absence of the other BPh$^+$ features around 970 and 1490 cm$^{-1}$ rule out BPh$^+$ as the product ion structure. Although the positions of the bands at 732, 1097 and 1343 cm$^{-1}$ in the spectrum of the acridine $[M–27]^+$ fragment match reasonably well with features in the spectrum of AcN$^+$ (Fig. 3A), the relative intensities do not match. Furthermore, other AcN$^+$ resonances, specifically the strong mode at 834 cm$^{-1}$, are not clearly present in the spectrum of the acridine fragment, ruling out this species as a main contributor. The IR spectra of 1EN$^+$ and 2EN$^+$ do not appear to match at all with that of the acridine m/z 152 fragment, leaving BP$^+$ as the only candidate structure, yet a small contribution of AcN$^+$ cannot be excluded entirely. The three main resonances and two weaker transitions observed in the experimental spectrum closely resemble the bands in the computed BP$^+$ spectrum.
The computed feature at 1560 cm\(^{-1}\) is not observed in the experimental spectrum, which is likely caused by reduced FEL pulse energies towards the high-frequency end of the spectrum (see Fig. S3 in the ESI\(^*\)), as has also been observed for pentalene\(^{12}\). The spectrum of the [M/C\(_0\)\(^{27}\)/C\(_{15}\)]\(^{+}\) fragment from phenanthridine shown in Fig. 5B exhibits the same features as the acridine fragment spectrum in panel A (bands marked with a ‘*’), but is complemented by additional resonances superimposed on a broad absorption stretching from 900 to 1400 cm\(^{-1}\). The presence of all bands that are observed in the spectrum of the acridine fragment suggests that BP\(^{+}\)/C\(_{15}\) is also a primary dissociation product of phenanthridine. The slightly weaker bands at 835 and 1180 cm\(^{-1}\) match perfectly with two of the strongest features in the spectrum of AcN\(^{+}\)/C\(_{15}\) shown in Fig. 3A and plotted in green onto the fragment spectrum in Fig. 5B to facilitate the comparison. Close inspection reveals that AcN\(^{+}\) can also explain the broad structure between 900 and 1400 cm\(^{-1}\). We thus conclude that the dissociative ionization of phenanthridine proceeds along two parallel pathways yielding BP\(^{+}\) and AcN\(^{+}\). A branching ratio between the two products cannot be determined from the present experiment, as IRMPD involves a non-linear process.

3.3 Potential energy surface
The C\(_{13}\)H\(_8\)N\(^{+}\) potential energy surface has been explored computationally to provide insight into possible reaction
pathways leading to the C_{12}H_8 products. A summary of the PES containing only the rate limiting transition states connecting acridine** and phenanthridine** to the $\text{C}_{12}\text{H}_8^{**}$ products is shown in Fig. 6. The energies in this PES (in eV) are indicated relative to that of the acridine radical cation. The detailed computed PES of the individual steps are available from Fig. S6–S10 of the ESI.† The computed barrier of 4.58 eV involved in the isomerization of acridine** to phenanthridine** is slightly lower than the value of 4.76 eV reported by Johansson et al.19 The transition state for the formation of BPh** from phenanthridine** is in good agreement with their computations. However, where from the study by Johansson et al.19 it appears that the formation of BPh** is the lowest energy product channel, the full potential energy surface as investigated here suggests that the formation of BP** is lowest in energy, followed by AcN** and 1EN**. The path leading to BPh** is in fact highest in energy with a rate limiting barrier at 4.95 eV.

The spectroscopic experiments described in the previous section support our computed PES, showing that the observed product ion structures (BP** and AcN**) are indeed those accessible over the lowest energy transition states.

For both acridine** and phenanthridine**, the path with the lowest barrier (4.31 and 3.78 eV, respectively) leads to BP** via a 6–6 to 5–7 ring conversion (see Fig. S7 and S8 of ESI†). The formation of AcN** and 1EN** share the same rate limiting transition state at 4.95 eV. However, the formation of 1EN** requires an additional step with a submerged barrier at 4.71 eV, which is unlikely to compete with the submerged barrier at 3.5 eV that leads to the AcN** (see Fig. S9 and S10 of ESI†).

The reaction pathway from phenanthridine** to BPh** has a rate limiting barrier at 5.27 eV. Acridine** and phenanthridine** are found to be connected by a transition state located at 4.58 eV. No path connecting acridine or phenanthridine to 2EN** has
been identified. For acridine$^+$ to reach AcN$^+$ or 1EN$^+$ isomerization to phenanthridine$^+$ is required according to the computed PES, causing this dissociation channel to be kinetically unfavorable compared to the reaction leading to BP$^+$, which requires fewer steps and is substantially lower in energy. Moreover, even if isomerization to phenanthridine$^+$ were to occur, dissociation to BP$^+$ + HCN would still be the lowest energy dissociation channel.

4 Discussion and conclusion

The ionization potentials of acridine and phenanthridine are 8.1 eV18 and 8.3 eV,19 respectively. Upon ionization with two 193 nm photons (2 × 6.42 = 12.84 eV) an excess energy of ~4.74 and 4.54 eV is available for dissociation of the metastable acridine and phenanthridine radical cations, respectively. In both cases this is sufficient to form BP$^+$ via HCN-loss, which is computed to require 4.30 and 3.78 eV (see Fig. 6). Although the experiments are performed at room temperature, the ions in the trap may be substantially hotter (±800 °C),40 undergo collisions with the background helium gas and are excited by the SWIFT isolation pulse. It is therefore not unlikely that the path leading from phenanthridine$^+$ to AcN$^+$ and 1EN$^+$ also opens up, as the internal energy due to UV excitation is only 0.21 and 0.14 eV below the rate-limiting barrier leading to these products, respectively.

For phenanthridine$^+$ the path that leads to AcN$^+$ (see Fig. S9 and S10 of the ESI†) contains about twice as many steps as the path leading to BP$^+$ (Fig. S9 of ESI†). This dissociation channel thus appears kinetically less favorable, however, AcN$^+$ is detected experimentally and thus competes with the formation of BP$^+$. Possibly, a lower energy pathway leading to AcN$^+$ exists that is not identified in the present calculations, or the measurement is somewhat more sensitive towards AcN$^+$. A full Rice–Ramsperger–Kassel–Marcus41 (RRKM) model of the potential energy surface may also provide more detailed insight into the observed products and their branching fractions as a function of internal energy of the parent ion.

The molecular structures of the reaction products of HCN-expulsion from a zigzag and armchair PANH have been resolved on the basis of their IR spectra. The formation of benzopentalene$^+$ and acenaphthylene$^+$ upon UV-induced dissociation of acridine and phenanthridine is in good agreement with potential energy surface calculations. The established reaction pathways are believed to be generic and similar chemical pathways leading to pentagon-containing products are conceivable for C$_2$H$_2$-loss from zigzag- and armchair-edged PAHs. Various recent experimental5,11,12,20,42,43 and theoretical10,44 studies have indeed suggested that pentagon formation occurs in PAH breakdown. The present study confirms those indications based on firm spectroscopic evidence.

The facile formation of 5-membered rings upon energetic processing of polyaromatic species suggests that PA(N)Hs with a mixed pentagon/hexagon structure may be abundant in photo-dominated regions of the interstellar medium, or in regions where thermal processing of polyaromatics occurs.

Acknowledgements

JB acknowledges the Netherlands Organisation for Scientific Research (Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO) for a VENI grant (grant number 722.013.014). JO acknowledges NWO for a VICI grant (grant number 724.011.002). This work was further supported by NWO Exacte Wetenschappen (Physical Sciences) for the use of the supercomputer facilities at SurffSara (grant no. SH-260 and MP-264). The authors gratefully thank the FELIX Laboratory staff for providing the FELIX beamtime and for their support in the construction, modification, and commissioning of the ion trap apparatus.

References

