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Abstract Path integral (PI) control problems are a restricted class of non-linear control
problems that can be solved formally as a Feynman–Kac PI and can be estimated using
Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon
case. We subsequently focus on the problem how to compute and represent control solutions.
We review the most commonly used methods in robotics and control. Within the PI theory,
the question of how to compute becomes the question of importance sampling. Efficient
importance samplers are state feedback controllers and the use of these requires an efficient
representation. Learning and representing effective state-feedback controllers for non-linear
stochastic control problems is a very challenging, and largely unsolved, problem. We show
how to learn and represent such controllers using ideas from the cross entropy method. We
derive a gradient descent method that allows to learn feed-back controllers using an arbitrary
parametrisation. We refer to this method as the path integral cross entropy method or PICE.
We illustrate this method for some simple examples. The PI control methods can be used
to estimate the posterior distribution in latent state models. In neuroscience these problems
arise when estimating connectivity from neural recording data using EM. We demonstrate
the PI control method as an accurate alternative to particle filtering.

1 Introduction

Stochastic optimal control theory (SOC) considers the problem to compute an optimal
sequence of actions to attain a future goal. The optimal control is usually computed from
the Bellman equation, which is a partial differential equation. Solving the equation for high
dimensional systems is difficult in general, except for special cases, most notably the case
of linear dynamics and quadratic control cost or the noiseless deterministic case. Therefore,
despite its elegance and generality, SOC has not been used much in practice.
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In [13] it was observed that posterior inference in a certain class of diffusion processes
can be mapped onto a stochastic optimal control problem. These so-called path integral
(PI) control problems [20] represent a restricted class of non-linear control problems with
arbitrary dynamics and state cost, but with a linear dependence of the control on the dynamics
and quadratic control cost. For this class of control problems, the Bellman equation can be
transformed into a linear partial differential equation. The solution for both the optimal control
and the optimal cost-to-go can be expressed in closed form as a Feynman–Kac path integral.
The path integral involves an expectation value with respect to a dynamical system. As a
result, the optimal control can be estimated using Monte Carlo sampling. See [21,22,45,47]
for earlier reviews and references.

In this contribution we review path integral control theory in the finite horizon case.
Important questions are: how to compute and represent the optimal control solution. In order
to efficiently compute, or approximate, the optimal control solution we discuss the notion of
importance sampling and the relation to the Girsanov change of measure theory. As a result,
the path integrals canbe estimatedusing (suboptimal) controls.Different importance samplers
all yield the same asymptotic result, but differ in their efficiency.We show an intimate relation
between optimal importance sampling and optimal control: we prove a Lemma that shows
that the optimal control solution is the optimal sampler, and better samplers (in terms of
effective sample size) are better controllers (in terms of control cost) [46]. This allows us to
iteratively improve the importance sampling, thus increasing the efficiency of the sampling.

In addition to the computational problem, another key problem is the fact that the optimal
control solution is in general a state- and time-dependent function u(x, t) with u the control,
x the state and t the time. The state dependence is referred to as a feed-back controller, which
means that the execution of the control at time t requires knowledge of the current state x of
the system. It is often impossible to compute the optimal control for all states because this
function is an infinite dimensional object, which we call the representation problem. Within
the robotics and control community, there are several approaches to deal with this problem.

1.1 Deterministic Control and Local Linearisation

The simplest approach follows from the realisation that state-dependent control is only
required due to the noise in the problem. In the deterministic case, one can compute the
optimal control solution u(t) = u∗(x∗(t), t) along the optimal path x∗(t) only, and this is a
function that only depends on time. This is a so-called open loop controller which applies
the control u(t) regardless of the actual state that the system is at time t . This approach
works for certain robotics tasks such a grasping or reaching. See for instance [36,44] who
constructed open loop controllers for a number of robotics tasks within the path integral
control framework. Such state-independent control solutions can yield stable solutions with
variable stiffness and feedback gains, when the dynamics itself has the proper state depen-
dence (for instance by using dynamic motor primitives). However, open loop controllers are
clearly sub-optimal in general and simply fail for unstable dynamical systems that require
state feedback.

It should be mentioned that the open loop approach can be stabilised by computing a
linear feed-back controller around the deterministic trajectory. This approach uses the fact
that for linear dynamical systems with Gaussian noise and with quadratic control cost, the
solution can be efficiently computed.1 One defines a linear quadratic control problem around
the deterministic optimal trajectory x∗(t) by Taylor expansion to second order, which can

1 For these so-called linear quadric control problems (LQG) the optimal cost-to-go is quadratic in the state
and the optimal control is linear in the state, both with time dependent coefficients. The Bellman equation
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1246 H. J. Kappen, H. C. Ruiz

be solved efficiently. The result is a linear feedback controller that stabilises the trajectory
x∗(t). This two-step approach is well-known and powerful and at the basis of many control
solutions such as the control of ballistic missiles or chemical plants [37].

The solution of the linear quadratic control problem also provides a correction to the
optimal trajectory x∗(t). Thus, a new x∗(t) is obtained and a new LGQ problem can be
defined and solved. This approach can be iterated, incrementally improving the trajectory
x∗(t) and the linear feedback controller. This approach is known as differential dynamic
programming [26,30] or the iterative LQG method [48].

1.2 Model Predictive Control

A second idea is to compute the control ‘at run-time’ for any state that is visited using the
idea of model predictive control (MPC) [7]. At each time t in state xt , one defines a finite
horizon control problem on the interval [t, t + T ] and computes the optimal control solution
u(s, xs), t ≤ s ≤ t + T on the entire interval. One executes the dynamics using u(t, xt )
and the system moves to a new state xt+dt as a result of this control and possible external
disturbances. This approach is repeated for each time. The method relies on a model of
the plant and external disturbances, and on the possibility to compute the control solution
sufficiently fast. MPC yields a state dependent controller because the control solution in the
future time interval depends on the current state. MPC avoids the representation problem
altogether, because the control is never explicitly represented for all states, but computed for
any state when needed.

In the robotics community, the combination of DDP with MPC is a popular approach,
providing a practical compromise between stability, non-linearity and efficient computation
and has been succesfully applied to robot walking and manipulation [29,43] and aerobatic
helicopter flight [1].

MPC is particularly well-suited for the path integral control problems, because in this
case the optimal control u∗(x, t) is explicitly given in terms of a path integral. The challenge
then is to evaluate this path integral sufficiently accurate in real time. Thijssen and Kappen
[46] propose adaptive Monte Carlo sampling that is accelerated using importance sampling.
This approach has been successfully applied to the control of 10–20 autonomous helicopters
(quadrotors) that are engaged in coordinated control tasks such asflyingwithminimal velocity
in a restricted area without collision or a task where multiple ’cats’ need to catch a mouse
that tries to get away [18].

1.3 Reinforcement Learning

Reinforcement learning (RL) is a particular setting of control problems with the empha-
sis on learning a controller on the basis of trial-and-error. A sequence of states Xt , t =
0, dt, 2dt, . . . , is generated from a single roll-out of the dynamical system using a par-
ticular control, which is called the policy in RL. The ‘learning’ in reinforcement learning
refers to the estimation of a parametrised policy u(t, x ||θ), called function approximation,
from a single roll out [39]. The use of function approximation in RL is not straightforward
[4,5,38]. To illustrate the problem, consider the infinite horizon discounted reward case,
which is the most popular RL setting. The problem is to compute the optimal cost-to-go of
a particular parametrised form: J (x |θ). In the non-parametrised case, the solution is given

Footnote 1 continued
reduces to a system of non-linear ordinary differential equations for these coefficients, known as the Ricatti
equation.
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by the Bellman ‘back-up’ equation, which relates J (xt ) to J (xt+dt ) where xt,t+dt are the
states of the system at time t, t + dt , respectively and xt+dt is related to xt through the
dynamics of the system. In the parametrised case, one must compute the new parameters
θ ′ of J (xt |θ ′) from J (xt+dt |θ) . The problem is that the update is in general not of the
parametrised form and an additional approximation is required to find the θ ′ that gives the
best approximation. In the RL literature, one makes the distinction between ’on-policy’
learning where J is only updated for the sequence of states that are visited, and off-policy
learning updates J (x) for all states x , or a (weighted) set of states. Convergence of RL
with function approximation has been shown for on-policy learning with linear function
approximation (i.e. J is a linear function of θ ) [49]. These authors also provide examples
of both off-policy learning and non-linear function approximation where learning does not
converge.

1.4 Outline

This chapter is organised as follows. In Sect. 2 we present a review of the main ingredients
of the path integral control method. We define the path integral control problem and state
the basic Theorem of its solution in terms of a path integral. We then prove the Theorem by
showing in Sect. 2.1 that the Bellman equation can be linearised by a log transform and in
Sect. 2.2 that the solution of this equation is given in terms of a Feynman–Kac path integral. In
Sect. 2.3 we discuss how to efficiently estimate the path integral using the idea of importance
sampling. We show that the optimal importance sampler coincides with the optimal control.

Thus, a good control solution can be used to accelerate the computation of a better control
solution. Such a solution is a state-feedback controller, i.e.. a function of t, x for a larger
range of t, x values. This leads to the issue how to compute and represent such a solution.
The path integral Theorem shows how to compute the solution u(t, x) for a given t, x , but
repeating this computation for all t, x is clearly infeasible.

A solution to this problem was first proposed in [50] to use the cross entropy method to
improve importance sampling for diffusion processes. Their approach follows quite closely
the original cross entropy method by De Boer et al. [9]. In particular, they restrict themselves
to a control function that is linearly parametrised so that the optimisation is a convex problem.
In our work, we generalise this idea to arbitrary parametrisation, resulting in a gradient based
method. In Sect. 3 we review the cross entropy method, as an adaptive procedure to compute
an optimised importance sampler in a parametrised family of distributions over trajectories.
In order to apply the cross entropy method in our context, we reformulate the path integral
control problem in terms of a KL divergence minimisation in Sect. 3.1 and in Sect. 3.2 we
apply this procedure to obtain optimal samplers/controllers to estimate the path integrals. We
refer to this method as the path integral cross entropy (PICE) method. In Sect. 4 we illustrate
the PICE method to learn a time-independent state-dependent controller for some simple
control tasks involving a linear and a non-linear parametrisation.

In Sect. 5 we consider the reverse connection between control and sampling: we consider
the problem to compute the posterior distribution of a latent state model that we wish to
approximate using Monte Carlo sampling, and to use optimal controls to accelerate this
samplingproblem. In neuroscience, suchproblems arise, e.g. to estimate network connectivity
fromdata or decoding of neural recordings. The commonapproach is to formulate amaximum
likelihood problem that is optimised using the EMmethod. The E-step is a Bayesian inference
problem over hidden states and is shown to be equivalent to a path integral control problem.
We illustrate this for a small toy neural network where we estimate the neural activity from
noisy observations.
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1248 H. J. Kappen, H. C. Ruiz

2 Path Integral Control

Consider the dynamical system

dX (s) = f (s, X (s))ds + g(s, X (s))
(
u(s, X (s))ds + dW (s)

)
t ≤ s ≤ T (1)

with X (t) = x . dW (s) is Gaussian noise with E dW (s) = 0,E dW (s)dW (r) = dsδ(s − r).
The stochastic process W (s), t ≤ s ≤ T is called a Brownian motion. We will use upper
case for stochastic variables and lower case for deterministic variables. t denotes the current
time and T the future horizon time.

Given a function u(s, x) that defines the control for each state x and each time t ≤ s ≤ T ,
define the cost

S(t, x, u) = �(X (T )) +
∫ T

t

(
V (s, X (s)) + 1

2
u(s, X (s))2

)
ds

+
∫ T

t
u(s, X (s))dW (s) (2)

with t, x the current time and state and u the control function. The stochastic optimal control
problem is to find the optimal control function u:

J (t, x) = min
u

Eu S(t, x, u)

u∗(t, x) = argmin
u

Eu S(t, x, u) (3)

where Eu is an expectation value with respect to the stochastic process Eq. 1 with initial
condition Xt = x and control u.

J (t, x) is called the optimal cost-to-go as it specifies the optimal cost fromany intermediate
state and any intermediate time until the end time t = T . For any control problem, J satisfies
a partial differential equation known as the Hamilton–Jacobi–Bellman equation (HJB). In the
special case of the path integral control problems the solution is given explicitly as follows.

Theorem 1 The solution of the control problem Eq. 3 is given by

J (t, x) = − logψ(t, x) ψ(t, x) = Eu e−S(t,x,u) (4)

u∗(t, x) = u(t, x) +
〈
dW (t)

dt

〉
(5)

where we define

〈
dW

dt

〉
= lim

s↓t
1

s − t

Eu
[
W (s)e−S(t,x,u)

]

Eu
[
e−S(t,x,u)

] (6)

and W (s), s ≥ t the Brownian motion.

The path integral control problem and Theorem 1 can be generalised to the multi-
dimensional case where X (t), f (s, X (s)) are n-dimensional vectors, u(s, X (s)) is an m
dimensional vector and g(s, X (s)) is an n × m matrix. dW (s) is m-dimensional Gaussian
noise with Eu dW (s) = 0 and Eu dW (s)dW (r) = νdsδ(s − r) and ν the m × m positive
definite covariance matrix. Eqs. 1 and 2 become:
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dX (s) = f (s, X (s))ds + g(s, X (s))
(
u(s, X (s))ds + dW (s)

)
t ≤ s ≤ T

S(t, x, u) = 1

λ

(
�(X (T )) +

∫ T

t

(
V (s, X (s)) + 1

2
u(s, X (s))′Ru(s, X (s))

)
ds

+
∫ T

t
u(s, X (s))′RdW (s)

)
(7)

where ′ denotes transpose. In this case, ν and R must be related as with λI = Rν with λ > 0
a scalar [20].

In order to understand Theorem 1, we first will derive in Sect. 2.1 the HJB equation and
show that for the path integral control problem it can be transformed into a linear partial
differential equation. Subsequently, in Sect. 2.2 we present a Lemma that will allow us prove
the Theorem.

2.1 The Linear HJB Equation

The derivation of the HJB equation relies on the argument of dynamic programming. This is
quite general, but here we restrict ourselves to the path integral case. Dynamic programming
expresses the control problem on the time interval [t, T ] as an instantaneous contribution at
the small time interval [t, t + ds] and a control problem on the interval [t + ds, T ]. From the
definition of J we obtain that J (T, x) = �(x),∀x .

We derive the HJB equation by discretising time with infinitesimal time increments ds.
The dynamics and cost-to-go become

Xs+ds = Xs + fs(Xs)ds + gs(Xs)
(
us(Xs)ds + dWs

)
s = t, t + ds, . . . , T − ds

St (X, ut :T−ds) = �(XT ) +
T−ds∑
s=t

ds

(
Vs(Xs) + 1

2
us(Xs)

2
)

+
T−ds∑
s=t

us(Xs)dWs

The minimisation in Eq. 3 is with respect to a function u of state and time and becomes a
minimisation over a sequence of state-dependent functions ut :T−ds = {us(xs), s = t, t +
ds, . . . , t + T − ds}:

Jt (xt ) = min
ut :T−ds

Eu St (xt , ut :T−ds)

= min
ut

(
Vt (xt )ds + 1

2
ut (xt )

2ds + min
ut+ds:T−ds

Eu St+ds(Xt+ds, ut+ds:T−ds)

)

= min
ut

(
Vt (xt )ds + 1

2
ut (xt )

2ds + Eu Jt+ds(Xt+ds)

)

= min
ut

(
Vt (xt )ds + 1

2
ut (xt )

2ds + Jt (xt ) + ds( ft (xt ) + gt (xt )ut (xt ))∂x Jt (xt )

+ 1

2
ds∂2x Jt (xt ) + ∂t Jt (xt )ds + O(ds2)

)

The first step is the definition of Jt . The second step separates the cost term at time t from the
rest of the contributions in St , uses thatEdWt = 0. The third step identifies the second term as
the optimal cost-to-go from time t + ds in state Xt+ds . The expectation is with respect to the
next future state Xt+ds only. The fourth step uses the dynamics of x to express Xt+ds in terms
of xt , a first order Taylor expansion in ds and a second order Taylor expansion in Xt+ds − xt
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1250 H. J. Kappen, H. C. Ruiz

and uses the fact that EXt+ds − xt = ( ft (xt ) + gt (xt )ut (xt ))ds and E(Xt+ds − xt )2 =
EdW 2

t +O(ds2) = ds+O(ds2). ∂t,x are partial derivatives with respect to t, x respectively.
Note, that the minimisation of control paths ut :T−ds is absent in the final result, and only

a minimisation over ut remains. We obtain in the limit ds → 0:

− ∂t J (t, x) = min
u

(
V (t, x) + 1

2
u2(t, x) + ( f (t, x) + g(t, x)u(t, x))∂x J (x, t)

+ 1

2
g(t, x)2∂2x J (t, x)

)
(8)

Equation 8 is a partial differential equation, known as the HJB equation, that describes
the evolution of J as a function of x and t and must be solved with boundary condition
J (x, T ) = φ(x).

Since u appears linear and quadratic in Eq. 8, we can solve the minimisation with respect
to u which gives u∗(t, x) = −g(t, x)∂x J (t, x). Define ψ(t, x) = e−J (t,x), then the HJB
equation becomes linear in ψ :

∂tψ + f ∂xψ + 1

2
g2∂2xψ = Vψ. (9)

with boundary condition ψ(T, x) = e−�(x).

2.2 Proof of the Theorem

In this section we show that Eq. 9 has a solution in terms of a path integral (see [46]). In
order to prove this, we first derive the following Lemma. The derivation makes use of the
so-called Itô calculus which we have summarised in the appendix.

Lemma 1 Define the stochastic processes Y (s), Z(s), t ≤ s ≤ T as functions of the sto-
chastic process Eq. 1:

Z(s) = exp(−Y (s))) Y (s)

=
∫ s

t
V (r, Xr )dr + 1

2
u(r, Xr )

2dr + u(r, Xr )dW (r) t ≤ s ≤ T (10)

Whenψ is a solution of the linear Bellman equation Eq. 9 and u∗ is the optimal control, then

e−S(t,x,u) − ψ(t, x) = ∫ T
t Z(s)ψ(s, Xs)(u∗(s, Xs) − u(s, Xs))dW (s) (11)

Proof Consider ψ(s, X (s)), t ≤ s ≤ T as a function of the stochastic process Eq. 1. Since
X (s) evolves according to Eq. 1, ψ is also a stochastic process and we can use Itô’s Lemma
(Eq. 32) to derive a dynamics for ψ .

dψ =
(

∂tψ + ( f + gu)∂xψ + 1

2
g2∂2xψ

)
ds + gdW∂xψ = Vψds + g(uds + dW )∂xψ

where the last equation follows because ψ satisfies the linear Bellman equation Eq. 9.
From the definition of Y we obtain dY = Vds+ 1

2u
2ds+udW . Using again Itô’s Lemma

Eq. 32:

dZ = −ZdY + 1

2
Zd[Y, Y ] = −Z (Vds + udW )

Using the product rule Eq. 31 we get

d(Zψ) = ψdZ + Zdψ + d[Z , ψ] = −ZψudW + Z∂xψgdW = Zψ(u∗ − u)dW
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where in the last step we used that u∗ = 1
ψ
g∂xψ which follows from u∗(t, x) =

−g(t, x)∂x J (t, x). and ψ(t, x) = e−J (t,x) (see Sect. 2.1). Integrating d(Zψ) from t to
T using Eq. 33 yields

Z(T )ψ(T ) − Z(t)ψ(t, x) =
∫ T

t
d(Zψ)

e−Y (T )−�(X (T )) − ψ(t, x) =
∫ T

t
dsZψ(u∗ − u)dW

where we used that Z(t) = 1 and ψ(T ) = exp(−�(X (T ))). This proves Eq. 11. 	

With the Lemma, it is easy to prove Theorem 1. Taking the expected value in Eq. 11 proves

Eq. 4

ψ(t, x) = Eu

[
e−S(t,x,u)

]

This is a closed form expression for the optimal cost-to-go as a path integral.
To prove Eq. 5, we multiply Eq. 11 with W (s) = ∫ s

t dW , which is an increment of the
Wiener process and take the expectation value:

Eu

[
e−S(t,x,u)W (s)

]
= Eu

[∫ s

t
Zψ(u∗ − u)dW

∫ s

t
dW

]
=

∫ s

t
Eu

[
Zψ(u∗ − u)

]
dr

where in the first step we used EuW (s) = 0 and in the last step we used Itô Isometry Eq. 35.
To get u∗ we divide by the time increment s − t and take the limit of the time increment
to zero. This will yield the integrand of the RHS ψ(t, x)(u∗(t, x) − u(t, x). Therefore the
expected value disappears and we get

u∗(t, x) = u(t, x) + 1

ψ(t, x)
lim
s↓t

1

s − t
Eu

[
e−S(t,x,u)W (s)

]

which is Eq. 5.

2.3 Monte Carlo Sampling

Theorem 1 gives an explicit expression for the optimal control u∗(t, x) and the optimal cost-
to-go J (t, x) in terms of an expectation value over trajectories that start at x at time t until
the horizon time T . One can estimate the expectation value by Monte Carlo sampling. One
generates N trajectories X (t)i , i = 1, . . . , N starting at x, t that evolve according to the
dynamics Eq. 1. Then, ψ(t, x) and u∗(t, x) are estimated as

ψ̂(t, x) =
N∑
i=1

wi wi = 1

N
e−Si (t,x,u) (12)

û∗(t, x) = u(t, x) + 1

ψ̂(t, x)
lim
s↓t

1

s − t

N∑
i=1

W (s)iwi (13)

with Si (t, x, u) the value of S(t, x, u) from Eq. 2 for the i th trajectory X (s)i ,W (s)i , t ≤
s ≤ T . The optimal control estimate involves a limit which we must handle numerically by
setting s − t = ε > 0. Although in theory the result holds in the limit ε → 0, in practice ε

should be taken a finite value because of numerical instability, at the expense of theoretical
correctness.
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1252 H. J. Kappen, H. C. Ruiz

The estimate involves a control u, which we refer to as the sampling control. Theorem 1
shows that one can use any sampling control to compute these expectation values. The
choice of u affects the efficiency of the sampling. The efficiency of the sampler depends
on the variance of the weights wi which can be easily understood. If the weight of one
sample dominates all other weights, the weighted sum over N terms is effectively only one
term. The optimal weight distributions for sampling is obtained when all samples contribute
equally, which means that all weights are equal. It can be easily seen from Lemma 1 that
this is obtained when u = u∗. In that case, the right hand side of Eq. 11 is zero and thus
is S(t, x, u∗) a deterministic quantity. This means that for all trajectories Xi (t) the value
Si (t, x, u∗) is the same (and equal to the optimal cost-to-go J (t, x)). Thus, sampling with
u∗ has zero variance meaning that all samples yield the same result and therefore only one
sample is required. One can also deduce from Lemma 1 that when u is close to u∗, the
variance in the right hand side of Eq. 11 as a result of the different trajectories is small and
thus is the variance in wi = e−Si (t,x,u) is small. Thus, the closer u is to u∗ the more effective
is the importance sampler [46].

One can thus view the choice of u as implementing a type of importance sampling and
the optimal control u∗ is the optimal importance sampler. The relation between control and
importance sampling can also be understood through the Girsanov change of measure [16].
The change of measure introduces a drift term in the dynamics (which is the control term)
that can be chosen such that it reduces the variance of the estimate. The optimal change of
measure has zero variance and is achieved by a state dependent drift [23,27].

Despite these elegant theoretical results, this idea has not been used much in practice.
The essential problem is the representation of the controller as a parametrised model and
how to adapt the parameters such as to optimise the importance sampler. Newton [32]
constructs (non-adaptive) importance samplers based on projective approximation onto sto-
chastic processes. Dupuis andWang [11] expresses optimal importance sampling using large
deviations as a differential game. This yields a game theoretic Bellman equation which in
practice is difficult to solve. In [50] a first generic adaptive approach was introduced based
on the cross entropy method for controllers that depend linear on the parameters. Here, we
extend their idea to arbitrary parametrised models.

3 The Cross-Entropy Method

The cross-entropy method [9] is an adaptive approach to importance sampling. Let X be a
random variable taking values in the space X . Let fv(x) be a family of probability density
function on X parametrised by v and h(x) be a positive function. Suppose that we are
interested in the expectation value

l = Eu h =
∫

dx fu(x)h(x) (14)

where Eu denotes expectation with respect to the pdf fu for a particular value of v = u. A
crude estimate of l is by naive Monte Carlo sampling from fu : Draw N samples Xi , i =
1, . . . , N from fu and construct the estimator

l̂ = 1

N

N∑
i=1

h(Xi ) (15)
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Adaptive Importance Sampling for Control and Inference 1253

The estimator is a stochastic variable and is unbiased, which means that its expectation value
is the quantity of interest: Eul̂ = l. The variance of l̂ quantifies the accuracy of the sampler.
The accuracy is high whenmany samples give a significant contribution to the sum. However,
when the supports of fu and h have only a small overlap, most samples Xi from fu will have
h(Xi ) ≈ 0 and only few samples effectively contribute to the sum. In this case the estimator
has high variance and is inaccurate.

A better estimate is obtained by importance sampling. The idea is to define an importance
sampling distribution g(x) and to sample N samples from g(x) and construct the estimator:

l̂ = 1

N

N∑
i=1

h(Xi )
fu(Xi )

g(Xi )
(16)

It is easy to see that this estimator is also unbiased: Egl̂ = 1
N

∑
i Egh(X)

fu (X)
g(X)

= Euh(X) =
l. The question now is to find a g such that l̂ has low variance. When g = fu Eq. 16 reduces
to Eq. 15.

Before we address this question, note that it is easy to construct the optimal importance
sampler. It is given by

g∗(x) = h(x) fu(x)

l

where the denominator follows from normalisation: 1 = ∫
dxg∗(x). In this case the estimator

Eq. 16 becomes l̂ = l for any set of samples. Thus, the optimal importance sampler has zero
variance and l can be estimated with one sample only. Clearly g∗ cannot be used in practice
since it requires l, which is the quantity that we want to compute!

However, wemay find an importance sampler that is close to g∗. The cross entropymethod
suggests to find the distribution fv in the parametrised family of distributions that minimises
the KL divergence

K L(g∗| fv) =
∫

dxg∗(x) log g∗(x)
fv(x)

∝ −Eg∗ log fv(X) ∝ −Euh(X) log fv(X) = −D(v)

(17)

where in the first step we have dropped the constant term Eg∗ log g∗(X) and in the second
step have used the definition of g∗ and dropped the constant factor 1/ l.

The objective is to maximise D(v)with respect to v (the parameters of the important sam-
pling or proposal density). For this we need to compute D(v) which involves an expectation
with respect to the distribution fu . We can use again importance sampling to compute this
expectation value. Instead of fu we sample from fw for some w. We thus obtain

D(v) = Ewh(X)
fu(X)

fw(X)
log fv(X)

We estimate the expectation value by drawing N samples from fw. If D is convex and
differentiable with respect to v, the optimal v is given by

1

N

N∑
i=1

h(Xi )
fu(Xi )

fw(Xi )

d

dv
log fv(Xi ) = 0 Xi ∼ fw (18)

The cross entropy method considers the following iteration scheme. Initialize w0 = u. In
iteration n = 0, 1, . . . generate N samples from fwn and compute v by solving Eq. 18. Set
wn+1 = v.
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We illustrate the cross entropy method for a simple example. Consider X = R and the
family of so-called tilted distributions fv(x) = 1

Nv
p(x)evx , with p(x) a given distribution and

Nv = ∫
dxp(x)evx the normalisation constant. We assume that it is easy to sample from fv

for any value of v. Choose u = 0, then the objective Eq. 14 is to compute l = ∫
dxp(x)h(x).

We wish to estimate l as efficient as possible by optimising v. Eq. 18 becomes

∂ log Nv

∂v
=

∑N
i=1 h(Xi )e−wXi Xi∑N
i=1 h(Xi )e−wXi

Note that the left hand side is equal toEvX and the right hand side is the ’hweighted’ expected
X under p (using importance sampler fw). The cross entropy update is to find v such that
h-weighted expected X equals EvX . This idea is known as moment matching: one finds v

such that the moments of the left and right hand side, in this case only the first moment, are
equal.

3.1 The Kullback–Leibler Formulation of the Path Integral Control Problem

In order to apply the cross entropy method to the path integral control theory, we reformulate
the control problem Eq. 1 in terms of a KL divergence. Let X denote the space of continuous
trajectories on the interval [t, T ]: τ = Xt :T |x is a trajectory with fixed initial value X (t) = x .
Denote pu(τ ) the distribution over trajectories τ with control u.

The distributions pu for different u are related to each other by the Girsanov theorem.
We derive this relation by simply discretising time as before. In the limit ds → 0, the
conditional probability of Xs+ds given Xs is Gaussian with mean μs = Xs + f (s, Xs)ds +
g(s, Xs)u(s, xs)ds and variance�sds = g(s, Xs)

2ds. Therefore, the conditional probability
of a trajectory τ = Xt :T |x is2

pu(τ ) = lim
ds→0

T−ds∏
s=t

N (Xs+ds |μs, �s)

= p0(τ ) exp

(
−

∫ T

t
ds

1

2
u2(s, Xs) +

∫ T

t
u(s, Xs)g(s, Xs)

−1(dXs − f (s, Xs)ds)

)

(19)

p0(τ ) is the distribution over trajectories in the absence of control, which we call the uncon-
trolled dynamics. Using Eq. 19 one immediately sees that

∫
dτpu(τ ) log

pu(τ )

p0(τ )
= Eu

∫ T

t
ds

1

2
u(s, X (s))2

2 In the multi-dimensional case of Eq. 7 this generalises as follows. The variance is g(s, Xs )νg(s, Xs )
′ds =

λ�sds with �s = g(s, Xs )R−1g(s, Xs )
′ and

pu(τ ) = p0(τ ) exp

(
−

∫ T

t
ds

1

2λ
u(s, Xs )

′g(s, Xs )
′�−1

s g(s, Xs )u(s, Xs )

+
∫ T

t

1

λ
u(s, Xs )

′g(s, Xs )
′�−1

s (dXs − f (s, Xs )ds)

)

= p0(τ ) exp

(
1

λ

(∫ T

t
ds

1

2
u(s, X (s))′Ru(s, Xs ) +

∫ T

t
u(s, X (s))′RdW (s)

))
.
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where we used that dXs − f (s, Xs)ds = g(s, Xs) (u(s, Xs)ds + dWs). In other words, the
quadratic control cost in the path integral control problem Eq. 3 can be expressed as a KL
divergence between the distribution over trajectories under control u and the distribution over
trajectories under the uncontrolled dynamics. Equation 3 can thus be written as

J (t, x) = min
u

∫
dτpu(τ )

(
log

pu(τ )

p0(τ )
+ V (τ )

)
(20)

withV (τ ) = �(XT )+∫ T
t dsV (s, X (s)). Since there is a one-to-one correspondence between

u and pu , one can replace the minimisation with respect to the functions u in Eq. 20
by a minimisation with respect to the distribution p subject to a normalisation constraint∫
dτp(τ ) = 1. The distribution p∗(τ ) that minimises Eq. 20 is given by

p∗(τ ) = 1

ψ(t, x)
p0(τ ) exp(−V (τ )) (21)

where ψ(t, x) = Ep0e
−V (τ ) is the normalisation, which is identical to Eq. 4. Substituting p∗

in Eq. 20 yields the familiar result J (t, x) = − logψ(t, x).
Equation 21 expresses p∗ in terms of the uncontrolled dynamics p0 and the path cost. From

Eq. 19, we can equivalently express Eq. 21 in terms of the importance sampling distribution
pu as

p∗(τ ) = 1

ψ(t, x)
pu(τ ) exp(−S(t, x, u)) (22)

where S is defined in Eq. 2.

3.2 The Cross Entropy Method for Path Integral Control

We are now in a similar situation as the cross entropymethod.We cannot compute the optimal
control u∗ that parametrises the optimal distribution p∗ = pu∗ and instead wish to compute a
near optimal control û such that pû is close to p∗. Following the cross entropy (CE) argument,
we minimise

K L(p∗|pû) ∝ −Ep∗ log pû

∝ Ep∗
(∫ T

t

1

2
û2(s, Xs)ds − û(s, Xs)g(s, Xs)

−1(dXs − f (s, Xs)ds)

)

= 1

ψ(t, x)
Epu e

−S(t,x,u)

∫ T

t
ds

(
1

2
û(s, X (s))2 − û(s, X (s))

(
u(s, X (s)) + dWs

ds

))

(23)

where in the second line we used Eq. 19 with u = û and discard the constant term Ep∗ log p0
and in the third line we used Eq. 22 to express Ep∗ in terms of a weighted expectation with
respect to an arbitrary distribution pu controlled by u. The K L divergence Eq. 23 must be
minimised with respect to the functions ût :T = {û(s, Xs), t ≤ s ≤ T }. We now assume that
û(s, x |θ̂ ) is a parametrised function with parameters θ̂ . The K L divergence is a non-linear
function of θ̂ that we can minimise by any gradient based procedure. The gradient of the K L
divergence Eq. 23 is given by:

123



1256 H. J. Kappen, H. C. Ruiz

∂K L(p∗|pû)
∂θ̂

=
〈∫ T

t

(
û(s, X (s))ds − u(s, X (s))ds − dWs

) ∂ û(s, X (s))

∂θ̂

〉

u
(24)

= −
〈∫ T

t
dWs

∂ û(s, X (s))

∂θ̂

〉

û
(25)

where we introduce the notation 〈F〉u = 1
ψ(x,t)Epu e

−S(t,x,u)F(τ ).
All components of the gradient can be estimated simultaneously by importance sampling.

Equation 24 is the gradient in the point û for arbitrary importance sampler u. It is expected
that the importance sampler û improves in each iteration. Therefore, the current estimate of
the control function û(s, x |θ̂ ) may provide a good candidate as importance sampler u, which
gives Eq. 24. The gradient descent update at iteration n becomes in this case

θ̂n+1 = θ̂n − η
∂K L(p∗|pû)

∂θ̂n
= θ̂n + η

〈∫ T

t
dWs

∂ û(s, X (s))

∂θ̂n

〉

û

(26)

with η > 0 a small parameter. This gradient descent procedure converges to a local minimum
of the KL divergence Eq. 23, using standard arguments. We refer to this gradient method as
the path integral cross entropy method or PICE.

Note, that the gradient Eq. 24 involves a stochastic integral over time. This reflects the
fact that a change in θ̂ affects û(s, x |θ̂ ) for all s. When the parametrisation is such that each
û(s, x |θ̂s) has its own set of parameters θs for each s, the integral disappears in the gradient
∂K L(p∗|pû)

∂θ̂s
.

Although in principle the optimal control for a finite horizon problem explicitly depends
on time, there may be reasons to compute a control function û(x) that does not explicitly
depend on time. For instance, when the horizon time is very large, and the dynamics and
the cost are also not explicit functions of time. The advantage of a time-independent control
solution is that it is simpler. Computing a time independent controller in the PICE framework
is a special case of Eq. 24 with û(s, x |θ̂ ) = û(x |θ̂ ).

In the case where both u and û are linear combinations of a fixed set of K basis functions
hk(t, x), k = 1, . . . , K

u(s, x) =
K∑

k=1

θkhk(s, x) û(s, x) =
K∑

k=1

θ̂khk(s, x) t ≤ s ≤ T

we can set the gradient Eq. 24 equal to zero and obtain a linear system of equations for θ̂k :

K∑
k′=1

(
θ̂k′ − θk′

) 〈∫ T

t
dshk′(s, Xs)hk(s, Xs)

〉

u
=

〈∫ T

t
dWshk(s, Xs)

〉

u
k = 1, . . . , K

(27)

that we can solve as θ̂ = θ + A−1b with Akk′ =
〈∫ T

t dshk(s, Xs)hk′(s, Xs)
〉
u
and bk =〈∫ T

t dWshk(s, Xs)
〉
u
. This should in principle give the solution in one iteration. However,

sampling with the initial control function u(s, x) may be inefficient, so that the estimates of
A, b are poor. A more accurate estimate is obtained by iterating this procedure several times,
using at iteration n the importance sampler u(s, x) = û(s, x |θ̂n) to re-estimate A, b

θ̂n+1 = θ̂n + A−1
n bn (28)

with An, bn the estimates of A, b using importance sampler û(s, x |θ̂n).
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Finally, we mention the special case of time-dependent linear parametrisation. Write the
label k = (r, l) and hk(s, x) = δr (s)hl(x) with r = 1, . . . , (T − t)/�t a time-discretization
label, l a basis function label. �t is the time discretisation and δr (s) = 1 for t + (r −1)�t <

s < t + r�t and zero otherwise. Equation 27 decouples in independent equations, one for
each r :

∑
l ′

(
θ̂r,l ′ − θr,l ′

) 〈∫ r�t

(r−1)�t
dshl ′(Xs)

′hl(Xs)

〉

u

=
〈∫ r�t

(r−1)�t
dWshl(Xs)

〉

u

(29)

When �t → ds we recover the expression in [46].

4 Numerical Illustration

In this section, we illustrate PICE for two simple problems. Both cases are finite horizon
control problems. Therefore, the optimal control is explicitly time-dependent. We restrict
ourselves in these examples to learn time-independent control solutions. For a linear quadratic
control problem, we consider a controller that is linear in the state and the parameters. We
compare the result with the optimal solution. For the inverted pendulum control task, we
consider a controller that is non-linear in both the state and the parameters.

Consider the finite horizon 1-dimensional linear quadratic control problemwith dynamics
and cost

dX (s) = u(s, X (s))ds + dW (s) 0 ≤ s ≤ T

C = Eu

∫ T

0
ds

R

2
u2(s, X (s)) + Q

2
X (s)2

with EudW (s)2 = νds. The optimal control solution can be shown to be a linear feed-back
controller

u∗(s, x) = −R−1P(s)x P(s) = √
QR tanh

(√
Q

R
(T − s)

)

For finite horizon, the optimal control explicitly depends on time, but for large T the optimal

control becomes independent of t : u∗(x) = −
√

Q
R x . We estimate a time-independent feed-

back controller of the form û(x) = θ1 + θ2x using path integral learning rule Eq. 26. The
result is shown in Fig. 1.

Note, that θ1, θ2 rapidly approach their optimal values 0,−1.41 (red and blue line). Under-
estimation of |θ1| is due to the finite horizon and the transient behaviour induced by the initial
value of X0, as can be checked by initialising X0 from the stationary optimally controlled
distribution around zero (results not shown). The top right plot shows the entropic sample
size defined as the scaled entropy of the distribution: ss = − 1

log N

∑N
i=1 ŵi log ŵi and

ŵi = wi/ψ̂ from Eq. 12, as a function of gradient descent step, which increases due to the
improved sampling control.

As a second illustration we consider a simple inverted pendulum, that satisfies the dynam-
ics

α̈ = − cosα + u

where α is the angle that the pendulum makes with the horizontal, α = 3π/2 is the initial
’down’ position and α = π/2 is the target ’up’ position, − cosα is the force acting on the
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Fig. 1 Illustration of PICE Eq. 26 for a 1-dimensional linear quadratic control problem with Q = 2, R =
1, ν = 0.1, T = 5. We used time discretisation ds = 0.01 and generated 50 sample trajectories for each
gradient computation all starting from x = 2 and η = 0.1. The top left plot shows θ1,2 as a function of
gradient descent step. Top right shows effective sample size as a function of gradient descent step. Bottom left
shows optimal cost to go J as a function of gradient descent step. Bottom right shows 50 sample trajectories
in the last gradient descent iteration

pendulum due to gravity. Introducing x1 = α, x2 = α̇ and adding noise, we write this system
as

dXi (s) = fi (X (s))ds + gi (u(s, X (s) + dW (s)) 0 ≤ s ≤ T, i = 1, 2

f1(x) = x2 f2(x) = − cos x1 g = (0, 1)

C = Eu

∫ T

0
ds

R

2
u(s, X (s))2 + Q1

2
(sin X1(s) − 1)2 + Q2

2
X2(s)

2

with EudW 2
s = νds and ν the noise variance.

We estimate a time-independent feed-back controller û(x |θ) using a radial basis function
neural network

û(x |θ) =
K∑

k=1

γk fk(x) fk(x) = exp

(
−β1,k sin

2(
1

2
(x1 − μ1,k)) − 1

2
β2,k(x2 − μ2,k)

2
)

with θ = {γ1:K , β1:2,1:K , μ1:2,1:K }. Note, that û is a non-linear function of θ and x . The sin
term is to ensure that fk is periodic in x1.

We use the path integral learning rule Eq. 26. The gradients are easily computed. Fig-
ure 2(left) shows that the effective sample size increases with importance sampling iteration
and stabilises to approximately 60 %. Figure 2(middle) shows the solution û(x |θ∗) after 300
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Fig. 2 Illustration of gradient descent learning Eq. 26 for a second order inverted pendulum problem with
Q1 = 4, Q2 = 0.01, R = 1, ν = 0.3, T = 10. We used time discretisation ds = 0.01 and generated 10
sample trajectories for each gradient computation all starting from (x1, x2) = (−π/2, 0) ± (0.05, 0.05) and
η = 0.05, K = 25. Left entropic sample size versus importance sampling iteration. Middle optimal control
solution û(x1, x2) versus x1, x2 with 0 ≤ x1 ≤ 2π and −2 ≤ x2 ≤ 2. Right 10 sample trajectories sin(xt )
versus t under control û(�x |θ∗) after learning (Color figure online)

importance sampling iterations in the (x1, x2) plane. White star is initial location (3π/2, 0)
(pendulum pointing down, zero velocity) and red star is the target state x = (π/2, 0) (pen-
dulum point up, zero velocity). The swing-up uses negative velocities only. Using different
initial condition of θ other solutions θ∗ may be found with positive, negative or both swing-
up controls (results not shown). There are two example trajectories shown. Note the green
NW-SE ridge of low control values around the top (red star). These are states where the
position deviates from the top position, but with a velocity directed towards the top. So in
these states no control is required. In the orthogonal NE-SW direction, control is needed to
balance the pendulum. Figure 2(right) shows examples of 10 controlled trajectories using
û(x |θ∗), showing that the learned state feedback controller is able to swing-up and stabilise
the inverted pendulum.

5 Bayesian System Identification: Potential for Neuroscience Data
Analysis

In neuroscience, there is great interest for scalable inferencemethods, e.g. to estimate network
connectivity from data or decoding of neural recordings. It is common to assume that there
is an underlying physical process of hidden states that evolves over time, which is observed
through noisy measurements. In order to extract information about the processes giving rise
to these observation, or to estimate model parameters, one needs knowledge of the posterior
distributions over these processes given the observations. See [33, and references therein]
for a treatment of state-space models in the context of neuroscience and neuro-engineering.

The estimation of the latent state distribution conditioned on the observations is a compu-
tationally intractable problem. There are in principle two types of approaches to approximate
this computation: one can use one of many variations of particle filtering–smoothing meth-
ods, see [6,10,24]. The advantage of these methods is that they can in principle represent the
latent state distribution with arbitrary accuracy, given sufficient computational resources. A
fundamental shortcoming of these methods is that they are very computationally intensive.
The reason is that the estimated smoothing distribution relies heavily on the filtering dis-
tribution. For high dimensional problems these distributions may differ significantly which
yields poor estimation accuracy in practice and/or very long computation times. A common
approach to alleviate this problem is to combine the particle filtering with a (block) Gibbs
sampling that generates new particle trajectories from the filtered trajectories. This approach
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Fig. 3 Comparison of path integral control (here denoted RPIIS) and the forward filter backward smoother
(FFBSi cf. [24]) for a 2-dimensional neural network, showingmean and one standard deviation of the marginal
posterior solution for both methods (Color figure online)

was successfully applied in the case of calcium imaging to estimate the (unobserved) activity
of individual neurone based on calcium measurements. These estimates are then used to
estimate a sparse connectivity structure between the neurons [28].

An alternative class of methods is to use one of the many possible variational approx-
imations [3,31] where the latent state distribution is approximated by a simpler, often
multi-variate Gaussian, distribution. This approach was first proposed for neuro-imaging
by [14,15] and is currently the dominant approach for fMRI and MEG/EEG [8].

Here, we will illustrate the potential of path integral control methods to compute posterior
distributions in time series models. We demonstrate how the main drawbacks of parti-
cle filtering can be overcome, yielding significant accuracy and speed-up improvements.
One can easily see that the path integral control computation is mathematically equiva-
lent to a Bayesian inference problem in a time series model with p0(τ ) the distribution
over trajectories under the forward model Eq. 1 with u = 0, and where one interprets
e−V (τ ) = ∏T

s=t p(ys |xs) as the likelihood of the trajectory τ = xt :T under some fictitious
observation model p(ys |xs) = e−V (xs ) with given observations yt :T . The posterior is then
given by p∗(τ ) in Eq. 21. One can generalise this by replacing the fixed initial state x by a
prior distribution over the initial state. Therefore, the optimal control and importance sam-
pling results of Sect. 3.2 can be directly applied. The advantage of the PI method is that
the computation scales linear in the number of particles, compared to the state-of-the-art
particle smoother that scales quadratic in the number of particles. In some cases significant
accelerations can be made, e.g. [12,24], but implementing these may be cumbersome [42].

To illustrate the path integral method for particle smoothing we estimate the posterior
distribution of a noisy 2-dimensional firing rate model given 12 noisy observations of a
single neuron, say ν1 (green diamonds in Fig. 3). The model is given by

dνt

dt
= −νt + tanh(J ∗ νt + θ) + σdyndWt
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Fig. 4 Control parameters; Left open-loop controller bi (t), i = 1, 2; Right diagonal entries of feedback linear
controller Aii (t), t = 1, 2 (Color figure online)

J is a 2-dimensional antisymmetric matrix and θ is a 2-dimensional vector, both with random
entries from a Gaussian distribution with mean zero and standard deviation 25 and standard
deviation 0.75, respectively, and σ 2

dyn = 0.2. We assume a Gaussian observation model

N (yi |ν1ti , σ 2
obs) with σobs = 0.2. We generate the 12 1-dimensional observations yi , i =

1, . . . , 12 with ν1ti the firing rate of neuron 1 at time ti during one particular run of the
model. We parametrised the control as u(x, t) = A(t)x+b(t) and estimated the 2×2 matrix
A(t) and the 2-dimensional vector b(t) as described in [46] or Eq. 29.

Estimates of the mean and variance of the marginal posterior distribution are shown in
Fig. 3). The path integral control solution was computed using 22 importance sampling
iterations with 6000 particles per iteration. As a comparison, the forward-backward particle
filter solution (FFBSi) was computed using N = 6000 forward and M = 3600 backward
particles. The computation time was 35.1 and 638 s, respectively. The results in Fig. 3 show
that one effectively gets equivalent estimates of the posterior density over hidden neuronal
states but in a fraction of the time using important sampling based upon optimal control.

Figure 4 shows the estimated control parameters used for the path integral control method.
The open loop controller b1(t) steers the particles to the observations. The feedback controller
A11(t) ’stabilises’ the particles around the observations (blue lines). Due to the coupling
between the neurons, the non-observed neuron is also controlled in a non-trivial way (green
lines). To appreciate the effect of using a feedback controller, we compared these results with
an open-loop controller u(x, t) = b(t). This reduces the ESS from 60 % for the feedback
controller to around29%for the open loop controller. The lower sampling efficiency increases
the error of the estimations, especially the variance of the posterior marginal (not shown).

The example shows the potential of adaptive importance sampling for posterior estimation
in continuous state-space models. It shows that the controlled solution has high effective
sample size and yields accurate estimates. Using a more complex controller yields higher
sampling efficiency. There is in general a trade off between the accuracy of the resulting
estimates and the computational effort involved to compute the controller. This method can
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be used to accelerate the E step in an EM procedure to compute the maximum likelihood
estimates of model parameters, for instance connectivity, decoding of neural populations,
estimation of spike rate functions and, in general, any inference problem in the context of
state-space models; A publication with the analysis of this approach for high dimensional
problems is under review [35].

6 Summary and Discussion

The original path integral control result of Theorem 1 expresses the optimal control u∗(t, x)
for a specific t, x as a Feynman–Kac path integral. u∗(t, x) can be estimated using Monte
Carlo sampling, and can be accelerated using importance sampling, using a sampling control.
The efficiency of the sampling depends critically on the sampling control. This idea can be
used very effectively for high dimensional stochastic control problems using the Model
Predictive Control setting, where the optimal control is computed on-line for the current t, x
[19].

However, Theorem 1 is of limited use when we wish to compute a parametrised control
function for all t, x . We have therefore here proposed the cross entropy argument, originally
formulated to optimise importance sampling distributions, to find a control function whose
distribution over trajectories is closest to the optimally controlled distribution. In essence,
this optimisation replaces the original KL divergence K L(p|p∗) Eq. 20 by the reverse KL
divergence K L(p∗|p) and optimises for p. The resulting PICE method provides a flexible
framework for learning a large class of non-linear stochastic optimal control problems with a
control that is an arbitrary function of state and parameters. The idea to optimise this reverse
KL divergence was earlier explored for the time-dependent case and linear feedback control
in [17].

It is an important future research direction to apply PICE to larger control problems using
largermodels to represent the control and large number of samples.Nomatter howcomplex or
high-dimensional the control problem, if the control solution approaches the optimal control
sufficiently close, the effective sample size should reach 100 %. Representing the optimal
control solution exactly requires in general an infinitely large model, except in special cases
where a finite dimensional representation of the optimal control exists. Learning very large
models requires verymany samples to avoid overfitting.One can imagine a learning approach,
where initially a simple model is learned (using limited data) to obtain an initial workable
effective sampling size, and subsequently more and more complex models are learned using
more data to further increase the quality of the control solution.

A key issue is the parametrisation that is used to represent û. This representation should
balance the two conflicting requirements of any learning problem: (1) the parametrisation
should be sufficiently flexible to represent an arbitrary function and (2) the number of para-
meters should be not too large so that the function can be learned with not too many samples.
Our present work extends the previous work of [50] to model the control using an arbitrary
non-linear parametrisation. Neural networks are particularly useful in this context, since they
are so-called universal approximators, meaning that any smooth function can be represented
given enough hidden neurons. Reference [34] showed that the RBF architecture used in our
numerical example is a universal approximator. Multi-layered perceptrons [2] and other deep
neural networks are also universal approximators.

Reference [9] also discuss the application of the CEmethod to aMarkov decision problem
(MDP), which is a discrete state-action control problem. The main differences with the
current paper are that we discuss the continuous state-action case. Secondly, [9] develops
the CE method in the context of a discrete optimisation problem x∗ = argmaxx f (x). They
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define a distribution p(x) and optimise the expected cost C = ∑
x p(x) f (x) with respect

to p. By construction, the optimal p is of the form p(x) = δx,x∗ , ie. a distribution that has
all its probability mass on the optimal state.3 The CE optimisation computes this optimal
zero entropy/zero temperature solution starting from an initial random (high entropy/high
temperature) solution. As a result of this implicit annealing, it has been reported that the
CE method applied to optimisation suffers from severe local minima problems [41]. An
important difference for the path integral control problems that we discussed in the present
paper is the presence of the entropy term p(x) log p(x) in the cost objective. As a result, the
optimal p is a finite temperature solution that is not peaked at a single state but has finite
entropy. Therefore, problems with local minima are expected to be less severe.

The path integral learning rule Eq. 26 has some similaritywith the so-called policy gradient
method for average reward reinforcement learning [40]

�θ = ηEπ

∑
a

∂π(a|s)
∂θ

Qπ (s, a)

where s, a are discrete states and actions, π(a|s, θ) is the policy which is the probability to
choose action a in state s, and θ parametrises the policy. Eπ denotes expectation with respect
to the invariant distribution over states when using policy π and Qπ is the state-action value
function (cost-to-go) using policy π . The convergence of the policy gradient rule is proven
when the policy is an arbitrary function of the parameters.

The similarities between policy gradient and path integral learning are that the policy
takes the role of the sampling control and the policy gradient involves an expectation with
respect to the invariant distribution under the current policy, similar to the time integral in
Eq. 26 for large T when the system is ergodic. The differences are (1) that the expectation
value in the policy gradient is weighted by Qπ , which must be estimated independently,
whereas the brackets in Eq. 26 involve a weighting with e−S which is readily available; (2)
Eq. 26 involves an Itô stochastic integral whereas the policy gradient does not; (3) the policy
gradient method is for discrete state and actions and the path integral learning is for controlled
non-linear diffusion processes; (4) the expectation value used to evaluate the policy gradient
is not independent of π as is the case for the path integral gradients Eq. 24.

We have demonstrated that the path integral control method can be used to significantly
improve the accuracy and efficiency of latent state estimation in time series models. These
methods have the advantage that arbitrary accuracy can be obtained, but come at the price
of significant computational cost. In contrast, variational methods have a fixed accuracy, but
tend to be much faster. Based on the results presented in this paper, it is therefore interesting
to compare variational methods and PICE directly for, for instance, fMRI data.
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3 Generalisations restrict p to a parametrised family p(x |θ) and optimise with respect to θ instead of p [25].
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Appendix: Itô Calculus

Given two diffusion processes,

dY = A(Y )ds + B(Y )dW

dZ = C(Z)ds + D(Z)dW (30)

the Itô’s product rule gives the evolution of the product process

d(Y Z) = YdZ + ZdY + d[Y, Z ]
d[Y, Z ] = B(Y )D(Z)ds (31)

The term in the last line is known as the quadratic covariance.
Let F(Y ) as a function of the stochastic process Y . Itô’s Lemma is a type of chain rule

that gives the evolution of F ;

dF = dY ∂y F + 1

2
d[Y, Y ]∂2y F =

(
A∂y F + 1

2
B2∂2y F

)
ds + B∂y FdW (32)

Putting a process Eq. 30 in integral notation and taking the expected value yields the
following

Y =
∫

Ads +
∫

BdW (33)

Eu[Y ] =
∫

Eu[A]ds (34)

The Itô Isometry states that

Eu

[∫
A(Y )dW

∫
B(Y )dW

]
=

∫
Eu[A(Y )B(Y )]ds (35)
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