Mechanisms of zinc uptake in gills of freshwater rainbow trout: interplay with calcium transport

CHRISTER HOGSTRAND, PIETER M. VERBOST, SJOEERD E. WENDELAAR BONGA, AND CHRIS M. WOOD

Uptake of waterborne Ca2+ in freshwater teleosts occurs through the chloride cells, which are primarily located in the gill epithelium (5, 18, 20). Branchial uptake of Ca2+ is thought to start by the passive movement of Ca2+ through a voltage-insensitive channel in the apical membrane of the chloride cells (5). The activity of Ca2+ in the chloride cell cytoplasm is kept low (10^{-7} M) by Ca2+-binding proteins and by pumps that transport Ca2+ to the interior of the endoplasmic reticulum (Ca2+-adenosine triphosphatase (ATPase)) and the mitochondria (Ca2+ uniporter). The transfer of Ca2+ across the basolateral membrane is mediated by a high-affinity Ca2+-ATPase and a low-affinity Na+/Ca2+ exchange system (32). The competitive interactions between the influxes of Ca2+ and Zn2+ suggest that one or several steps in this pathway are common for the two elements.

Although Zn2+ is required for a number of physiological processes, relatively low concentrations of waterborne Zn2+ are toxic to freshwater fish (reported 96-h half-maximal lethal concentrations (LC\textsubscript{50}) values range from 1.4 to 610 \textmu\text{M}, largely as a function of water hardness; Ref. 10). At sublethal concentrations, Zn2+ affects fish by impairing the influx of Ca2+ with hypocalcemia as a consequence (24). The potent inhibition seems to be due to a more than 10-fold higher affinity of the common Ca2+/Zn2+-binding sites for Zn2+ than for Ca2+ (8, 9, 25).

The nonessential element Cd is considerably more toxic to fish than Zn2+, but otherwise these two metals show physical and biological similarities (7). Like Zn2+, the toxicity of waterborne Cd lies mainly in a strong perturbation of the Ca2+ metabolism (12, 21). More recent studies provide strong evidence that the Ca2+-ATPases in the chloride cells are extremely sensitive to inhibition by Cd, and these may be the first targets during Cd poisoning in fish (29, 30). Although there is no evidence for a capacity of the branchial basolateral Ca2+-ATPase to actually transport Cd, the apical entry of Cd probably takes place via the Ca2+ uptake route (33). Indeed, waterborne Cd inhibits the branchial influx of Zn2+ (1), which is indirect evidence that Zn2+ enters the chloride cells through the same Ca2+ pathway. Thus physicochemical and toxicological similarities between Zn2+ and Cd point toward the putative apical Ca2+-channels and the Ca2+-transporting ATPases in the chloride cells as possible sites of Zn2+ interaction with the Ca2+ uptake.

The objectives of the present study were to compare the uptake pathways of Ca2+ and Zn2+ via the chloride cells of the gill and to identify the site(s) where Zn2+ interferes with Ca2+ uptake. The possibility that Zn2+...
competes with Ca²⁺ for a common apical ion channel was investigated by La blockade of the Ca²⁺ channels (18, 33) and by stimulating endogenous stanniocalcin release by CaCl₂ injection (11, 16, 19, 35), a response that has been demonstrated to reduce the permeability of the apical Ca²⁺ channels to Ca²⁺ and Cd (11, 28, 31). Possible basolateral transfer of Zn²⁺ by the high-affinity Ca²⁺-ATPase or the low-affinity Na⁺/Ca²⁺ exchanger was tested in vitro using isolated vesicles of basolateral membranes. The same technique was used to study the possible effects of Zn²⁺ on the ATP-dependent Ca²⁺ transport across the basolateral membrane.

MATERIALS AND METHODS

Animals. Juvenile rainbow trout Oncorhynchus mykiss (n = 120, 3–10 g) for in vivo studies were purchased from Rainbow Springs Hatchery, New Dundee, Ontario. The fish were held at McMaster University, Hamilton, Ontario, for 2–5 mo before the experiments in a fiberglass tank, supplied at a rate of 1/min with water temperature of 14°C, aerated Hamilton City tapwater (concentrations in brackets; mM: 0.6 [Na⁺], 0.7 [Cl⁻], 1.0 [Ca²⁺], 1.9 [HCO₃⁻], pH 8.0). Rainbow trout (n = 10, 100–300 g) for in vitro experiments were obtained from a local hatchery and held at the University of Nijmegen, Nijmegen, the Netherlands, for at least 2 wk before the experiments. The holding tank contained recirculated, filtered Nijmegen tap water (mM: 0.61 [Na⁺], 0.66 [Cl⁻], 0.8 [Ca²⁺], 3.16 [HCO₃⁻], pH 7.5) at 10°C. Rainbow trout were fed dry pellets at a daily ration of 3% of the body weight.

Effect of La on branchial ion influxes. A total of eight polypropylene bags were filled with 3 liters each of synthetic carbonate-free water (in mM: 0.7 [NaCl], 1.9 [KCl], 1.0 [Ca(NO₃)₂], and 1.0 pH 7.0) and equipped with an air line. Carbonate-free water was employed because the effectiveness of La is reduced by carbonate complexation. The bags were placed in perforated polyvinylchloride supports flushed with 14°C water. Ten rainbow trout were placed in each bag, and, to one-half of the bags, 1.0 pM La was added as LaCl₃ from a stock solution (10 mM). Thus in total there were four pairs of bags, each consisting of one La-treated group and one control. The flux was initiated by the addition of isotope. The La-treated groups and their paired controls received (in micromoles/kg/hr) 2.0 (3 MBq) of [3³²P]Pi of glacial acetic acid, diluted with 2.0 ml of synthetic carbonate-free water. Each bag contained 0.1 mg of ZnSO₄, and 10 ml of scintillation fluid (ACS, Amersham) was added.

The inward fluxes (Jᵢᵣ) for Na⁺, Cl⁻, Ca²⁺, and Zn²⁺ (in micromoles/kg-h⁻¹) were calculated according to the formula

\[J_{\text{i,r}} = \frac{CT}{SA \times CE \times t} \]

where CT is the counts in tissue [counts/(min × kg)], SA is the measured mean specific activity of the water [counts/(min × μl)], and CE is the measured relative counting efficiency of the tissue system compared with the water system, and t is the flux time (h).

Effect of CaCl₂ injection on influx of Ca²⁺ and Zn²⁺. Iomic calcium was injected into juvenile rainbow trout in an attempt to reduce the apical entry of Ca²⁺ and Zn²⁺ to the gills through the stanniocalcin-controlled pathway. Previous studies have shown that an injection of 10 mg Ca²⁺/kg body mass as CaCl₂ evokes stanniocalcin release from the corpuscles of Stannius followed by a fivefold increase in the plasma stanniocalcin level (16, 19, 35). Furthermore, this response persists over a 4-h period (35). Thus, in the present study, 20 fish were injected with Ca²⁺, 10 μg/g (250 nmol/g) body wt, from an injection solution made up from 25 mM CaCl₂, 2H₂O dissolved in 0.9% NaCl (wt/vol). An equal number of fish were sham injected with vehicle only and used as controls. Ten Ca²⁺-injected fish and ten sham-injected fish were analyzed for Ca²⁺ influx, as described in "Effect of La on branchial ion influxes." The remaining 10 Ca²⁺-injected fish and 10 controls were assayed for Zn²⁺ influx, as also described above.

All whole animal flux experiments followed evaluated standard procedures described by Spry and Wood (24, 25), Lauren and McDonald (19), Verboost et al. (29, 33), and Flik (18), and Hogstrand et al. (8, 9). The 1-min washing step was considered effective and appropriate for removal of externally bound isotope, because it provided similar transport rates as those based on appearance of isotope in the blood plasma (8, 9, 18, 20).

Isolation of basolateral membranes from gill epithelium. The preparation of basolateral membranes (BLMs) from fish gill epithelium is a standard technique, and the fully evaluated procedure has been described previously (18, 32). In brief, adult rainbow trout (100–300 g) were killed by a blow to the head, the branchial apparatus was perfused 0.9% NaCl, 0.5 mM EDTA, 20 kU/l heparin, pH was adjusted to 7.8 with tris(hydroxymethyl)aminomethane (Tris), 4°C, and the gills were dissected out. The soft tissue of the gill arches was scraped from the cartilaginous tissue and homogenized (Polytron tissue homogenizer) in 60 ml of a hypotonic buffer [25 mM NaCl, 1.1 mM N₂H₂O₂, 5.2-ethanesulfonylic acid (HEPES), adjusted to pH 8.0 with Tris] to fragment the cell membranes. Cellular debris and remaining blood cells were separated from membranes by centrifugation at 550 g, 4°C, for 5 min. The supernatant was then centrifuged at 105,000 g, 4°C, for 30 min (Beckman Ti 70 rotor), and a pellet was incubated at 45°C overnight before they were counted for ⁴⁶Ca²⁺ with a scintillation counter (LKB 1217 Rackbeta, Pharmacia-LKB AB). Fish in the Cl⁻ flux experiment were individually frozen in liquid nitrogen then ground in a cryostatic mill (A10, IKA). The powder was weighed out in duplicate samples of 0.5 g into glass scintillation vials. Each tissue sample was digested with 2.0 ml of tissue solubilizer (Protocol, New England Nuclear) for 48 h at 45°C. The samples were neutralized with 20 ml of glacial acetic acid, diluted with 10 ml of scintillation fluid (OCS, Amersham) and counted for ³⁵Cl⁻ in the scintillation counter. In all cases, counting efficiencies were assessed by internal standardization.

Water samples containing ⁶⁵Zn²⁺ or ⁴⁰Na⁺ were counted directly in the gamma counter. To the water samples containing ⁶⁵Zn²⁺ or ⁴⁰Cl⁻, 10 ml of scintillation fluid (ACS, Amersham) was added.

The in vitro fluxes (Jᵢᵣ) for Na⁺, Cl⁻, Ca²⁺, and Zn²⁺ (in micromoles/kg-h⁻¹) were calculated according to the formula

\[J_{\text{i,r}} = \frac{CT}{SA \times CE \times t} \]
consisting of a firm brownish part with a lighter fluffy upper layer was obtained. The fluffy top of the pellet was resuspended in 30 ml of an isosmotic buffer (250 mM sucrose, 5 mM MgCl₂, 5 mM HEPES/Tris, pH 7.4), using a Dounce homogenizer (100 strokes), to prepare inside-out oriented vesicles. The resulting membrane suspension was centrifuged differentially (1,000 g, 10 min and 10,000 g, 10 min, 4°C), and the resulting supernatant was centrifuged once more at 50,000 g, 4°C, for 15 min to create a final pellet of purified BLMs. In the preparation of membranes for the Na⁺/Zn²⁺ exchange studies, the BLMs were resuspended in a buffer containing (in mM) 150 NaCl, 0.8 MgCl₂, 20 HEPES, 20 Tris-HCl, pH 7.4, to load the vesicles with Na⁺, and the last centrifugation step was repeated. Finally, the pellet was resuspended in (in mM) 250 sucrose, 5 MgCl₂, 5 HEPES, 5 Tris-HCl, pH 7.4 (isososmotic; for ATPase assays) or the NaCl-containing buffer (for Na⁺/Zn²⁺-exchange assays). Vesicles were kept on ice and used the same day or frozen in liquid nitrogen until used.

Orientation of the vesicles was determined from acetylcholine esterase activity (i.e., marker for inside-out vesicles) measured in intact and permeabilized vesicles and the specific trypsin sensitivity of the cytosol-oriented part of the Na⁺/K⁺-ATPase (i.e., marker for right-side-out vesicles). Typically, 20% of the BLMs were inside-out vesicles and 30% right-side-out vesicles (18, 32). The remaining 50% of the preparation consisted of membranes that were not resealed (18, 32). Protein recovery was 1.02 ± 0.19% (mean ± SE, n = 8), and the protein content of BLMs used in the assays was 1.1 mg/ml. The enrichment of BLMs in the preparation was five to eight times, as determined from the Na⁺/K⁺-ATPase activity in the final preparation and in the crude gill homogenate. Na⁺/K⁺-ATPase activity, defined as Na⁺- and K⁺- dependent, ouabain-sensitive phosphorylase activity, was analyzed as described by Flik et al. (4). The amount of endoplasmic reticulum (ER) membranes in this type of preparation has been shown to be insignificant (18). However, as a safety measure, 1 h before use, 1 μM of thapsigargin (Sigma) was added to the membranes to inhibit any remaining Ca²⁺-ATPase activity from the ER. This concentration of thapsigargin completely blocks ER Ca²⁺ pumps in trout gill preparations (Verbost et al. (32), using conditions shown optimal for Na⁺/Ca²⁺ exchange. Five microliters of vesicles, equilibrated with 150 mM of NaCl, was added to 120 μl of medium containing either 150 mM NaCl (blank) or 150 mM KC1 and a varying concentration of ⁶⁶Zn²⁺/stable Zn²⁺ and Ca²⁺. The Zn²⁺ concentrations tested were 10⁻¹², 10⁻¹⁰, and 10⁻⁸ M. Each of these Zn²⁺ concentrations was run with either 5 μM Ca²⁺ or no Ca²⁺ present. Thus, in the 150 mM KC1 medium, a NaCl gradient across the vesicles was created. The inside contained 150 mM NaCl, and the outside contained 6.2 mM NaCl. In the blank (used to assess nonspecific binding), the NaCl concentration was 150 mM on both sides of the membrane. In addition to the 150 mM NaCl or KC1, the assay medium contained 20 mM HEPES/Tris, pH 7.4, 0.8 mM MgCl₂ (free), and 0.5 mM EGTA/HEEDTA/NTA. After 1-min incubation, the reaction was arrested by addition of stopping buffer, as described above. Vesicles were collected by rapid filtration, rinsed, and counted for ⁶⁶Zn²⁺. The difference in ⁶⁶Zn²⁺ accumulation in K⁺- and Na⁺-containing media was taken as a measure of Na⁺ gradient-driven Zn²⁺ transport.

The result of the experiments was the uptake of Zn²⁺ by BLM vesicles driven by a transmembrane Na⁺ gradient, similar to that described by Verbost et al. (4) and Verbost et al. (32), using conditions shown optimal for Na⁺/Ca²⁺ exchange. Five microliters of vesicles, equilibrated with 150 mM of NaCl, was added to 120 μl of medium containing either 150 mM NaCl (blank) or 150 mM KC1 and a varying concentration of ⁶⁶Zn²⁺/stable Zn²⁺ and Ca²⁺. The Zn²⁺ concentrations tested were 10⁻¹², 10⁻¹⁰, and 10⁻⁸ M. Each of these Zn²⁺ concentrations was run with either 5 μM Ca²⁺ or no Ca²⁺ present. Thus, in the 150 mM KC1 medium, a NaCl gradient across the vesicles was created. The inside contained 150 mM NaCl, and the outside contained 6.2 mM NaCl. In the blank (used to assess nonspecific binding), the NaCl concentration was 150 mM on both sides of the membrane. In addition to the 150 mM NaCl or KC1, the assay medium contained 20 mM HEPES/Tris, pH 7.4, 0.8 mM MgCl₂ (free), and 0.5 mM EGTA/HEEDTA/NTA. After 1-min incubation, the reaction was arrested by addition of stopping buffer, as described above. Vesicles were collected by rapid filtration, rinsed, and counted for ⁶⁶Zn²⁺. The difference in ⁶⁶Zn²⁺ accumulation in K⁺- and Na⁺-containing media was taken as a measure of Na⁺ gradient-driven Zn²⁺ transport.

MECHANISM OF ZINC UPTAKE IN RAINBOW TROUT

R1143

...
RESULTS

Passage of Zn\(^{2+}\) across the apical membrane. The influxes of Na\(^{+}\), Cl\(^{-}\), Ca\(^{2+}\), and Zn\(^{2+}\) in untreated rainbow trout were 251 ± 22.0, 185 ± 7.9, 40.0 ± 4.5, and 0.0949 ± 0.0128 \(\mu\)mol \cdot kg\(^{-1}\) \cdot h\(^{-1}\), respectively (means ± SE, \(n = 10\)). The hypothesis that Zn\(^{2+}\) enters the chloride cells of the gill epithelium through the same ion channels as Ca\(^{2+}\) was tested by measuring the influx of Ca\(^{2+}\) and Zn\(^{2+}\) in the presence of a Ca\(^{2+}\) channel blocker, La, in the water. The specificity of the blockade was investigated by analysis of the effects of La on the influx of Na\(^{+}\) and Cl\(^{-}\). Addition of 1 \(\mu\)M La to the experimental water significantly decreased the influx of Ca\(^{2+}\) (to 22% of control mean; Fig. 1A) and Zn\(^{2+}\) (to 53% of control mean; Fig. 1A) but had no effect on Na\(^{+}\) and Cl\(^{-}\) influx (Fig. 1B).

The role of the apical Ca\(^{2+}\) transporter in Zn\(^{2+}\) uptake was further studied by measuring the influx of Ca\(^{2+}\) and Zn\(^{2+}\) in Ca\(^{2+}\)-injected rainbow trout. Ca\(^{2+}\) injection evokes an increased stanniocalcin production, which decreases the permeability of the apical membranes for Ca\(^{2+}\) (11, 33). The branchial influx of Ca\(^{2+}\) and Zn\(^{2+}\) in sham-injected (NaCl) fish was 44.0 ± 4.9 and 0.0927 ± 0.00493 \(\mu\)mol \cdot kg\(^{-1}\) \cdot h\(^{-1}\) (means ± SE), respectively. These values were similar to those measured in untreated fish (see above). Injection of Ca\(^{2+}\) significantly reduced both Ca\(^{2+}\) and Zn\(^{2+}\) influx (Fig. 2). The influx of Ca\(^{2+}\) was decreased to 45% of the mean control value and the influx of Zn\(^{2+}\) to 68%.

Passage of Zn\(^{2+}\) across the BLM. The presence of basolateral ATP or Na\(^{+}\) gradient-driven transport systems for Zn\(^{2+}\) was tested in vitro in isolated BLM vesicles. None of the various assay conditions tested resulted in any detectable active transport of Zn\(^{2+}\) across the vesicles. In the system used, the detection limit of the rate of active transport, based on the specific activity of \(^{65}\)Zn\(^{2+}\) in the incubation medium, was 10\(^{-20}\) mol \cdot mg\(^{-1}\) \cdot min\(^{-1}\) for ATP-driven Zn\(^{2+}\) transport and 10\(^{-23}\) mol \cdot mg\(^{-1}\) \cdot min\(^{-1}\) for Zn\(^{2+}\) transport driven by a Na\(^{+}\) gradient.

Effect of Zn\(^{2+}\) on the basolateral Ca\(^{2+}\) transport. The basolateral high-affinity Ca\(^{2+}\)-ATPase was found to be sensitive to Zn\(^{2+}\). The Zn\(^{2+}\) inhibition was mixed, competitive and noncompetitive, in its nature, although the competitive component prevailed (Fig. 3 and Table 1). Quantitatively, our results vary slightly depending on the methods used to calculate \(V_{\text{max}}\) and \(K_{M}\). Figure 3 is a traditional Eadie-Hofstee plot where the unweighted regression lines are fitted to the averages of measurements from four to seven individuals, whereas the \(V_{\text{max}}\) and \(K_{M}\) values presented in Table 1 were obtained from nonlinear regressions of data from individual samples. Although Fig. 3 allows a graphic perception of the Zn\(^{2+}\) inhibition, the constants shown in Table 1 are more accurate mathematically. The effect on \(K_{M}\) was significant (\(P < 0.01\)) at a Zn\(^{2+}\) activity of 100 pM (Table 1). The \(V_{\text{max}}\) became significantly reduced only at the highest tested concentration of free Zn\(^{2+}\), 500 pM (Table 1). At the same Zn\(^{2+}\) activity, the increase in \(K_{M}\) was eightfold, and the \(V_{\text{max}}\) was decreased by a factor of two.

DISCUSSION

Previous research has given strong indications that Ca\(^{2+}\) and Zn\(^{2+}\) compete for the same uptake sites on the gills of freshwater-adapted rainbow trout (8, 9, 25). In the present study, we provide direct evidence that Zn\(^{2+}\) may interfere with the branchial Ca\(^{2+}\) uptake at several stages and that the two elements very probably share the same apical entry mechanism.
MECHANISM OF ZINC UPTAKE IN RAINBOW TROUT

Fig. 2. Effect of Ca2+ injection on the influx of Ca2+ and Zn2+ in juvenile rainbow trout. Bars show mean influx of Ca2+ and Zn2+ of 10 fish, expressed as percentage of the control mean. Error bars denote SE. Absolute control means of Ca2+ and Zn2+ influx were 44 ± 4.9 and 0.0927 ± 0.00493 (means ± SE) \mu mol·kg-1·h-1, respectively. *Significant difference compared with the control value (P < 0.05).

Two independent approaches were used to investigate whether Zn2+ and Ca2+ cross the apical membrane of the gill epithelium by the same mechanism. The first approach was to block the Ca2+ uptake sites with La, a classic Ca2+-channel blocker (36). La treatment was an effective inhibitor of both Ca2+ and Zn2+ influxes, suggesting common uptake sites for Ca2+ and Zn2+ at the apical surface. The specificity of the blockade was demonstrated by the unaffected influxes of Na+ and Cl- in La-exposed fish. If La had acted in a nonspecific manner to block all negatively charged sites of the gill surface, then it is probable that also the Na+ influx would have been reduced. During these relatively short exposure times and at the concentration used (1 \mu M), La does not enter the gill epithelium but accumulates on the surface of the chloride cells (18). Thus it could be argued that the effect of La is specific to fluxes across chloride cells in general and not to the Ca2+/Zn2+ uptake sites. However, the unaltered Cl- influx is a control showing that the La blockade was not merely a physical cover of the chloride cell surface. These control experiments substantiate our finding that Zn2+ most likely enters the fish through the Ca2+-transporting system in the apical membrane of the chloride cells.

The second approach used to demonstrate the intimate relationship between the uptake mechanisms for Ca2+ and Zn2+ was to give the fish a signal to reduce Ca2+ influx and then observe the effect on branchial Zn2+ influx. Such a signal was given by injecting ionic Ca2+. From previous research it is firmly established that a consequence of Ca2+ injection in fish is an increased release of the calciostatic hormone stanniocalcin (11, 16, 19, 35), which, in turn, leads to a decreased permeability of the apical chloride cell membrane to Ca2+ (11, 28, 33, 34). This treatment had the predicted inhibitory effect on the branchial Ca2+ influx, and it also significantly reduced the influx of Zn2+. The results provide an independent line of evidence that the apical passage for Zn2+ takes place through the Ca2+-transporting system in the apical membrane of the chloride cells.

After both La treatment and Ca2+ injection the inhibition of Ca2+ influx was more pronounced than that of Zn2+. This difference could be accounted for if the affinity of the uptake sites were higher for Zn2+ than for Ca2+. Previous investigations do, in fact, show that the K_M for Zn2+ influx is at least a factor of 10.

Table 1. Effect of free Zn2+ on V_{max} and K_M for the transport kinetics of ATP-driven Ca2+ transport in isolated basolateral membrane vesicles of adult rainbow trout

<table>
<thead>
<tr>
<th>Zn2+, pM</th>
<th>V_{max}, nmol·mg-1·min-1</th>
<th>K_M, pM</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.05 ± 0.61</td>
<td>0.13 ± 0.03</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>4.35 ± 1.16</td>
<td>0.57 ± 0.34</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>3.70 ± 0.91</td>
<td>0.43 ± 0.08*</td>
<td>6</td>
</tr>
<tr>
<td>500</td>
<td>2.13 ± 0.49*</td>
<td>1.03 ± 0.19*</td>
<td>4</td>
</tr>
</tbody>
</table>

Values are means ± SE (n = 4–7 individuals). Values are derived from nonlinear regression curves of individual samples, describing the Michaelis-Menten equation. The Zn2+ concentration is the free Zn2+ activity in the assay medium. The decrease in maximal velocity (V_{max}) and the increase in the Michaelis-Menten affinity constant (K_M) were found significant by testing equality against ordered alternatives (14). *Significances of individual groups compared to control (Mann-Whitney U test, P < 0.01).
below the K_m for Ca$^{2+}$ influx (10). There is, however, a second possible explanation, which is that the apical Ca$^{2+}$-uptake sites might not be the sole branchial pathway for Zn$^{2+}$ to enter the fish.

Even though the apical entry of Ca$^{2+}$ and Zn$^{2+}$ in the gills seem to occur via the same pathway, we were unable to show any active transport of Zn$^{2+}$ driven by ATP or the transmembrane Na$^+$ gradient. Because the basolateral transfer of Ca$^{2+}$ occurs via a Ca$^{2+}$-ATPase (2, 3, 6, 18) and, at least in tilapia gills, to some extent via a Na$^+$/Ca$^{2+}$ exchanger (32), we conclude that Zn$^{2+}$ is not transported across the BLM via the Ca$^{2+}$ transporters during physiological conditions. The mechanism for basolateral Zn$^{2+}$ transport is yet to be elucidated.

Our results suggest that the basolateral Ca$^{2+}$-ATPase of the fish gill epithelium is not involved in Zn$^{2+}$ transport, but we did find evidence that Zn$^{2+}$ binds to this Ca$^{2+}$ pump. Indeed, the present data suggest that Zn$^{2+}$ can interfere very powerfully with the ATP-dependent basolateral transport of Ca$^{2+}$. As little as 100 µM of free Zn$^{2+}$ was able to inhibit the high-affinity Ca$^{2+}$-ATPase in isolated vesicles from the basolateral membrane. This concentration is 104 times lower than the normal total Zn$^{2+}$ concentration of the gill in rainbow trout (9). Thus it is evident that the intracellular regulation of Zn$^{2+}$ activity must be rigorously controlled to ensure that there is virtually no free Zn$^{2+}$ present in the cytoplasm.

Although the inhibition of the Ca$^{2+}$-ATPase by Zn$^{2+}$ was mixed, the competitive component of the inhibition dominated markedly. It was interesting to note that the nature of the inhibition of the Ca$^{2+}$-ATPase in vitro resembled the effect of elevated waterborne Zn$^{2+}$ on the in vivo influx of Ca$^{2+}$, where, again, there is a large competitive and a small noncompetitive inhibition (8, 9). We speculate that the inhibitory effect of Zn$^{2+}$ on J_{max} for branchial Ca$^{2+}$ transport in the in vivo situation is due to an inhibition of the Ca$^{2+}$-ATPase. The increased K_m in vivo for Ca$^{2+}$ transport caused by the presence of Zn$^{2+}$, on the other hand, could represent a competition for binding sites both at the apical Ca$^{2+}$ uptake sites and the basolateral Ca$^{2+}$-ATPase. The inhibitory effect of Ca$^{2+}$ on the branchial influx of Zn$^{2+}$ does not have any noncompetitive component (25) and is likely to represent a simple competition for binding sites at the level of the apical membrane.

Cadmium is one of the most toxic metals to fish, substantially more toxic than Zn. In the same water quality as that used in the present study, the 96-h LC$_{50}$ for Cd and Zn to rainbow trout has been determined to 0.3 and 14 µM, respectively (17). Thus Cd is ~50 times more toxic than Zn despite the fact that the two ions have equal inhibitory effects on the basolateral Ca$^{2+}$-ATPase and at least partially share the same transcellular transport pathway. The pronounced difference in vivo toxicity between the two metals must, therefore, lay either in the accumulation rate in the gill tissue or on the intracellular handling of the metals. Because Zn$^{2+}$ is an essential micronutrient that is normally taken up through the gill, whereas Cd$^{2+}$ is not, the system appears to be much better designed to handle Zn$^{2+}$.

Perspectives

Ca$^{2+}$ is believed to enter the chloride cells through a voltage-independent channel in the apical membrane driven by the electrochemical gradient (5). Although this "Ca$^{2+}$ channel" has never been isolated or patch clamped, there is a wealth of indirect evidence supporting its existence (5). Pharmacological blockade (i.e., La treatment) and endocrine inactivation (i.e., stanniocalcin) of this putative channel reduced the branchial influx of both Ca$^{2+}$ and Zn$^{2+}$. Previous work provides evidence that Cd$^{2+}$ also passes the apical membrane through the same channel (33). Thus the apical Ca$^{2+}$ channel of the gill epithelium may be a relatively nonspecific divalent cation channel. Electrophysiological and/or molecular studies are required to verify this hypothesis.

The technical assistance of N. Webb is gratefully appreciated. This study was supported by a Department of Fisheries and Oceans/National Sciences and Engineering Research Council Science Subvention Program Grant to C. M. Wood, a grant to C. Hogstrand from the Swedish Council for Forestry and Agricultural Research, and by a grant from the Netherlands Organization for Scientific Research to P. M. Verboest.

Address for reprint requests: C. Hogstrand, T. H. Morgan School of Biological Sciences, 101 Morgan Bldg., Univ. of Kentucky, Lexington, KY 40506-0225.

Received 3 April 1995; accepted in final form 15 November 1995.

REFERENCES

MECHANISM OF ZINC UPTAKE IN RAINBOW TROUT

