Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest.

Key words: mental imagery; multivariate analyses; neural overlap; perception; working memory

Introduction
Visual imagery allows us to think and reason about objects that are absent in the visual field by creating a mental image of them. This ability plays an important role in several cognitive processes, such as working memory, mental rotation, reasoning about future events, and many more (Kosslyn et al., 2001). The vividness of visual imagery seems to be a key factor in these cognitive abilities, with more vivid imagery being linked to better performance on tasks requiring imagery (Keogh and Pearson, 2011, 2014; Albers et al. 2013).

There are great individual differences in how vividly people can generate a mental image (Cui et al., 2007; Lee et al., 2012; Bergmann et al., 2016). However, within individuals there is also variation in imagery vividness: in some instances, imagery is much more vivid than in other instances (Pearson et al., 2008).

To date, the neural mechanisms underlying this moment-to-moment variation in experienced imagery vividness have remained unclear.

Previous work has shown that people who have more vivid visual imagery, as measured by the Vividness of Visual Imagery Questionnaire (VVIQ) (Marks, 1973), show higher activity in early visual cortex during imagery (Cui et al., 2007). Furthermore, individual differences in imagery precision and strength, as measured by the effect on subsequent binocular rivalry, are related to the size of V1, whereas individual differences in subjective imagery vividness correlate with prefrontal cortex volume but not with visual cortex anatomy (Bergmann et al., 2016). Studies using multivariate analysis techniques have shown that there is overlap in stimulus representations between imagery and perception across the whole visual hierarchy, with more overlap in higher visual areas (Reddy et al., 2010; Lee et al., 2012). However, only the overlap between perception and imagery in the primary visual cortex correlates with VVIQ scores and with imagery ability as measured by task performance (Lee et al., 2012; Albers et al., 2013).

It remains unclear which of these neural correlates are important in determining moment-to-moment vividness of visual imagery and whether V1, especially the neural overlap with perception in V1, also relates to the variation of vividness within
participants. In the current study, we investigated this question by having participants perform a retro-cue imagery task in the MRI scanner and rate their experienced vividness in every trial. First, we explored where in the brain activity correlates with vividness. Second, we investigated the overlap of category representations of perceived and imagined stimuli and in which areas this overlap is modulated by imagery vividness.

Materials and Methods

Participants. Twenty-nine healthy adult volunteers with normal or corrected to normal vision gave written informed consent and participated in the experiment. Three participants were excluded: two because of insufficient data caused by scanner problems and one because of not finishing the task. Twenty-six participants (mean ± SD age = 24.31 ± 3.05 years; 18 female) were included in the reported analyses. The study was approved by the local ethics committee (CMO Arnhem-Nijmegen).

Experimental paradigm. Before scanning we asked participants to fill in the VVIQ. This 16-item scale is summarized in a vividness score between 1 and 4 for each participant, where a score of 1 indicates high and 4 indicates low vividness.

The experimental paradigm is depicted in Figure 1. We adapted a retro-cue working memory paradigm (Harrison and Tong, 2009). In each trial, participants were shown two objects successively, followed by a cue indicating which of the two they subsequently should imagine. During imagery, a frame was presented within which subjects were asked to imagine the cued stimulus as vividly as possible. After this, they indicated their experienced vividness on a scale from 1 to 4 for each participant, where a score of 1 indicates high and 4 indicates low vividness.

The image in terms of its shortest possible description and can be approximated by its normalized compressed file size. It has been shown that the neural response in visual cortex is influenced by the Kolmogorov complexity of the stimulus (Güçlü and van Gerven, 2015). Furthermore, the within-category exemplars were chosen to be maximally different, such as to allow potential within-class differentiation. For the letters, this was quantified as the pair of images with the least pixel overlap.

fMRI acquisition. Each block was recorded in a separate fMRI run, leading to 9 runs in total. In between runs, the participant had a break and indicated by means of a button press when they were ready for the experiment to continue. fMRI data were recorded on a Siemens 3T Prisma scanner with a Multiband 4 sequence (TR, 1.5 s; voxel size, 2 × 2 × 2 mm; TE, 39.6 ms) and a 32 channel head coil. For all participants, the field of view was tilted −25° from the transverse plane, using the Siemens AutoAlign Head software, resulting in the same tilt relative to the individual participant’s head position. T1-weighted structural images (MPRAGE; voxel size, 1 × 1 × 1 mm; TR, 2.3 s) were also acquired for each participant.

fMRI data preprocessing. Data were preprocessed using SPM8 (RRID: SCR_007037). Functional imaging data were motion corrected and coregistered to the T1 structural scan. No spatial or temporal smoothing was performed. A high-pass filter of 128 s was used to remove slow signal drift.

Univariate GLM analysis. Before the multivariate analyses, we first ran a standard GLM in SPM8 in which we modeled the different regressors separately for each fMRI run. We modeled, per category, the perception events, imagery events, and the parametric modulation of the imagery response by vividness each in a separate regressor. The intertrial intervals were modeled as a baseline regressor during which there was no imagery. The visual cues, the presentation of the vividness instruction screen and the button presses, were included in separate nuisance regressors, along with subject movement in six additional regressors. This analysis gave us the β weight of each regressor for each voxel separately. Significance testing for univariate contrasts was done on the normalized smoothed t maps using FSL’s cluster-based permutation technique (FSL; RRID: SCR_002823). To illustrate the parametric influence of vividness, a separate GLM was run in which the imagery response per vividness level was...
modeled in a separate regressor, collapsed over stimulus categories, and concatenated over runs.

Searchlight-based cross-validated MANOVA. Numerous studies have shown that information about complex cognitive processes, such as visual imagery, is often more clearly present in patterns of neural responses than in the mean response amplitude pooled over voxels (Kok et al., 2012; Tong et al., 2012; Albers et al., 2013; Bosch et al., 2014). Therefore, in this study, we focused on effects in the multivariate patterns of voxel responses.

We used the multivariate searchlight-based analysis technique developed by Allefeld and Haynes (2014). This analysis takes the parameter estimates of the GLM regressors per run as input and computes the multivariate “pattern distinctness” of any given contrast per searchlight. We chose a searchlight with a radius of 4 mm, leading to 33 voxels per sphere, in line with the findings of Kriegeskorte et al. (2006), who showed that this size is optimal for most brain regions.

The pattern distinctness D of the two conditions in any contrast is defined as the magnitude of the between-condition covariance compared with the within-condition covariance (Allefeld and Haynes, 2014). When there are only two conditions, which is the case in all our contrasts, D has a clear relationship to the Mahalanobis distance. Let

$$\Delta = \sqrt{(\mu_2 - \mu_1) \Sigma^{-1} (\mu_2 - \mu_1)}$$

where n_1 and n_2 are the number of data points per condition.

As defined here, D is a squared distance measure and therefore cannot take on values smaller than zero. If D is close to zero or zero, estimation errors mostly increase the estimate. This problem is solved by implementing a leave-one-run-out cross-validation. This leads to the final, unbiased estimator of pattern distinctness as follows:

$$D = \frac{1}{4} \Delta^2 \times \frac{n_1 + n_2}{n}$$

where n_1 and n_2 are the number of data points per condition.

As defined here, D is a squared distance measure and therefore cannot take on values smaller than zero. If D is close to zero or zero, estimation errors mostly increase the estimate. This problem is solved by implementing a leave-one-run-out cross-validation. This leads to the final, unbiased estimator of pattern distinctness as follows:

Permutation testing group statistics. Stelzer et al. (2013) argued that the application of standard second-level statistics, including t tests, to MVPA measures is in many cases invalid due to violations of assumptions. Instead, they suggest permutation testing to generate the empirical null-distribution, thereby circumventing the need to rely on assumptions about this distribution. We followed their approach and performed permutation tests.

Single-subject permutations were generated by a sign-permutation procedure adapted for cross-validation as described by Allefeld and Haynes (2014). Because of computational limits, we generated 25 single-subject permutations per contrast. The permuted maps were subsequently normalized to MNI space. Second-level permutations were generated by randomly drawing (with replacement) 1 of the 25 permutation maps per subject and then averaging this selection to a group permutation (Stelzer et al., 2013). For each voxel position, the empirical null-distribution was generated using 10,000 group permutation maps. p values were calculated per voxel as the right-tailed area of the histogram of permuted distinctness from the mean over subjects. Cluster correction was performed, ensuring that voxels were only identified as significant if they belonged to a cluster of at least 50 significant voxels. We corrected for multiple comparisons using FDR correction with a q value cutoff of 0.01.

Because the vividness regressor was not estimable in every run due to lack of variation in some runs, there were fewer runs available to estimate these contrasts. Therefore, these significance maps are based on 10 instead of 25 single subject permutations, but still 10,000 group-level permutations. Furthermore, two participants were removed from this analysis because they did not have enough variation in their responses to even produce 10 permutations. For this analysis, the q value cutoff was set to 0.05.

Results

Behavioral results

Before the experiment, participants filled out the VVIQ, which is a self-report measure of people’s ability to vividly imagine scenes and objects (Marks, 1973; Cui et al., 2007). During the experiment, participants imagined previously seen, cued images and rated their vividness after each trial. First, we investigated whether the reported averaged vividness ratings and VVIQ scores were related. There was a significant negative correlation between the VVIQ and the averaged vividness ratings over trials ($r = -0.45, p = 0.02$). Because the polarity of the two scales is reversed, this indicates that subjects with a higher imagery vividness as mea-
sured by the VVIQ also experienced on average more vivid imagery during the experiment.

Next, we explored whether experienced imagery vividness was influenced by stimulus category. We performed t tests between the vividness scores of the different stimulus categories. As shown in Figure 2, there was a significant difference in vividness between letters (3.12 ± 0.59; $p = 0.006$, $t_{(25)} = 3.01$) and between faces and fruit (2.99 ± 0.53; $p = 0.012$, $t_{(25)} = 2.71$). There was a nonsignificant difference between fruit and letters ($p = 0.076$, $t_{(25)} = 1.85$). Because the categories were of different complexity levels, this shows that vividness was modulated by stimulus complexity, such that imagery of simple stimuli was experienced as more vivid than imagery of more complex stimuli. This means that any effect of vividness on the neural responses aggregated over categories may be influenced by the effect of stimulus category. Therefore, we performed subsequent vividness analyses separately for each stimulus category.

Univariate fMRI results

To investigate which brain areas were activated by the different phases in the imagery task, we contrasted activity during perception and imagery versus baseline. Both perception and imagery activated large parts of the visual cortex (Fig. 3). Here activity is pooled over all imagery and perception trials so these results are not informative about overlap in stimulus representations.

To directly compare activity between perception and imagery, we contrasted the two conditions (Fig. 4). Even though both conditions activated visual cortex with respect to baseline, we observed stronger activity during perception than imagery throughout the whole ventral visual stream. In contrast, imagery led to stronger activity in more anterior areas, including insula, left dorsal lateral prefrontal cortex, and medial frontal cortex.

Parametric modulation by vividness

We first investigated where in the brain activity was modulated by experienced imagery vividness. To this end, we used the cvMANOVA analysis technique developed by Allefeld and Haynes (2014) (see Materials and Methods). This analysis investigates per searchlight whether the pattern of voxel responses is influenced by the experienced imagery vividness. In all three categories, there was large overlap between imagery and perception in the lateral occipital complex. For both the letter and face category, there was also high overlap in parietal and premotor areas (Fig. 6, red-yellow). Vividness
modulated the overlap in all categories in the superior parietal cortex, in the fruit and face category in the entire visual cortex, and in the letter category in right inferior temporal cortex and left intraparietal sulcus (Fig. 6, blue-green).

To illustrate this finding more clearly, we ran a new GLM in which we modeled the imagery response for each vividness level separately. In Figure 7, we plotted the difference between the main effect of perception and the main effect of imagery in early visual cortex, for each vividness level. More vivid imagery was associated with a smaller difference between perception and imagery.

Discussion
In the present study, we investigated (1) in which brain areas activity was modulated by variation in experienced vividness and (2) where the overlap between perception and imagery was influenced by vividness. There was an effect of vividness on activation in the precuneus, right parietal cortex, medial frontal cortex, and parts of early visual cortex in all categories. We found overlap in category representations between imagery and perception in lateral occipital complex in all categories, and in inferior parietal and premotor cortex in the letter and face category. Furthermore, we found an effect of vividness on the overlap over the whole visual cortex for both the fruit and face categories, and in the superior parietal cortex for all categories. For letters, also the overlap in left intraparietal sulcus and right inferior temporal cortex was modulated by vividness.

Previous work has shown that individual differences in visual imagery vividness correlate with activation of early visual cortex during imagery (Cui et al., 2007). Here, we show that this is also the case for trial-by-trial variation of imagery vividness. Furthermore, previous studies showed a correlation between imagery ability and overlap of neural representations with perception in early visual cortex (Lee et al., 2012; Albers et al., 2013). In contrast, we found that within-participant fluctuations in vividness are related to the amount of overlap in the entire visual cortex as well as the parietal cortex. A possible explanation for this discrepancy is that previous studies defined the overlap across stimulus categories and looked at general imagery ability. In contrast, our
current approach allowed us to define overlap within each stim-
ulus category and relate it directly to the experienced vividness
of those stimuli. This technique is much more sensitive and can
reveal more fine-grained effects. The results indicate that the
overlap of the neural representation in the entire visual system
is important for participants’ subjective experience.

We did not find a clear modulation of the overlap in the visual
cortex in the letter category. In this category, the overlap in intra-
parietal sulcus and inferior parietal cortex was modulated in-
stead. An explanation for this is that vividness of letters means
something different from vividness of other stimuli. Letters were
the least complex and so had the least visual details: a key factor in
determining vividness (Marks, 1973). This could therefore mean
that other factors, such as semantic association or auditory imag-
ery, determined vividness in the letter category.

In addition to effects in the visual cortex, we found that, in all
categories the activity, but not the overlap, was modulated by
vividness in precuneus, medial frontal, and right parietal cortex.
Previous studies have also reported activation in these areas dur-
ing visual imagery (Ishai et al., 2000; Ganis et al., 2004; Mechelli et
al., 2004; de Borst et al., 2012). It has been suggested that the
precuneus is important for selecting relevant details during im-
agery (Ganis et al., 2004). This is in line with our current findings
because the amount of detail experienced during imagery plays
an important role in judging experienced vividness. Further-
more, medial frontal activity has been associated with imagery
performance (de Borst et al., 2012), which in turn has been linked
to experienced imagery vividness (Keogh and Pearson, 2014). It
has been suggested that the medial frontal cortex is important for
the retrieval and integration of information during both working
memory and imagery via connections to parietal and visual areas
(Onton et al., 2005; de Borst et al., 2012). Finally, right parietal
cortex has been associated with attention, visual inspection, and
percept stabilization, all factors that could influence the experi-
enced vividness (Trojano et al., 2000; de Borst et al., 2012; Zarets-
kaya et al., 2010).

Our findings crucially depend on the fluctuations in imag-
ery vividness and associated overlap and activity over time.
This begs the question what the origin of these fluctuations is.
Fluctuations may be driven by variation in cortical excitability
or large-scale reconfigurations of resting-state networks. For
example, spontaneous changes within the default mode net-
work and frontoparietal networks correlate with switches be-
tween an internal versus an external focus (Smallwood et al.,
2012; Van Calster et al., 2016). Furthermore, resting state osc-
cillations within visual and motor cortices are related to
changes in cortical excitability, which have an effect on behav-
ior (Fox et al., 2007; Romei et al., 2008). These spontaneous
fluctuations could underlie the observed variability in experi-
enced vividness within participants. More research is neces-
sary to investigate this idea.

In addition to the neural correlates of imagery vividness, this
study also provides novel insights with regard to the overlap in
neural representations of imagined and perceived stimuli. We
reveal a large overlap between perception and imagery in visual
cortex. This is consistent with previous work showing that work-
ring memory, perception, and visual imagery have common rep-
resentations in visual areas (Reddy et al., 2010; Lee et al., 2012;
Albers et al., 2013; Bosch et al., 2014). However, our study is the
first to look at overlap between neural representations of imagery
and perception beyond the visual cortex. Unexpectedly, we also
found strong overlap in category representations for the letter
and face category in inferior parietal and premotor cortex. Previ-
ous studies have already reported representations in parietal cor-
text of stimuli held in working memory (Christophel et al., 2015;
Lee and Kuhl, 2016). It may be the case that different cognitive
functions rely on the same representations in both visual and
parietal cortex.

Furthermore, premotor cortex activity during visual imagery
has been associated with the spatial transformation of a mental
object (Sack et al., 2008; Oshio et al., 2010). However, we now
show that stimulus representations in premotor cortex are shared
between perception and imagery during a task that does not in-
volve spatial transformations. This overlap also cannot be ex-
plained by motor preparation of the vividness response because
during perception participants did not yet know which stimuli
they had to imagine. One possible explanation for the overlap in
the letter category is the fact that letters have a sensorimotor
representation, such that the perception of letters activates areas
in premotor cortex involved in writing (Longcamp et al., 2003).
Our results would imply that imagery of letters also activates
premotor areas. However, this explanation is less likely to hold
for faces. Because the overlap is more anterior for faces, this could
also indicate the involvement of inferior frontal gyrus, a region
that is known to be involved in the imagery of faces (Ishai et al.,
2002).

The fact that we did not find overlap in more anterior areas for
the fruit category can be explained by the fact that the neural
representation of the fruit category was less distinctive than that
of the other categories. We calculated overlap as that part of the
main category effect that was not different between perception
and imagery. The main effect of the fruit category (how distinc-
tive it was from the other categories) was much smaller than the
main effect of the other categories, especially in more anterior
brain areas. Therefore, the overlap in these areas was necessarily
also smaller. This suggests that the fact that we did not find over-
lap in these areas is more likely due to low sensitivity than to true
absence of overlap in these areas.

Because of the nature of our experimental task, it could be the
case that our overlap findings are mainly driven by the imagery
trials in which the second stimulus was cued. This could point to
spillover of the BOLD response from the perception part of the
trial, which would pose a problem for the general overlap results.
To investigate this, we performed the overlap analysis separately
for first and second cue trials (Harrison and Tong, 2009). The
peak activations for the first cue dataset were centered around
lateral occipital complex, parietal, and premotor regions, which
matches the main results. Furthermore, no salient differences
were observed when comparing the results for the first and sec-
ond cue. This shows that the effects cannot be explained by spill-
over effects of bottom-up perceptual processing. The modulation
of overlap by vividness cannot be caused by spillover effects be-
cause these two are completely unrelated in our setup.

In conclusion, we showed that a network of areas, including
both early and late visual areas, precuneus, right parietal cortex,
and medial frontal cortex, is associated with the experienced vi-
idness of visual imagery. The more anterior areas seem to be
important for imagery-specific processes, whereas visual areas
represent the visual features of the experience. This is apparent
from the relation between experienced vividness and overlap
with perception in these areas. Furthermore, our results show
that the overlap in neural representations between imagery and
perception, regardless of vividness, extends beyond the visual
cortex to include also parietal and premotor/frontal areas.

References

Albers AM, Kok P, Toni I, Dijkerman HC, de Lange FP (2013) Shared rep-
resentations for working memory and mental imagery in early visual

of fMRI by cross-validated MANOVA. Neuroimage 89:345–357. CrossRef
Medline

visual cortex is associated with stronger, but less precise mental imagery.
Cereb Cortex 26:3838–3850. CrossRef Medline

Bosch SE, Jehee JF, Fernández G, Doeller CF (2014) Reinstatement of asso-
ciative memories in early visual cortex is signalled by the hippocampus.
J Neurosci 35:7493–7500. CrossRef Medline

Christophel TB, Cichy RM, Hebart MN, Haynes JD (2015) Parietal and
early visual cortices encode working memory content across mental

Cui X, Jeter CB, Yang D, Montague PR, Eagleman DM (2007) Vividness of
mental imagery: individual variability can be measured objectively. Vi-

de Borst AW, Sack AT, Jansma BM, Esposito F, de Martino F, Valente G,
Roebroeck A, di Salle F, Goebel R, Formisano E (2011) Integration of
“what” and “where” in frontal cortex during visual imagery of scenes.
Neuroimage 60:47–58. CrossRef Medline

Fox MD, Raiche ME (2007) Spontaneous fluctuations in brain activity ob-
served with functional magnetic resonance imaging. Nat Rev Neurosci
8:700–711. CrossRef Medline

Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual
mental imagery and visual perception: an fMRI study. Brain Res Cogn

the complexity of neural representations across the ventral stream. J Neu-
rosci 35:10000–10014. CrossRef Medline

Harrison SA, Tong F (2009) Decoding reveals the contents of visual working

Ishai A, Ungerleider LG, Haxby JV (2000) Distributed neural systems for the
generation of visual images parts of the visual system mediate imagery for
Medline

effects of memory and attention revealed by fMRI. Neuroimage 17:1479–
1741. CrossRef Medline

predicts visual working memory capacity. J Vis 14:pii7. CrossRef Medline

Kok P, Jehee JF, de Lange FP (2012) Less is more: expectation sharpens
Medline

Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imag-

Kriegeskorte N, Goebel R, Bandettini, P (2006) Information-based func-
Lee H, Kuhl BA (2016) Reconstructing perceived and retrieved faces from

Lee SH, Kravitz DJ, Baker CI (2012) Disentangling visual imagery and
Medline

Longcamp M, Anton JL, Roth M, Velay JL (2003) Visual presentation of
single letters activates a premotor area involved in writing. Neuroimage
19:1492–1500. CrossRef Medline

Psychol 64:17–24. CrossRef Medline

top-down: neuronal interactions during perception and imagery. Cereb
Cortex 14:1256–1265. CrossRef Medline

Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics dur-

Differential effect of double-pulse TMS applied to dorsal premotor cortex
and precuneus during internal operation of visualspatial information.
Neuroimage 49:1108–1115. CrossRef Medline

Medline

Pearson J, Rademaker RL, Tong F (2011) Evaluating the mind’s eye: the
Medline

Reddy L, TsuChiya N, Serre T (2010) Reading the mind’s eye: decoding cat-
egory information during mental imagery. Neuroimage 50:818–825. CrossRef
Medline

Spontaneous fluctuations in posterior a-band EEG activity reflect vari-

Dynamic premotor-to-parietal interactions during spatial imagery.

the default mode network and the frontal-parietal network in the produc-
tion of an internal train of thought. J Brain Res 1428:60–70. CrossRef

correction in classification-based multi-voxel pattern analysis (MVPA):

Tong F, Harrison SA, Dewey JA, Kamitani Y (2012) Relationship between
BOLD amplitude and pattern classification of orientation-selective activ-
Medline

Trojano L, Grossi D, Linden DE, Formisano E, Hacker H, Zanella FE, Goebel
omy of spatial analysis in the absence of visual stimulation. Cereb Cortex
10:473–481. CrossRef Medline

Van Calster L, D’Argembeau A, Salmon E, Peters F, Majerus S (2016) Fluc-
tuations of attentional networks and default mode network during the
resting state reflect variations in cognitive states: evidence from a novel

Zaretskaya N, Thielsera C, Logothetis NK, Bartels A (2010) Disrupting
parietal function prolongs dominance durations in binocular rivalry.