Electron-flux infrared response to varying π-bond topology in charged aromatic monomers

Héctor Álvaro Galué1, Jos Oomens1,2, Wybren Jan Buma1 & Britta Redlich2

The interaction of delocalized π-electrons with molecular vibrations is key to charge transport processes in π-conjugated organic materials based on aromatic monomers. Yet the role that specific aromatic motifs play on charge transfer is poorly understood. Here we show that the molecular edge topology in charged catacondensed aromatic hydrocarbons influences the Herzberg-Teller coupling of π-electrons with molecular vibrations. To this end, we probe the radical cations of picene and pentacene with benchmark armchair- and zigzag-edges using infrared multiple-photon dissociation action spectroscopy and interpret the recorded spectra via quantum-chemical calculations. We demonstrate that infrared bands preserve information on the dipolar π-electron-flux mode enhancement, which is governed by the dynamical evolution of vibronically mixed and correlated one-electron configuration states. Our results reveal that in picene a stronger charge π-flux is generated than in pentacene, which could justify the differences of electronic properties of armchair- versus zigzag-type families of technologically relevant organic molecules.

1 Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands. 2 Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands. Correspondence and requests for materials should be addressed to H.A.G. (email: h.alvarogalue@gmail.com) or to B.R. (email: felix@science.ru.nl).
A challenge in the innovation of molecular organic electronics is to understand the fundamental physical principles controlling charge transport\(^1\). Significant efforts have focused on acene\(^2\) aromatic hydrocarbons consisting of fused benzenoid rings arranged in centrosymmetric linear structures. Acenes are key monomeric building blocks for designing prototypical organic solids as the number of rings defines the electronic band structure\(^3\) via the extent of molecular π-conjugation or delocalization (in which overlapping \(p_z\) atomic orbitals interconnect electrons across rings). Another approach to organic electronics is offered by phenacenes\(^4\) which are non-centrosymmetric versions of acenes consisting of rings fused in angular-oriented structures. Illustrative examples in the case of molecular crystal structures based on acenes and phenacenes show diverse electronic properties\(^5\) ranging from semiconducting to metallic and even superconducting. In particular, pentacene of five linearly fused rings, is a common active compound used in field-effect semiconductors\(^6\). The semiconducting phenacene counterpart of pentacene is picene, which exhibits important differences in charge mobility and chemical stability\(^7\). A more intriguing distinction between the two monomers is the reported superconductivity of metal-doped picene solids, which is absent in pentacene analogues\(^8\). While the crystal configuration (for example, lattice, doping, chemical-group functionalization) and operational conditions govern the conductivity in the above examples, one can expect that the intrinsic picene and pentacene molecular structures play a decisive role as well.

Presently, a molecular-level picture reconciling the differences in electronic properties is lacking. Yet, a recognizable influential factor on these properties is the vibronic coupling of molecular vibrations with π-electron molecular orbitals\(^9\) inherent to the π-bound-edge topology\(^10\). To gain insight in the role of this topology in picene and pentacene vibronic behaviours, we probe here their monomeric structures in the positive charge state (picene\(^+\), pentacene\(^+\)) using infrared multiple-photon dissociation action spectroscopy\(^11,12\). This spin-doublet cationic state, featuring an unpaired electron in the highest-occupied molecular orbital, vibronically couples with electronic states associated with excitation to low-lying unoccupied molecular orbitals of the proper symmetry. In our experiments we isolate gas-phase cations in an ion trap and probe them with infrared photons from the Dutch free-electron laser (FEL) for infrared experiments. By means of resonant multiple-photon vibrational excitation, we record photodissociation spectra as we tune the FEL photon energy. This high-sensitivity technique helps us circumvent the issue of undeletable direct absorptions of the low-density ion samples that result from electrostatic repulsion. Although quantification of action spectra can be non-trivial due to the multiple-photon dissociation dynamics\(^13\), the central thesis here is the isomeric correspondence between picene and pentacene in which multiple-photon dissociation channels have spectral responses affected by alike intrinsic kinetics. Thus, in this case, action spectra of two species can be compared quantitatively provided that the spectra are measured under similar experimental settings.

The spectra of both cationic systems show substantial infrared activity in the 1,100–1,600 cm\(^{-1}\) range, which we ascribe to electronic density oscillations during antisymmetric C = C stretch vibrational excitation. The driving vibronic mechanism\(^14,15\) arises in the molecular dipole moment (\(\mathbf{\mu}\)) derivative along the nuclear displacement normal-coordinate \(Q_k\) of the infrared intensity equation (ref. 27) \(I_k = \langle 8\pi^2Nc/3h\rangle [V_0(\partial^2/\partial Q_k^2)|_{Q_0}V_1|^2\rangle\), where the vibrational wavefunctions \(V_0\) and \(V_1\) characterize the fundamental harmonic dipole transition (1 \(\leftrightarrow\) 0) of \(v_k\)th mode. The second term of the molecular dipole \(\mathbf{\mu} = q_0(R) + (\Psi_g^*(r)R)\)

\((- \mathbf{\mu})|\Psi_g^*(r)R\rangle\) is the non-classical dipolar part of ground-state electrons described by the Born–Oppenheimer wavefunction \(\Psi_g^*\), \(R\) and \(R\) being the electronic and nuclear coordinates, and \(Q_0\) being the nuclei dipole. By equating a first-order expansion of \(\Psi_g\) with respect to nuclear normal coordinates \(Q\) (Supplementary Note 1) into \(\mathbf{\mu}\) we write \(\partial\mathbf{\mu}/\partial Q_k\) as a sum of two series of infrared activity\(^16\),

\[\frac{\partial\mathbf{\mu}}{\partial Q_k} = \frac{\partial}{\partial Q_k} \left[q_0 + \langle \Psi_g^* | - \mathbf{\mu} | \Psi_g^* \rangle \right] + 2 \sum_{i=j} \langle \Psi_g^* | \left(\Omega \partial/\partial Q_k \right)|_{Q_0} \langle \Psi_i | \mathbf{\mu} | \Psi_j \rangle \rangle \langle \Psi_j | \mathbf{\mu} | \Psi_i \rangle \rangle, \]

where single (one-electron) configuration wavefunctions \(\Psi_{g/o}\) (evaluated at equilibrium nuclear positions) and energies \(E_{g/o}\) correspond to ground (\(g\)) and excited (\(o\)) adiabatic states \(\zeta\). The matrix elements \(\langle \Psi_{g/o} | \left(\Omega \partial/\partial Q_k \right)| \Psi_j \rangle \rangle \langle \Psi_j | \mathbf{\mu} | \Psi_i \rangle \rangle\) are the Herzberg–Teller vibronic coupling strength and electronic transition, respective, and \(H\) is the electronic Hamiltonian. The first static-charge term arises from oscillating nuclei and nuclei-fixed electrons, while the second charge-flux\(^29\) term of oscillating non-fixed electrons is the vibronically active contribution of low-lying electronic excited states mixing into the ground state.

We show that the vibronic contribution to the picene\(^+\) infrared spectrum can be twice as large as in the pentacene\(^+\) spectrum, which is attributed to stronger dipole π-electron fluxes in the former system. Quantum-chemical calculations support this conclusion but also reveal that electronic correlation is essential to describe the intense C = C stretch π-flux modes of picene\(^+\). Whereas the multiple-photon dynamics impedes extracting absolute magnitudes of the underlying π-fluxes in picene\(^+\) and pentacene\(^+\), by virtue of comparing their multiple-photon dissociation yields we are able to discern molecular charge-flux effects (driven by vibronic coupling) on the resultant action spectra. We show that within the used FEL settings, the recorded action bands scale quasi-linearly with FEL average power and are satisfactorily described under the harmonic approximation as corroborated by quantum-chemical theory (apart from the anharmonic band broadenings inherent to the multiple-photon excitation process). We assert that the ability of picene to enable a significant dipolar π-flux charge separation, as manifested in the infrared action bands, is a general characteristic of aromatic motifs with armchair-edge topology. The fundamental distinction found here between picene and pentacene provides a dynamical charge-flux–structure relation useful to rationalize charge transport phenomena in π-conjugated organic materials built from aromatic structures.

Results

Molecular structures. We first examine the structural edge topology\(^2\) (Fig. 1a) in terms of π-electron delocalization. With zigzag edges, pentacene has only one resonant ring sextet of interconnected π-electrons\(^3\), while the other 16 non-sextet π-electrons tend to stay within bonds. Conversely, the picene armchair edges enable three π-sextets to resonate into adjacent rings\(^3\), and this fact fosters an aromatic system in which delocalization extends over the entire structure. This justifies the higher stability of neutral picene over pentacene by 0.68 eV calculated by density functional theory (B3LYP/6-311G\(^*\)). The degree of π-delocalization is then inherently different in both systems as reflected in the π-electron spin-orbital wavefunctions. Figure 1b shows the energetic orderings with different spacing of frontier molecular π spin-orbitals. The orderings define the electronic configurations of cationic spin-doublet ground states (\(D_{\pi u}\)) \(2B_1\) and \(2B_2\) of picene\(^+\) and pentacene\(^+\), respectively, and
of low-lying excited states accessible via $\pi \rightarrow \pi^*$ excitations (Supplementary Tables 1 and 2). Experimentally, we produce pentacene and picene radical cations ($\text{C}_{22}\text{H}_{14}^+$) by non-resonant two-photon ionization of the neutral precursors at 193 nm (Fig. 2).

Infrared action spectra. A FEL macropulse resonantly energizes the initially thermal population (Supplementary Fig. 1) of mass-isolated $\text{C}_{22}\text{H}_{14}^+$ parent ions (picene $^+$ or pentacene $^+$) via absorption of several tens of infrared photons resulting in dissociation to product ions $\text{C}_{20}\text{H}_{12}^+$ and $\text{C}_{18}\text{H}_{10}^+$ (Fig. 2b,d). Note that the fast intramolecular vibrational energy redistribution (IVR $\gg 10^9 \text{s}^{-1}$) among normal modes ensures statistical allocation of the energy of each absorbed photon prior to dissociation 33, as well as the resonant absorption at fundamental transitions 36,37. Under the FEL settings of our experiments, resonant excitation by the FEL induces competing dissociation kinetics of C_2H_2 (26 u) versus C_3H_4 (52 u) loss channels (Fig. 2b). The signal of the dominant C_2H_2-loss channel typically comprises only 2 and 7% of picene $^+$ and pentacene $^+$ thus obviating the occurrence of dissociation yield band saturations around the on-resonance region (that is, band b). The higher 7% in pentacene $^+$ mainly arises from a relatively lower parent signal for this particular experimental run.

The final action spectra plotted along wavelength or frequency (Figs 2c and 3) result from averaging various dissociation yield functions $\beta(\lambda)$ retrieved from the product ion signals recorded along FEL photon energy (Methods). The final average of both systems is corrected for FEL power variation and normalized to 1. The two spectra include a low-energy range extending down to 400 cm$^{-1}$. The power correction normalizes the band intensities from different spectral scans as measured in independent FEL-ion-trap experimental sessions. The precision in our measurements is discussed below for a data set sample of single scans (Supplementary Fig. 2). Apart from the large random noise component and slight variations in band broadening, each single spectrum in the sample exhibits similar infrared absorption features as confirmed by the partial spectra averages featuring reduced random noise level (Supplementary Figs 3 and 4 with band characterizations in Supplementary Tables 3–6).

The statistical random noise in each one-scan spectrum produces somewhat diverse baselines upon dividing by the FEL power curve (hence, averaging usually precedes the power correction). Also, the high noise in each spectrum impedes performing the spectral deconvolution curve fitting since the parameter initialization (based on the initial guess of band peak positions) fails. We thus obtain the frequency (\bar{v}_{exp}) and intensity (β) band values manually. Despite the inaccuracy added by this human factor, the statistics from the data sample provides a notion of the precision between measurements. The \bar{v}_{exp} (and β) band characterizations are a: 1,567 ± 19 cm$^{-1}$ (0.50 ± 0.10), a: 1,512 ± 17 cm$^{-1}$ (0.73 ± 0.09), b: 1,338 ± 10 cm$^{-1}$ (0.61 ± 0.05),

![Figure 1](image-url)
\(b: 1.281 \pm 9 \text{ cm}^{-1} (0.75 \pm 0.05), b: 1.212 \pm 8 \text{ cm}^{-1} (0.62 \pm 0.04), \)
\(c: 1.141 \pm 10 \text{ cm}^{-1} (0.56 \pm 0.07) \) for picene\(^+\); and \(a: 1.448 \pm 16 \text{ cm}^{-1} (0.45 \pm 0.06), b: 1.313 \pm 9 \text{ cm}^{-1} (0.78 \pm 0.09), c: 1.176 \pm 7 \text{ cm}^{-1} (0.77 \pm 0.09), e: 911 \pm 7 \text{ cm}^{-1} (0.47 \pm 0.05), \)
and \(f: 737 \pm 4 \text{ cm}^{-1} (0.43 \pm 0.04) \) for pentacene\(^+\). These values are in fair agreement with the values determined via the more rigorous deconvolution procedure applied on sample averages (B2B3 and A for picene\(^+\); D1D3D5 and D6D7 for pentacene\(^+\)) featuring a reduced noise (Supplementary Tables 3–6), and with the values of the full data set average (Fig. 3). We establish that the \(\nu_{\text{exp}} \) and \(\beta \) band fluctuations are due to typical random changes during experiments rather than to systematic instrumental biases or uncharacterized molecular processes during ion trapping. Finally, note that averaging over the full data set reduces the noise component more than when averaging over partial data sets. Thus, the larger random errors in the partial spectra are reflected in the spectral curve fittings characterizing the measured bands. For picene\(^+\) \(b \) band, the \(\nu_{\text{exp}} \) and \(\beta \) average values between B2B3 and A data samples are 1,279.5 \pm 1 \text{ cm}^{-1} and 0.87. These values represent a deviation of 0.20 and 6.5% relative to final values (Table 1) and accounts in part for the higher random error of partial spectra. From D1D3D5 and D6D7 data samples of pentacene\(^+\), the \(\nu_{\text{exp}} \) (and \(\beta \)) average is 1,317.5 \pm 1 \text{ cm}^{-1} (0.89) and represents a random error deviation of 0.11% (5.3%).

Harmonic analysis. Although the multiple-photon excitation relies on the anharmonic character of IVR coupled modes, which could induce noticeable nonlinear effects\(^{37}\), there are examples such as the naphthyl\(^+\) action spectrum\(^{38,39}\) confirming the quasi-resonant harmonic description of adiabatic molecular potentials probed by multiple-photon action spectroscopy\(^{37,40}\). Here, the bands observed in the action spectra are summarized in Table 1 with their spectral deconvolutions and harmonic mode assignments (from Supplementary Tables 7–16) based on the B3LYP vibrational analysis of Fig. 3. Both cations feature a very intense high-energy 1,600–1,100 \text{ cm}^{-1} region of \(a, b \) and \(c \) bands, and a relatively weak mid-energy 1,100–700 \text{ cm}^{-1} region of \(d, e \) and \(f \) bands. The band decompositions in Fig. 3a,f reveal the extent to which individual normal modes contribute to action bands. The mean value of absolute shifts between action and harmonic band frequencies is 1.43 \pm 0.9% in picene\(^+\) and 1.19 \pm 0.79% in pentacene\(^+\). The larger total shift in picene\(^+\) reflects the contribution of the \(C_2H_2 \)-loss dissociation channel (larger than in pentacene\(^+\)) for which high activation energy brings larger anharmonic shifts\(^{20} \) (vide infra).

Despite the higher symmetry in pentacene\(^+\), its action spectrum reveals more spectral congestion than picene\(^+\) action spectrum as confirmed by its bigger number of fitted peak components (Fig. 3a,f). The high-energy region of \(b_2 \)-symmetry modes in picene\(^+\) and \(b_3 \)-symmetry modes in pentacene\(^+\) comprises, respectively, 92% and 88% of the total infrared activity (Supplementary Table 17). Generally, \(b_2 \) and \(b_3 \) modes involve C–C stretching motions antisymmetric with respect to the molecular \(xz \) plane, and are susceptible to vibronic couplings with low-lying \(\pi \)-orbitals. The band decompositions show that the intense vibronically active modes \(v_{78} \) and \(v_{84} \) in picene\(^+\) are responsible of bands \(a \) and \(b \) (see Fig. 3a,e), whereas the strongest mode \(v_{85} \) in pentacene\(^+\) generates band \(b \) (Fig. 3f,j). Next to

![Figure 2](Image 270x660 to 285x728)
Theoretical linear harmonic spectra (generated by convoluting scaled normal modes with a Lorentzian 30 cm
picene
bending modes
character, arises from two and one C–H oscillators at the three
absorptions the adjacent modes
despite the band overlaps, during these anharmonic photo-
density localization over C–H oscillators in pentacene
(proportional to the local C–H bond charge41) revealing more
spectral shift translates into a 39% increase in restoring force
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12633 | www.nature.com/naturecommunications

Theoretical IR intensity (km mol–1) IR relative intensity (f)
Wavenumbers (cm–1)

As seen later, the relatively high intensities of \(f \) and \(e \) bands (see \(/I_{i=1} \) ratios, Table I) arise equally in picene
+ and pentacene
+ from an increased ion production through the C
2H2-loss dissociation channel at these low excitation energies.

Electronic correlation. The dipolar charge redistribution along
any vibration in both monomers is governed by the molecular
electronic wavefunction \(\Psi_g \) having a well-defined ground-state
configuration (Supplementary Tables 1 and 2). Within the
so-called crude adiabatic approximation24 this ground-state
configuration is defined at the equilibrium position (\(Q_{eq} \)) and is
assumed to be independent of nuclear coordinates. For some
modes, however, a proper description of \(\Psi_g \) requires other
configurations describing low-lying excited states to be
incorporated. Its dynamical evolution along a relevant normal
coordinate \(Q_{c} \) is thus better described by the correlated
configuration interaction of ground and excited configurations
belonging, in this case, to a spin-doublet electronic manifold.
Here we study the role of this electronic correlation on infrared
mode activities of both spin-doublet monomers by applying three
density-functional theory methods that gradually increase the
level of electronic exchange-correlation (Fig. 3): B88 \(\rightarrow \) BLYP \(\rightarrow \) B3LYP. Also, we applied the mean-field method ROHF that does
not include correlated dynamics.
suggesting the need for electron correlated dynamics to properly account for the measured relative strengths of picene in pentacene, which readily interacts with certain excited electronic configurations and to be described as a linear combination of ground and excited configurations. These intensities agree with B3LYP intensities (Table 1), showing that out-of-plane infrared-active modes are invariant to the level of theory.

Vibronically driven π-fluxes. The previous section shows that electron–electron correlated interactions are required for a proper description of dipole derivatives for C = C stretch b₂-modes of picene and to a certain extent, also for C = C stretch b₂-modes of pentacene. Such electronic correlation manifests itself in equation (1) as non-negligible vibronic matrix elements that represent a configuration-interaction expansion of excited-to-ground state mixing coefficients. Together with the electronic matrix term, they comprise the vibronic dipolar term enabling molecular π-electron fluxes. To elucidate the physics of dipolar π-fluxes we first analyse the symmetry properties of both matrix elements. In the analysis, we consider the modes ν₉₄ and ν₉₅ responsible for the action band b of picene and pentacene, respectively, since their largest infrared strengths (Table 1) suggest significant dipolar π-flux contributions to action spectra at comparable FEL excitation energies (Δνexp(b) = 2.88%). Figure 4 shows key π* excitation in both systems for which electronic configurations are included in Supplementary Tables 1 and 2.

In view of the energy denominator in equation (1) one expects that the electronic wavefunction of picene is most susceptible to mixing with the Ψ(n→4b₁) excited configuration (Fig. 4a). On departure from its equilibrium geometry picene thus needs to be described as a linear combination of ground and excited configurations: Ψ₉₄ ≃ Ψ₉₅(B₂) + c₂Ψ(n→4b₁), where the

Table 1 | Infrared multiple-phonon action bands of picene and pentacene.

<table>
<thead>
<tr>
<th>Band</th>
<th>ν_exp</th>
<th>β</th>
<th>Peak</th>
<th>ν_e</th>
<th>e</th>
<th>w</th>
<th>A</th>
<th>h</th>
<th>ν_cal</th>
<th>I_cal</th>
<th>ν_e(1)</th>
<th>ν_b</th>
<th>I_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picene</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1591</td>
<td>93</td>
<td>199</td>
<td>90</td>
<td>105</td>
<td>1944</td>
<td>0.34</td>
<td>1573</td>
<td>0.31</td>
<td>ν₁₆ (b₂)</td>
</tr>
<tr>
<td>a</td>
<td>1513</td>
<td>0.91</td>
<td>2</td>
<td>1509</td>
<td>109</td>
<td>103</td>
<td>5.6</td>
<td>105</td>
<td>1345</td>
<td>0.65</td>
<td>1529</td>
<td>0.94</td>
<td>ν₂₈ (b₂)</td>
</tr>
<tr>
<td>b</td>
<td>1335</td>
<td>0.75</td>
<td>3</td>
<td>1347</td>
<td>111</td>
<td>63</td>
<td>4.35</td>
<td>34</td>
<td>42</td>
<td>5.41</td>
<td>0.34</td>
<td>1374</td>
<td>0.32</td>
</tr>
<tr>
<td>b</td>
<td>1282</td>
<td>0.93</td>
<td>4</td>
<td>1282</td>
<td>0.82</td>
<td>92</td>
<td>5.55</td>
<td>98</td>
<td>5.84</td>
<td>6.46</td>
<td>0.38</td>
<td>1318</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1217</td>
<td>0.77</td>
<td>5</td>
<td>1212</td>
<td>0.9</td>
<td>64</td>
<td>8.42</td>
<td>42</td>
<td>4.53</td>
<td>0.54</td>
<td>1232</td>
<td>0.4</td>
<td>ν₅₇ (b₂)</td>
</tr>
<tr>
<td>c</td>
<td>1134</td>
<td>0.6</td>
<td>6</td>
<td>1132</td>
<td>0.73</td>
<td>73</td>
<td>3.75</td>
<td>41</td>
<td>3.08</td>
<td>0.86</td>
<td>1311</td>
<td>0.23</td>
<td>ν₆₀ (b₂)</td>
</tr>
<tr>
<td>d</td>
<td>996</td>
<td>0.26</td>
<td>7</td>
<td>1013</td>
<td>4.21</td>
<td>204</td>
<td>18.21</td>
<td>60</td>
<td>6.14</td>
<td>0.19</td>
<td>1522</td>
<td>0.4</td>
<td>ν₆₉ (b₂)</td>
</tr>
<tr>
<td>e</td>
<td>823</td>
<td>0.23</td>
<td>8</td>
<td>823</td>
<td>1.81</td>
<td>67</td>
<td>7.25</td>
<td>16</td>
<td>1.66</td>
<td>0.15</td>
<td>830</td>
<td>0.076</td>
<td>ν₇₈ (b₂)</td>
</tr>
<tr>
<td>f</td>
<td>737</td>
<td>0.24</td>
<td>9</td>
<td>737</td>
<td>0.56</td>
<td>41</td>
<td>2</td>
<td>11</td>
<td>0.56</td>
<td>0.17</td>
<td>745</td>
<td>0.072</td>
<td>ν₇₉ (b₂)</td>
</tr>
<tr>
<td>Pentacene</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>1,540</td>
<td>0.49</td>
<td>1</td>
<td>1,544</td>
<td>4.82</td>
<td>132</td>
<td>10.09</td>
<td>63</td>
<td>9.61</td>
<td>0.3</td>
<td>1521</td>
<td>0.36</td>
<td>ν₁₆ (b₂)</td>
</tr>
<tr>
<td>a</td>
<td>1,458</td>
<td>0.65</td>
<td>2</td>
<td>1,458</td>
<td>2.1</td>
<td>102</td>
<td>13.2</td>
<td>64</td>
<td>12.91</td>
<td>0.4</td>
<td>1481</td>
<td>0.52</td>
<td>ν₁₈ (b₂)</td>
</tr>
<tr>
<td>a</td>
<td>1,376</td>
<td>0.73</td>
<td>3</td>
<td>1,380</td>
<td>1.57</td>
<td>64</td>
<td>8.83</td>
<td>31</td>
<td>6.61</td>
<td>0.31</td>
<td>1373</td>
<td>0.9</td>
<td>ν₂₀ (b₂)</td>
</tr>
<tr>
<td>b</td>
<td>1,319</td>
<td>0.94</td>
<td>4</td>
<td>1,317</td>
<td>0.83</td>
<td>78</td>
<td>2.23</td>
<td>91</td>
<td>3.74</td>
<td>0.74</td>
<td>1358</td>
<td>1</td>
<td>ν₂₂ (b₂)</td>
</tr>
<tr>
<td>c</td>
<td>1,202</td>
<td>0.75</td>
<td>5</td>
<td>1,204</td>
<td>0.52</td>
<td>29</td>
<td>1.85</td>
<td>19</td>
<td>1.55</td>
<td>0.42</td>
<td>1221</td>
<td>0.22</td>
<td>ν₂₄ (b₂)</td>
</tr>
<tr>
<td>c</td>
<td>1,171</td>
<td>0.9</td>
<td>6</td>
<td>1,170</td>
<td>0.37</td>
<td>36</td>
<td>1.78</td>
<td>39</td>
<td>2.15</td>
<td>0.7</td>
<td>1164</td>
<td>0.25</td>
<td>ν₂₆ (b₂)</td>
</tr>
<tr>
<td>c</td>
<td>1,138</td>
<td>0.49</td>
<td>7</td>
<td>1,137</td>
<td>0.63</td>
<td>15</td>
<td>2.42</td>
<td>4</td>
<td>0.74</td>
<td>0.18</td>
<td>1131</td>
<td>0.15</td>
<td>ν₃₀ (b₂)</td>
</tr>
<tr>
<td>d</td>
<td>1,076</td>
<td>0.39</td>
<td>8</td>
<td>1,077</td>
<td>0.95</td>
<td>31</td>
<td>5.85</td>
<td>19</td>
<td>1.95</td>
<td>0.25</td>
<td>-</td>
<td>ν₃₉ (b₂)</td>
<td>1,113</td>
</tr>
<tr>
<td>e</td>
<td>968</td>
<td>0.34</td>
<td>9</td>
<td>974</td>
<td>6.38</td>
<td>78</td>
<td>22.09</td>
<td>29</td>
<td>7.79</td>
<td>0.19</td>
<td>-</td>
<td>ν₄₄ (b₂)</td>
<td>965</td>
</tr>
<tr>
<td>e</td>
<td>910</td>
<td>0.53</td>
<td>10</td>
<td>908</td>
<td>2.2</td>
<td>59</td>
<td>6.9</td>
<td>29</td>
<td>6.2</td>
<td>0.42</td>
<td>926</td>
<td>0.076</td>
<td>ν₅₄ (b₂)</td>
</tr>
<tr>
<td>f</td>
<td>738</td>
<td>0.52</td>
<td>11</td>
<td>738</td>
<td>0.56</td>
<td>18</td>
<td>1.24</td>
<td>13</td>
<td>0.66</td>
<td>0.46</td>
<td>743</td>
<td>0.103</td>
<td>ν₅₉ (b₂)</td>
</tr>
</tbody>
</table>

The D₂h point-group symmetry of pentacene is conserved in the low-lying excited configurations and to be described as a linear combination of ground and excited configurations. These intensities agree with B3LYP intensities (Table 1), showing that out-of-plane infrared-active modes are invariant to the level of theory.
vibronic mixing coefficient c_i is proportional to $\langle \Psi_i | \partial E/ \partial \Omega | Q_i \rangle$. To visualize the implications of this mixing on the charge-distribution dynamics, we consider in the following the limiting situation in which a one-on-one mixing occurs. During vibrational motion, the π-electron density then oscillates between the extreme spatial probability values $\langle \varphi_{4b} | - | \varphi_{4a} \rangle^2$ and $\langle \varphi_{4b} | + | \varphi_{4a} \rangle^2$, which are localized on the left and right hand parts of picene $^+$, respectively (Fig. 4c). Similarly during vibrational motion along mode v_{85} the wavefunction of pentacene $^+$ needs to be described as $\Psi_{85} \approx \Psi_{a} (^3B_2g) + c_i \Psi_{2} (2a_g \rightarrow 3b_{2g})$ leading to a left-to-right redistribution of π-electron density generated by the mixed-in configuration $\Psi_{2} (2a_g \rightarrow 3b_{2g})$ (Fig. 4b,d). For both armchair- and zigzag-edge topologies it would thus appear that oscillating π-fluxes are generated.

To determine the π-flux strength we examine the vibronic coupling phases between the excited π-electron redistributions and the nuclear positions at the classical turning points (Fig. 5). We begin with picene $^+ - Q_{84}$ and $+ Q_{84}$ positions, in which the amplified (or reduced) π-electron density in contracted (or stretched) bonds maintains in-phase or out-of-phase relationships with the limiting π-electron regions $\langle \varphi_{4b} | - | \varphi_{4a} \rangle^2$ and $\langle \varphi_{4b} | + | \varphi_{4a} \rangle^2$ (Fig. 5a,c). The phase relationships reflect the bond stabilizing (+) and bond destabilizing (-) character of the two-carbon density centers induced by mode v_{84}. With this terminology the emergent phases depicted in Fig. 5c are expressed as $(+ \pm 0, - 4, -)$ for $- Q_{84}$ and $(+ 4, 0 + 4, +)$ for $+ Q_{84}$ where the vertical bar denotes the mirror molecular xz-plane. Evidently, at position $- Q_{84}$ the left side features an accumulation (scaling by a factor of 4) of bonding π-electron density relative to the right side, while at $+ Q_{84}$ the π-density positive buildup occurs over the rings on the right side. Likewise for pentacene $^+$, Figure 5d shows the emergent phases during the vibronic mixing of $\Psi_{2} (2a_g \rightarrow 3b_{2g})$, such as $(2+, 2-2 + 2, -)$ at $- Q_{85}$ and $(2-, 2-2 + 2, +)$ at $+ Q_{85}$. In this case, the excited π-electron oscillation and geometrical changes are slightly unsynchronized in a way that it generates a π-density build-up (scaling by a factor of 2) with some neutralization at the center (note the relatively small inner-ring two-carbon centers located at opposite mirrored sides). This analysis indicates that the π-flux strength in picene $^+$ is twice as much as in pentacene $^+$, which is in good agreement with the predicted infrared-strength ratio of v_{84} (picene $^+$) over v_{85} (pentacene $^+$) modes ($I_{84}/I_{85} = 2.06$, Table 1). We thus conclude that the dipolar source of these two C=C stretch modes is entirely due to the charge π-flux.

Experimentally, we observe in the action spectra a similar twofold π-flux enhancement once we calibrate the spectra that have been previously normalized on the intensity of band $b (f_b)$ with maximum absolute dissociation yield. To this end, we consider the intrinsic relation between b and f bands to be preserved in each system and then renormalize the spectra such that $\beta_b [\text{picene}^+] = \beta_f [\text{pentacene}^+] = (0.24/0.93)\beta_b [\text{picene}^+] = (0.52/0.94)\beta_f [\text{pentacene}^+]$ (Table 1). We have used the mid-energy band f since in both systems this band is carried by intrinsically equivalent out-of-plane C–H bending modes. Solving for $\beta_b [\text{picene}^+]$ results in $2.06 \beta_b [\text{pentacene}^+]$, which remarkably agrees with the strength ratio I_{84}/I_{85} and thus, confirms the twofold increase of π-flux strength in picene $^+$.

Degree of non-linearity in action spectra. The above analysis shows that relative intensities of action bands f and b can be described under the linear-absorption harmonic approximation. However, we have mentioned that action spectra are inherently susceptible to nonlinearities as introduced by the multiple-photon dissociation (Fig. 2b,d). Moreover, relative intensities are based on dissociation yield functions that have been power-corrected and normalized, and these procedures could have brought an accidental agreement to the harmonic ratio I_{84}/I_{85}. Therefore, to estimate the extent of these effects, we compare spectra from control measurements at high-energy FEL macropulses with a spectra sample from the final average of Fig. 3. Note that the spectra retrieved from the control measurements are not part of the final average.

We first compare in Fig. 6 the $C_{2}H_{2}$ and $C_{4}H_{4}$ loss ion signals of picene $^+$ recorded at 0 and 3 dB FEL power levels (signal and band characterizations in Supplementary Tables 18–20). The signal ratio $C_{4}H_{2}$-loss/$C_{2}H_{2}$-loss is found approximately constant along FEL photon energy (Fig. 6), suggesting that $C_{2}H_{2}$ and $C_{4}H_{4}$ loss rates evolve in quasi-linear proportion to each other. On
attenuation (3 dB), the mean value of the hence (quasi-)constant ratio of 1.73 changes to 2.52 always in favour of C2H2 loss. It is clear that at reduced macropulse energies, the energized molecular ion population reaches a lower average internal energy (E). This leads to a lower dissociation rate and eventually shuts down dissociation into the C4H4-loss channel with higher activation energy (that is, the inequality \(E - E_1 - E_{n,v} < E_2 \) is fulfilled, see Fig. 2d). At the lowest FEL photon energies (\(ca. < 900 \text{ cm}^{-1} \)) the ratio deviates from linearity towards C2H2 loss. For instance at the peak of band \(f_1 \), the ratio drops from 2.37 to 3.28 (Supplementary Table 20). Here the production of C4H4-loss ions drops as much as 38% while for C2H2-loss it drops only 14%. Comparing with band \(a \), C2H2 and C4H4 losses decline by 30% and 45%, respectively. Despite the uneven variations between channels at band \(f_1 \), Fig. 6 does suggest that the dissociation \(f \) yield decreases linearly on attenuation, revealing the determining role of C2H2-loss in the action spectra.

Whereas multiple-photon excitation with lower-energy macro pulses decreases the C2H2 and C4H4 ion productions at \(f, e \) and \(a \) bands (an exception is band \(e \) C2H2-loss, which retains the 0 dB signal), the C4H4 loss increases 17% at band \(b \). This 17% increment is close to the observed 14% decrement of C2H2 loss (also at band \(b \)) suggesting linearly reversed dissociation kinetics between channels. Specifically for pentacene \(^+\), we observe that C4H4 loss marginally varies on FEL irradiation along the tuned range, which correlates with the relatively lower oven temperatures set for sublimation. This shows that most energized pentacene \(^+\) ions have an average internal energy just above the C2H2-loss activation energy (Fig. 2d). Because C2H2-loss steers the multiple-photon dissociation kinetics in both systems, their dissociation yields along excitation have a strong C2H2-loss signal component, from which nonlinear effects are recognized to be much smaller than the inherent differences between the two molecular systems.

Power dependence of action band intensities. To test whether nonlinear effects on band intensities are negligible, we retrieve the spectra from the ion signals of Fig. 6 (Fig. 7a,b; band decompositions in Supplementary Tables 21 and 22). The resultant yield functions \(\beta^{*}(\nu) \) are not normalized nor corrected for FEL power variations (as a function of excitation energy) to perform absolute comparisons between band intensities at 0 and 3 dB power levels. Table 2 lists four bands with their frequency peak \((\nu_{\text{exp}}) \), absolute yield \((\beta^{*}) \) and average power \((P) \). The yield variation upon FEL attenuation is taken as a power-law function \(\beta^{*}(P) = C P^{m} \) (\(C \) and \(m \) are constant and exponent factors). As seen in Fig. 6 for band \(f_1 \), a twofold power reduction (corresponding to a macropulse energy change from 42 to 20.8 mJ) brings a linear twofold yield change, that is, \(m = 1 \). For bands \(a \) and \(e \) the variations are nearly linear \((m = 0.8) \). For band \(b \) we find a non-linear behaviour \((m = 0.1) \) as expected from the reversed 17% increasing signal behaviour of C2H2-loss as we reduce the macropulse energy (Fig. 6).
Comparing the absolute band yields of picene$^+$ with those of pentacene$^+$ (Fig. 7c, Supplementary Table 23) measured at the lower FEL power values reveals a reasonable agreement (compare Fig. 7b,c). The pentacene$^+$ yield intensity (0.00894) recorded at 26 mJ (260 mW) linearly scales to 0.0077 recorded at 20.8 mJ in fair agreement with picene$^+$ yield 0.0077 recorded at 20.8 mJ (Table 2). This resemblance confirms the equal theoretical infrared strengths of their photoexcited modes (ν_{9g} in picene$^+$ and ν_{9g} in pentacene$^+$). For band e, we expect some deviation given the difference in excitation energies between picene$^+$ and pentacene$^+$ for this band (frequency deviation of $\Delta \nu_{\text{exp}}(e)$ = 10% from Table 1), which suggests somewhat different anharmonic couplings. Indeed, at 19.3 mJ the pentacene$^+$ e yield (measured at 23.9 mJ) scales to 0.0060 whereas the picene$^+$ e yield is 0.0071 (Table 2).

For band b, the similar excitation energies required in both parent ions ($\Delta \nu_{\text{exp}}(b)$ = 2.8%) suggest that absolute yields could be comparable at the lower FEL power values (Fig. 7b,c). The b yields are 0.0125 and 0.0153 recorded at 17.8 and 9.9 mJ for pentacene$^+$ and picene$^+$, respectively. For pentacene$^+$, the b
yield at 9.9 mJ linearly scales to 0.00695. This lower pentacene$^+$ intensity does reflect the theoretical strength of the photoexcited mode (v_{85}) carrying this band relative to the one of picene$^+$ (v_{84}) that is as twice as intense (that is, $I_{84}/I_{85} = 2.06$). Indeed, the ratio between absolute yields at 9.9 mJ is 2.2, which represents an accuracy error relative to the calculated I_{84}/I_{85} ratio of 6.8%.

Finally, note that the random noise in band b intensities leads to standard deviation percentages of about ±6% (pentacene$^+$) and ±11% (pentacene$^+$) (Supplementary Fig. 2). These deviations are the largest attained in our experiments since they correspond to a smaller representative data sample spectrum in which noise component is evidently higher than in the full data sample average of Fig. 3. The random noise influences the accuracy of the spectral deconvolution fittings characterizing the experimental band intensities. Let us now use these deviations to investigate the ratio error in the case of the absolute intensities I_{b}^+ reported above. The pentacene$^+$ I_{b}^+ intensity is 0.0125 ± 0.00138, and the lower and upper b^+ bounds linearly scaled to 9.9 mJ are 0.0062 and 0.0077 leading to ratio bounds relative to picene$^+$ (I_{b}^+ = 0.0153) of 1.98 and 2.47. For picene$^+$, we determine the ratio bounds relative to pentacene$^+$ at 17.8 mJ (I_{b}^+ = 0.0125) as 2.07 and 2.33. We thus establish that even at these limits the statistical error in our measurements justifies the band b ratio as also confirmed by its agreement with the theoretical value.

Discussion

We have deduced the relative strength between vibronic π-flux contributions to modes v_{84} and v_{85} generating the action band b of picene$^+$ and pentacene$^+$, respectively. Within our FEL macropulse settings, the picene$^+$ -to-pentacene$^+$ b band ratio is satisfactorily explained under the harmonic approximation which predicts an intensity ratio I_{84}/I_{85} of 2.06 (at B3LYP/6-311G* level of theory). This means that a harmonic Hamiltonian can describe the molecular potential along action band b vibrations. One last question relates to the effects of spectral convolution on band intensities. On the basis of the heights (I) of the bands, we estimate an experimental band ratio of 2.41 (where we subtracted the 0.035 offset for pentacene$^+$ peaks, see Table 1). This value deviates by 12% from the first value obtained from relative intensities in Fig. 3. The better agreement in the first estimation could be due to an error cancelation on averaging over the full data set, but also, it could reflect the absolute intensity difference of picene$^+$ (0.00777) and pentacene$^+$ (0.0072) f bands. Nonetheless, the fair agreement between action and harmonic band intensity ratios ratifies the twofold π-flux increase in picene$^+$ compared with pentacene$^+$.

From our studies a picture emerges in which picene is able to generate a higher degree of dipolar charge separation along its monomeric structure than pentacene. We have argued that this is a direct consequence of the spatial dynamical evolution (via the adiabatic vibronic operator $\partial H/\partial Q_{V}$) of mixed armchair-edge type electronic wavefunctions typical of angular-oriented aromatic structures. These armchair-edge wavefunctions are intrinsically strongly correlated. Thus, in the case of superconducting molecular crystals based on picene and related monomers9,12, this evidence implies that both electron–phonon and electron–electron interactions could be the origin of electron pairing. This work allows us to also envision the exploration of picene-like motifs in heterojunctions8 or supramolecular nano-assemblies45 in devices, whose operation is triggered by photo-induced charge separation. Finally, note in equation (1) that larger vibronic couplings along modes of armchair-type monomers relative to zigzag-type monomers may not always translate in larger dipolar charge-flux contributions to the infrared spectra in the former class, since the vibronic coupling strength is weighted by the electronic transition matrix element. In conclusion, our results show that infrared multiple-photon action spectroscopy can deliver significant information on intramolecular charge dynamics when applied to charged molecular species with similar dissociation kinetics and vibrational resonances.

Methods

Free-Electron Laser for Infrared eXperiments FELIX. In our experiments, FELIX delivered typically 7 μs long macropulses every 100 ms with transform-limited bandwidth of about 1% of the central λ tuned in steps of 0.02 or 0.04 μm. Each macropulse consisted of 1 ps long micropulses at 1 GHz. A typical average energy at 13 μm was 42 mJ per macropulse, which delivers a fluence of 5.3 J cm$^{-2}$ in the center of the ion trap on a spot of 1-mm diameter. Nowadays, FELIX is located at Radboud University in Nijmegen (The Netherlands).

Infrared multiple-photon dissociation action spectroscopy. Action spectra are recorded with a Paul-type ion trap mass-spectrometer (Jordan TOF Prod., Inc.) attached to a FELIX beamline20,29. The ion trap built into a high vacuum chamber is made of a toroidal inner ring electrode of 2 cm inner diameter interposed between two hyperbolic end-cap electrodes. The trap is biased at +1.000 VDC, setting a potential difference relative to a 60-cm length time-of-flight (TOF) mass spectrometer used for mass-to-charge (m/z) ion detection. Cations (m/z 278) of pentacene and picene are produced by 193 nm ultraviolet photoionization of gas-phase neutral molecules effused to the inner trap volume upon sublimation of solid samples (99.9% picene, TCI Europe; 99% pentacene, Sigma-Aldrich) with a built-in oven at temperatures as high as 200°C. The ultraviolet source is a 5 ns pulsed excimer laser (PSX-501 Neweks Ltd.) adjusted to a total energy of 1.6 mJ per pulse and power density in the trap of 3 × 108 W cm$^{-2}$. For TOF mass analysis, axial extraction is achieved by switching off the RF voltage while applying a —250 VDC pulse to the endcap (with a 3 mm hole) closest to the TOF-tube. Ultraviolet photo-induced product ions below m/z 278 are ejected before FEL irradiation by a brief (2 ms) RF amplitude increase. After a few milliseconds after ionization of an ensemble of picene$^+$ (or pentacene$^+$) ions, FEL on-resonance irradiation at fundamental vibrational transitions induces multiple-photon dissociation. Two spherical mirrors (gold coated) are used to enhance the FEL fluence. A FEL-triggered delay generator (SRS-DG520) controls the 10 Hz experimental sequence. The recorded ion signals of parent and multiple-photon product ions are amplified and digitized (Acquisir). The pressure values in the high vacuum chamber were typically in the 10$^{-6}$–10$^{-7}$ mbar range. We estimate the dissociation yield, $I_i(p)$ or

Table 2	Absolute dissociation yield band intensities versus FEL average power.							
Infrared band	v_{84} (cm$^{-1}$)	P (mW)	I_{b}^+	I_{b}^+ (%)	P_{0}/P_{b}^+	P_{0}/P_{b}^+ (%)	m	
a	1,489	43	0.0063	0.20	1.91	1.64	0.8	0.0004
b	1,492	82	0.0103	0.20	2.01	1.06	0.1	0.0103
c	1,219	99	0.0153	0.73	2.01	1.76	0.8	1E – 04
d	1,207	199	0.0162	0.73	2.01	1.76	0.8	1E – 05
e	824	193	0.0077	0.73	2.01	1.76	0.8	1E – 04
f	818	388	0.0125	0.73	2.01	1.76	0.8	1E – 05
g	741	208	0.0077	0.73	2.01	1.76	0.8	1E – 04
h	735	420	0.0155	0.73	2.01	1.76	0.8	1E – 05

Infrared band characteristics of action spectra of Fig. 7ab. The column headings are action band label (Infrared band), action band peak frequency (v_{84}), FEL average power (P), or macropulse energy ($0.9/10$ Hz, in mJ), absolute dissociation yield intensity (I_{b}^+), band peak frequency shift deviation (Δv_{84}), FEL average power ratio (P_{0}/P_{b}^+), yield ratio (P_{0}/P_{b}^+) and constant (C) factors. Given the large frequency deviation between high- and low-power band a peaks (Δv_{84}=1%), the lower-power band characterization is done at P_{0}/P_{b}^+, and C.

The data presented in this study are tabulated in Supplementary Table 1.
Quantum chemical calculations. We obtained optimized electronic structures and harmonic vibrational mode frequencies using \textit{ab initio} Hartree–Fock theory as the spin-restricted open-shell ROHF method46, and the local spin-density approximation (LSDA) plus a variety of exchange-correlation gradient-corrected formalisms. These are the LSDA gradient-corrected exchange-only Becke-1988 functional43 (B88). The Becke-1988 method plus the gradient-corrected correlation LYP functional52 (BLYP), and the hybrid 3-parameter functionals that include generalized exchange-correlation gradient corrections and some degree of exact Hartree–Fock exchange energy57 (B3LYP). The atomic-orbital basis set used is a split-valence triple-ζ Gaussian-type 6-311G with \(d\) and \(p\) polarization functions. The excited-state calculations were done at the B3LYP level after transposing the relevant spin-orbitals involved in the excitations. To reduce computational cost we used the smaller set 6-31G(d)57. All reported harmonic spectra were generated by convoluting normal modes with a Lorentzian 30 cm-1 bandwidth profile with frequencies scaled by 0.97 to account for basis-set truncation. The excited spatial distribution probabilities were obtained from Kohn–Sham spin-orbital \(\pi\) wavefunctions \(\varphi\). Since \(\text{Re}[\varphi] = 0\) the complex conjugated \(\varphi^*\) is \(\varphi\) and the modulus \(|\varphi| = (\varphi^* \varphi)^{1/2} = \varphi^* \varphi\) was performed all quantum-chemical calculations using Gaussian 09 (Frisch, M.J. et al. Gaussian 09, Revision A.02., 2009) at the SurfSARA computing facility in Amsterdam.

Data availability. The data supporting the findings of this study are available within the article, Supplementary Information, and if applicable, from the corresponding author on request.

References

Acknowledgements
We gratefully acknowledge the excellent support of A.F.G. van der Meer as well as Michel Riet, Rene van Buuren, Jules van Leusden, Giel Berden, and Joost Bakker at the FELIX facility. This work was part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie, which was financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek. Computing time at the SurfSARA supercomputer center was kindly provided by NWO-EW under grant MP-264.

Author contributions
B.R. supervised, maintained and operated FELIX, and assisted in FELIX-ion-trap experiments. W.J.B. performed the calculations and analysis. J.O. supervised the research, performed analysis, and assisted in FELIX-ion-trap experiments. H.A.G. conceived the study, performed the FELIX-ion-trap experiments, calculations and analysis, and wrote the manuscript with inputs of W.J.B. and J.O.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016