The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/16530

Please be advised that this information was generated on 2018-12-16 and may be subject to change.
Novel molecular receptors capable of forming Cu₂-O₂ complexes. Effect of preorganization on O₂ binding

Robertus J. M. Klein Gebbink,aConstantinus F. Martens,a Martinus C. Feiters,a Kenneth D. Karlin** and Roeland J. M. Nolte*a

a Department of Organic Chemistry, NSR Centre, University of Nijmegen, Toernooiveld, 6525 ED, Nijmegen, The Netherlands
b Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA

Novel biomimetic copper(i) receptors react with O₂ to form metastable O₂ complexes and the rate of these reactions depends on the preorganization of the ligands.

The binding and activation of molecular oxygen by dinuclear copper enzymes has attracted much attention in recent years.1,2 Using model studies it was proposed,1,2 and later confirmed,4 that molecular oxygen is bound between the two copper centres in the active site of haemocyanin via an unusual μ-η¹:η¹ binding mode.5 Several groups have demonstrated that synthetically derived Cu₂-O₂ complexes can carry out oxygenation reactions,5 in particular, upon the ligands of the complex. One aim of our research is to design systems which may be used in oxygenation reactions on exogenous substrates. For this reason we have attached the previously studied ligand L’5a (Scheme 1) to particular crown ethers and to a known molecular receptor,6 for the potential to bind substrates in close proximity of an Cu₂O₂ centre. Here, we describe initial studies with three new ligands L₁-L₃ (Scheme 1) and their copper(i) complexes 1-3, and characterization of their molecular oxygen binding ability.

Ligands L₁ and L₂ were synthesized from the commercially available crown ethers aza-15-crown-5 and diaza-18-crown-6. The secondary nitrogen atoms of the latter compounds were alkylated with 3-cyanobenzyl bromide, and the cyano groups were reduced with LiAlH₄. The resulting primary amines were alkylated with vinylpyridine under high-pressure conditions (15 kbar)6 using acetic acid as a catalyst, providing pure L₁ and L₂ in 27 and 58% overall yield, respectively. For the preparation of L₃ the tetrachloro compound PhC₆H₄Cl₄ was subjected to a double ring closure reaction with 2 equiv. of mono-Boc protected m-diaminonoxylene to give II. After removal of the Boc groups with TFA and treatment of the resulting compound with vinylpyridine under high-pressure conditions compound L₃ was obtained in 80% overall yield.§

Copper(i) complexes 1-3 were synthesized by adding the ligands L₁-L₃, dissolved in CH₂Cl₂, to the appropriate amount of [CuL(MeCN)₄]ClO₄ under strictly anaerobic conditions. After several precipitations with Et₂O the complexes were isolated as yellow-brown powders. Elemental analysis and spectral data were in agreement with the structures [CuL₁]ClO₄, [Cu₂L²][ClO₄]₂ 2 and [Cu₂L³][ClO₄]₂ 3.§

Complexes 1-3 all formed metastable O₂ adducts in CH₂Cl₂ at —85 °C (Scheme 2). The rates of formation of these adducts were quite different, whereas their UV–VIS spectra were very similar (Table 1). Complex 2O₂ was obtained within 1–2 min after bubbling pre-cooled O₂ through a CH₂Cl₂ solution of 2 at —85 °C. During the reaction the colour of the solution changed from yellow to purplish green. Under the same conditions the bright orange complex 3O₂ was formed in 10–20 min. In contrast, both the colour of a solution of 1 and the absorption spectrum of this solution remained initially unchanged. If, however, an O₂-saturated solution of this complex was allowed to stand for 3–5 h at —85 °C, an orange complex formulated as 1₂O₂ was formed slowly; this diminished O₂-binding rate and stoichiometry is in keeping with that observed for other L’ (R = Me, PhCH₂, Ph) copper(i) mononuclear complexes.5c In view of the spectral and structural similarities with previously reported Cu₂-O₂ complexes1–3 we propose that complexes 1₂O₂, 2O₂, and 3O₂ all contain a peroxy ligand in a (bent) μ-η¹:η¹ binding mode; the distinctive absorption around 364 nm

Copper(i) complexes 1-3 and haemocyanin

Haemocyanin

Table 1 UV–VIS characteristics [λ/nm (ε/dm³ mol⁻¹ cm⁻¹)] of copper complexes 1–3 and haemocyanin

<table>
<thead>
<tr>
<th>Complex</th>
<th>Cu¹</th>
<th>Cu₂O₂</th>
<th>Cu²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>340 (2150) 364 (4900) 428 (960) 665 (450)</td>
<td>346 (3900) 616 (600)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>344 (5800) 364 (12800) 526 (1000) 642 (800)</td>
<td>344 (4000) 628 (300) 768 (100)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>340 (5000) 364 (13100) 524 (150) 650 (100)</td>
<td>358 (3400) 630 (500)</td>
<td></td>
</tr>
</tbody>
</table>

Haemocyanin

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>345 (20000) 700 (200)</td>
</tr>
<tr>
<td>2</td>
<td>570 (1000)</td>
</tr>
</tbody>
</table>

*a Taken from ref. 9(b).
points to this type of binding. The low absorption coefficients observed, particularly in 1-Oₐ, are ascribed to lack of complete formation of O₂ adducts, and with concurrent temperature dependent decomposition (vide infra).

We found that the formation of complex 1-O₂ can be accelerated if KClO₄ is added to the solution containing 1, before O₂ is bubbled through it. In the presence of KClO₄ the O₂ complex reached its maximum concentration after 30-45 min, whereas without KClO₄ it took approximately 5 h for the complex to be formed completely. For 15-crown-5 and related compounds it is known that K⁺ ions induce the formation of sandwich complexes, as these cations are too large to fit in the crown ether rings. Apparently, K⁺ ions have the same effect on complex 1: two mononuclear complexes are brought together and are pre-organized in order to bind one molecule of O₂. The proposed structure of such a sandwich complex, as shown in Fig. 1, may represent an intermediate state, more than it represents the final product. The enhanced oxygen affinity of complex 1 in the presence of K⁺ cations mimics to some extent the allosteric effect of Mg²⁺ ions on the oxygen binding by molluscan haemocyanin. For the formation of 2-O₂, and 3-O₂ no acceleration effect of K⁺ ions was observed.

Purging solutions 2-O₂ with argon at —85 °C did not result in the decolourization of these solutions. When a solution of 2-O₂ was rapidly heated under vacuum a green solution was obtained. These results indicate that the formation of the O₂ adducts is an irreversible process. As mentioned above the oxygen complexes are metastable; at —85 °C the loss in absorption intensity in the UV–VIS region was 5-10% after 1 h. Upon warming to room temperature the solutions of the complexes turned green within minutes. The resulting products could all be isolated as pale green powders in reasonable yields. IR and mass spectroscopy indicated that dinuclear copper(ii) hydroxide complexes were formed. The starting ligands L¹-L³ could be isolated from the corresponding copper(ii) complexes after removal of the Cu¹¹ ions with aqueous ammonia. Yields were above 70% for L¹ and L³, whereas L² was recovered in approximately 50% yield, indicating that some ligand degradation had occurred.

In summary, we have shown that the new complexes 1-3 all form stable O₂ complexes, which after warming yield copper(ii) complexes in which the ligand remains intact to a major extent. This opens the possibility to use these complexes as oxygenation catalysts for exogeneous substrates, which is currently under study. The O₂ affinity and rate of formation of the copper(i) complexes is determined by the degree of pre-organization present in the starting complex.

The authors are grateful to NATO for a grant in their Supramolecular Chemistry Programme (CRG950904). R. K. G. and R. N. would like to thank SON–NWO for financial support and K. D. K. in addition acknowledges the National Institutes of Health.

Footnotes
‡ We have shown before that a similar complex with pyrazole instead of pyridine ligands, is capable of selectively oxidizing alcohols that are complexed in its cavity. C. F. Martens, R. J. M. Klein Gebbink, M. C. Feiters and R. J. M. Nolte, J. Am. Chem. Soc., 1994, 116, 5667.
§ Compounds L¹-L³ and 1-3 were fully characterized by spectroscopic methods; data were made available for the reviewers.
¶ Cu₂O stoichiometries of the novel complexes are based on complexed structures with structurally related systems (see refs. 1(c)-(e) and 3).

References