Mechanism of Alkene Epoxidation by a Cytochrome P-450 Model. Effect of Additives
Johannes A. S. J. Razenberg, Roeland J. M. Nolte, and Wiendelt Drenth
Laboratory of Organic Chemistry, University at Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands

Alcohols and styrene change the kinetics and the mechanism of alkene epoxidation by the mono-oxygenase model (tetra-p-tolylporphinato)manganese(III) acetate–sodium hypochlorite.

Elucidation of the mechanisms by which the cytochrome P-450 enzymes activate dioxygen and catalyse oxygen transfer to relatively unreactive substrates has been the goal of a number of research groups. Considerable progress in attaining this goal has been achieved with model systems, e.g. porphyrin complexes of iron, manganese, and chromium as catalysts, and iodosylbenzene, amine oxides, and hypochlorite as oxygen sources. We recently reported on the mechanism of cyclohexene epoxidation by meso-(tetraphenylporphinato)manganese(III) acetate and sodium hypochlorite in a two phase water–dichloromethane system (Meunier system). Kinetic data suggest that the rate-determining step in the catalytic process is the conversion of the manganese(III) hypochlorite complex (1) into a high-valent oxo-manganese species. This step is catalysed by pyridine. We report here that alcohols and styrene change the kinetics and mechanism of alkene epoxidation by (1).

In the present experiments we used (tetra-p-tolylporphinato)manganese(III) acetate (MnIII-TTP) as catalyst and benzyltriethylammonium chloride (2.8 x 10⁻³ mmol) in CH₂Cl₂ (0.5 ml). To this solution an aqueous solution of NaOCl (0.35 mol dm⁻³; pH ~13) was added. The mixture was stirred magnetically at a constant rate. From time to time samples (1 μl) were taken which were analysed for epoxide by g.l.c. (Carbowax 20 M on Chromosorb W-HP). The u.v.–visible measurements were performed in reaction mixtures which had the same concentration of reagents as used in the g.l.c. experiments. After rapid stirring for 2 min and separation of the layers the increase in absorption at 476 nm (Soret band of MnIII-TTP) was measured as a function of time. Reaction temperature 25.0 °C.
of a high-valent manganese complex, probably (2). Without addition of methanol we observed a strong band at 476 nm (Soret band of MnIVTTP) and a much weaker band at 422 nm which soon disappeared. This suggests that under these conditions the oxygen-transferring species rapidly reacts with the substrate to form the product.

The rate of oxygen transfer from (2) to various alkene substrates in the presence of methanol was measured by following the increase in absorption at 476 nm. G.l.c. was used to verify the formation of epoxides under the conditions employed. The rates of oxygen transfer are first order in (2) up to 90% conversion. Pyridine and substituted pyridines appreciably enhance the decomposition rate of (2). Experiments were performed using a concentration of cyclohexene of 0.99 mol dm\(^{-3}\), an initial concentration of (2) of \(3.4 \times 10^{-4}\) mol dm\(^{-3}\), and the MeOH to CH\(_2\)Cl\(_2\) volume ratio mentioned above. These experiments showed a linear dependence on 4-methylpyridine concentration with \(k_{\text{py}} = (2.79 \pm 0.04) \times 10^{-1}\) mol dm\(^{-3}\) s\(^{-1}\) in the equation \(v = k_{\text{py}}[\text{py}][(2)]\). The dependence of the rate of oxygen transfer on substrate concentration in the presence of 4-methylpyridine for various alkenes is given in Figure 2. We analyse the curves in this figure as follows: Without substrate the high-valent manganese species is rapidly decomposed to MnIVTTP. Addition of an alkene substrate stabilizes the high-valent species. With increasing substrate concentration the rate of decomposition is therefore decreased, whereas at the same time the rate of oxygen transfer to the substrate, in which the epoxide and MnIVTTP are formed, increases.

The kinetic results can be explained by Scheme 1. Without alcohol, the rate-determining step is the formation of the high-valent oxomanganese(v) complex (2), in which L probably is a pyridine ligand (step A). As is well known, species (2) can be in equilibrium with the manganese(iv) dimer (4). The stationary-state concentration of (2) will be lower, when the alkene is more reactive. Accordingly, less manganese is present in the (2) \(=\) (4) equilibrium and consequently the concentration of (1) is higher. This mechanism explains the different rates for the various alkenes, although they do not directly participate in the rate-determining step. Support for this interpretation is provided by our observation that on anchoring the catalyst, which decreases dimer formation, the rate is considerably enhanced. In the presence of alcohol the conversion of uncharged (1) to charged (2) is facilitated because of the higher polarity of the medium. Now, step (A) is so much faster that the rate-determining step of the reaction changes to (B). An additional feature in the mechanism may be the trapping of intermediate (2) as its L = MeO\(^-\) derivative. This derivative has a less electrophilic oxygen atom and, therefore, may be less able to form an intermediate complex with an alkene. Only after exchange of MeO\(^-\) for pyridine is oxygen transfer possible.

In a second series of experiments we mixed various alkenes in a 1:1 ratio and measured their rates of epoxidation under competitive conditions by g.l.c. Mixtures of two aliphatic alkenes display a reaction order in catalyst between 1 and ~0. However, when an aliphatic alkene is mixed with styrene, the rate of epoxidation of the former compound increases and the order in catalyst changes to 1 (Figure 1). For styrene the reaction order in catalyst remains 1, while \(k_{\text{cat}}\) decreases from 0.41 \(\pm\) 0.01 to 0.16 \(\pm\) 0.005 s\(^{-1}\). The pronounced effect of styrene is also evident from u.v.-visible measurements. Species (2) was generated by rapidly stirring a dichloromethane–methanol solution (10:1 v/v) of MnIVTTP and alkene, having the same concentration of reagents as used in the g.l.c. experiments, with an aqueous solution of sodium hypochlorite. After rapid separation of the layers the increase in absorption at 476 nm was measured as a function of time. Mixtures of aliphatic alkenes and styrene show curves in which the decomposition of (2) is sigmoidal in time, suggesting that after an induction period styrene becomes involved in the process of oxygen transfer to the aliphatic alkene.

In order to trace the nature of this synergistic effect of styrene, we tested the effect of other aromatic additives on the epoxidation of aliphatic alkenes. Benzene, toluene, methoxybenzene, and nitrobenzene had, within experimental error, no effect on the rate of the epoxidation reaction. Benzaldehyde, however, showed a similar rate-enhancing effect as styrene. In the presence of 0.35 mol dm\(^{-3}\) of this additive the rate of cyclohexene epoxidation increased by a factor of 1.75. Benzaldehyde itself was only slowly oxidized under the reaction conditions employed. Naphthol and 2-nitrosonaph-
thol completely blocked the epoxidation. The latter compounds probably give rise to the formation of diaryloxyman-
gemande(iv) porphyrin complexes, which are known to have low
oxidising properties.24
The induction period observed indicates that the rate-
accelerating species is not styrene itself but one of its reaction
products. These products are styrene oxide and phenylacet-
aldehyde. We propose that this aldehyde, just as benzal-
dehyde, transfers a hydrogen atom to the oxygen atom of the
Markovnikov
oxo-manganese species (2) to give species (5). Thus, in the
presence of aldehyde the epoxidation of alkenes would proceed via (5). Consequently, the stationary-state concentra-
tion of (2) is lower than in the absence of aldehyde. The
dimerization equilibrium (2) ⇌ (4) will shift to the left and the
order in [MnIIiTP] changes to 1.
Our experiments indicate that care should be taken in
drawing mechanistic conclusions from competitive experi-
ments with aromatic and alkene substrates, as has been done
recently.21 A reinterpretation of data in the literature21 may be
required.
This research was supported by the Netherlands Founda-
tion for Chemical Research (SON) with financial aid from the
Netherlands Organization for the Advancement of Pure
Research (ZWO). R. J. M. thanks ZWO for a travel grant.

Received, 12th June 1985; Com. 827

References
1 For a recent review see: F. P. Guengerich and T. L. MacDonald,
5786; (b) M. F. Powell, E. F. Pai, and T. C. Bruce, ibid., 1984, 106,
3277; (c) B. Meunier, E. Guilmet, M. E. De Carvalho, and R.
Poilblanc, ibid., 1984, 106, 6668; (d) J. A. Smegal and C. L. Hill,
ibid., 1983, 105, 3515; (e) J. A. Smegal, B. C. Schard, and C. L. Hill,
ibid., 1983, 105, 3510; (e) D. Mansuy, M. Fontecave, and J. F.
Collman, J. I. Brauman, B. Meunier, T. Hayashi, T. Kodadek, and
S. A. Raybuck, J. Am. Chem. Soc., 1985, 107, 2000; (g) J. R.
Lindsay Smith and P. R. Sleath, J. Chem. Soc., Perkin Trans. 2,
1982, 1009; (h) J. A. S. J. Razenberg, R. J. M. Nolte, and W.
Drenth, Tetrahedron Lett., 1984, 25, 789; (i) J. A. S. J. Razenberg,
Catal., 1985, 31, 271; (i) R. J. M. Nolte, J. A. S. J. Razenberg, and
R. Schuurman, in the press.

An Expedient Approach to Carbocycle Annulation via Silver Ion Assisted
Episulphonium Ion Cyclizations
Eric Edstrom and Tom Livinghouse*
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, U.S.A.

An efficient synthetic route to functionalized carbocycles is described, the key cyclization reaction involving the
intramolecular coupling of episulphonium ions, generated in situ from alkenes, with aromatic nuclei.

The synthetic utility of cationic cyclization reactions for the elaboration of carbocycles has become firmly established over the last two decades.1 Despite the intense activity in this area, there remain few examples involving the cyclization of carbon-centred nucleophiles onto episulphonium ions.2—4 In this communication we describe the first examples of silver ion assisted arene–alkene cyclizations which proceed via these highly reactive species (Scheme 1).

The substrates used in this study, (5a) and (5b), were prepared by the lithiation of (3,4-dimethoxyphenyl)acetetonitrile (4) with lithium di-isopropylamide (LDA) followed by alkylation with the appropriate allylic halide.5 Two approaches are currently available for the generation of characterizable episulphonium ions. The first involves the sequential treatment of an appropriate alkene [e.g., (6)] with a sulphenyl halide followed by exposure of the resultant adduct (7) to silver tetrafluoroborate.6 Alternatively, direct exposure of the alkene (6) to the preformed sulphenium derivative (9) has been reported to give rise to the corresponding episulpho-
pnium cation (8).3

The utility of these procedures for the annulation of carbocycles was readily demonstrated by the following study. Treatment of the substrate (5a) with benzene sulphenyl

chloride (30 min, −78 °C) followed by a solution of 1.1 equiv. of silver tetrafluoroborate in nitromethane (−78 °C; 1 h → −30 °C; 12 h → 0 °C; 2 h) furnished the cyclized diastereo-
isomers (10a) and (11a) (30:1) in 48% yield. The substrate
(5b) also reacted affording (10b) and (11b) as the major products in 53% yield. Direct treatment of either substrate

† It was expected that the subjection of these substrates to the prospective cyclization conditions would provide an indication of Markovnikov vs. anti-Markovnikov as well as ortho vs. para cycliza-
tion preferences.