Nitrate- and nitrite-dependent anaerobic oxidation of methane

Cornelia U. Welte*1,2, Olivia Rasigr3, Annika Vaksmaa1, Wouter Versantvoort1, Arslan Arshad1, Huub J.M. Op den Camp1, Mike S.M. Jetten1,2,3, Claudia Lüke1, Joachim Reimann*1

1 Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

2 Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

3 Netherlands Earth Systems Science Center, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

Running title: Nitrate/nitrite AOM

* Address correspondence to Cornelia U. Welte, c.welte@science.ru.nl and Joachim Reimann, j.reimann@science.ru.nl
Summary

Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to *Methanosarcina* methanogens. They were named ‘*Candidatus Methanoperedens nitroreducens*’ and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium ‘*Candidatus Methylomirabilis oxyfera*’ that probably utilizes an intra-aerobic pathway through the dismutation of NO to N₂ and O₂ for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved.

Key words: denitrification, methanotrophy, ANME, NC10, Mcr, archaea, anoxic, n-DAMO
Introduction

Methane is an important greenhouse gas contributing substantially to the greenhouse effect and global warming. It is produced in anoxic ecosystems by methanogenic archaea (Thauer et al., 2008) as well as in the oxic ocean by phosphate-starved bacterioplankton through the demethylation of methyl-phosphonates produced by ammonia oxidizing archaea (Karl et al., 2008; Metcalf et al., 2012). The major part of the produced methane (50-80 %) is oxidized by aerobic and anaerobic methanotrophic microorganisms (Thauer et al., 2008; Conrad, 2009).

In oxic environments, methane is consumed by aerobic bacterial methanotrophs with representatives from alpha- and gammaproteobacteria (Semrau et al., 2010) as well as from the Verrucomicrobia (Op den Camp et al., 2009; van Teeseling et al., 2014). In anoxic environments, however, these bacterial groups are probably not involved in methane oxidation. In 2000, ANaerobic MEthanotrophic (ANME) archaea closely related to methanogenic archaea were discovered and proven to be involved in methane oxidation in ecosystems devoid of oxygen (Boetius et al., 2000; Raghoebarsing et al., 2006; Orphan et al., 2001; Haroon et al., 2013). ANME archaea belonging to the clades ANME-1, ANME-2a/b, ANME-2c and ANME-3 have been associated with anaerobic oxidation of methane coupled to sulfate reduction in consortia with deltaproteobacterial sulfate reducers (Knittel and Boetius, 2009). Sulfate is abundant in marine ecosystems but generally quite low in freshwater systems (Reeburgh and Heggie, 1977), for which nitrate – and to some extent nitrite – are more relevant electron acceptors. In 2006, an archaeal-bacterial enrichment culture was obtained that coupled the oxidation of methane to denitrification (Raghoebarsing et al., 2006). The archaeal partner couples anaerobic methane oxidation to the reduction of nitrate to nitrite (Raghoebarsing et al., 2006; Haroon et al., 2013;
Arshad et al., 2015). The archaea belong to the ANME-2d clade and the investigated representative was named ‘Candidatus Methanoperedens nitroreducens’. Its metabolism involves a complete reverse methanogenesis pathway with methyl-CoM reductase as the methane activating enzyme. Cytoplasmic oxidation of methane to CO₂ is linked to an elaborate branched membrane-bound respiratory chain involving many unusual protein complexes (Haroon et al., 2013; Arshad et al., 2015) and a high number of c-type cytochromes (Haroon et al., 2013; Arshad et al., 2015; Kletzin et al., 2015). The bacterial partner belongs to the NC10 clade and perform nitrite-dependent methane oxidation (Ettwig et al., 2008). In the previously mentioned consortia, nitrite is provided by ‘M. nitroreducens’ which benefits from the removal of its toxic end product. Subsequent metagenome sequencing and physiological experiments of the NC10 bacteria provided strong indication for an intra-aerobic methane oxidation metabolism in which nitrite is first reduced to nitric oxide (NO) which is then putatively dismutated to molecular nitrogen and oxygen (Ettwig et al., 2010). The NC10 bacterium responsible for this process, ‘Candidatus Methylomirabilis oxyfera’, uses particulate methane monooxygenase (pMMO) for methane oxidation via the aerobic pathway similar to aerobic methanotrophic bacteria.

Here we give an overview of the current knowledge on nitrate- and nitrite-dependent anaerobic methanotrophs that were first identified as denitrifying consortia: their ecology, distribution and the proposed underlying biochemical pathways.

The microbial ecology and diversity of nitrate- and nitrite-AOM

Nitrate and nitrite are common constituents at oxic/anoxic interfaces where ammonium, diffusing from deeper anoxic layers, is oxidized with oxygen diffusing from overlaying oxic zones (Brune
et al., 2000). Here, methane can be used as electron donor to sustain populations of nitrate/nitrite-dependent anaerobic methane oxidizing (N-AOM) microorganisms. In view of expanding eutrophication around the globe (Galloway et al., 2008), hypoxic zones with elevated reactive nitrogen and methane concentrations as potential habitats for N-AOM microorganisms will increase.

Although the potential of methane as electron donor for denitrification was recognized already more than a decade ago (Sollo et al., 1976; Mason, 1977; Panganiban et al., 1979; Smith et al., 1991; Thalasso et al., 1997; Costa et al., 2000; Eisentraeger et al., 2001; Waki et al., 2002; Islas-Lima et al., 2004) the first microbiological evidence for N-AOM came from an enrichment culture originating from a highly eutrophic freshwater sediment of Twentekanaal in the Netherlands (Raghoebarsing et al., 2006). The enrichment culture oxidized methane to CO₂ while performing full denitrification to N₂. 16S rRNA gene sequencing enabled the design of specific fluorescence in situ hybridization (FISH) probes, DARCH-872 and DARCH-641 (Raghoebarsing et al., 2006; Schubert et al., 2011; Ettwig et al., 2016) for archaea and DBACT-193 for bacteria (Raghoebarsing et al., 2006), which were used for visualization of the culture and are still commonly used to date (Figure 1). Molecular characterization revealed that this first enrichment culture was mainly composed of anaerobic methane-oxidizing archaea (affiliated to the GOM-ArcI/ANME-2D clade, Figure 2A) related to known methanogens and bacteria without any cultured members and belonging to a new clade.

Today we know that the two dominant microorganisms, ‘M. nitroreducens’ and ‘M. oxyfera’, are both capable of methane oxidation independent of each other (Ettwig et al., 2008; Ettwig et al.,
‘M. nitroreducens’ and other ‘Methanoperedens’-like archaea couple AOM to nitrate reduction to nitrite (Equation 1) while ‘M. oxyfera’-like bacteria reduce nitrite to dinitrogen gas (Equation 2).

\[
\text{Equation 1: } \quad \text{CH}_4 + 4 \text{NO}_3^- \rightarrow \text{CO}_2 + 4 \text{NO}_2^- + 2 \text{H}_2\text{O} \quad \Delta G^0 = -523 \text{ kJ/mol CH}_4
\]

\[
\text{Equation 2: } \quad 3 \text{CH}_4 + 8 \text{NO}_2^- + 8 \text{H}^+ \rightarrow 3 \text{CO}_2 + 4 \text{N}_2 + 10 \text{H}_2\text{O} \quad \Delta G^0 = -929 \text{ kJ/mol CH}_4
\]

\[
\text{Equation 3: } \quad \text{CH}_4 + \text{SO}_4^{2-} + 2 \text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{S} + 2 \text{H}_2\text{O} \quad \Delta G^0 = -21 \text{ kJ/mol}
\]

In contrast to sulfate-dependent AOM (Equation 3), it is evident that N-AOM (Equations 1 and 2) are highly exergonic metabolic processes that are not performed at the thermodynamic limit of life (Krüger et al., 2003; Hallam et al., 2004).

The bacterium performing nitrite-dependent AOM, ‘M. oxyfera’, belongs to the NC10 clade and was found to contain a phylogenetically distinct particulate methane monooxygenase which offered the possibility to use one of the encoding genes (pmoA) as a functional biomarker for their specific detection in the environment next to its 16S rRNA gene (Luesken et al., 2011c; Han and Gu, 2013). The 16S rRNA genes of NC10 bacteria have been divided previously into four groups (A, B, C, D) (Ettwig et al., 2009, Figure 3), where all to date known N-AOM performing ‘M. oxyfera’-like bacteria characterized from enrichment cultures fall into group A (Ettwig et al., 2010; Haroon et al., 2013; He et al., 2015). Very recently, a high-quality draft genome of an NC10 bacterium belonging to group D could be re-constructed from an aquifer sediment metagenome (Hug et al., 2016). Notably, this genome does not contain the pmo operon (encoding a methane monooxygenase) nor a quinol-dependent NO reductase so it is lacking the essential genes required for methane activation to methanol. However, it does encode enzymes
associated to methylotrophy such as a methanol dehydrogenase and enzymes involved in formaldehyde and formate oxidation (Hug et al., 2016). The genome therefore suggests that this organism is a methylotroph, but does not share the intra-aerobic pathway of methane oxidation with the group A organisms. Group B and C are to date only represented by environmental sequences and no details are known about the physiology of these organisms. In addition to DNA-based biomarkers, it was shown that ‘M. oxyfera’ contains high amounts of 10-methylhexadecanoic acid and a unique monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position, which comprised up to 10% of the total membrane fatty acid profile (Kool et al., 2012). These lipids have been successfully recovered from samples of a Dutch peatland harboring substantial amounts of ‘M. oxyfera’ cells (Kool et al., 2012; Zhu et al., 2012) and therefore provide an alternative mode of detection. The environments where ‘M. oxyfera’ biomarkers have been detected are shown in Table 1. The table shows a wide habitat spectrum including ecosystems from eutrophic to oligotrophic, freshwater to marine, and pristine to hydrocarbon contaminated. Although both DNA and lipids can be used to show the presence of ‘M. oxyfera’ bacteria in various anoxic habitats, they cannot be used as a proxy for its contribution to methane oxidation activity. Thus, a variety of complementary methods based on RNA (usually used as cDNA) and proteins (direct shotgun proteomic sequencing) (Hanson and Madsen, 2015; Padilla et al., 2016) have been applied and could demonstrate a link between observed methane disappearance and the presence of ‘M. oxyfera’. Furthermore, other features of ‘M. oxyfera’ physiology could be used to detect its activity. ‘M. oxyfera’ was shown to be an autotroph and assimilated CO₂ instead of methane actively into specific lipids and total biomass (Rasigraf et al., 2014). So far, most stable isotope methods used labeled methane for the detection of active methanotrophs in field samples (Dumont and Murrell, 2005). A modified
method using 13C-labeled CO$_2$ could potentially aid in the detection of labeled ‘M. oxyfera’ DNA or RNA in environmental samples. A further method for environmental detection is based on 13C fractionation of the environmental methane pool. It has been shown previously that methanotrophic bacteria fractionate methane leading to an enrichment of heavier methane in the remaining pool (Feisthauer et al., 2011; Rasigraf et al., 2012). Depending on the source of methanogenesis and the presence of methanotrophic bacteria a specific signature could be determined and linked to the extent of methanotrophy. So far, this tool of ‘M. oxyfera’ activity detection has not been applied.

After nearly a decade, the archaeal partner detected in the initial co-culture of Raghoebarsing et al. (2006) was described in detail (Haroon et al., 2013). In an enrichment fed with nitrate, methane and ammonium, a stable co-culture of anammox bacteria and above mentioned archaea was established. The archaeal counterpart was identified as the main organism responsible for coupling nitrate reduction to methane oxidation and was named ‘Candidatus Methanoperedens nitroreducens’ (Haroon et al., 2013). The successful enrichment of ‘M. nitroreducens’ in this co-culture was due to the differential use of nitrate by ‘M. nitroreducens’ vs. nitrite by ‘M. oxyfera’. Co-enrichment of both organisms in the culture described by Raghoebarsing et al. in 2006 was most likely due to feeding of both nitrate and nitrite. The differentiating effect of the used electron acceptor on enrichment of N-AOM archaea versus bacteria has been observed previously (Hu et al., 2011). Detailed metagenomic analyses revealed that the genome of ‘M. nitroreducens’ encoded pathways involved in the utilization of nitrate as electron acceptor (e.g. by the nitrate reductase subunit NarG) as well as reverse methanogenesis, with methyl-CoM reductase (McrA) as the key enzyme. Based on the available genomic data, CO$_2$ fixation in ‘M.
nitroreducens’ may proceed via the acetyl-CoA pathway possibly leading to very depleted 13C biomarkers. Carbon isotope measurements in archaeal lipids from the original culture described by Raghoebarsing et al. (2006) indeed revealed strong depletion compared to methane, indicating methane as carbon source for biomass. The possibility to use ‘M. nitroreducens’ lipids for its environmental detection has so far not been explored. ‘M. nitroreducens’ forms a new cluster within the ANME 16S rRNA gene phylogeny and was classified as the ANME-2d clade (Figure 2A). Few aspects about the physiology of ‘M. nitroreducens’ are known, and its environmental detection has been limited to molecular methods based on 16S rRNA and mcrA genes (Ding et al., 2015). The overview of environmental distribution based on those biomarkers is summarized in Table 1. The table shows that Methanoperedens-like archaea have been found in a variety of environments including mostly freshwater and some marine habitats. Based on 16S rRNA gene classification, the ANME-2d clade is referred to as GOM Arc I in the Silva 16S rRNA gene database (Figure 2A, Quast et al., 2013), as the first sequences were found in environmental samples from the Gulf of Mexico (GOM). To date the GOM Arc I/ANME-2d group consists of 96 high quality sequences, which split into three defined clusters A, B and C (Figure 2B). The 16S rRNA sequences of the two known genomes from enrichment cultures (Haroon et al., 2013; Arshad et al., 2015) cluster into group A, which is the largest and most uniform group. With few exceptions of sequences found in marine and brackish environments, this group consists of sequences detected in freshwater environments such as aquifers, lakes and rivers (Li et al., 2012; Flynn et al., 2013). Group B and C have no cultured representatives so far and consist exclusively of environmental sequences. The sequences of group B and C have been found in extreme environments such as marine and terrestrial mud volcanoes, marine sediment and hydrothermal vents (Inagaki et al., 2006; Pachiadaki et al., 2011; Yang et al., 2012).
Metabolic cooperation and competition of N-AOM microorganisms

Physiological studies showed that nitrite was the main product of nitrate reduction by N-AOM archaea (Haroon et al., 2013; Zhu, 2014). In high concentrations, nitrite becomes toxic and must be removed. The N-AOM archaea encode a membrane-bound nitrite reductase which could convert some of the nitrite into ammonia (Arshad et al., 2015). The presence of nitrate, nitrite and ammonium creates a basis for metabolic co-operation with nitrite and ammonium scavenging organisms (Figure 4). The first described co-culture of ‘M. nitroreducens’ contained anaerobic ammonium oxidizing (anammox) bacteria which use nitrite for respiration (Haroon et al., 2013). The original N-AOM culture described in 2006 also contained archaea closely related to ‘M. nitroreducens’. The 16S rRNA gene sequence of the 2006 enrichment and the ‘Methanoperedens’ sp. BLZ1 are 99.2 % identical and cannot be resolved from each other in the phylogenetic tree in Figure 2B. They were enriched together with ‘M. oxyfera’ bacteria, the latter being known by now to use nitrite as electron acceptor (Raghoebarsing et al., 2006). Thus, anammox and ‘M. oxyfera’-like bacteria are most likely common metabolic partners of N-AOM archaea as both methane and ammonium derived from anaerobic food chains are often present at oxic/anoxic interfaces. The co-occurrence of anammox and ‘M. oxyfera’-like bacteria with ‘M. nitroreducens’ would lead to a competition of the two for available nitrite. Previous studies have shown that anammox bacteria can be co-enriched and form a stable co-culture with ‘M. oxyfera’ in a bioreactor system upon gradual increase of ammonium concentrations in the influent medium (Luesken et al., 2011b; Ding et al., 2014; Zhu et al., 2011). In contrast, Hu et al. (2015) found that anammox bacteria successfully outcompeted ‘M. oxyfera’ in bioreactor systems fed with ammonium and methane and amended either with nitrate or nitrite. Environmental
molecular studies have shown that both co-occur in anoxic environments (Wang et al., 2012; Shen et al., 2014c; Shen et al., 2015). It is likely that different substrate affinities of different ‘M. oxyfera’ and anammox species/strains would determine the success of competition as well as tolerance to harmful nitrogen oxide species (e.g. NO and NH$_2$OH). In natural settings, the interactions will become more complex due to the activity of nitrifying bacteria and archaea. Ammonium concentrations shape the community composition of nitrifying organisms with ammonia oxidizing bacteria (AOB) typically dominating at higher concentrations and archaea (AOA) mostly occurring at lower concentrations (Yan et al., 2012). Moreover, higher concentrations of nitrite would lead to the presence of nitrite oxidizing bacteria (NOB), with *Nitrobacter*/*Nitrococcus* dominating at higher and *Nitrospira*/*Nitrospina* at lower nitrite concentrations (Nowka et al., 2015). Recently, a complete nitrification process has been described in a *Nitrospira*-like organism (comammox), which seems to predominate at very low substrate concentrations and thus become competitive with the “classical” two stage process (Daims et al., 2015; van Kessel et al., 2015). The comammox process produces nitrate and bypasses the release of nitrite and could directly provide substrate to ‘M. nitroreducens’. This scenario seems likely for oligotrophic environments with overall low concentration of nitrogenous compounds and high methane (e.g. drinking water wells, Gülay et al., 2016; Palomo et al., 2016; Pinto et al., 2016). Thus, the co-occurrence of anammox and comammox bacteria with N-AOM organisms might be a common scenario. The presence of other electron donors in the environment (e.g. organic carbon, reduced iron and sulfur species) would potentially intensify the competition for nitrate (and nitrite) in the form of denitrification and dissimilatory nitrate/nitrite reduction to ammonium. Thus, various primary and secondary factors can determine the outcome of each particular competition.
Biochemistry and metabolism of N-AOM microorganisms

Methane is quite inert due to the absence of functional groups and breaking the first C-H bond poses an energetic barrier of $\Delta H_{298} = 439$ kJ/mol (Blanksby and Ellison, 2003). Therefore, oxidation of methane requires it to be activated first. Until now there are only two biological processes known to activate methane, incorporation of oxygen by methane monooxygenases utilized by aerobic methanotrophic bacteria and formation of methyl-CoM employing methyl-CoM reductase in a reverse manner utilized by anaerobic methanotrophic archaea (Figure 5).

‘*M. oxyfera*’ is so far unique in its ability to couple anaerobic methane oxidation to nitrite reduction. The biochemistry and general metabolism of ‘*M. oxyfera*’ is not yet well explored. The current metabolic model of nitrite-dependent methane conversion is therefore largely inferred from the genome and based on homology. As there are no organisms sharing this metabolism, a global comparative analysis is not available. Most of the metabolic modules, however, are shared with canonical methanotrophs and denitrifiers, which allowed a metabolic prediction for ‘*M. oxyfera*’ (Ettwig *et al.*, 2010). Although ‘*M. oxyfera*’ was cultivated under strictly anaerobic conditions and displayed severe oxygen intolerance (Luesken *et al.*, 2012), its genome encodes the complete aerobic methane oxidation pathway and is postulated to employ an intra-aerobic pathway for the degradation of methane. Candidate enzymes for oxygen generation are two nitric oxide reductase-like proteins that were hypothesized to disproportionate two molecules of NO into N_2 and O_2 (Ettwig *et al.*, 2012). This dismutation reaction is highly exergonic ($\Delta G^0 = -173$ kJ/mol O_2) but due to complex bond reorganizations is expected to present the rate limiting step in ‘*M. oxyfera*’s’ energy metabolism. Activation of methane by
either NO or N₂O directly is thermodynamically feasible, but incompatible with the measured substrate stoichiometries (Ettwig et al., 2010; Reimann et al., 2015). As in most aerobic methanotrophs ‘M. oxyfera’ employs a particulate methane monooxygenase for the activation of methane into methanol (Figure 5). Methane has a high octanol-water partition coefficient and accumulates in the hydrophobic membrane core in a ~12:1 ratio (Hansch et al., 1995), making it available in high effective concentrations to the particulate methane monooxygenase (pMMO). Amino acid sequence comparison of the PmoA, PmoB and PmoC subunits from ‘M. oxyfera’ to canonical pMMOs suggested a similar overall architecture and conserved function for this enzyme. Alternative reaction mechanisms involving NO, N₂O or NO₂ in methane activation are difficult to justify in this context (Ettwig et al., 2010; Reimann et al., 2015).

‘M. oxyfera’ has three PQQ-dependent methanol dehydrogenases (MDH) at its disposal for the conversion of methanol to formaldehyde. One gene cluster encodes for a calcium-dependent MDH, which harbors all accessory genes, next to the canonical alpha (MxaF) and beta (MxaI) subunits. The two additional MDHs belong to the recently described class of lanthanide-dependent XoxF MDHs (Keltjens et al., 2014). The XoxF methanol dehydrogenase from the methanotroph Methylacidiphilum fumariciolicum SolV was isolated as a homodimer and shown to incorporate the rare earth element cerium believed to confer superior catalytic activity (Pol et al., 2014). Purification of the dominant MDH from ‘M. oxyfera’ resolved a unique combination of the XoxF1 large subunit and the MxaI small subunit forming a heterodimeric complex (α₂β₂) (Wu et al., 2015). It remains to be shown whether a rare earth element is indeed bound in the enzyme. Although PQQ-biosynthesis genes were mostly absent in the ‘M. oxyfera’ genome (Wu et al., 2011) spectroscopy on the purified MDH clearly confirmed the presence of the PQQ
cofactor (Wu et al., 2015). It thus appears that formation of the holoprotein requires PQQ acquisition from the environment as has been previously observed for glucose dehydrogenase in PQQ-deficient enteric bacteria (Hommes et al., 1991). Dependence on other microorganisms for the production of this crucial cofactor could possibly explain why ‘M. oxyfera’ has thus far not been obtained as a pure culture. Formaldehyde is further oxidized to formate via two possible pathways, a highly expressed methanopterin (H₄MPT) route likely used for energy conservation and a lowly expressed folate (H₄F) route, where folate or methanopterin function as C1 carriers for biosynthetic purposes (Reimann et al., 2015). Three enzymes are available to ‘M. oxyfera’ for the oxidation of formate to CO₂, a highly expressed formyl-MFR dehydrogenase and two minor expressed NAD(P)⁺-dependent formate dehydrogenases (FDH) in which the extended N-terminal parts show homology with bacterial complex I subunits NuoG for both FdhA subunits and NuoE for the FdhB2 subunit. These alternative FDHs might provide extra reducing equivalents in the form of NADH (Reimann et al., 2015).

Although two nitrate reductases, NarGHI and NapAB, are present in the genome of ‘M. oxyfera’ low transcription and translation levels suggest that neither of the two systems is highly active. Nitrite reduction to NO is catalyzed by cytochrome cd₁-type nitrite reductase (NirS), the only nitrite reductase present in the genome. Produced NO is dismutated into N₂ and O₂ by two putative NO dismutases (NOD). The genome does not code for a recognizable N₂O reductase and N₂O was only measured in trace amounts in methane-driven nitrite reduction experiments of ‘M. oxyfera’ enrichments. The proposed NODs are homologous to the quinol-dependent NO reductases, but display amino acid alterations in the catalytic site, the quinol-binding site and the proposed proton channel. These changes hamper electron and proton entry into the active site.
and could facilitate the disproportionation of NO to N₂ and O₂ rather than its reduction to N₂O (Ettwig et al., 2012). In addition to these two putative NO dismutases three nitric oxide reductases (NOR) are encoded in the ‘M. oxyfera’ genome, one canonical qNOR, one gNOR and one sNOR (Hemp and Gennis, 2008). The product of these enzymes, N₂O, was only detected in trace amounts under standard conditions. It therefore remains an open question what the redundancy in NO reductases offers to ‘M. oxyfera’. NORs might be present to quickly respond to external nitrosative stress and to ensure that concentrations of the metabolic intermediate NO are kept below toxic levels. The NORs may also play a role in oxygen respiration. Since only three of the four O₂ molecules produced from NO disproportionation are consumed during methane activation the remaining O₂ molecule might be reduced to water, a side reactivity that has been demonstrated for both c- and qNORs, with rates that could match the overall metabolic rates of methane conversion (Reimann et al., 2015).

The only known microorganisms capable of oxidizing methane with nitrate as electron acceptor are ‘M. nitroreducens’ and Methanoperedens-like archaea (Raghoebarsing et al., 2006; Haroon et al., 2013). In contrast to ‘M. oxyfera’ they do not use oxygen for methane activation but instead utilizes the reverse reaction of methyl-CoM reductase (Figure 5, Krüger et al., 2003; Hallam et al., 2004; Scheller et al., 2010; Haroon et al., 2013). Metabolic reconstructions from environmental genomes (Haroon et al., 2013; Arshad et al., 2015) suggested that ‘M. nitroreducens’ oxidizes methane via reverse methanogenesis to CO₂. One of the key questions is how electrons from methane oxidation are transferred to the final electron acceptor nitrate. During reverse methanogenesis, electrons are transferred to yield cofactor F₄₂₀H₂, reduced ferredoxin and the thiol cofactors coenzyme M (CoM-SH) and coenzyme B (CoB-SH). F₄₂₀H₂
and reduced ferredoxin can be re-oxidized by a canonical F₄₂₀H₂ dehydrogenase (Fqo) and an
Ech hydrogenase, respectively (Welte and Deppenmeier, 2014). CoM-SH and CoB-SH are either
oxidized via the reverse reaction of the membrane-bound heterodisulfide reductase (HdrDE) or
via the cytoplasmic heterodisulfide reductase (HdrABC). The latter enzyme has been
exemplified to perform electron bifurcation in methanogens (Costa et al., 2010; Kaster et al.,
2011) and due to thermodynamic limitations provided by the reversal of methanogenesis in ‘M.
nitroreducens’ would have to act as an electron confurcation enzyme here (Arshad et al., 2015).
In methanogens, both HdrDE and Fqo interact with methanophenazine, a membrane-integral
electron carrier; in ‘M. nitroreducens’, however, methanophenzine could not be detected but
instead a menaquinone biosynthesis pathway was encoded and expressed (Arshad et al., 2015). It
is therefore likely that HdrDE and Fqo interact with menaquinones in this organism. The genome
also encodes a nitrate reductase subunit harboring the active site (NarG) for nitrate reduction to
nitrite. Electron transport to nitrate reductase seems to happen via a Rieske-cytochrome b
complex. The gene cluster encoding the Rieske-cytochrome b complex contains additional genes
for cytochrome c proteins whose function is unclear but may be connected to the electron
transport to nitrate reductase. The nitrate reductase gene cluster shows a highly unusual
composition that to our knowledge has not been observed in other prokaryotes (Arshad et al.,
2015). As in other archaea, NarG contains a signal peptide for the translocation of NarGH into
the pseudoperiplasm and nitrate may therefore be reduced non-cytoplasmically (Yoshimatsu et
al., 2000; Martinez-Espinosa et al., 2007; de Vries et al., 2010). All other nitrate-reducing
archaea studied to date harbor NarM as a membrane anchor for the soluble NarGH complex (de
Vries et al., 2010) that is absent in ‘M. nitroreducens’. Instead, a NapH like membrane anchor
together with membrane-integral heme-copper oxidase subunits was encoded in the same gene
cluster, along with a cytochrome \(b \) protein that is also found in the nitrate reductase complex of halophilic archaea (Martinez-Espinoza \textit{et al.}, 2007). A small part of the formed nitrite can be further reduced to ammonium by a NrfAH type cytochrome \(c \) nitrite reductase, possibly to prevent toxic accumulation of nitrite. The ‘\textit{M. nitroreducens}’ genomes do not encode other denitrification enzymes illustrating that neither NO, N\(_2\)O nor N\(_2\) are final products; instead, nitrite is the main product of nitrate reduction with about 10% of the nitrite reduced to ammonium (Haroon \textit{et al.}, 2013; Ettwig \textit{et al.}, 2016). Another unusual feature of the ANME-2d genomes are that they encode for a high number of cytochrome \(c \) proteins (Haroon \textit{et al.}, 2013; Arshad \textit{et al.}, 2015; Kletzin \textit{et al.}, 2015). The role of cytochrome \(c \) proteins in ‘\textit{M. nitroreducens}’ remains enigmatic, as the metabolism of nitrate-dependent AOM does not require electron transfer to a syntrophic partner microorganism as found for ANME-2a (McGlynn \textit{et al.}, 2015; Wegener \textit{et al.}, 2015). A recent publication detected ANME-2d archaea in a culture that coupled Cr(VI) reduction to anaerobic methane oxidation (Lu \textit{et al.}, 2016) which may require \(c \)-type cytochromes. As many other microorganisms manage nitrate reduction without the excessive use of cytochrome \(c \), and furthermore closely related \textit{Methanosarcina} strains harbor only a few – if any – \(c \)-type cytochromes, the role of these proteins in N-AOM has to be further investigated.

Concluding remarks

Methane oxidizing microorganisms play an essential role in counteracting biological methane production and its release to the atmosphere. The widespread occurrence and substantial size of potential habitats suggests an important role for nitrate- and nitrite-dependent methane oxidizers that link the biogeochemical carbon and nitrogen cycles (Figure 5). Application of more specific
detection methods are needed and will hopefully broaden our insight into the environmental significance of N-AOM microorganisms. Physiological experiments with co-cultures of various nitrogen cycle organisms need to be further explored. Competition for nitrate and nitrite as well as composition of microbial communities in natural habitats is likely determined by the availability and relative concentrations of electron donors and acceptors. Further laboratory studies and environmental data sets are needed to understand substrate fluxes and microbial community development in relevant ecosystems to ultimately understand and possibly predict the fate of involved substrates.

Models describing the metabolic pathways for methane and nitrate/nitrite conversion and involved enzyme systems in *Methanoperedens* and *Methylomirabilis*-like microorganisms have been proposed (Figure 5). It is interesting to note that the degree of genetic innovation required to catalyze the two processes appears to be limited. Nitrite-dependent methane oxidation by ‘*M. oxyfera*’ mostly employs enzymatic modules commonly found in denitrifiers and aerobic methanotrophs. The key novelty that seems to enable these organisms to respire methane with nitrite is the alteration of a canonical nitric oxide reductase into a nitric oxide disproportionating enzyme. Nitrate-dependent methane oxidation by ‘*M. nitroreducens*’ is based on the reversal of the methyl-CoM reductase reaction and subsequent steps from the Wood-Ljungdahl/methanogenesis pathway. The key innovation is the acquisition of a nitrate reductase and accessory proteins. The exceptionally large number of Cytc present in ANME organisms suggests the additional need to rewire the electron transfer routes to accommodate this metabolism or additional metabolic capacities that have not yet been discovered. Furthermore,
physiological and detailed biochemical studies are needed to test the current models for these fascinating processes.
Acknowledgements

The authors are thankful for financial support by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through the SIAM Gravitation Grant 024.002.002 and the NESSC Gravitation Grant 024.002.001. MSMJ, AV, AA, JR, WV and CL are further supported by ERC AG EcoMoM 339880 and HOdC by ERC AG Volcano 669371. The funding agencies had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
References

Table legends

Table 1: Overview of the environmental distribution and relevant detection methods for N-AOM microorganisms.
Figure legends

Figure 1: Microscopic image of a co-culture catalysing nitrite- and nitrate-dependent anaerobic oxidation of methane that was subjected to fluorescence *in situ* hybridization. The epifluorescence micrograph was obtained after hybridization with the ARCH-641 probe targeting *Methanoperedens*-like archaea (green) and the *M. oxyfera* specific DBACT-193 probe (red). The scale bar represents 20 µm.

Figure 2: Phylogenetic overview of *Methanoperedens*-like archaea based on 16S rRNA gene sequences. (A) Phylogenetic positioning of GOM Arc 1/ANME-2D within other ANME groups and methanogens. (B) Clustering of ANME-2D into groups A-C. Cultured representatives are marked in bold. The classification of the groups was performed with all available 16S rRNA gene sequences of ANME-2D and confirmed by Neighbour-joining and maximum likelihood algorithms. The representative Neighbour-joining phylogenetic tree was calculated using the Jukes Cantor correction, filter over 290 bp and ANME 1 as an outgroup. The full 16S rRNA sequences of the two cultured representatives ‘*M. nitroreducens* ANME2D’ and ‘*Methanoperedens* sp. BLZ1’ are 95.2 % identical.

Figure 3: Phylogenetic overview of NC10 bacteria based on 16S rRNA gene sequences. Depicted is the clustering of the NC10 clade into groups A-D. *Candidatus* ‘Methylomirabilis oxyfera’ of the group A is marked in bold. The calculation of the tree was carried out by Neighbour-joining algorithm using the Jukes Cantor correction and filter over 1158bp and Acidobacteria as an outgroup.
Figure 4: Simplified overview of how different bacterial and archaean physiological groups depend on or compete with each other including the anaerobic methanotrophs described in this article. The nitrate-dependent methanotrophs ANME-2d compete with ‘M. oxyfera’ for methane yet ‘M. oxyfera’ requires the provisioning of nitrite which is the final product of nitrate reduction by ANME-2d. A key competitor for ‘M. oxyfera’ seems to be anammox bacteria that take up nitrite very efficiently. Dotted arrow, diffusion. Solid line, metabolic conversion. For the description of the individual groups, please see main text.

Figure 5: Schematic overview of central metabolism of the archaean ‘*Methanoperedens*’ (A) and the bacterium ‘*Methylomirabilis oxyfera*’ (B). Key enzymes in methane activation and nitrogen conversion reactions are indicated with their encoding genes. Biochemical (solid arrows) and electron transfer reactions (dashed arrows) are depicted schematically and do not indicate stoichiometries. fdh, formate dehydrogenase; fmd, formylmethanofuran dehydrogenase; ftr, formyl transferase; mch, methenyltetrahydromethanopterin cyclohydrolase; mcr, methyl-CoM reductase; mdh, methanol dehydrogenase (XoxF and MxaFI type); mer, methylene tetrahydromethanopterin reductase; mtd, methylene tetrahydromethanopterin dehydrogenase; mtr, Na\(^+\) translocating methyl transferase; nar, nitrate reductase; nir, cd\(_1\) nitrite reductase; nod, NO dismutase; nrf, ammonium-producing nitrite reductase; pmo, particulate methane monooxygenase.
<table>
<thead>
<tr>
<th>N-AOM organism (Environment type)</th>
<th>Environment</th>
<th>Location</th>
<th>Nutrient conditions</th>
<th>Detection method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylomirabilis / Methanoperedens</td>
<td>Freshwater ditch</td>
<td>Ooijpolder, Netherlands</td>
<td>Eutrophic, high nitrite, high methane</td>
<td>Enrichment culture, 16S rRNA and pmoA gene clone libraries, FISH</td>
<td>Raghoebarsing et al., 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Twentekanaal, Netherlands</td>
<td></td>
<td></td>
<td>Ettwig et al., 2009</td>
</tr>
<tr>
<td>Methylomirabilis</td>
<td>Wetlands</td>
<td>Various wetlands</td>
<td>Oligotrophic-eutrophic, temperatures -25°-80°, pH 5-9,</td>
<td>pmoA and 16S rRNA gene clone libraries, qPCR</td>
<td>Zhu et al., 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>China</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minerotrophic</td>
<td>Brunsumer-heide, Netherlands</td>
<td>Oligotrophic, influence by agricultural groundwater</td>
<td>pmoA and 16S rRNA gene clone libraries, qPCR, lipids, FISH</td>
<td>Kool et al., 2012</td>
</tr>
<tr>
<td></td>
<td>peatland</td>
<td></td>
<td></td>
<td></td>
<td>Zhu et al., 2012</td>
</tr>
<tr>
<td>Freshwater environments</td>
<td>Freshwater lakes</td>
<td>Yunnan Plateau, China</td>
<td>Various levels of reactive N and C</td>
<td>pmoA gene clone libraries, qPCR</td>
<td>Liu et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Lake sediment</td>
<td>Lake Biwa, Japan</td>
<td>Mesotrophic</td>
<td>16S rRNA and pmoA gene clone libraries, DGGE, qPCR, CARD-FISH</td>
<td>Kojima et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Lake sediment</td>
<td>Lake Constance, Germany</td>
<td>Oligotrophic</td>
<td>qPCR of 16S rRNA and pmoA genes, FISH</td>
<td>Deutzmann and Schink, 2011</td>
</tr>
<tr>
<td></td>
<td>River sediment</td>
<td>Qiantang River, China</td>
<td>Eutrophic, polluted by domestic and industrial effluents, high reactive N and P contents</td>
<td>16S rRNA and pmoA gene clone libraries</td>
<td>Shen et al., 2014b</td>
</tr>
<tr>
<td></td>
<td>Agricultural soils</td>
<td>Nanjing City,</td>
<td>Slightly acidic pH,</td>
<td>16S rRNA gene amplicon</td>
<td>Shen et al., 2016</td>
</tr>
<tr>
<td>Environment</td>
<td>Location</td>
<td>Sample Type</td>
<td>Characteristics</td>
<td>Methods</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------</td>
<td>------------------------------------</td>
<td>---</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Paddy field soils</td>
<td>China</td>
<td>moderate N loading</td>
<td>sequencing, qPCR</td>
<td>Fertilized soils</td>
<td>Hatamoto et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>Fertilized soils</td>
<td>enrichment cultures, pmoA gene clone library, FISH</td>
<td></td>
<td>Wang et al., 2012</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>Fertilized soils, eutrophic, high N and C load</td>
<td>pmoA and 16S rRNA gene clone libraries, qPCR</td>
<td></td>
<td>Shen et al., 2014c</td>
</tr>
<tr>
<td>Wastewater & contaminated sites</td>
<td>Netherlands</td>
<td>Long sludge retention times, low biological oxygen demand/N rations</td>
<td>Enrichment culture, pmoA and 16S rRNA gene clone libraries, FISH</td>
<td></td>
<td>Luesken et al., 2011a</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td></td>
<td></td>
<td></td>
<td>Luesken et al., 2011b</td>
</tr>
<tr>
<td></td>
<td>South Glens Falls, USA</td>
<td>High CH₄ content, moderate reactive N load, contamination with naphthalene</td>
<td>Metaproteomic libraries</td>
<td></td>
<td>Ding et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Cape Cod, USA</td>
<td>Elevated N load, contaminated with leachate and waste water</td>
<td>pmoA gene clone library</td>
<td></td>
<td>Luesken et al., 2011b</td>
</tr>
<tr>
<td>Coal tar contaminated aquifer</td>
<td>South Glens Falls, USA</td>
<td></td>
<td></td>
<td></td>
<td>Kempman et al., 2014</td>
</tr>
<tr>
<td>Contaminated aquifers</td>
<td>Banisveld, Netherlands</td>
<td></td>
<td></td>
<td></td>
<td>Hanson and Madsen, 2015</td>
</tr>
<tr>
<td>Brackish environments</td>
<td>Mai Po, China</td>
<td>Brackish, eutrophic</td>
<td>16S rRNA and pmoA gene clone libraries</td>
<td></td>
<td>Chen et al., 2014b</td>
</tr>
<tr>
<td>Coastal sediments</td>
<td>Xiaogan Island, China</td>
<td>Marine</td>
<td>Enrichment culture, pmoA and 16S rRNA gene clone libraries, qPCR, FISH</td>
<td></td>
<td>He et al., 2015</td>
</tr>
<tr>
<td>Estuary</td>
<td>Jiaojiang, East Sea, China</td>
<td>Eutrophic, moderate salinity, high pollution with polycyclic aromatic hydrocarbons</td>
<td>pmoA and 16S rRNA gene clone libraries, qPCR</td>
<td></td>
<td>Shen et al., 2014a</td>
</tr>
<tr>
<td>Marine environments</td>
<td>South China Sea, China</td>
<td>n.a.</td>
<td>pmoA and 16S rRNA gene clone libraries</td>
<td></td>
<td>Chen et al., 2014a</td>
</tr>
<tr>
<td>Sea sediments</td>
<td>Mexico and Costa Rica</td>
<td>Anoxic core zone with detectable CH₄ and NO₂⁻</td>
<td>pmoA gene clone library, 16S rRNA gene qPCR, metatranscriptome</td>
<td></td>
<td>Padilla et al., 2016</td>
</tr>
<tr>
<td>Oceanic oxygen minimum zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methanoperedens

<table>
<thead>
<tr>
<th>Environment</th>
<th>Location</th>
<th>Habitat Description</th>
<th>Library Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peatlands</td>
<td>Michigan Hollow, USA</td>
<td>Minerotrophic fen</td>
<td>16S rRNA gene clone library</td>
<td>Cadillo-Quiroz et al., 2008</td>
</tr>
<tr>
<td>Peatlands</td>
<td>Ithaca, USA</td>
<td>Acidic ombrotrophic bog</td>
<td>16S rRNA gene clone library</td>
<td>Cadillo-Quiroz et al., 2006</td>
</tr>
<tr>
<td>Peatlands</td>
<td>Zoige, Tibet</td>
<td>Neutral peatland</td>
<td>16S rRNA and mcrA gene clone libraries</td>
<td>Zhang et al., 2008</td>
</tr>
<tr>
<td>Freshwater environments</td>
<td>Illinois, USA</td>
<td>High CH₄, low SO₄²⁻</td>
<td>16S rRNA gene clone library</td>
<td>Flynn et al., 2013</td>
</tr>
<tr>
<td>Aquifer</td>
<td>Tokyo, Japan</td>
<td>NO₃⁻ ~7 µM</td>
<td>16S rRNA gene clone library</td>
<td>Kato et al., 2013</td>
</tr>
<tr>
<td>Subglacial sediment</td>
<td>Alberta, Canada</td>
<td>High C and N</td>
<td>16S rRNA and mcrA gene clone libraries</td>
<td>Boyd et al., 2010</td>
</tr>
<tr>
<td>Freshwater sediment</td>
<td>Green Bay, USA</td>
<td>Mn-/Fe-rich</td>
<td>16S rRNA gene clone library</td>
<td>Stein et al., 2001</td>
</tr>
<tr>
<td>River sediment from mining district</td>
<td>Idaho, USA</td>
<td>Heavy metal contaminated</td>
<td>16S rRNA gene clone library</td>
<td>Rastogi et al., 2009</td>
</tr>
<tr>
<td>Lake sediment</td>
<td>Lago di Cadagno, Switzerland</td>
<td>High SO₄²⁻ and S²⁻, no NO₃⁻</td>
<td>16S rRNA gene clone library</td>
<td>Schubert et al., 2011</td>
</tr>
<tr>
<td>Paddy field</td>
<td>Vercelli, Italy</td>
<td>Nitrogen loaded</td>
<td>mcrA gene clone libraries</td>
<td>Conrad et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chin et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xu et al., 2012</td>
</tr>
<tr>
<td>Wastewater & contaminated sites</td>
<td>Lake sediment of oil seep</td>
<td>Baikal lake, Russia</td>
<td>16S rRNA gene clone library</td>
<td>Lomakina et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Contaminated soil</td>
<td>Shizuoka, Japan</td>
<td>16S rRNA gene clone library</td>
<td>Kasai et al., 2005</td>
</tr>
<tr>
<td></td>
<td>Freshwater lake sediment</td>
<td>Australia</td>
<td>Enrichment, metagenome, FISH</td>
<td>Haroon et al., 2013</td>
</tr>
<tr>
<td>Environment</td>
<td>Type</td>
<td>Location</td>
<td>Conditions</td>
<td>Library Type</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Mud volcanoes</td>
<td>Mud volcano</td>
<td>Usu City of Xinjiang, China</td>
<td>Alkaline, brackish</td>
<td>16S rRNA gene clone library</td>
</tr>
<tr>
<td>Mud volcano</td>
<td>Mud volcano</td>
<td>Salse di Nirano, Italy</td>
<td>Hydrocarbon rich, brackish</td>
<td>16S rRNA gene clone library</td>
</tr>
<tr>
<td>Mud volcano</td>
<td>Mud volcano</td>
<td>Lei-Gong-Huo, Taiwan</td>
<td>Hydrocarbon rich, Mn- and Fe-rich, moderately saline</td>
<td>16S rRNA gene clone library</td>
</tr>
<tr>
<td>Brackish environments</td>
<td>Estuary</td>
<td>Fujian, China</td>
<td>High CH$_4$ and SO$_4^{2-}$</td>
<td>16S rRNA and mcrA gene clone library</td>
</tr>
<tr>
<td>Marine environments</td>
<td>Seafloor sediment</td>
<td>Juan de Fuca Ridge, USA</td>
<td>High organic carbon</td>
<td>mcrA gene clone library</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2
Methanogens

ANME-2d

'M. oxyfera'

Ammonia oxidizing archaea / bacteria

Nitrite oxidizing bacteria

N\textsubscript{2}

N\textsubscript{3}^{-}

N\textsubscript{2}^{-}

N\textsubscript{3}^{-}

N\textsubscript{2}^{-}

NH\textsubscript{4}^{+}

Figure 4
Figure 4