Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems

James D. Flynn, a Hisako Hirayama, a Yasuyoshi Sakai, c Peter F. Dunfield, d © Martin G. Klotz, a Claudia Knief, f Huub J. M. Op den Camp, g Mike S. M. Jetten, h Valentina N. Khmelenina, i Yuri A. Trotsenko, h J. Colin Murrell, j Jeremy D. Semrau, j Mette M. Svenning, k FIFA Ya, S. X. Stein, l Nikos Kyripides, m Nicole Shapiro, m Tanja Woyke, m Françoise Bringel, m Stéphane Vuilleumier, h Alan A. DiSpirito, a Marina G. Kalyuzhnaya a

San Diego State University, Department of Biology, San Diego, California, USA a; Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan b; Division of Applied Life Sciences, Graduate School of Agriculture, Kyotou University, Kitasakawakishima, Sagiyo-ku, Japan c; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada d; Department of Microbiology, Genomics and the Environment, Université de Strasbourg, UMR 7156 CNRS, France e; Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, Michigan, USA f; Department of Arctic and Marine Biology, UiT, The Arctic University of Norway, Tromsø, Norway g; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada h; DOE Joint Genome Institute, Walnut Creek, California, USA i; Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands j; GK Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchina, Russian Federation k; School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom l; Institute of Crop Science and Resource Conservation—Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany m; Department of Microbiology, IWW, Faculty of Science, Radboud University, Nijmegen, The Netherlands n; GK Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchina, Russian Federation o; School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom p; Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, Michigan, USA q; Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan r; Division of Applied Life Sciences, Graduate School of Agriculture, Kyotou University, Kitasakawakishima, Sagiyo-ku, Japan s; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada t; Division of Math & Natural Sciences, Queens College in the City University of New York; Florhing, New York, USA u; Institute of Crop Science and Resource Conservation—Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany v; Department of Microbiology, IWW, Faculty of Science, Radboud University, Nijmegen, The Netherlands w; GK Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchina, Russian Federation x; School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom y; Institute of Crop Science and Resource Conservation—Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany z; Institute of Crop Science and Resource Conservation—Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany.

The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems.

Received 25 November 2015 Accepted 28 November 2015 Published 21 January 2016

Copyright © 2016 Flynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license. Address correspondence to Marina G. Kalyuzhnaya, mkalyuzhnaya@mail.sdsu.edu.

Microbial methane oxidation is one of the key drivers of oxygen consumption in marine sediments and the overlaying water column (1). Methanotrophic bacteria are the primary producers of many cold and hot seep ecosystems (2, 3). Here, we report three genome sequences of gammaproteobacterial methanotrophs isolated from three marine ecosystems. Methylobacter marinus A45 (a methanol-adapted strain, formerly Methylomonas methanica A4, ACM 4717) was isolated from sewage outfall sediment near Los Angeles, CA (4). Methylobacter sp. strain BBA5.1 was isolated from the surface layer of estuary sediment collected at low tide near Newport, Bay Estuary (CA) (5). Methylomarinum vadi IT-4 (= JCM 13665™ = DSM 18976™) was isolated from a

Methylobacter marinus A45 (a methanol-adapted strain, formerly Methylomonas methanica A4, ACM 4717) was isolated from sewage outfall sediment near Los Angeles, CA (4). Methylobacter sp. strain BBA5.1 was isolated from the surface layer of estuary sediment collected at low tide near Newport, Bay Estuary (CA) (5). Methylomarinum vadi IT-4 (= JCM 13665™ = DSM 18976™) was isolated from a

TABLE 1 General genome statistics and accession numbers

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequencing platform(s)</th>
<th>Genome assembly and annotation</th>
<th>Genome coverage (×)</th>
<th>Genome size (Mb)</th>
<th>No. of scaffolds (no. of contigs)</th>
<th>Core (accessory) metabolic pathways*</th>
<th>NCBI accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. marinus A45</td>
<td>Illumina</td>
<td>Velvet 1.1.05, AllPaths, Phrap 4.24, Prodigal 2.5</td>
<td>1,237</td>
<td>4.99</td>
<td>9 (49)</td>
<td>pMMO, pXmo, Mxa, XoxF1, XoxF2, H4F, H4MPT, FDH, RuMP, EMP, EDD, dPPP, PPP, pSC, TCA</td>
<td>ARVS000000000</td>
</tr>
<tr>
<td>Methylobacter sp. BBA5.1</td>
<td>Illumina, PacBio RS</td>
<td>AllPaths, Prodigal 2.5</td>
<td>290</td>
<td>5.07</td>
<td>87 (91)</td>
<td>pMMO, pXmo, Mxa, XoxF1, XoxF2, H4F, H4MPT, FDH, RuMP, EMP, EDD, dPPP, PPP, pSC, TCA</td>
<td>JQKS000000000</td>
</tr>
<tr>
<td>M. vadi IT-4</td>
<td>Illumina, PacBio RS</td>
<td>Prodigal 2.5</td>
<td>272</td>
<td>4.33</td>
<td>1 (1)</td>
<td>pMMO, Mxa, XoxF, H4F, H4MPT, FDH, RuMP, EMP, EDD, dPPP, PPP, pSC, TCA</td>
<td>JPON000000000</td>
</tr>
</tbody>
</table>

* dPPP, dissimilatory pentose-phosphate pathway; EDD, Entner-Doudoroff pathway; EMP, Embden-Meyerhof-Parnas pathway; FDH, formate dehydrogenase; H4F, folate-linked C4 transfer; H4MPT, methanopterin-linked C4 transfer; Mxa, PQP-linked methyl dehydrogenase; pMMO, membrane-bound methane monooxygenase; pSC, partial serine cycle; pXmo, methane/ammonia monooxygenase-related proteins of unknown function; PPP, pentose-phosphate pathway; RuMP, assimilatory ribulose monophosphate pathway; Xox, PQP2-linked methanol and formaldehyde dehydrogenases (i.e., no evidence for the glyoxylate regeneration pathway was found); TCA, tricarboxylic acid cycle.
microbial mat of a shallow submarine hydrothermal system near Taketomi Island, Okinawa, Japan (6).

DNA samples from the three strains were prepared using the standard phenol-chloroform method (7). DNA sequence data were obtained at the Joint Genome Institute using a combination of PacBio (8) and Illumina (9) technologies, and draft genome sequences were assembled. The computational tools used for genome sequencing and assembly are listed in Table 1.

All three sequenced marine methanotrophs are obligate methane and methanol utilizers. All three genomes harbor genes typical for type I methanotrophs, including genes encoding particulate methane monooxygenase (pmoA/C/B), the PQQ-dependent methanol dehydrogenases (mxaFI and multiple copies of xoxF), genes for tetrahydrodymethanopterin (H₂MPT)- and tetrahydrofolate (H₄F)-dependent C₄-transfer pathways, genes of the ribulose monophosphate pathway, including its phosphoketolase variant (10), and genes encoding a complete tricarboxylic acid (TCA) cycle and a partial serine cycle (10) (Table 1). The gpmABC genes clusters (11) linked to a distant homologue of the nitrate-nitrite transporter (nark) were found in the Methyllobacter sp. strain BB5.1 and M. marinus A45 genomes. A phosphoenolpyruvate carboxylase gene (ppc) was found in M. vadi IT-4 only. Genes encoding soluble methane monooxygenase, known glyoxylate regeneration pathways, and Rubisco (cbbL and cbbS) were not detected. Genes involved in ammonium and nitrate assimilation are present in all three genomes. The genomes of strains A45 and BBA5.1 contain all genes necessary to provide for urea hydrolysis and nitrogen fixation. M. vadi IT-4 has the potential for dissipatory nitrite reduction to nitric oxide, as suggested by the presence of nir genes. The NADH:ubiquinone reductase (H⁺)-translocating genes (nuoABCDEFGHIJKLMN) were identified in M. marinus A45 only. All strains possess genes encoding Na⁺-transporting NADH:ubiquinone oxidoreductase (nuqA/BCDEFGHIJKLMNOP), ubiquinol-cytochrome bc₁ complex, cytochrome b, cytochrome oxidase, cytochrome P450 and P460, and cytochrome d ubiquinol oxidase. Cytochrome bo, quinol oxidase was found in M. vadi IT-4 only. Both Methyllobacter species possess genes encoding the Na⁺-translocating ferredoxin:NAD⁺ oxidoreductase complex (nrfABCDGE). All genomes contain genes encoding pyruvate-ferredoxin/flavodoxin oxidoreductases, and all three strains possess ectoine biosynthesis genes.

The genome of M. marinus A45 includes a chromosomally integrated complete copy of a bacteriophage genome (predicted size, 65 kb) integrated in the chromosome, indicating the possibility of lysogenic infection in methanotrophic bacteria. These genomes provide a valuable resource to obtain new insights into environmental controls of fitness and diversity in methanotrophs, mechanisms of genetic exchange within methanotrophic communities, and the potential for the development of new genetic tools for methanotrophs.

Nucleotide sequence accession numbers. The genome sequences have been deposited in GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS
We thank all members of the Organization for Methanotroph Genome Analysis for collaboration (OMeGA) and Genoscope (France) for access to its MicroScope platform for comparative genome analysis (http://www.genoscope.cns.fr/agc/microscope/home/).

This report is based upon work supported by the National Science Foundation under award MCB-0842686 and by faculty start-up funds from San Diego State University to M. G. Kalyuzhnaya. Work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

FUNDING INFORMATION
The National Science Foundation (NSF) provided funding to Marina G. Kalyuzhnaya under grant number MCB-0842686. The U.S. Department of Energy (DOE) provided funding to Tanya Woyke under grant number DE-AC02-05CH11231. San Diego State University (SDSU) provided funding to Marina G. Kalyuzhnaya.

REFERENCES