Novel Concave Building Block for the Synthesis of Organic Hosts

Jan W. H. Smeets, a Rint P. Sijbesma, a Frank G. M. Niele, a Anthony L. Spek, a,b Wilbert J. J. Smeets, a,b and Roeland J. M. Nolte a

Laboratory of Organic Chemistry and Vakgroep Algemene Chemie, Afdeling Kristal en Structuurchemie, University of Utrecht, 3584 CH Utrecht, The Netherlands

Received September 29, 1986

Natural hosts frequently contain a cavity or cleft whose inner concave surface matches the convex surface of a guest. Recently, synthetic hosts that mimic this feature (cavitands) have been designed. If new and more elaborate host-guest systems are to be developed, versatile and readily accessible building blocks must be available. Here, we describe a novel building block, 2, that meets these requirements. Compound 2 contains two fused 2-imidazolidinone rings, which are flanked by two o-xylene units. Its overall shape is concave and its convex side is shielded by two phenyl substituents. The use of 2 in the synthesis of three new cavitands is demonstrated.

Diphenylglycoluril (1a) was treated with paraformaldehyde and NaOH in Me$_2$SO to yield the tetrahydroxy derivative 1b (85%). Refluxing 1b in benzene with 4 equiv of p-toluene-sulphonic acid gave 2a in 35% yield. Similarly, treatment of 1b with an excess of hydroquinone or 1,4-dimethoxybenzene in 1,2-dichloroethane gave 2b (75%) and 2c (50%), respectively. Molecular models indicate that the o-xylene units of 2 can have upward (u) or downward (d) orientations, leading to three possible conformers: uu, ud, or dd. Molecular mechanics calculations reveal that conformer uu has the lowest energy. For compound 2b an X-ray structure determination was performed. This structure determination (3) confirms the uu conformation of 2 in the solid state.

The 1H NMR spectrum of fully acetylated 2b in CD$_2$Cl$_2$ and in Me$_2$SO-d$_6$ displays one pair of well-defined doublets for the CH$_2$ protons at $\delta$ 5.05 and 3.85 ($J = 16$ Hz). The position and splitting pattern of the doublets did not change over a temperature range as large as -95 to 150 °C. This led us to believe that either one conformer (uu or dd) is present or that all three conformers interconvert rapidly. To solve this question we synthesized compound 2d. The (C$_2$H$_3$)$_2$N bridges of this compound do not allow for any other conformation than uu. As the 1H NMR spectra of 2d and its nonbridged analogue 2e show identical pairs of doublets for the CH$_2$N protons (±0.05 ppm), we conclude that compounds 2d also adopt the uu conformation in solution.

Basket-shaped cavitand 4 was prepared (75%) by treating 2b with 2 equiv of 1,11-dichloro-3,6,9-trioxadecane and K$_2$CO$_3$ in Me$_2$SO. The oxygen atoms of the urea units and the oxyethylene bridges form two receptor sites at the far ends of the molecule. These receptor sites bind alkali metal ions with affinities peaking for K$^+$. Cavitand 4 forms strong 1:1 complexes with protonated diamines e.g., [H$_2$N(CH$_2$)$_3$NH$_2$]$^+$. In these complexes the guest is wedged in between the o-xylene rings as is concluded from the observed upfield shifts (up to 1.5 ppm) of the guest CH$_2$ protons in the 1H NMR spectrum.

Reflexing 1b and hydroquinone (molar ratio 1:1) in 1,2-dichloroethane in the presence of 4 equiv of p-toluene-sulphonic acid produced cavitand 5 (3%), yield not optimized. This binding free energies of picrate salt guests of 4 at 25 °C in CHCl$_3$ (ΔG$^\circ$ [kcal mol$^{-1}$] for 1:1 complex): Li$^+$, 8.45; Na$^+$, 8.95; K$^+$, 11.45; Rb$^+$, 10.50; Cs$^+$, 9.25; NH$_4^+$, 9.50; [H$_2$N(CH$_2$)$_3$NH$_2$]$^+$, 15.0; [H$_2$N(CH$_2$)$_3$NH$_3$]$^+$, 16.0.
contains two diphenylglycoluril and two hydroquinone rings linked through eight methylene bridges. The void in 5 (2.5 × 2.0 Å) is not large enough to hold an organic guest. However, higher homologues of 5, e.g., those containing additional diphenylglycoluril and hydroquinone rings, do have large enough voids.

Starting from 2, hosts that a metal center next to a cavity are readily accessible. As an example, we prepared 6 by reacting 2b with Tos(OCH2CH2)2Cl and base in Me2SO, excess of benzimidazole (Bz) and NaH in DMF, and 1 equiv of RhCl3 in Me2SO (overall yield 70%). Compound 6 has two trans-coordinated Cl ligands, one being inside the cavity, the other outside. The binding and catalytic properties of hosts 4–6 are currently being investigated and will be published in forthcoming papers.

Acknowledgment. We thank Prof. Wiendelt Drenth for stimulating discussions.

Observation of a Nonconcerted Double Proton Transfer in the Solid State by 15N CPMAS NMR

H. H. Limbach,* B. Wehrle,† H. Zimmermann,* R. D. Kendrick,* and C. S. Yannoni†

IBM Almaden Research Center San Jose, California 95120-6099
Institut für Physikalische Chemie der Universität Freiburg i. Br., Albertstr. 21 D-7800-Freiberg, West Germany
Received February 18, 1986

We present here for the first time NMR spectroscopic evidence of a nonconcerted double proton transfer. The double proton motion studied occurs along slightly asymmetric double-minimum potentials in solid TTAA according to Scheme I. For H-chelates of the malonaldehyde type like TTAA, it has been very difficult to establish the double-minimum character of the proton potential using different spectroscopic techniques.* Including NMR,† Goedken et al.* have performed an X-ray crystallographic analysis of solid TTAA, have postulated the "diagonal" tautomerism 5 and 6 shown in Scheme I, and have further suggested that the degeneracy of this process is lifted due to a rhombic distortion of the unit cell. However, the X-ray method cannot reveal details of the potentials in solid TTAA according to Scheme I. For H-chelates in the Solid State by 15N CPMAS NMR

(1) (a) IBM Almaden Research Center. Permanent address: Institut für Physikalische Chemie der Universität Freiburg i. Br., Albertstr. 21, D-7800-Freiberg, West Germany.
(b) Institut für Physikalische Chemie der Universität Freiburg i. Br.
(c) Max Planck Institut für Medizinische Forschung, Heidelberg.
(d) IBM Almaden Research Center, San Jose, CA.
(2) TTAA = 1,8-dihydro-5,7,12,14-tetramethyldibenzo[6,1]-1,4,8,11-tetraaza­cyclotetradeca-4,6,11,13-tetraene-15N4 (tetramethylbenzotetraaza­[14]annulene).

Figure 1. 15N CPMAS NMR spectra of 95% 15N-enriched TTAA at 6.082 MHz as a function of temperature: 10-Hz line broadening, 1K–4K zero filling, 25-ns cross-polarization time, 0.001-Hz sweep width, 1.5-s repetition time, 9-μs 1H–1H pulses, quadrature detection, 1000 scans on the average; reference, external 15NH4NO3.