The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/16282

Please be advised that this information was generated on 2019-10-25 and may be subject to change.
1. POLYMERIZED VESICLES AND BI-LAYER LIPID MEMBRANES (BLMs). Janos H. Fendler, Syracuse University, Department of Chemistry, Syracuse, NY 13244-1200.

Single bilayer vesicles and bi-layer lipid membranes (BLMs) were prepared from \( [\text{C}_{15}\text{H}_{31}\text{C}_2\text{O}_2\text{(CH}_2\text{)}\text{H}_2\text{C}_6\text{H}_4\text{C}_2\text{H}_5 \text{N}^+ \text{CH}_3\text{CH}=\text{CH}_2 \text{Cl}^{-} \), \( [\text{C}_{18}\text{H}_{37}\text{N}^+ \text{CH}_3\text{C}_6\text{H}_4\text{CH}=\text{CH}_2 \text{Cl}^{-} \), \( [\text{C}_{18}\text{H}_{37}\text{N}^+ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{O}_2\text{(CH}_2\text{)}\text{H}_2\text{C}_6\text{H}_4\text{C}_2\text{H}_5 \text{N}^+ \text{CH}_3\text{CH}=\text{CH}_2 \text{Cl}^{-} \), and \( [\text{C}_{18}\text{H}_{37}\text{N}^+ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{O}_2\text{(CH}_2\text{)}\text{H}_2\text{C}_6\text{H}_4\text{NH}-\text{CH}_3\text{CH}=\text{CH}_2 \text{Cl}^{-} \). Irradiation with ultraviolet light led to the polymerization of these vesicles and BLMs. Polymerized vesicles and BLMs were found to be more stable than their unpolymerized counterparts. Properties of BLMs were monitored by simultaneous electrical (capacitance, voltage-dependent capacitance, conductance) and spectroscopic (intracavity laser adsorption; steady-state, and subnanosecond time-resolved fluorescence; and reflection) techniques.

2. EFFECT OF POLYMERIZATION ON PROPERTIES OF VESICLES DERIVED FROM ISOXYANO SURFACANTS. R.J.M. Nolte, Laboratory of Organic Chemistry, Padualaan 8, 3584 CH Utrecht, The Netherlands.

Vesicles have been synthesized from double chain surfactant molecules containing isocyanate functions. These functions can be polymerised with nickel caproate. The polymerisation process was followed by various techniques, including \( ^1\text{H}-\text{NMR} \), electron microscopy, differential scanning calorimetry, and fluorescence. The data indicate that on polymerisation the vesicle bilayer becomes more viscous and less polar. The lower polarity is partly due to the extrusion of water molecules.

The organised structure of a vesicle opens the possibility to control the course of a chemical reaction. Polymerized vesicles incorporating imidazolyl functions have been prepared and studied as chiral catalysts for the enantioselective hydrolysis of \( \text{L} \) and \( \text{D} \)-amino acid esters. Enantioselectivity ratios up to \( \text{k}_1/\text{k}_2 = 15 \) have been obtained.


In this work we have prepared two micelle forming polymericible quaternary ammonium salts bearing the double bond in the one case on the fatty head, and in the other at the end of the aliphatic chain. Furthermore the structure of the polymericizable group was slightly different in the two cases, i.e., \( \text{CH}_2=\text{CH}-\text{O}-(\text{C}=\text{O})- \) in the former and \( \text{CH}_2=\text{C}-(\text{O})-\text{O} \) in the latter. The polymerization was accomplished by UV-irradiation and the characterization of the products was achieved by fluorescence probing methods. It was found that the polymerization rate was very fast and practically identical in both cases. Micellar size before and after polymerization will be discussed, along with some observed special behavior of fluorescence quenching.