Maatregelen voor het elimineren en beheersen van invasieve exoten van EU-belong in Nederland

L. de Hoop, J.M.M. van der Loop, H.H. van Kleef, E. de Hullu & R.S.E.W. Leuven
Maatregelen voor het elimineren en beheersen van
invasieve exoten van EU-belong in Nederland

L. de Hoop¹,², J.M.M. van der Loop², H.H. van Kleef²,
E. de Hullu² & R.S.E.W. Leuven¹

13 oktober 2016

¹ Radboud Universiteit (Instituut voor Water en Wetland Research)
² Stichting Bargerveen

In opdracht van
Bureau Risicobeoordeling & Onderzoeksprogrammering
Nederlandse Voedsel- en Warenautoriteit (NVWA)
Reeks Verslagen Milieukunde

Verslagen Milieukunde 520

Titel: Maatregelen voor het elimineren en beheersen van invasieve exoten van EU-belang in Nederland

Auteurs: L. de Hoop, J. van der Loop, H.H. van Kleef, E. de Hullu en R.S.E.W. Leuven

Omslagfoto’s: Rode Amerikaanse rivierkreeft (© Foto: Saxifraga, Rudmer Zwerver)
(Ametikaanse brulkikker (© Foto: Wikimedia commons)
Kudzu (© Foto: Wikimedia commons)
Blauwband (© Foto: Wikimedia commons)

Projectmanager: Dr. P.D. (Ella) de Hullu, Stichting Bargerveen, e-mail: e.dehullu@science.ru.nl

Kwaliteitsborging: Dr. R.S.E.W. Leuven, Radboud Universiteit, e-mail: r.leuven@science.ru.nl

Projectnummer: Be 00235

Cliënt: Nederlandse Voedsel- en Warenautoriteit, Postbus 43006, 3540 AA Utrecht

Orders: Secretariaat afdeling Milieukunde, Faculteit der Natuurwetenschappen, Wiskunde
en Informatica, Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6525 AJ
Nijmegen, e-mail: secreas@science.ru.nl, o.v.v. Verslagen Milieukunde 520

Trefwoorden: Beheersmaatregelen, eliminatiemaatregelen, EU-verordening 1143/2014,
habitatiegenschappen, invasieve exoten, maatregelen ter voorkoming verspreiding
en vestiging, soorteigenschappen, Unielijst

Geprint op milieuvriendelijk papier

© 2016. Afdeling Milieukunde, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud
Universiteit, Heyendaalseweg 135, 6525 AJ Nijmegen.

Niets in deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt worden door middel van druk,
fotokopie, microfilm, of welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de houder
van het auteursrecht.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introductie</td>
<td>11</td>
</tr>
<tr>
<td>1.1</td>
<td>Achtergrond en probleemstelling</td>
<td>11</td>
</tr>
<tr>
<td>1.2</td>
<td>Onderzoeksdoelen</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Overzicht en samenhang van het onderzoek</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Methoden</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Literatuurstudie en data acquisitie</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Dataverwerking</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Soort- en habitatbeschrijving</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang</td>
<td>15</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Beheersmaatregelen voor indamming populaties</td>
<td>17</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Kansrijke maatregelen voor Nederland</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Amfibie – Amerikaanse brulkikker (Rana catesbeiana)</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Soort- en habitatbeschrijving</td>
<td>18</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Levenswijze</td>
<td>18</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Habitat</td>
<td>20</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Verspreidingsmechanismen</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang</td>
<td>20</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Biologisch</td>
<td>22</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Chemisch</td>
<td>23</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Fysiek</td>
<td>23</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Mechanisch</td>
<td>24</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Systeemgericht en weerbaarder maken habitats</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Beheersmaatregelen voor indamming populaties</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Kansrijke maatregelen voor Nederland</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Insect – Aziatische hoornaar (Vespa velutina)</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Soort- en habitatbeschrijving</td>
<td>30</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Levenswijze</td>
<td>30</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Habitat</td>
<td>32</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Verspreidingsmechanismen</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang</td>
<td>33</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Biologisch</td>
<td>34</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Chemisch</td>
<td>35</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Mechanisch</td>
<td>37</td>
</tr>
</tbody>
</table>
4.3 Beheersmaatregelen voor indamming populaties .. 38
4.4 Kansrijke maatregelen voor Nederland .. 39

5 Reptielen - Roodwangschildpad (Trachemys scripta elegans), geelbuikschildpad (Trachemys scripta scripta) & geelwangschildpad (Trachemys scripta troostii) 40

5.1 Soort- en habitatbeschrijving .. 40
 5.1.1 Levenswijze ... 40
 5.1.2 Habitat .. 42
 5.1.3 Verspreidingsmechanismen ... 42

5.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang 43
 5.2.1 Chemisch .. 43
 5.2.2 Fysiek ... 44
 5.2.3 Mechanisch ... 44

5.3 Beheersmaatregelen voor indamming populaties ... 48
5.4 Kansrijke maatregelen voor Nederland .. 48

6 Schaaldieren – Chinese wolhandkrab (Eriocheir sinensis), gevlekte Amerikaanse rivierkreeft (Orconectes limosus), geknobbelde Amerikaanse rivierkreeft (Orconectes virilis), Californische rivierkreeft (Pacifastacus leniusculus), rode Amerikaanse rivierkreeft (Procambarus clarkii), Marmerkreeft (Procambarus sp.) 50

6.1 Soort- en habitatbeschrijving .. 50
 6.1.1 Levenswijze ... 50
 6.1.2 Habitat .. 52
 6.1.3 Verspreidingsmechanismen ... 56

6.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang 56
 6.2.1 Biologisch .. 56
 6.2.2 Chemisch .. 62
 6.2.3 Fysiek ... 64
 6.2.4 Mechanisch ... 67
 6.2.5 Systeemgericht ... 71

6.3 Beheersmaatregelen voor indamming populaties ... 72
6.4 Potentieel kansrijke maatregelen voor Nederland ... 72

7 Terrestrische plant – Kudzu (Pueraria lobata) .. 75

7.1 Soort- en habitatbeschrijving .. 75
 7.1.1 Levenswijze ... 75
 7.1.2 Habitat .. 76
 7.1.3 Verspreidingsmechanismen ... 76
7.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang 77
 7.2.1 Biologisch .. 78
 7.2.2 Chemisch ... 80
 7.2.3 Fysiek .. 82
 7.2.4 Mechanisch ... 83
 7.3 Beheersmaatregelen voor indamming populaties ... 84
 7.4 Potentieel kansrijke maatregelen voor Nederland ... 84

8 Vis – Blauwband (Psuedorasbora parva) .. 86
 8.1 Soort- en habitatbeschrijving ... 86
 8.1.1 Levenswijze .. 86
 8.1.2 Habitat ... 88
 8.1.3 Verspreidingsmechanismen .. 88
 8.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang 88
 8.2.1 Biologisch .. 89
 8.2.2 Chemisch ... 90
 8.2.3 Fysiek .. 92
 8.2.4 Mechanisch .. 92
 8.2.5 Systeemgericht en weerbaarder maken habitats .. 94
 8.2.6 Tolereren .. 94
 8.3 Beheersmaatregelen voor indamming populaties ... 94
 8.4 Kansrijke maatregelen voor Nederland .. 94

9 Vogel – Heilige ibis (Threskiornis aethiopicus) ... 96
 9.1 Soort- en habitatbeschrijving ... 96
 9.1.1 Levenswijze .. 96
 9.1.2 Habitat ... 97
 9.1.3 Verspreidingsmechanismen .. 98
 9.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang 98
 9.2.1 Biologisch .. 99
 9.2.2 Mechanisch .. 100
 9.2.3 Systeemgericht .. 101
 9.2.4 Gecombineerde maatregelen .. 101
 9.3 Beheersmaatregelen voor indamming populaties ... 102
 9.4 Kansrijke maatregelen voor Nederland .. 102

10 Zoogdier – Muntjak (Muntiacus reevesi) .. 104
10.1 Soort- en habitatbeschrijving ... 104
10.1.1 Levenswijze ... 104
10.1.2 Habitat ... 105
10.1.3 Verspreidingsmechanismen ... 105
10.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang 106
10.2.1 Chemisch ... 106
10.2.2 Fysiek .. 107
10.2.3 Mechanisch .. 108
10.2.4 Systeemgericht en weerbaarder maken habitats .. 110
10.3 Beheersmaatregelen voor indamming populaties .. 111
10.4 Kansrijke maatregelen voor Nederland ... 111
11 Zoogdier – Wasbeer (Procyon lotor) ... 112
11.1 Soort- en habitatbeschrijving ... 112
11.1.1 Levenswijze ... 112
11.1.2 Habitat ... 113
11.1.3 Verspreidingsmechanismen ... 113
11.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang 114
11.2.1 Chemisch ... 114
11.2.2 Fysiek .. 115
11.2.3 Mechanisch .. 116
11.3 Beheersmaatregelen voor indamming populaties .. 117
11.4 Potentieel kansrijke maatregelen voor Nederland .. 117
12 Zoogdier – Siberische grondeekhoorn (Tamias sibericus) ... 119
12.1 Soort- en habitatbeschrijving ... 119
12.1.1 Levenswijze ... 119
12.1.2 Habitat ... 120
12.1.3 Verspreidingsmechanismen ... 120
12.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang 121
12.2.1 Chemisch ... 122
12.2.2 Fysiek .. 124
12.2.3 Mechanisch .. 124
12.3 Beheersmaatregelen voor indamming populaties .. 125
12.4 Potentieel kansrijke maatregelen voor Nederland .. 125
13 Conclusies en aanbevelingen ... 126
13.1 Beschikbaarheid wetenschappelijke informatie over beheer.......................... 126
13.2 Kansrijke maatregelen voor Nederland... 126
13.3 Maatwerk per situatie ... 127
13.4 Eenduidige terminologie .. 128
13.5 Benodigde kennisontwikkeling ... 128
14 Dankwoord ... 129
15 Referenties ... 130
Appendix 1 .. 152
Samenvatting

Sinds 1 januari 2015 is de EU-verordening voor invasieve exoten 1143/2014 van kracht. Centraal in de verordening staat een lijst met invasieve exoten van EU-belang (Unielijs) waarvoor uitroeings- en beheersverplichtingen gelden. De eerste Unielijs met 37 invasieve exoten is sinds 3 augustus 2016 van kracht. Voor de exoten van de Unielijs die momenteel al zijn gevestigd in Nederland moeten beheersplannen worden opgesteld waarbij een onderscheid is te maken tussen volledige eliminatie van kleine, lokale populaties en beperking van de ongewenste effecten op biodiversiteit en secundaire verspreiding van grote, wijdverspreide populaties.

Het voorliggende onderzoeksrapport bevat een overzicht van de beschikbare wetenschappelijke informatie over maatregelen voor het elimineren en beheersen van 17 invasieve exoten van de Unielijs. Het rapport geeft handvatten voor het selecteren van kansrijke maatregelen bij het opstellen van een beheerplan in Nederland. Hiervoor is wetenschappelijke informatie verzameld en beschreven over internationale ervaringen met het elimineren en beheersen van populaties. Het beheersen bestaat uit twee onderdelen: 1) het beperken van de populatieomvang en 2) het tot een minimum beperken van de secundaire verspreiding en vestiging vanuit bestaande populaties (indamming). Aanvullend is de toepasbaarheid geanalyseerd van de gerapporteerde eliminatie- en beheersmaatregelen voor de aanpak van de 17 invasieve exoten in Nederland.

Op volgorde van soortgroep is de informatie van de 17 onderzochte invasieve exoten van EU-belang weergegeven:

- één amfibie: Amerikaanse brulkikker (*Rana catesbeiana*);
- één insect: Aziatische hoornaar (*Vespa velutina*);
- drie reptielen: roodwangschildpad (*Trachemys scripta elegans*), geelbuikschildpad (*Trachemys scripta scripta*) en geelwangschildpad (*Trachemys scripta troostii*);
- zes zoetwater schaaldieren: Chinese wolhandkrab (*Eriocheir sinensis*), gevlekte Amerikaanse rivierkreeft (*Orconectes limosus*), geknobbelde Amerikaanse rivierkreeft (*Orconectes virilis*), Californische rivierkreeft (*Pacifastacus leniusculus*), rode Amerikaanse rivierkreeft (*Procambarus clarkii*) en marmerkreeft (*Procambarus sp.*);
- één terrestrische plant: kudzu (*Pueraria lobata*);
- één zoetwatervis: blauwband (*Pseudorasbora parva*);
- één vogel: heilige ibis (*Threskiornis aethiopicus*);
- drie zoogdieren: muntjak (*Muntiacus reevesi*), wasbeer (*Procyon lotor*) en Siberische grondeekhoorn (*Tamias sibericus*).

Negen soorten zijn al permanent in Nederland gevestigd. Van de acht soorten die nog niet permanent in Nederland zijn gevestigd, wordt verwacht dat zij zich in de toekomst in Nederland vestigen wanneer geen eliminatie- of beheersmaatregelen worden getroffen.

De gevonden wetenschappelijke informatie is per soort of soortgroep beschreven aan de hand van vier onderdelen: 1) een soort- en habitatbeschrijving, 2) gerapporteerde eliminatie- en beheersmaatregelen voor het beperken van de populatieomvang, 3) beheersmaatregelen voor het tot een minimum beperken van de verspreiding en vestiging vanuit bestaande populaties (indamming) en 4) kansrijke maatregelen voor Nederland.
De literatuurstudie toont dat niet voor alle invasieve exoten voldoende kwantitatieve informatie beschikbaar is met betrekking tot de effectiviteit van eliminatie- en beheersmaatregelen. Over het algemeen zijn de beschikbare maatregelen gericht op het biologisch, chemisch of mechanisch elimineren of verminderen van de populatieomvang. Voor enkele soorten zijn systeemgerichte en fysieke maatregelen gerapporteerd voor het tot een minimum beperken van vestiging en verspreiding vanuit bestaande populaties. Slechts enkele van alle beschreven maatregelen zijn kansrijk voor het elimineren en / of beheersen van de 17 invasieve exoten in Nederland. Weinig maatregelen resulteren in de volledige eliminatie van populaties. Dergelijke maatregelen zijn soms wel kansrijk voor populatiebeheersing van invasieve exoten. Daarnaast is eliminatie van invasieve exoten die wijdverspreid of regionaal zijn gevestigd in Nederland onwaarschijnlijk vanwege de omvang van de benodigde inspanning en kosten of bijzondere soort- of habitatkenmerken waardoor maatregelen onvoldoende effectief zijn.

De toepasbaarheid en kosteneffectiviteit van de beschreven maatregelen zijn in Nederlandse context afhankelijk van meerdere randvoorwaarden, zoals gebiedskenmerken (isolatie- en grootte van het gebied), neveneffecten op biodiversiteit, milieugevolgen, maatschappelijke acceptatie en potentieel juridische belemmeringen. De selectie van meest kansrijke (combinatie van) maatregel(en) vereist daarom maatwerk per situatie.

De keuze van in Nederland toepasbare en effectieve en maatregelen wordt bemoeilijkt door diverse kennisbilateralen. Voorbeelden daarvan zijn dat vaak niet bekend is welke kosten zijn verbonden aan maatregelen, gedurende welke tijd een beheersmaatregel effectief is en in welke mate met de betreffende maatregelen de gestelde doelen in de EU-verordening worden bereikt. Daarnaast is ook aandacht vereist voor de monitoring van langetermijneffecten van maatregelen en de rapportage van de effectiviteit van eliminatie- en beheersmaatregelen.
1 Introductie

1.1 Achtergrond en probleemstelling

Enkele verplichtingen in de EU-verordening zijn gericht op het uitroeien en beheersen van invasieve exoten:

a) uiterlijk drie maanden na het verzenden van de kennisgeving van vroegtijdige detectie (van de introductie of aanwezigheid van voor de Unie zorgwekkende invasieve uitheemse soorten) aan de Commissie nemen de lidstaten uitroeingsmaatregelen (Artikel 17.1);

b) indien op basis van degelijk wetenschappelijk bewijs geen uitroeingsmaatregelen worden uitgevoerd, beschikken de lidstaten binnen 18 maanden na opname van een invasieve uitheemse soort in de Unielijst over doeltreffende beheersmaatregelen (Artikel 18.1). Deze maatregelen zijn “evenredig met gevolgen voor het milieu en afgestemd op specifieke omstandigheden van de lidstaten, zijn gebaseerd op een kosten-batenanalyse en omvatten, voor zover haalbaar, herstelmaatregelen.” (Artikel 19.1);

c) de beheersmaatregelen bestaan uit “dodelijke of niet-dodelijke fysieke, chemische of biologische maatregelen om een populatie van een invasieve uitheemse soort uit te roeien, te beheersen of in te dammen. De beheersmaatregelen omvatten, waar passend, maatregelen om de veerkracht van het ontvangende ecosysteem ten aanzien van bestaande en toekomstige invasies te versterken.” (Artikel en 19.2).

Het aanvragen van derogatie (afwijken van de uitroeingsplicht in artikel 17.1) aan de Europese Commissie is alleen nodig voor populaties die na vaststelling van de Unielijst Nederland zijn binnengekomen en gevestigd. Hiervoor is tevens wetenschappelijk aangetoond dat eliminatie technisch, kosteneffectief of vanwege de omvang van neveneffecten niet mogelijk is.

Voor de exoten van EU-belang die momenteel al zijn gevestigd in Nederland worden beheersplannen opgesteld. Hierbij is een onderscheid te maken tussen kleine, lokale populaties waarvoor volledige eliminatie mogelijk is en grote, wijdverspreide populaties waarvoor het van belang is dat het effect op de omgeving en de secundaire verspreiding wordt beperkt.

In opdracht van Bureau Risicobeoordeling en Onderzoeksprogrammering (BuRO) van de Nederlandse Voedsel- en Warenautoriteit (NVWA) is het voorliggende onderzoeksproject gericht op het wetenschappelijk onderbouwen van beschikbare maatregelen voor het elimineren en beheersen van 17 invasieve exoten van EU-belang. Het rapport geeft handvatten voor het selecteren van maatregelen voor het opstellen van een beheerplan in Nederland.
1.2 Onderzoeksdoelen

De hoofddoelen van dit onderzoeksproject zijn:
1. het verzamelen en beschrijven van wetenschappelijke informatie over resultaten van eliminatie- en beheersmaatregelen voor het beperken van de populatieomvang en beheersmaatregelen voor het tot een minimum beperken van de secundaire verspreiding en vestiging vanuit bestaande populaties (indamming) van 17 invasieve exoten van EU-belang (Tabel 2.1);
2. het analyseren van de toepasbaarheid van gerapporteerde eliminatie- en beheersmaatregelen voor de aanpak van deze invasieve exoten in Nederland.

1.3 Overzicht en samenhang van het onderzoek

Meerdere fases zijn doorlopen voor alle 17 invasieve exoten van EU-belang (Figuur 1.1). In Fase 1 is een literatuurstudie uitgevoerd naar nationaal en internationaal gerapporteerde maatregelen voor het elimineren en beheren van de soort. Aanvullend is informatie verzameld over de specifieke soort- en habitatieigenschappen. In Fase 2 zijn matrixen opgesteld voor een overzichtelijke weergave van soort- en habitatieigenschappen en het succes van gerapporteerde maatregelen. De opbouw van deze tabel was voor elke soort afhankelijk van de gevonden informatie in de literatuur. Het invullen van de matrixen en de bijbehorende beschrijving van maatregelen is uitgevoerd in Fase 3, waarna de kansrijke maatregelen voor Nederland zijn beschreven in Fase 4. De samenhang tussen de verschillende onderdelen van het onderzoeksproject is schematisch weergegeven in Figuur 1.1. Hoofdstuk 2 beschrijft de gebruikte methoden. De opeenvolgende hoofdstukken zijn toegedeeld aan de invasieve exoten op volgorde van soortgroep en wetenschappelijke soortnaam (Tabel 2.1).
2 Methoden

2.1 Literatuurstudie en data acquisitie

Tabel 2.1 toont een overzicht van de 17 soorten waarvoor een literatuurstudie is uitgevoerd naar de maatregelen voor het elimineren en beheersen van populaties in Nederland. In het kader van dit rapport is het beheersen van soorten opgedeeld in twee onderdelen: 1) het beperken de populatieomvang en 2) het tot een minimum beperken van de secundaire verspreiding en vestiging vanuit bestaande populaties (indamming). Alle soorten in Tabel 2.1 staan op de Unielijst waarvoor eliminatie- en beheersverplichtingen gelden. Acht soorten zijn nog niet permanent in Nederland gevestigd. Hiervan wordt verwacht dat deze zich in de toekomst Nederland vestigen en waarop dan maatregelen moet worden toegepast.

Tabel 2.1: Invasieve exoten van EU-belang waarvoor in het voorliggende rapport een literatuur studie is uitgevoerd.

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Wetenschappelijke soortnaam</th>
<th>Nederlandse soortnaam</th>
<th>Soortgroep</th>
<th>Gevestigd in NL?</th>
<th>Technisch elimineerbaar?</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Rana catesbeiana</td>
<td>Amerikaanse brulkikker</td>
<td>Amfibie</td>
<td>Nee</td>
<td>Ja</td>
</tr>
<tr>
<td>4</td>
<td>Vespa velutina</td>
<td>Aziatische hoornaar</td>
<td>Insect</td>
<td>Nee</td>
<td>Nee</td>
</tr>
<tr>
<td>5</td>
<td>Trachemys scripta elegans</td>
<td>Roodwangschildpad</td>
<td>Reptiel</td>
<td>Nee</td>
<td>Ja</td>
</tr>
<tr>
<td>5</td>
<td>Trachemys scripta scripta</td>
<td>Geelbuikschildpad</td>
<td>Reptiel</td>
<td>Nee</td>
<td>Ja</td>
</tr>
<tr>
<td>5</td>
<td>Trachemys scripta troostii</td>
<td>Geelwangschildpad</td>
<td>Reptiel</td>
<td>Nee</td>
<td>Ja</td>
</tr>
<tr>
<td>6</td>
<td>Erinocheir sinensis</td>
<td>Chinese wolhandkrab</td>
<td>Schaaldier</td>
<td>Wijdverspreid</td>
<td>Nee</td>
</tr>
<tr>
<td>6</td>
<td>Orconectes limosus</td>
<td>Geknobbelde Amerikaanse rivierkreeft</td>
<td>Schaaldier</td>
<td>Wijdverspreid</td>
<td>Nee</td>
</tr>
<tr>
<td>6</td>
<td>Orconectes virilis</td>
<td>Geknobbelde Amerikaanse rivierkreeft</td>
<td>Schaaldier</td>
<td>Enkele locaties</td>
<td>Nee</td>
</tr>
<tr>
<td>6</td>
<td>Pacifastacus leniusculus</td>
<td>Californische rivierkreeft</td>
<td>Schaaldier</td>
<td>Enkele locaties</td>
<td>Nee</td>
</tr>
<tr>
<td>6</td>
<td>Procambarus clarkii</td>
<td>Rode Amerikaanse rivierkreeft</td>
<td>Schaaldier</td>
<td>Regionaal</td>
<td>Nee</td>
</tr>
<tr>
<td>6</td>
<td>Procambarus sp.</td>
<td>Marmerkreeft</td>
<td>Schaaldier</td>
<td>Enkele locaties</td>
<td>Nee</td>
</tr>
<tr>
<td>7</td>
<td>Pueraria lobata</td>
<td>Kudzu</td>
<td>Terrestrische plant</td>
<td>Nee</td>
<td>Ja</td>
</tr>
<tr>
<td>8</td>
<td>Pseudorasbora parva</td>
<td>Blauwband</td>
<td>Vis</td>
<td>Regionaal</td>
<td>Nee</td>
</tr>
<tr>
<td>9</td>
<td>Threskiornis aethiopicus</td>
<td>Heilige ibis</td>
<td>Vogel</td>
<td>Enkele locaties</td>
<td>Ja</td>
</tr>
<tr>
<td>10</td>
<td>Muntiacus reevesi</td>
<td>Muntjak</td>
<td>Zoogdier</td>
<td>Nee</td>
<td>Ja</td>
</tr>
<tr>
<td>11</td>
<td>Procyon lotor</td>
<td>Wasbeer</td>
<td>Zoogdier</td>
<td>Nee</td>
<td>Nee</td>
</tr>
<tr>
<td>12</td>
<td>Tamias sibericus</td>
<td>Siberische grondeekhoorn</td>
<td>Zoogdier</td>
<td>Regionaal</td>
<td>Ja</td>
</tr>
</tbody>
</table>

*Volgens Verbrugge et al. (2015).

Twee zoekmachines (Google Scholar en Web of Science) zijn gebruikt om wetenschappelijke literatuur (peer reviewed artikelen, rapporten en proefschriften) te verzamelen via de digitale bibliotheekfaciliteiten van de Radboud Universiteit, diverse ‘open access’ faciliteiten en ResearchGate. In aanvulling daarop zijn via PiCarta relevante boeken en rapporten verzameld die beschikbaar waren in bibliotheken van Nederlandse universiteiten. Per soort zijn vijf zoekopdrachten met meerdere zoektermen uitgevoerd met de zoekmachines (Tabel 2.2). Deze termen waren gerelateerd aan het elimineren of beheersen van invasieve exoten. Per zoekopdracht zijn, vanwege tijdrestricities, de eerste 30 hits geëvalueerd om artikelen of rapporten te selecteren die resultaten rapporteerden over uitgevoerde maatregelen tegen de invasieve exoot. Zie voor een voorbeeld van de
resultaten (het aantal hits en potentieel bruikbare informatiebronnen voor de schaaldieren) Appendix 1.

Tabel 2.2: Overzicht van gebruikte zoekmachines en zoektermen per soort.

<table>
<thead>
<tr>
<th>Zoekmachine</th>
<th>Zoekstrategie</th>
<th>Zoektermen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Scholar</td>
<td>‘Met alle woorden:’</td>
<td>Wetenschappelijke soortnaam, uitroeien, uitroeien, bestrijden, beheersen, beheer, preventie, maatregel, risicobeoordeling</td>
</tr>
<tr>
<td></td>
<td>& ‘Met tenminste 1 van de woorden:’</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>uitroeien, uitroeien, bestrijden, bestrijding, beheersen, beheer, preventie, maatregel, risicobeoordeling</td>
</tr>
<tr>
<td>Google Scholar</td>
<td>‘Met alle woorden:’</td>
<td>Wetenschappelijke soortnaam, management</td>
</tr>
<tr>
<td></td>
<td>& ‘Met tenminste 1 van de woorden:’</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>control, eradication, prevention</td>
</tr>
<tr>
<td>Web of Science</td>
<td>‘Topic’ ^2</td>
<td>Wetenschappelijke soortnaam AND eradicat*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetenschappelijke soortnaam AND control measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetenschappelijke soortnaam AND prevent*</td>
</tr>
</tbody>
</table>

^2 Resultaten gesorteerd op relevantie.

Artikelen en rapporten waarnaar is geraffereerd in de gevonden informatiebronnen zijn eveneens geëvalueerd op potentieel nieuwe informatie over de desbetreffende invasieve exoten. Voor de beschrijving van soort- en habitat eigenschappen is aanvullend informatie gebruikt uit NOBANIS factsheets en boeken. Daarnaast is gebruik gemaakt van beschikbare Nederlandse en buitenlandse risicobeoordelingen van de invasieve exoten.

Alle verzamende wetenschappelijke literatuur is geanalyiseerd voor informatie over toegepaste maatregelen voor het elimineren of beheersen van de 17 invasieve exoten uit Tabel 2.1. Voor invasieve exoten die nog niet actief zijn bestreden of waarvoor weinig tot geen maatregelen zijn gerapporteerd, zijn maatregelen geanalyseerd die zijn uitgevoerd bij verwante soorten. Dit was onder andere het geval bij de Siberische grondeekhoorn en de Aziatische hoornaar.

2.2 Dataverwerking

De gevonden informatie is per soort of soortgroep beschreven in de hoofdstukken 3 – 12. Daarbij is ingegaan op de volgende aspecten: soort- en habitatbeschrijving (§2.2.1), eliminatie- en beheersmaatregelen voor het beperken van de populatieomvang (§2.2.2), beheersmaatregelen voor het tot een minimum beperken van de secundaire verspreiding en vestiging vanuit bestaande populaties (indamming) (§2.2.3) en de kansrijke maatregelen voor Nederland (§2.2.4). De beheersmaatregelen voor het beperken van de populatieomvang en het voorkomen van secundaire verspreiding en vestiging zijn voor elke soort apart beschreven. Vanwege grote overeenkomsten tussen soort- en habitatkenmerken en toegepaste eliminatie en beheersmaatregelen bevatten twee hoofdstukken een beschrijving van meerdere soorten. Dit geldt voor de exotische schaaldieren (vijf soorten kreeften en een krab) en schildpadden (drie ondersoorten).

2.2.1 Soort- en habitatbeschrijving

Informatie over de levenswijze van de invasieve exoot is beknapt weergegeven in een tabel met een korte toelichting van relevante onderdelen in de tekst. Hierbij is vooral aandacht besteed aan soortinformatie die relevant is voor het succes van eliminatie- en beheersmaatregelen, zoals de reproductiecapaciteit, voortplantingsperiode, zichtbaarheid in het habitat en tolerantie voor bepaalde fysisch-chemische factoren. Daarnaast is ingegaan op de omvang van de vestiging van de soort in Nederland en de verspreiding van individuen, zoals het type medium (water, land, lucht) en de dispersiesnelheid. Een exoot is pas gevestigd als deze levensvatbare nakomelingen produceert waardoor de soort waarschijnlijk langdurig kan overleven. Voor alle soorten is deze informatie
verkregen uit de expertpanelbeoordelingen van Verbrugge et al. (2015). Ten slotte is een korte opsomming toegevoegd van soorteigenschappen die naast de invloed van omgevingsfactoren kan bijdragen aan de populatiegroei van de exoot.

De tabel met soortspecifieke informatie is aangevuld met habitatspecifieke gegevens, zoals een korte omschrijving van het habitat in het oorspronkelijke en Nederlandse verspreidingsgebied en de karakterisering van het habitat, bijvoorbeeld de oppervlakte en mate van isolatie en begroeiing van het systeem.

De soort- en habitatspecifieke informatie is waar mogelijk gekwantificeerd. Een classificatiesysteem met + en - werd gebruikt indien alleen kwalitatieve of semi-kwantitatieve informatie beschikbaar was. Dit was alleen het geval bij de schaaldieren. Aanvullend is een korte beschrijving van de natuurlijke verspreiding en verspreiding door menselijk handelen toegevoegd.

2.2.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang

Per soort of soortgroep is een overzicht opgesteld van de gevonden eliminatie- en beheersmaatregelen voor het beperken van de populatieomvang die zijn gerapporteerd in eerdere studies. Deze matrix maakt inzichtelijk welke maatregelen

1. zijn toegepast in veldexperimenten of tijdens regulier beheer (praktijkervaring);
2. zijn uitgevoerd als experiment in een gereguleerde omgeving (laboratorium of mesocosm);
3. zijn beschreven op basis van soort- en habitatkennis zonder resultaten van praktijkonderzoek (expert judgement) (Tabel 2.3).

Aanvullend is voor deze matrix een inschatting gemaakt hoe kansrijk een maatregel was in de eerdere studies in het bereiken van 1) eliminatie van een populatie, 2) beperking van de populatieomvang (beperken schade, in tabellen aangegeven als ‘↓ populatiegrootte’) of 3) indamming van een populatie (tot een minimum beperken van de verspreiding, in tabellen aangegeven als ‘↓ verspreiding’, zie §2.2.3) van de desbetreffende invasieve exoot. Voor deze categorieën geldt:

- kansrijk (groen): de maatregel resulteert in eliminatie van een populatie op korte termijn (direct na toepassing van de maatregel), grote afname van de populatieomvang of grotendeels de indamming van de populatie;
- deels kansrijk (oranje): de maatregel resulteert in gedeeltelijke eliminatie van een populatie op korte termijn (direct na toepassing van de maatregel), matige afname van de populatieomvang of matige indamming van de populatie;
- niet kansrijk (rood): de maatregel resulteert in weinig tot geen eliminatie van een populatie, weinig tot geen afname van de populatieomvang of weinig tot geen indamming van de populatie;
- niet beschikbaar of niet van toepassing (wit): voor deze maatregel is geen gerapporteerde literatuur gevonden over eliminatie of beheersing (verminderen populatieomvang of indamming populatie).
Tabel 2.3: Legenda van de matrix met het succes van de eliminatie- en beheersmaatregelen en het type informatie waarop dit is gebaseerd.

<table>
<thead>
<tr>
<th>Legenda</th>
<th>Veldexperimenten / praktijkervaring</th>
<th>Laboratorium / mesocosm experimenten</th>
<th>Soort- en habitatkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansrijk</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Deels kansrijk</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Niet kansrijk</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Niet beschikbaar</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
</tbody>
</table>

Voor alle maatregelen is in de matrix tevens een onderscheid gemaakt van de kansrijkheid op basis van een lokale (één locatie / een specifieke casus) en nationale toepassing in de praktijk of op basis van theoretische kennis. Bij meerdere studies per maatregel en wisselende successen is op basis van deskundigenoordeel een inschatting gemaakt van de gemiddelde kansrijkheid van de maatregel. Hierbij is op basis van de beschikbare informatie een afweging gemaakt tussen relevante factoren voor het succes van de maatregel, zoals de omvang van de uitgevoerde maatregelen, de isolatie van het gebied waar de maatregel is uitgevoerd en de populatiegrootte van de invasieve exoot waarop de maatregel van toepassing was.

Aanvullend is een beschrijving toegevoegd van de in eerdere studies uitgevoerde eliminatie- en beheersmaatregelen waarin, indien bekend, de volgende informatie is verwerkt:

- korte omschrijving maatregel of combinatie van maatregelen per categorie:
 - biologisch (vb. het inzetten van predatoren of ziekteverwekkers);
 - chemisch (vb. het gebruik van biociden of soortspecifieke lokstoffen als feromonen);
 - fysiek (vb. plaatsen barrières of droogleggen wateren);
 - mechanisch (vb. zetten van vallen, gebruiken graafmachines of geweren);
 - systeemgericht (vb. faciliteren concurrenten of predatoren);
 - tolereren.
- gebiedsinformatie;
- gebruikte middel(en);
- slagingssucces op korte termijn (direct na uitvoering maatregel) en lange termijn (minimaal één groeiiseizoen na uitvoering maatregel);
- neveneffecten voor de biodiversiteit;
- kosten;
- mate van herkolonisatie;
- randvoorwaarden voor succes of mogelijke belemmeringen, zoals weersomstandigheden, mate van begroeiing, benodigde combinatie met andere maatregelen.

Het doel van systeemgerichte maatregelen is het weerbaarder maken van een habitat of ecosystems voor schade van invasieve exoten. Het is ook mogelijk dat bewust is gekozen om geen maatregelen toe te passen, ofwel om de invasieve exoot te tolereren. Daarbij is vaak de verwachting dat de ongewenste effecten van deze invasieve exoten na verloop van tijd weer verminderen door bijvoorbeeld adaptatie van inheemse soorten of verspreiding van ziekteverwekkers.

Landschappelijke randvoorwaarden voor uitvoering van maatregelen zijn alleen in beperkte mate als criterium meegenomen voor de categorisering van de gerapporteerde maatregelen, omdat deze voorwaarden per situatie verschillen. De kosteneffectiviteit en het maatschappelijke- en juridische kader van maatregelen zijn niet meegenomen in deze rapportage omdat deze aspecten buiten de opdrachtverlening vallen. Hiervoor zijn scenarioanalyses op nationale schaal vereist en zijn bijvoorbeeld gegevens nodig van de kosten van maatregelen in relatie tot de omvang van de schade.
Deze informatie is niet of onvoldoende beschikbaar voor veel invasieve soorten en maatregelen. Voor een evaluatie van het juridische kader voor de eliminatie en het beheer van invasieve exoten wordt onder andere verwezen naar (De Hoop et al., 2015).

2.2.3 Beheersmaatregelen voor indamming populaties
Per soort of soortgroep is het succes beschreven van beheersmaatregelen voor het tot een minimum beperken van secundaire verspreiding en vestiging (indamming) van de invasieve exoot vanuit bestaande populaties voor zo ver informatie over dergelijke maatregelen beschikbaar is. Indien beschikbaar zijn ook maatregelen beschreven voor het verhinderen van de introductie van de invasieve exoten in Nederland. Hiervoor is de indeling van de maatregelen als in §2.2.2 gebruikt.

2.2.4 Kansrijke maatregelen voor Nederland
Van de gerapporteerde kansrijke eliminatie- en beheersmaatregelen bij de aanpak van invasieve exoten is de toepasbaarheid in Nederland nader beschreven. De mate van toepasbaarheid is gerelateerd aan de beschikbaarheid van de technische middelen, de praktische uitvoerbaarheid en de consequenties voor de omgeving in Nederland. Daarbij zijn onzekerheden en kennislacunes toegelicht en is aangegeven waar rekening mee dient te worden gehouden bij de uitvoering van maatregelen in Nederland. Extrapolatie van resultaten van maatregelen die zijn uitgevoerd in een laboratorium of mesocosm experimenten of op basis van theoretische soort- en habitatkennis brengen bijvoorbeeld meer onzekerheden met zich mee dan uitkomsten van veldstudies.
3 Amfibie – Amerikaanse brulkikker (*Rana catesbeiana*)

3.1 Soort- en habitatbeschrijving

![Amerikaanse brulkikker (*Rana catesbeiana*)](image)

Figuur 3.1: Amerikaanse brulkikker (*Rana catesbeiana*) (© Foto: Wikimedia commons).

3.1.1 Levenswijze

De Amerikaanse brulkikker is groter dan inheemse kikkersoorten in Europa. Volwassen kikkers hebben een lichaamslengte tot 22 cm en kunnen meer dan 500 gram wegen waarbij de vrouwtjes iets groter zijn (Jooris, 2005). De kikkers hebben een robuust lijf met een plat hoofd en gladde huid met kleine bultjes (Adriaens *et al.*, 2013). De Amerikaanse brulkikker onderscheidt zich van de Europese groene kikkers door het ontbreken van de dorsolaterale ruglijsten en de aanwezigheid van een groot trommelvlies (Jooris, 2005). Vrouwtjes zijn van mannetjes te onderscheiden door hun geelgekleurde keel (Stumpel T., 2006). De kleur van larven varieert van bruin tot olijfgroen op de rug en wit tot geel op de buik (Adriaens *et al.*, 2013). De kikkerlarven worden gemiddeld 16,7 cm lang met een gewicht
van 47 gram (Jooris, 2005). Amerikaanse brulkikkers ontwikkelen van larve tot metamorf (adult) binnen gemiddeld twee jaar (Pearl et al., 2004).

Tabel 3.1: Soort- en habitat eigenschappen van de Amerikaanse brulkikker.

<table>
<thead>
<tr>
<th>Eigenschap</th>
<th>Amerikaanse brulkikker (Rana catesbeiana)</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengte geslachtsrijp individu</td>
<td>123 -125 mm</td>
<td>1</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>7 – 10 jaar</td>
<td>2</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Paringstijd</td>
<td>Late lente, vroege zomer</td>
<td></td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Geslachtsrijpe leeftijd</td>
<td>3 - 4 jaar</td>
<td></td>
</tr>
<tr>
<td>Aantal eieren per legsel</td>
<td>10.000 tot 25.000</td>
<td>4</td>
</tr>
<tr>
<td>Uitkomen van de eieren</td>
<td>4 dagen</td>
<td>3</td>
</tr>
<tr>
<td>Aantal legels per jaar</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Beide</td>
<td>6</td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Lange voortplantingsperiode, veel nakomelingen</td>
<td>5</td>
</tr>
<tr>
<td>Vooedselvoorkeur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larven</td>
<td>Fytoplankton, ongewervelden</td>
<td>3</td>
</tr>
<tr>
<td>Adulten</td>
<td>Amfibieën, knaagdieren, ongewervelden, vissen</td>
<td>3</td>
</tr>
<tr>
<td>Vestiging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Afwezig in Nederland, incidenteel gemeld</td>
<td>6, 7</td>
</tr>
<tr>
<td>Territoriaal</td>
<td>Ja, maar grootte territorium onbekend</td>
<td>3, 8</td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Actief</td>
<td>6</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td>Water en land</td>
<td>6</td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td>1,5 km/jaar</td>
<td>9, 10</td>
</tr>
<tr>
<td>Predatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adulten</td>
<td>Slangen, schildpadden, katten, stinkdieren, (roof)vogels, kannibalisme</td>
<td>2, 5, 8, 11, 12</td>
</tr>
<tr>
<td>Larven</td>
<td>Libellen, bloedzuigers</td>
<td>2, 5, 8, 11, 12</td>
</tr>
<tr>
<td>Natuurlijk verspreidingsgebied</td>
<td>Rivieren, meren, moerassen, vijvers en poelen</td>
<td>13-15</td>
</tr>
<tr>
<td>Vegetatievoorkeur</td>
<td>Dichte vegetatie zowel in het water als op oers</td>
<td>3, 6</td>
</tr>
<tr>
<td>Potentiële verspreidingsgebied NL</td>
<td>Diverse watertypen</td>
<td>3, 6</td>
</tr>
<tr>
<td>Natura 2000-gebied</td>
<td>Alle</td>
<td>3, 6</td>
</tr>
</tbody>
</table>

3.1.2 Habitat
De Amerikaanse brulkikker leeft in diverse watertypen in het natuurlijk verspreidingsgebied, zoals traag stromende rivieren, meren, moerassen, vijvers en poelen (Clarkson & deVos Jr, 1986; Jacob et al., 2007). De soort is warmte minnend en komt niet voor in gebieden met zeer koude winters (< -20°C) (Ficetola et al., 2007a). De soort koloniseert snel gebieden met veel neerslag gedurende de winter en zomer, een hoge maximum temperatuur en waarin verstoringsactiviteiten aanwezig zijn (Lillywhite, 1970; Adriaens et al., 2013). Adulten prefereren in de warme periode van het jaar poelen met troebel water en dichtbegroeide oeverzones (Clarkson & deVos Jr, 1986; Govindarajulu & Dodd, 2008). De diepte van het water of de dikte van het slib moeten afdoende zijn voor de bescherming van de kikker tegen uitdroging of bevriezing bij extreme temperaturen (Boone et al., 2004; Werner et al., 2007).

In België zijn meerdere populaties van de Amerikaanse brulkikker aanwezig. De meeste exemplaren komen voor in kleine ondiepe poelen zoals visvijvers. Deze wateren zijn over het algemeen troebel, voedselrijk en bevatten weinig ondergedoken vegetatie (Adriaens et al., 2013).

3.1.3 Verspreidingsmechanismen
Het natuurlijke verspreidingsgebied van de Amerikaanse brulkikker beslaat het oosten van Noord-Amerika tot aan de Rocky Mountains in het westen (Bury & Whelan, 1984; Lever, 2003). Ten westen van de Rocky Mountains is de soort in het begin van de 20e eeuw geïntroduceerd waar de soort nu ook invasief is (Jooris, 2005). Tijdens de afgelopen 40 jaar is de soort in veel delen van de wereld geïntroduceerd (Adriaens et al., 2013). Zo zijn in Europa meer dan 25 populaties geïntroduceerd in onder andere België, Duitsland, Engeland, Frankrijk, Griekenland, Italië en Nederland (Ficetola et al., 2007a; Ficetola et al., 2007b). In al deze landen kan de soort zich succesvol voortplanten (Stumpel, 1992; Adriaens et al., 2013).

De soort kan onopzettelijk worden geïntroduceerd via ontsnappingen vanuit (privé)collecties en via natuurlijke verspreiding vanuit gevestigde populaties (Verbrugge et al., 2015). Na introductie kan de soort zich met een snelheid van circa 1,5 km per jaar verspreiden over land en water (Adriaens et al., 2013).

3.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang
Voor het elimineren- en beheersen van de Amerikaanse brulkikker zijn meerdere maatregelen uitgevoerd en gerapporteerd (Tabel 3.2). De maatregelen zijn per categorie toegelicht. Over het algemeen geldt dat een gevestigde populatie zeer moeilijk tot helemaal niet te elimineren is, afhankelijk van de aanwezige landschapselementen (Schwalbe & Rosen, 1988; Doubledee et al., 2003; Govindarajulu et al., 2005). Hierdoor is snelle signalering en eliminatie van Amerikaanse brulkikkers noodzakelijk (Devisscher et al., 2012; Adriaens et al., 2013).
Tabel 3.2: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de Amerikaanse brulkikker.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referenties b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologisch</td>
<td>Predatie</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>Steriliseren</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>2</td>
</tr>
<tr>
<td>Chemisch</td>
<td>Bestrijdingsmiddelen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>3</td>
</tr>
<tr>
<td>Fysiek</td>
<td>Schermen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>2, 4, 6</td>
</tr>
<tr>
<td></td>
<td>Afshoch</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>2, 5, 10, 11</td>
</tr>
<tr>
<td></td>
<td>Droogleggen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>2, 7, 10</td>
</tr>
<tr>
<td></td>
<td>Eieren vernietigen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>2, 7</td>
</tr>
<tr>
<td>Mechanisch</td>
<td>Vangen - Fuiken</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>2, 8, 9</td>
</tr>
<tr>
<td></td>
<td>Vangen - Vallen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>3, 9</td>
</tr>
<tr>
<td></td>
<td>Vangen - Handvangst</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>2, 9</td>
</tr>
<tr>
<td>Systeemgericht</td>
<td>Weeraarder maken habitat</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>2, 7, 9</td>
</tr>
</tbody>
</table>

Legenda:

- **Kansrijk**: Veldexperimenten / praktijkervaring
- **Deels kansrijk**: Laboratorium / mesocosm experimenten
- **Niet kansrijk**: Soort- en habitatkennis
- **Niet beschikbaar**: NB

3.2.1 Biologisch

Predatoren
Het inzetten van snoeken is effectief gebleken in het verlagen van een Amerikaanse brulkikkerpopulatie in een oude viskwekerij in Balen, België (Jooris, 2005; Devisscher et al., 2012; Louette, 2012). In het tweejarige experiment zijn verschillende vijvers van ongeveer 2000 m² op vier manieren behandeld: 1) introductie van snoek en verwijdering van het visbestand door tijdelijke drooglegging van de vijver, 2) introductie van snoek en geen verwijdering van het visbestand, 3) geen introductie van snoek en verwijdering van het visbestand en 4) geen introductie van snoek en geen verwijdering van het visbestand (controle). Het aantal individuen van Amerikaanse brulkikker is viermaal onderzocht met twee dubbele schietfuiken per vijver. De kikkers herkoloniseerden drooggelegde vijvers relatief snel, waarschijnlijk door hun snelle voortplanting en meerdere legsels per jaar. De snoek had een gunstig effect op het aantal kikkerlarven, maar niet op het aantal adulten (Adriaens et al., 2010; Louette, 2012a). Na twee jaar bevatten de vijvers met snoek tot tien keer minder kikkerlarven dan de vijvers zonder snoek. Gesuggereerd werd dat naast de snoek ook een toenemend aantal ongewervelden, als libellen- en keverlarven, de kikkerlarven aten. De ongewervelden konden in aantal toenemen omdat de snoek predeerde op vissoorten als de zonnebaars en blauwband (Adams et al., 2003; Louette, 2012) (zie §3.2.5). Verwijdering van het visbestand alleen had geen effect op het aantal kikkerlarven. Vispopulaties herstelden zich na verloop van tijd waardoor het aantal ongewervelden laag bleef (Louette, 2012).

Het uitzetten van een predator als de snoek is bruikbaar voor het beheersen van de Amerikaanse brulkikker, maar niet voor volledige eliminatie van een vitale populatie (Louette, 2012). Deze maatregel is in kleine, geïsoleerde poelen makkelijk uitvoerbaar en goedkoop. Het biedt ook de mogelijkheid tot verbetering van de waterkwaliteit, omdat de snoek bodem woelende vissen zoals de zonnebaars eet (Skov & Nilsson, 2007; Middleton et al., 2010; Louette, 2012). In grotere, niet-geïsoleerde wateren is de maatregel niet effectief, omdat de snoek naar andere locaties kan verspreiden. Daarnaast kan de snoek op niet-doelsoorten, zoals beschermd vis- en amfibiesoorten prederen (Eby et al., 2006; Skov & Nilsson, 2007; Louette, 2012; Davies & Britton, 2015). Aanvullend is de methode in het verleden bruikbaar gebleken voor het beheersen van Amerikaanse brulkikker maar is volledige eliminatie van een vitale populatie niet bereikt (Louette, 2012).

Sterilisatie
Sterilisatie van is wellicht in de nabije toekomst mogelijk. Gesteriliseerde adulte brulkikkermannetjes planten zich niet meer voort, maar hebben nog steeds een sterk paringsinstinct. Hierdoor gaan zij alsnog de competitie aan met vruchtbare mannetjes. Aanvullend eten de gesteriliseerde mannetjes alsnog hun kleinere soortgenoten op. Al deze processen resulteren tot een afname van de populatieomvang (Devisscher et al., 2012). Het onderzoek naar de juiste werkwijze voor het steriliseren is echter nog in ontwikkeling. Zo is de dosering van het gebruikte sterilisatiemiddel (Bisazir, ofwel p,p-bis-(1-aziridinyl)-N-methylphosphinothioic amide, wat het sperma van het individu aantast) nog niet geoptimaliseerd voor gebruik bij Amerikaanse brulkikkers. Inmiddels wordt het middel wel effectief toegepast bij zeeprikken in Noord-Amerika (Bergstedt et al., 2003; Klassen et al., 2004; Young et al., 2004; Devisscher et al., 2012). De dosering voor zeeprikken (100 mg/kg Bisazir) is bij vier Amerikaanse brulkikkers ingespoten. Drie van de vier dieren stierven binnen een week als gevolg van de injectie waarna de dosering is gehalveerd. De individuen die deze lagere dosering ontvingen hebben de behandeling wel overleefd. Uit DNA-analyse van het sperma bleek de behandelde groep ten opzichte van de controle groep een statistisch significant hogere hoeveelheid beschadigd sperma te bezitten. Lagere concentraties (12,5 en 25 mg/kg) van Bisazir zijn ook op
effectiviteit getest maar tastten het sperma onvoldoende aan. Hierdoor is voorzichtig gesteld dat 50 mg/kg Bisazir de juiste dosering is voor sterilisatie van Amerikaanse brulkikkers. Nader onderzoek naar de effectiviteit en toxiciteit van het middel is echter nodig, omdat langetermijneffecten op het gestel van de brulkikker niet bekend zijn (Devisscher et al., 2012).

3.2.2 Chemisch

Bestrijdingsmiddelen
Bestrijdingsmiddelen hebben de potentie om de Amerikaanse brulkikker te elimineren of beheersen (Snow & Witmer, 2010). De effectiviteit van verschillende middelen zijn onder laboratoriumcondities getest op Amerikaanse brulkikkers. Hierbij zijn de kikkers besproeid met 4 ml van elk middel waarbij een cafeïneoplossing, chloroxylenol (actieve ingrediënt in het amfibieënbestrijdingsmiddel HopStop®) en rotenon gecombineerd met permethine, effectief bleken voor het doden van de kikkers (Figuur 3.2) (Pitt & Sin, 2004b, a; Pitt & Doratt, 2005; Snow & Witmer, 2010). De bestrijdingsmiddelen zijn echter niet soortspecifiek waardoor in de praktijk ook andere soorten worden aangetast, zoals inheemse amfibiesoorten. Daarnaast is doorvergiftiging in het ecosysteem niet uit te sluiten (Snow & Witmer, 2010; Devisscher et al., 2012). Tevens zijn de middelen chloroxylenol en rotenon momenteel niet toegestaan als bestrijdingsmiddel in Nederland (Europese Commissie, 2008a; UNEP, 2014). Voor het toepassen van deze stoffen is een ontheffing of vrijstelling van de Wet gewasbeschermingsmiddelen en biociden vereist (De Hoop et al., 2015).

Figuur 3.2. Geteste bestrijdingsmiddelen op Amerikaanse brulkikker (Snow & Witmer, 2010).

<table>
<thead>
<tr>
<th>Toxicant (concentration)</th>
<th>n</th>
<th>Deaths</th>
<th>Percent Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeine (10%)</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Chloroxylenol (5%)</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Stilbene (1%) and Permethrin (4.6%)</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Permethrin (4.8%)</td>
<td>5</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Rutenone (1%)</td>
<td>5</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Calcium hydroxide (6%)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Citric acid (16%)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Potassium bicarbonate (18%)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sodium bicarbonate (15%)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Control (water)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.2.3 Fysiek

Barrières
Om secundaire verspreiding van de Amerikaanse brulkikker tot een minimum te beperken kunnen barrières, zoals hekken of schermen, rondom een poel met een kikkerpopulatie worden geplaatst. Dit isoleert de kikkers van hun omgeving (Moler, 1994; Banks et al., 2000; Devisscher et al., 2012). Traditionele amfibieënschermen die in de bouw worden gebruikt en hoger zijn dan 1 meter volstaan om de kikkers te weren. Daarnaast is een doek bevestigd aan de onderste meter van een hek ook bruikbaar. Dit doek kan het beste aan de buitenzijde van het hek worden geplaatst en minimaal 10 cm ingegraven worden. Langs het scherm of hekwerk is het mogelijk om trechtervallen (emmers) in te graven om individuen te vangen (Moler, 1994; Devisscher et al., 2012). Zo zijn bij een populatie Amerikaanse brulkikkers in Baarlo (Nederland) schermen en trechtervallen geplaatst. Hiermee was het mogelijk om de populatie adulten te decimeren, echter voor volledige eliminatie van de soort waren aanvullende methoden nodig zoals het droogzetten van wateren (Creemers, 2011; Devisscher et al., 2012).
3.2.4 Mechanisch

Afschot
Het is mogelijk om adulte en (grottere) metamorfe individuen van de Amerikaanse brulkikker gericht af te schieten (Kahrs, 2006). Dit wordt vergemakkelijkt door gebruik te maken van de lichtgevoeligheid (tijdelijke verlamming wanneer zij in een lichtbundel kijken) van de Amerikaanse brulkikker (Moissonnier et al., 2007b). Afschot kan het beste een half uur na zonsondergang worden uitgevoerd tussen mei en september. Voor het schieten is de samenwerking van twee personen noodzakelijk. Met een sterke lamp wordt er door één persoon gezocht naar de Amerikaanse brulkikker waarna bij vondst de kikker wordt geschoten door de andere persoon (Moissonnier et al., 2007b; Berroneau et al., 2008). De keuze van het type wapen, zoals een luchtdruk- of jachtgeweer, voor afschot is afhankelijk van de situatie en toegelaten middelen. Belangrijk is de juiste selectie van het kaliber. Het gebruik van een te klein kaliber kan resulteren in niet-dodelijk aangeschoten kikkers. Zij zijn in staat weg te springen om later mogelijk alsnog aan de verwondingen te overlijden (Moissonnier et al., 2007a).

Populatiemodellen laten zien dat elke twee jaar minstens 65% van de adulten in een populatie moeten worden afgeschoten om de maatregel effectief te laten zijn. Bij het behalen van dit percentage herstellen inheemse amfibieënpopulaties zich en is verspreiding van de Amerikaanse brulkikker minimaal (Doubledee et al., 2003). In grote populaties (>1000 individuen) is het moeilijk om deze percentages te halen omdat veel afschotrondes en mankracht nodig zijn (Adams & Pearl, 2007). In een optimaal habitat voor de kikker zijn effecten van bejaging daarom verwaarloosbaar (Stoutamire, 1932). In kleine populaties van enkele individuen kan afschot wel effectief zijn (Kahrs, 2006; Devisscher et al., 2012). Herhaling van de maatregelen is nodig tot alle individuen zijn geëlimineerd en kan in de praktijk meerdere jaren duren (Creemers, 2011; Devisscher et al., 2012). In Nederland mag volgens de vigerende wetgeving geen enkele amfibieënsoort geschoten worden, waardoor mogelijk is een ontheffing nodig is van de Flora- en Faunawet en Jachtwet (Nederland, 2016).

Droogleggen
Het droogleggen van een waterlichaam met de Amerikaanse brulkikker kan de populatiegrootte reduceren, omdat de kikkers permanent water nodig hebben voor de ontwikkeling van larven (Banks et al., 2000; Devisscher et al., 2012). Bij een einmalige ingreep wordt het waterlichaam droog gepompt en na enkele dagen weer volgelaten en bij een langdurige ingreep worden de waterstanden permanent verlaagd waardoor de vijver in de zomer droogvalt. Bij het uitvoeren van deze maatregelen moet rekening worden gehouden met de ontwikkelingscyclus van de kikkers. Droogleggen kan het beste plaatsvinden tussen september en januari, omdat een groot deel van de larven nog niet zijn gemetamorfoseerd en daardoor het water niet kunnen ontvluchten (Adams & Pearl, 2007; Devisscher et al., 2012). Het is belangrijk om in deze periode rekening te houden met een hoge waterstand en vorst (Devisscher et al., 2012). De vangst van vluchtende adulten kan eventueel met schermen om de verspreiding naar andere wateren te voorkomen of tot een minimum te beperken (zie §3.2.3) (Devisscher et al., 2012). Het afwateren kan plaatsvinden met behulp van vuilwaterpompen (40 m³/uur) waaraan een aanzuigkop met filter (8 mm) wordt geplaatst, zodat individuen niet worden overgepompt (Devisscher et al., 2012).

Het vangen van brulkikkers voor, tijdens en na het droogleggen van waterlichamen draagt bij aan een grote afname van Amerikaanse brulkikkerpopulaties (Devisscher et al., 2012). Echter, het droogvallen alleen leidt niet tot volledige eliminatie van de soort, vooral niet wanneer in de omgeving alternatief habitat aanwezig is (Adams & Pearl, 2007; Devisscher et al., 2012; Goverse et al., 2012). Een jaar na
het droogleggen of veranderen van de waterstand is bijvoorbeeld in Engeland toch voortplanting van de Amerikaanse brulkikker waargenomen (persoonlijke mededeling B. Banks 2006 in Adams & Pearl (2007) en Goverse et al. (2012)).

In België en Nederland zijn in 2010 vier vijvers (gemiddeld 2000 m²) leeggepompt nadat alle aanwezige amphibiesoorten zijn afgevangen. Voor één van deze vijvers, gelegen in Baarlo, geldt dat 3.757 juvenielen en ongeveer 11 (sub)adulten zijn gevangen (Crombaghs et al., 2000; Creemers, 2011; Goverse et al., 2012; Europese Commissie, 2016). Voorafgaand zijn op enkele locaties bomen gekapt om de drooggevallen vijvers snel te kunnen dempen ter voorkoming van opvulling met grond- en regenwater. Tevens is de vegetatie rondom de vijvers verwijderd om het risico op schuilende dieren uit te sluiten. Na droogval van de vijvers was afgraving van het achtergebleven slib nodig om ingegraven individuen te verwijderen. Gedurende en na de drooglegging zijn aanwezige brulkikkers weggevangen met vallen en aanvullend is een amphibiewerend scherm om de vijver heen geplaatst (Goverse et al., 2012; van Delft, 2015).

Naar vermoeden zijn de getroffen maatregelen in Baarlo wel effectief, omdat in de vier opeenvolgende jaren geen sporen van Amerikaanse brulkikkers meer zijn gevonden met behulp van eDNA onderzoek (Goverse et al., 2012; van Delft, 2015). Echter, eDNA is niet 100% betrouwbaar. Daarnaast waren potentieel nog enkele individuen in het terrestrische habitat aanwezig. Een kleine kans bestaat dat de vijver door deze individuen wordt gekoloniseerd, aangezien brulkikkers pas na twee tot vier jaar geslachtsrijp zijn en naar het water terugkeren. In een eindrapportage uit 2015 over het droogleggen van de vijver in Baarlo is aanbevolen om in 2017 een bescheiden monitoringsonderzoek uit te voeren naar de eventuele aanwezigheid van Amerikaanse brulkikker (van Delft, 2015). Waarna eventueel extra maatregelen noodzakelijk zijn, zoals het vangen met vallen en het plaatsen van een hek om het voortplantingswater (Goverse et al., 2012). Doubledee et al. (2003) suggereerden dat het droogleggen van vijvers een succesvolle beheersmaatregel is voor Amerikaanse brulkikkers wanneer dit elke twee jaar wordt herhaald.

Droogleggen heeft ook effecten op andere soorten, zoals vissen, amphibieën en ongewervelden (Maret et al., 2006; Adams & Pearl, 2007). Bij een niet-geïsoleerd waterlichaam kan de Amerikaanse brulkikker de leeggekomen niches vrij snel opnieuw innemen en concurreren met inheemse amphibieën (Ingram & Raney, 1943). Bij een relatief geïsoleerd waterlichaam (> 1,6 km tot andere waterlichamen) zullen echter de eerste jaren geen of weinig amphibieën (inclusief brulkikker) aanwezig zijn (Maret et al., 2006; Devisscher et al., 2012). Inheemse soorten kunnen gebaat zijn bij droogleggen. Doubledee et al. (2003) suggereerden dat adulte salamanders makkelijker een poel herkoloniseren wegens hun grotendeels terrestrische levenswijze. Daarnaast kan droogleggen bijdragen aan het verwijderen van invasieve vissen (Banks et al., 2000; Snow & Witmer, 2010; Devisscher et al., 2012). Echter, omdat het een zeer kunstmatige ingreep betreft, is het droogleggen van wateren alleen aan te raden bij de aanwezigheid van zeer grote Amerikaanse brulkikkerpopulaties en de afwezigheid van veel andere (beschermde) soorten (Devisscher et al., 2012).

De kosten voor het droogleggen van waterlichamen zijn geschat op 9,5 euro/m² gebaseerd op het uitvoeren van de maatregel voor bestrijding van blauwband (zie hoofdstuk 8) (Britton et al., 2008). Daarnaast zijn kosten verbonden aan het vooraf in kaart brengen van de hydrologie van het gebied om te bepalen of het droogleggen van de wateren een haalbare maatregel is (Devisscher et al., 2012).
Eieren vernietigen

Door het vernietigen van eieren van de Amerikaanse brulkikker kan het voortplantingssucces drastisch worden verlaagd (Devisscher et al., 2012). Het vernietigen van de eieren kan op de volgende manieren:

1. Verzamelen van de eieren uit het water met een schepnet (met fijne maas) en afvoeren. Ondanks de eenvoud van deze maatregel is het kostbaar en weinig effectief, omdat de maatregel meerdere malen per jaar nodig is. Eén vrouw zet per legsel duizenden eieren in strengen af die 20 minuten later zinken (Howard, 1978). Dit bemoeilijkt de verzameling van eieren, omdat ze tussen planten makkelijk over het hoofd worden gezien (Devisscher et al., 2012);

2. Vernietigen van de eieren door gerichte blootstelling aan kopersulfaat. Een visscher uit Lommel hield de voortplanting van Amerikaanse brulkikkers in zijn kwekerij enkele jaren tegen door middel van gerichte toevoeging van kopersulfaat aan de eiermassa’s (persoonlijke mededeling Dhr. van de Laar in (Devisscher et al., 2012)). Naar verwachting verhoogt kopersulfaat de pH van het medium waarin het wordt aangebracht met sterfte van kikkereieren als resultaat. Echter, het kopergehalte in het water kan zodanig verhoogd raken met schade aan niet-doelsoorten tot gevolg (Devisscher et al., 2012; Wurts, 2012; Masser et al., 2013). Het risico tot vergiftiging van plantaaardig en dierlijk plankton en vissen is vooral hoog in zure wateren, zoals zure venen (Berroneau et al., 2008). De toevoeging van zouten kan de neveneffecten van deze ingreep verminderen, echter deze hebben wellicht weer andere nadelige effecten (Devisscher et al., 2012).

Beide maatregelen kunnen het beste worden beperkt tot incidentele handelingen, omdat de eieren moeilijk te lokaliseren zijn en de maatregelen weinig effectief zijn. Het is hierdoor aan te raden deze maatregelen alleen uit te voeren in combinatie met andere maatregelen of wanneer de afzet van eieren met toeval wordt opgemerkt (Adams & Pearl, 2007; Devisscher et al., 2012).

Vangen

Het vangen van Amerikaanse brulkikkers is een veel toegepaste methode in het beheersen van de soort (Devisscher et al., 2012). Verschillende methoden zijn bruikbaar zoals fuiken, vallen, handvangsten.

Andere methoden zoals het gebruik van speren, swatters (een soort grote vliegenmepper om de kikkers levend te vangen) en verlammen middels elektrisch vissen zijn niet effectief of zeer kostbaar gebleken in een eerdere studie naar effectieve maatregelen voor het beheersen van de Amerikaanse brulkikker (Stoutamire, 1932; Devisscher et al., 2012). Daarom wordt op deze methoden niet nader ingegaan.

Fuiken

Fuiken, zoals de dubbele katvis-fuik en dubbele schietfuik, worden voornamelijk ingezet voor het vangen van kikkerlarven en in mindere mate voor adulten. Dubbele fuiken bestaan uit opeenvolgende trechtersvormige compartimenten gemaakt van netten met een maaswijdte van 8 mm. De hoogte en breedte van de eerste hoepel is 80 – 90 cm en de totale lengte van de fuik 7 m. In een poging om te ontsnappen zwemmen de dieren dieper de fuik in tot in het laatste compartiment. Deze kan worden geopend om de dieren te bevrijden en bevat een gesloten plastic fles om verdrinken van adulte dieren te voorkomen. Om de vangstefficiëntie van dubbele schietfuiken te onderzoeken zijn in drie Belgische gebieden (Hoogstraten, Arendonk en Balen) meerdere vijvers bemonsterd (Louette et al., 2014). De fuiken zijn voor een vaste periode per bemonstering (24 uur) drie meter uit de oever in het water geplaatst. Per bemonstering werd 6% van de Amerikaanse brulkikkerpopulatie gevangen. Gemiddeld waren 7 à 8 bemonsteringen nodig met acht dubbele schietfuiken om de populatie tot een aanvaardbaar niveau terug te brengen.
Uit testen in Frankrijk (tussen 2003 en 2007) blijken (dubbele) katvis-fuiken effectiever te zijn dan schietfuiken. Met de fuik, ontwikkeld voor het vangen van katvissen, wordt een hoger aantal gevangen exemplaren per fuik per dag behaald (gemiddelde vangst van 2374 juvenielen per vijver met een katvis-fuik ten opzichte van een gemiddelde vangst van 381 juvenielen per vijver met een schietfuik) (Moissonnier et al., 2007a; Moissonnier et al., 2007b). Een verhoogde vangstefficiëntie wordt verkregen door het plaatsen van de fuiken dicht bij de oever of vegetatie. In het najaar is het geschikt om de fuik in diep water te plaatsen, omdat de kikkerlarven bij een lage temperatuur het diepere water opzoeken. In het voorjaar en de zomer worden de fuiken het beste in ondiep water geplaatst. Eventuele bijvangst van andere soorten in de fuiken wordt gemakkelijk teruggezet (Devisscher et al., 2012; Louette et al., 2014). Na vangst met fuiken blijft monitoring noodzakelijk. Herhaling van de maatregelen is nodig tot alle individuen zijn geëlimineerd en kan in de praktijk meerdere jaren duren (Creemers, 2011; Devisscher et al., 2012).

In Baarlo is via een combinatie van fuiken en zegenvangsten een populatie brulkikkers bestreden. In de twee daaropvolgende jaren is de soort met eDNA niet meer aangetroffen (persoonlijke mededeling R. Creemers).

Handvangst

Voor het handvangen van adulte Amerikaanse brulkikkers is de samenwerking van twee personen noodzakelijk. Eén persoon zoekt met een zaklamp naar de kikkers welke gevoelig zijn voor licht en niet bewegen wanneer zij in de ogen worden geschenen. Een tweede persoon vangt de verblinde kikkers met de hand of met een scheepnet. Deze maatregel is zeer arbeidsintensief en daardoor weinig effectief gebleken (Devisscher et al., 2012).

Vallen

Vallen worden een bepaalde periode in de buurt van of op water geplaatst. De vallen voor de vangst van adulten bestaan meestal uit één compartiment met luiken die enkel van buiten naar binnen openen. Ze zijn geschikt voor het vangen van (sub)adulten omdat ze niet in het water worden geplaatst. In Noord-Amerika en België is onderzoek uitgevoerd naar de gebruiksmogelijkheden van vallen die ontwikkeld zijn voor het vangen van de reuzenpad in Australië (‘multicapture trap’). De meest succesvolle vangst met deze vallen in Amerika bestond uit 7 Amerikaanse brulkikkers in één dag (Snow & Witmer, 2010; Devisscher et al., 2012). Het vangen van brulkikkers met vallen vereist een relatief lage inspanning waardoor de maatregel eenvoudig in te zetten is voor het beheersen van brulkikkers (Snow & Witmer, 2010). Echter, uit het Belgische onderzoek bleek dat het vangen van adulten met vallen aanzienlijk minder effectief is dan de vangst met fuiken (Devisscher et al., 2012). De effectiviteit is niet kwantitatief gerapporteerd.

Om larven te vangen is in België de Ortman Funnel trap ingezet die bestaat uit een grote emmer met zwemopeningen die zijn afgesloten met nylonkousen. Deze vallen waren minder effectief dan het vangen van larven met fuiken (Devisscher et al., 2012). De effectiviteit is niet kwantitatief gerapporteerd.

Een lokstof, zoals lever, visvoer of kunstaasvisjes, kan worden ingezet bij het vangen van de Amerikaanse brulkikker met vallen en fuiken. Verder onderzoek is nodig om te bepalen welke lokstof het meest geschikt is (Knapp & Matthews, 1998; Devisscher et al., 2012). Euthanasie van gevangen individuen is mogelijk met een benzozuïne (ethyl aminobenzoate) oplossing welke het centrale zenuwstelsel van amfibieën uitschakelt (Close et al., 1996).
De kosten voor het inzetten van fuiken en vallen zijn relatief laag. Het gebruik van twee schietfuiken of vallen, inclusief transport-, personeels- en materiaalkosten, kost ongeveer 138 euro per vangstinspanning (Devischer et al., 2012; Louette et al., 2014). Het aantal benodigde vangstbeurten hangt af van de populatiegrootte. Echter, een populatie wordt waarschijnlijk niet volledig geëlimineerd door vangstmaatregelen alleen. De snelle voortplanting van Amerikaanse brulkikker compenseert snel de weggevangen individuen en daarbovenop komt nog het risico van nieuwe introducties van de soort (Altwegg, 2002; Govindarajulu, 2004; Pearl et al., 2004). Zo herstelde de populatieomvang in een Engels waterlichaam met 50 tot 80% drie tot vier zomermaanden na het wegvangen van 854 Amerikaanse brulkikkers (Schwalbe & Rosen, 1988). Hierdoor moeten vangstmaatregelen zelfs in kleine vijvers gecombineerd worden met andere maatregelen om een populatie te elimineren of beheersen (Banks et al., 2000; Doubledee et al., 2003; Adams & Pearl, 2007).

3.2.5 Systeemgericht en weerbaarder maken habitats
Het aanpassen van habitat- en landschapskaractristieken kan indirect leiden tot de beperking van de verspreiding van de Amerikaanse brulkikker. Een voorbeeld is het verbeteren van de waterkwaliteit. In Balen, België, zijn in een experimentele opzet middels biomanipulatie troebele, vegetatieloze vijvers omgezet naar plassen met helder water en een ondergedoken begroeiing. Door het verminderen van de turbiditeit waren minder schuilplaatsen beschikbaar voor kikkerlarven waardoor de predatie op individuen toenam (Devischer et al., 2012). Aanvullend kan het verwijderen van het volledige amphibieën- en vissenbestand en het inzetten van extra predatoren zoals snoek (zie §3.2.1) de effectiviteit van deze maatregel verhogen. Wanneer de populatiegrootte van (invasieve) vissoorten zoals blauwband en zonnebaarsachtigen (Lepomis macrochirus) afneemt, wordt de predatiedruk van aquatische macrofauna op de brulkikker verhoogd (Adams et al., 2003). In een experimentele studie waarbij libellenlarven aanwezig waren en vissen afwezig, was geen overleving van brulkikkerlarven. Bij de aanwezigheid van libellen en vissen overleefde 20% van de kikkerlarven. Dit suggereert dat het wegvangen van vissen een effectieve methode is om de omvang van Amerikaanse brulkikkerpopulaties te verlagen.

3.3 Beheersmaatregelen voor indamming populaties
Naast het voorkomen van introductie van de Amerikaanse brulkikker is het van belang om snel en adequaat te reageren wanneer de soort daadwerkelijk in de natuur is waargenomen (Devischer et al., 2012). Wanneer individuen van de Amerikaanse brulkikker in een waterlichaam zijn gevestigd, is het van belang dat verspreiding naar andere waterlichamen wordt voorkomen. In aanvulling op snelle eliminatie kan indamming worden uitgevoerd door het plaatsen van hekken of schermen (zie §3.2.3). Vooral dicht bij de Belgische grens is een hoge waakzaamheid nodig met betrekking tot de natuurlijke verspreiding van de soort. Binnen enkele kilometers over de grens zijn namelijk meerdere brulkikker populaties gevestigd (Verbrugge et al., 2015).

3.4 Kansrijke maatregelen voor Nederland
Bij het bepalen van kansrijke eliminatie- en beheersmaatregelen voor Nederland is onderscheidt gemaakt tussen de introductie van enkele individuen en een gevestigde populatie van de Amerikaanse brulkikker in een waterlichaam. Voor beide situaties is een andere werkwijze voor het treffen van maatregelen noodzakelijk.
Enkele individuen
Wanneer onverhoopt enkele individuen van de Amerikaanse brulkikker in de Nederlandse natuur worden gesignaleerd, is het van belang deze zo spoedig mogelijk te isoleren en elimineren om voortplanting te voorkomen (Adams & Pearl, 2007; Verbrugge et al., 2015). Voor adulten zijn afschot en het gebruik van fuiken de meest kansrijke opties. Herhaling van deze maatregelen is nodig tot alle adulten zijn geëlimineerd en kan in de praktijk meerdere jaren duren (Creemers, 2011; Devischer et al., 2012). Voor kikkerlarven is vangst middels fuiken de meest kansrijke maatregel voor eliminatie. Ook hiervoor geldt dat een herhaling van de inspanningen nodig is totdat voortplanting van de soort niet meer mogelijk is.

Gevestigde populatie
Het is zeer moeilijk tot onhaalbaar om een gevestigde populatie van de Amerikaanse brulkikker volledig te verwijderen uit een waterlichaam. Amerikaanse brulkikkerpopulaties bereiken namelijk door hun snelle voortplanting zeer hoge dichtheden van zowel larven als adulten (Doubledee et al., 2003; Govindarajulu et al., 2005). Hierdoor is het van belang om gelijktijdig maatregelen te treffen voor bestrijding van de verschillende levensstadia. Een afname van adulte brulkikkers kan bijvoorbeeld leiden tot een lagere predatiedruk op kikkerlarven (Doubledee et al., 2003; Govindarajulu, 2004; Werner et al., 2007). Daarnaast moet rekening worden gehouden met een compensatieresactie van de soort, zoals snelle voortplanting en herintroductie, wanneer de populatie grote verliezen meemaakt (Altwegg, 2002; Govindarajulu, 2004; Pearl et al., 2004).

Voor het beperken van de populatieomvang is het vangen van kikkerlarven met fuiken in combinatie met het vangen of afschieten van adulten effectief gebleken. Ook het (tijdelijk) droogleggen of het uitzetten van snoeken, beide in combinatie met wegvangen en het plaatsen van barrières, is effectief gebleken voor het beheersen van Amerikaanse brulkikkerpopulaties. Wanneer de brulkikkers in een groot leefgebied (meerdere vierkante kilometers) zijn gevestigd dan is eliminatie naar verwachting niet mogelijk. Tevens geldt dat voor alle gecombineerde maatregelen, gericht tegen kleine populaties of populaties op een locatie met beperkte omvang, mogelijk meerdere herhalingen nodig zijn om de invasieve exoot te beheersen. Maatregelen zoals het gebruik van bestrijdingsmiddelen, afschieten en droogleggen zijn zeer arbeidsintensief, kostbaar en hebben nadelige neveneffecten op de biodiversiteit en het ecosysteem (Snow & Witmer, 2010).
4 Insect – Aziatische hoornaar (*Vespa velutina*)

4.1 Soort- en habitatbeschrijving

De Aziatische hoornaar (*Vespa velutina*; Asian hornet) staat vermeld op de Unielijst van EU-verordening 1143/2014. De soort behoort tot de familie plooivleugelwespen (Vespidae). De *Vespa velutina nigrithorax* (yellow-legged hornet) is een ondersoort en één van de 12 kleurvarianten van de *V. velutina* soorten (Figuur 4.1). Deze kleurvariant is de eerste Aziatische hoornaar die is geïntroduceerd in Europa (Bessa *et al.*, 2016). De soort- en habitat-eigenschappen van deze invasieve exoot zijn samengevat in Tabel 4.1.

![Figuur 4.1: Aziatische hoornaar (*Vespa velutina nigrithorax*) in de Dordogne, Frankrijk (© Foto: Wikimedia commons).](image)

4.1.1 Levenswijze

De Aziatische hoornaar is een eusociale insect waarbij alle individuen van een kolonie samenwerken om de nakomelingen van de vruchtbare koningin groot te brengen (Beggs *et al.*, 2011; Monceau *et al.*, 2013b). In de lente ontwaakt de koningin uit haar winterslaap om een kolonie te stichten. Het eerste nest bestaat uit plantmateriaal en wordt op een beschermde en omheinde locatie gebouwd, zoals een holte in een boom of muur (Chauzat & Martin, 2009). In dit nest legt de koningin eieren om werkers te produceren die in de zomer bijdragen aan het voeden van de nakomelingen (Marris *et al.*, 2011). Een tweede nest wordt gebouwd aan het einde van de zomer om ruimte te bieden aan de steeds groter wordende kolonie (Monceau *et al.*, 2014). In de regel wordt het tweede nest om takken heen gebouwd op een hoogte van 8 tot 20 meter, zoals in Figuur 4.2 (van der Velden, 2011). In de herfst bereikt de
kolonie zijn maximale grootte met een nest van maximaal 1 bij 0,8 meter en meer dan 1000 volwassen werkers (Marris et al., 2011). In deze periode is de productie van nakomelingen voornamelijk gericht op potentiële koninginnen en mannelijke hoornaars. De maagdelijke koninginnen paren met de mannelijke individuen waarna de koninginnen een goede locatie zoeken om te overwinteren tot de volgende lente. De mannelijke hoornaars sterven (Monceau et al., 2013b; Monceau et al., 2014; Islam et al., 2015). Aziatische hoornaars zijn gevonden in houtstapels, schuilplaatsen en holen in de grond gedurende de winter (Monceau et al., 2014). Een succesvolle kolonie kan honderden nieuwe koninginnen produceren waarvan een tiental zal overleven en een nieuwe kolonie stichten (Tabel 4.1). Dit is voldoende om de populatie in stand te houden (Rome et al., 2011; Villemant et al., 2011a; Villemant et al., 2011b). Een koningin kan 30 tot 40 km per dag afleggen bij de zoektocht naar een geschikte vestigingsplaats (Beggs et al., 2011; Rome et al., 2015). De eusociale eigenschap en de productie van meerdere koninginnen per kolonie dragen mogelijk bij aan een snelle populatiegroei van de Aziatische hoornaar.

Tabel 4.1: Soort- en habitateigenschappen van de Aziatische hoornaar.

<table>
<thead>
<tr>
<th>Eigenschappen</th>
<th>Aziaatalse hoornaar (Vespa velutina)</th>
<th>Referentie a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengte geslachtsrijp individu</td>
<td>2,5 - 3 cm (koningin)</td>
<td>1</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>Mannetjes en werkers: lente-herfst, vrouwtje: onbekend</td>
<td>2</td>
</tr>
<tr>
<td>Kolonievorming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periode nieuwe vorming kolonie</td>
<td>Voorjaar (start in mei)</td>
<td>3</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td>Najaar (september-november)</td>
<td>3</td>
</tr>
<tr>
<td>Overwintering</td>
<td>Door koningin, mannetjes en werkers sterven tijdens winter</td>
<td>4</td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevruchting eieren?</td>
<td>Ja (resulteert in vrouwjes), nee (resulteert in mannetjes)</td>
<td>5</td>
</tr>
<tr>
<td>Aantal nakomelingen</td>
<td>2000 - 13.000 individuen</td>
<td>3, 6</td>
</tr>
<tr>
<td>Aantal nieuwe koninginnen per kolonie</td>
<td>Maximaal 563</td>
<td>6</td>
</tr>
<tr>
<td>Overlevingspercentage nieuwe koninginnen</td>
<td>9 - 20</td>
<td>3</td>
</tr>
<tr>
<td>Aantal legels per jaar</td>
<td>1 kolonie met 1e nest in de lente en 2e nest aan het einde van de zomer</td>
<td>2, 5</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Dag</td>
<td>7</td>
</tr>
<tr>
<td>Zichtbaarheid</td>
<td>Matig (nesten zijn goed zichtbaar wanneer bladeren van bomen vallen)</td>
<td>5</td>
</tr>
<tr>
<td>Voedselvoorkeur</td>
<td>Honingbijen, vliegen, andere insecten en spinnen, suikers uit fruit</td>
<td>5, 8, 12, 16, 17</td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Eusociale levenswijze, grote variatie aan nestplaatsen, verschillende voedselbronnen</td>
<td>5, 8, 9</td>
</tr>
<tr>
<td>Vestiging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Afwezig in Nederland</td>
<td>10</td>
</tr>
<tr>
<td>Tolerantie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatuur</td>
<td>Thermoregulatie in nest, dus beschermd tegen 10 – 45 °C, sterfte bij temperatuur > 45 °C</td>
<td>9, 11-13</td>
</tr>
<tr>
<td>Weersomstandigheden</td>
<td>Actief bij droog weer en tevens bij bewolking en regen</td>
<td>14</td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Actief</td>
<td></td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td>Lucht</td>
<td></td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td>Maximaal 30 - 40 km/day (koningin)</td>
<td>5, 6</td>
</tr>
<tr>
<td>Predatoren</td>
<td>Waarschijnlijk vogels (o.a. Vlaamse gaai, bijeneter, wespendief)</td>
<td>2</td>
</tr>
<tr>
<td>Natuurlijk verspreidingsgebied</td>
<td>Stedelijk, landbouw en natuurlijk gebied</td>
<td></td>
</tr>
<tr>
<td>Vegetatievoorziening</td>
<td>Bomen</td>
<td>6, 7</td>
</tr>
<tr>
<td>Potentiële verspreidingsgebied NL</td>
<td>Heel Nederland in stedelijk, landbouw en natuurlijk gebied</td>
<td>6, 15, 16</td>
</tr>
<tr>
<td>Natura 2000 gebied</td>
<td>Alle</td>
<td></td>
</tr>
</tbody>
</table>

Figuur 4.2: Nest van de Aziatische hoornaar in Frankrijk (© Wikimedia Commons).

4.1.2 Habitat
in de buurt van rivieren of beken gevonden. De meeste nesten zijn boven de 10 m gevestigd met een variatie tussen 0 en 45 meter (Rome et al., 2015; Bessa et al., 2016). Hoge en ruwe bomen leveren voor de nesten ondersteuning, houten vezels en bescherming tegen potentiële predatoren (Bessa et al., 2016). Fruitbomen leveren met de aanwezigheid van suiker en nectar nutriënten voor adulten (Mollet & de la Torre, 2006).

4.1.3 Verspreidingsmechanismen
In Nederland is de Aziatische hoornaar nog niet gevestigd, maar enkele routes dragen mogelijk bij aan de introductie van de soort. Naast de grensoverschrijdende natuurlijke verspreiding kan de soort namelijk ook passief via voertuigen en vrachtladingen het land binnenkomen (Verbrugge et al., 2015). Bevruchte koninginnen zoeken een droge, beschutte plek na het voortplantingsseizoen voor hun rustperiode tijdens de winter. Deze plekken worden soms gevonden in goederen die voor de handel worden vervoerd naar nieuwe locaties, zoals hout, schors, keramische potten, grond of fruit (Beggs et al., 2011; Marris et al., 2011; Arca et al., 2015). De natuurlijke verspreiding en transport van rustende koninginnen in hout zijn de meest waarschijnlijke introductieroutes (Marris et al., 2011).

4.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang
Wereldwijd zijn meerdere biologische, chemische en mechanische maatregelen uitgevoerd om soorten van de eusociale plooivleugelwespen familie, waaronder de Aziatische hoornaar valt, te elimineren of beheersen. Sommige maatregelen hebben betrekking op het beschermen van honingbijen en het uitroeien van de hoornaar, zoals het vernietigen van kolonies door vergassing, het inzetten van vergiftigd lokaas en het vangen van koninginnen met vallen. Weinig van deze maatregelen zijn specifiek voor de Aziatische hoornaar uitgevoerd.

De effectiviteit van elke maatregel op de behandelde locatie is weergegeven in Tabel 4.3. Hoe kansrijk de eliminatie- en beheersmaatregelen zijn voor het aanpakken van de invasieve hoornaar in Nederland is beschreven in §4.4.
Tabel 4.3: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de Aziatische hoornaar.\(^a\)

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referenties(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologisch</td>
<td>Ziekteverwekkers</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Chemisch</td>
<td>Biociden & verwijderen nest</td>
<td>Eliminatie</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Feromonen(^c)</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Giftig lokaas</td>
<td>Eliminatie</td>
<td>1, 3-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td>1, 3-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Mechanisch</td>
<td>Vallen voor alle hoornaars</td>
<td>Eliminatie</td>
<td>10, 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td>10, 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Vallen voor koningin</td>
<td>Eliminatie</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Vallen voor alle hoornaars & vernietigen nest</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Legenda:
- **Veldexperimenten / praktijkervaring**
- **Laboratorium / mesocosm experimenten**
- **Soort- en habitatkennis**

<table>
<thead>
<tr>
<th>Kansrijk</th>
<th>Deels kansrijk</th>
<th>Niet kansrijk</th>
<th>Niet beschikbaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veldexperimenten / praktijkervaring</td>
<td>Laboratorium / mesocosm experimenten</td>
<td>Soort- en habitatkennis</td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
</tbody>
</table>

\(^c\) In combinatie met vallen.

4.2.1 Biologisch

Predatoren of ziekteverwekkers kunnen mogelijk als biologische eliminatie- of beheersmaatregel dienen voor het beperken van insectenpopulaties. Ondanks dat meerdere organismen in Europa zich voeden met wespen zijn nog geen studies gerapporteerd waarin predatie is toegepast als eliminatie- of beheersmaatregel van de Aziatische hoornaar. Verwacht wordt dat de predatoren niet in staat zijn om de grote boomnesten aan te pakken. Het is onbekend of predatoren een rol kunnen spelen in het beperken van de kolonieomvang van het eerste nest van het jaar, omdat vogels alleen zijn geobserveerd bij het eten van Aziatische hoornaar larven na het groeiseizoen (herfst) (§4.1.1). Verder is bekend dat parasieten de hoornaar infecteren, maar de effectiviteit van parasieten op het reduceren van hoornaarpopulaties is niet gerapporteerd. De (weinige) beschikbare kennis over de effecten van ziekteverwekkers op Aziatische hoornaars of soorten uit dezelfde familie zijn in deze paragraaf toegelicht.
Ziekteverwekkers

4.2.2 Chemisch
Chemische eliminatie- en beheersmaatregelen voor eusociale insecten zijn het gebruik van biociden voor vernietiging van nesten, feromonen als lokaas of verstoring van de voorplanting en giftig lokaas om individuen te doden (Tabel 4.3). Echter, de effectiviteit van deze maatregelen voor het beperken van Aziatische hoornaarpopulaties is nog niet gerapporteerd. De chemische maatregelen, en waar mogelijk het effect op andere soorten plooivleugelwespen, zijn hieronder toegelicht.

Biociden
Chemische vernietiging van nesten door de injectie van een pesticide, zoals zwaveloxide of pyrethroïden, in het nest is een potentiële eliminatie- of beheersmaatregel van de Aziatische hoornaar op lokale schaal (Spradbery, 1973; Beggs *et al.*, 2011). In Frankrijk zijn imkerverenigingen voorzien van telescopische lansen van maximaal 20 meter om vanaf de grond gas in een hoger hangend nest te spuiten (van der Velden, 2011). Deze maatregel is alleen effectief als alle individuen worden geëlimineerd zodat de kolonie zich niet op een andere locatie kan vestigen (Monceau *et al.*, 2014). Adulte individuen worden vrijwel meteen door gas gedood, maar het gas is mogelijk niet direct dodelijk voor de larven. Koloniën die behandeld zijn met pyrethroïden vormen mogelijk een gezondheidsrisico voor predatoren die de hoornaars eten. Hierdoor is verwijdering en eventueel
verbranding van de behandelde nesten noodzakelijk (Beggs et al., 2011; van der Velden, 2011). Op locale schaal is het gebruik van biociden en het verwijderen van de nesten mogelijk effectief om de Aziatische hoornaar te elimineren. Verder onderzoek zal moeten uitwijzen of het opspreen, veilig benaderen en behandelen van nesten met biociden en eventueel een nabehandeling met vuur een (kosten)effectieve methode is om de Aziatische hoornaar te elimineren met weinig tot geen neveneffecten voor de omgeving. Wanneer de invasieve exoot over een groot gebied is gevestigd met vele nesten is de kans op volledige verwijdering van de soort mogelijk lager omdat nesten niet altijd goed zichtbaar zijn.

Feromonen
Communicatie tussen insecten vindt plaats door de uitscheiding van de chemische stoffen feromonen. Hiermee waarschuwen individuen van dezelfde soort elkaar bijvoorbeeld voor gevaar of geven informatie door over paringsbereidheid (Minks & Dicke, 1995). Voor de Aziatische hoornaar zijn nog geen seksferomonen geïdentificeerd en het is vooral onduidelijk waar de voortplanting plaatsvindt. Hierdoor is het wegvangen van individuen met vallen en feromonen als lokaas of het verstomen van de voortplanting met (synthetische) feromonen momenteel nog geen bruikbare eliminatie- of beheersmaatregel (Monceau et al., 2014).

Giftig lokaas
Om populaties van de familie plooivleugelwespen (Vespidae) te bestrijden is in een eerdere studie gebruikt gemaakt van giftig lokaas. Deze maatregel is gebaseerd op de voedselstrategie van eusociale insecten waarbij voedsel wordt overgedragen tussen adulten en larven (Matsuura & Yamane, 1990). De werkers van een kolonie verzamelen hierbij eiwitrijk aas dat is vermengd met een giftige stof die niet door de hoornaar wordt waargenomen. Vervolgens bieden de werkers het giftige aas aan de larven in de kolonie welke over de geschikte verteringsenzymen beschikken. De larven geven op hun beurt weer eiwitrijk vocht terug aan de adulte individuen, een strategie die ‘trophallaxis’ wordt genoemd. Het voordeel van de toepassing van deze maatregel is dat lokalisatie van de nesten overbodig wordt (Beggs et al., 2011). Een nadeel van de maatregel is dat andere soorten, zoals inheemse plooivleugelwespen, het aas mogelijk ook eten en sterven. De timing en de methode waarop het aas wordt aangeboden is hierdoor van belang.

Het gebruik van verschillende soorten eiwitrijk aas (vlees en vis) verrijkt met insecticiden bij de bestrijding van meerdere plooivleugelwespen, zoals de gewone wesp (Vespula vulgaris), de Duitse wesp (Vespula germanica) en de ‘Western yellowjacket’ (Vespula pensylvanica), resulteerde in 82% tot 100% sterfte van koloniën in 30 en 300 ha beukenbos in Nieuw-Zeeland en een vermindere wespendichtheid van 89% in een behandeld gebied in Patagonië (Chang, 1988; Spurr, 1991; Gambino & Loope, 1992; Beggs et al., 1998; Harris & Etheridge, 2001; Sackmann et al., 2001; Wood et al., 2006; Beggs et al., 2011).

De effectiviteit van giftig lokaas is nog niet gerapporteerd voor het bestrijden van de Aziatische hoornaar. Aangezien de voedselstrategie van de Aziatische hoornaar overeenkomt met plooivleugelwespen uit bovenstaande studies is te verwachten dat de maatregel hetzelfde effect heeft. Waarschijnlijk zal eliminatie niet succesvol zijn in gebieden waar de hoornaar wijdverspreid is, omdat de kans op herkolonisatie door een bevruchte koningin dan vrij groot is. Giftig lokaas draagt misschien wel bij aan de beheersing van kleine, geïsoleerde of nieuw geïntroduceerde populaties van de Aziatische hoornaar (Beggs et al., 2011). Dit zal echter moeten worden getest.
4.2.3 Mechanisch

Mechanische eliminatie- en beheersmaatregelen voor de Aziatische hoornaar zijn uitgevoerd door middel van vallen met lokaas en handmatige nestcontroles met vliegenmeppers voor het doden van individuen. Over de effectiviteit van het gebruik van vliegenmeppers bij de ingang van bijenkorven is echter niets bekend (Builles, 2008; Monceau et al., 2014). Daarnaast hebben enkele Franse imkers de toegang tot de bijenkasten verkleind, zodat hoornaars niet kunnen binnenkomen maar de bijen wel (Smit, 2012). Echter, volgens Smit (2012) was het binnendringen van bijenkasten nog niet geobserveerd in Frankrijk, dus de effectiviteit is niet gerapporteerd. De effectiviteit van de vallen met lokaas zijn in deze paragraaf toegelicht.

Vallen met aas

Mechanische vallen met lokaas zijn bruikbaar voor monitoring, eliminatie of het beheersen van de Aziatische hoornaar (Monceau et al., 2012). De vallen worden gebruikt om zoveel mogelijk individuen weg te vangen of zijn alleen gericht op het wegvangen van de koningin.

In Italië en Spanje is de effectiviteit getest van de commerciële vangstmiddelen Tap Trap® en Véto-Pharma© voor het wegvangen van hoornaars (Demichelis et al., 2014; Goldarazena et al., 2015). Het vangstmiddel Tap Trap® bestaat uit lokaas, zoals bier, in een kleurloze en transparante plastic fles van 1,5 l met daar bovenop een wit of geel gekleurde kappe. Het vangstmiddel Véto-Pharma© bestaat uit een transparante, gele, plastic pot van 0,2 l met daarbovenop een zwarte deksel met twee gaten van 1 cm. Het lokaas bestaat uit 10 ml lokaas (plantextracten en ethanol), 200 ml water en 50 g suiker. Beide vangstmiddelen zijn geschikt gebleken voor monitoring van de aanwezigheid van de Aziatische hoornaar, maar niet voor de massale wegvangst van een populatie. In de vallen zaten maar enkele Aziatische hoornaar individuen en andere soorten werden ook gevangen (Demichelis et al., 2014; Goldarazena et al., 2015).

Een studie in Pakistan toonde aan dat een val van hout en plastic met honing als lokaas een betere methode was om de Aziatische hoornaar te vangen dan met een val van ijzerdraad. De honing werd op de bodem van een houten kist gelegd. In een poging van hoornaars om uit de kist te ontsnappen vlogen ze naar boven, door een kegelvormig net waar bovenop een plastic fles was bevestigd. Andere insecten, zoals homingbijen, konden door kleine gaatjes in de fles ontsnappen, maar de hoornaars zaten gevangen (Islam et al., 2015). Gesuggereerd werd dat een combinatie van deze vallen met het vernietigen van nesten een effectieve beheersmaatregel zou zijn om de populatieomvang van de Aziatische hoornaar te verminderen in de buurt van bijenstallen in Pakistan (Islam et al., 2015). De specifieke effectiviteit is echter niet gerapporteerd.

Het vangen van koninginnen in de lente bleek niet effectief te zijn om de populatieomvang van Aziatische hoornaars in twee steden in Frankrijk significant te verminderen (Monceau et al., 2012). Van de geschatte 111 aanwezige koninginnen werden 26 individuen gevangen met twee verschillende trechtvallen met honing en siroop als lokaas (zie Figuur 4.3). De nabijheid van water verhoogde het aantal gevangen individuen, maar de nabijheid van bijenkorven had geen duidelijk effect op de vangst. De vallen waren inefficient bij gemiddelde temperaturen onder 10ºC en de beste resultaten werden gehaald bij 15ºC. Aangeraden werd om de maatregel te verbeteren, bijvoorbeeld door het inzetten van feromonen. Daarnaast zou alleen de val met gaatjes mogen worden gebruikt (Figuur 4.3b) om andere gevangen insecten te laten ontsnappen. Ten slotte werd aangeraden om deze maatregel in de nabijheid van water uit te voeren (Monceau et al., 2012).
Het is niet vanzelfsprekend dat een hoornaarkolonie meteen sterft nadat de koningin is gevangen. Wanneer al afdoende werkers aanwezig zijn, kan een werker de taak van het eieren leggen tijdelijk overnemen. Alle nakomelingen zijn mannelijk, waardoor de kolonie enkele weken kan overleven totdat alle individuen alsnog zijn gestorven (Matsuura, 1984; Monceau et al., 2013a).

4.3 Beheersmaatregelen voor indamming populaties

De kans is groot dat de Aziatische hoornaar zich vanuit bestaande populaties verspreidt en vestigt op nieuwe locaties. Een bevruchtte koningin kan ongeveer 30 tot 40 km per dag afleggen om een geschikte nestlocatie te vinden voor het stichten van een nieuwe kolonie. Het plaatsen van barrières als indammingsmaatregel van Aziatische hoornaarpopulaties is niet gerapporteerd in de literatuur, maar is zeer waarschijnlijk niet effectief tegen secundaire verspreiding en vestiging van de insecten. Een succesvolle eliminatiemaatregel zal naast het beperken van de populatieomvang ook de secundaire verspreiding van de soort tegengaan. Echter, als kolonies in de directe omgeving niet tegelijkertijd worden verwijderd, is herkolonisatie van het behandelde gebied door de Aziatische hoornaar niet uit te sluiten.

Het ongeschikt maken van het habitat of het plaatsen van barrières om de vestiging van een kolonie in een nieuw gebied te voorkomen is vrijwel onmogelijk, omdat relatief veel locaties geschikt zijn als nestplaats voor de Aziatische hoornaar. De invasieve exoot kan op natuurlijke en kunstmatige objecten een kolonie kunnen stichten. Daarnaast voedt de hoornaar zich met een grote variatie aan eiwitrijke en suikerrijke bronnen. Het is eventueel wel mogelijk om bepaalde prooien, zoals de honingbij, te beschermen tegen predatie van de Aziatische hoornaar. Om te voorkomen dat de hoornaar een bijenkast binnendringt, kan bijvoorbeeld de vliegplank of ingang van een bijenkast worden afgeschermd met gaas dat een diameter heeft van maximaal 5,5 mm (van der Velden, 2011).

Naast natuurlijke verspreiding is de onopzettelijke introductie van rustende koninginnen via de handel eveneens mogelijk. In een studie in Hawaiï werd aanbevolen om pyrethroïde insecticiden te combineren met het mechanisch schudden van de lading om verstekelingen, zoals wespen en andere insecten, in geïmporteerde kerstbomen te voorkomen (Hollingsworth et al., 2009). In welke mate dit
alle introducties van de Aziatische hoornaar tegengaat is niet gerapporteerd. Koninginnen verstopp
zich in verschillende goederen en individuen zijn soms lastig om op te sporen.

4.4 Kansrijke maatregelen voor Nederland

Momenteel is de Aziatische hoornaar nog niet gevestigd in Nederland, waardoor het belangrijk is om
introductie van de soort te voorkomen. Voor de Aziatische hoornaar zijn echter geen specifieke
beheersmaatregelen gerapporteerd om verstekelingen in bijvoorbeeld handelsgoederen op te sporen en
te elimineren. Onderzoek is nodig om de toepasbaarheid en neveneffecten te testen van bestaande
maatregelen die introducties van insecten (deels) voorkomen, zoals het gebruik van insecticiden en
mechanisch schudden van geïmporteerde bomen (§4.3).

Natuurlijke introductie en verspreiding van de Aziatische hoornaar is te voorkomen of tot een
minimum te beperken wanneer bestaande koloniën worden geëlimineerd in de ongewenste gebieden.
Het opzetten van barrières is vrijwel onmogelijk. Over het algemeen zijn maatregelen gerapporteerd
voor het elimineren van de Aziatische hoornaar weinig succesvol. De meest kansrijke eliminatie- of
beheersmaatregelen op lokale schaal is de vernietiging van het nest door een combinatie van inspuiten
met biociden en verwijderen met aanvullend verbranding. Het is mogelijk om deze handmatige
maatregelen toe te passen op locaties waar de soort overlast geeft, zoals in de bebouwing of in de
buurt van bijenstallen. Op nationale schaal is het handmatig verwijderen van nesten minder
doeltreffend, omdat kolonies soms lastig op te sporen zijn door een dicht bladerdek.

Een meer veilige maatregel voor de uitvoerder is het gebruik van giftig lokaas, zoals insecticiden in
vlees of vis. Er is echter een gebrek aan informatie over de effectiviteit van de maatregel voor de
Aziatische hoornaar in het veld en de neveneffecten voor de omgeving en andere soorten, zoals
predatoren of andere insecten. Deze maatregel wordt niet aanbevolen om te gebruiken in de bestrijding
van de Aziatische hoornaar zolang de gevolgen voor andere soorten niet duidelijk zijn.
5 Reptielen - Roodwangschildpad (*Trachemys scripta elegans*), geelbuikschildpad (*Trachemys scripta scripta*) & geelwangschildpad (*Trachemys scripta troostii*)

5.1 Soort- en habitatbeschrijving

De lettersierschildpad (*Trachemys scripta*; pond slider) uit de familie van moerasschildpadden (Emydidae) heeft drie ondersoorten, namelijk de roodwangschildpad (*Trachemys scripta elegans*; red-eared slider), geelbuikschildpad (*Trachemys scripta scripta*; yellow-bellied slider) en de geelwangschildpad (*Trachemys scripta troostii*; cumberland slider) (Figuur 5.1). De soort- en habitat eigenschappen van deze zoetwaterschildpadden zijn samengevat in Tabel 5.1.

![Figuur 5.1: A) Roodwangschildpad (*Trachemys scripta elegans*), B) geelbuikschildpad (*Trachemys scripta scripta*) en C) geelwangschildpad (*Trachemys scripta troostii*) (© Foto A: Hendrik Bringsøe, www.nobanis.org; Foto B: Joe Ravi, Wikimedia commons; Foto C: Quartl, Wikimedia commons).](image)

5.1.1 Levenswijze

De roodwang-, geelbuik- en geelwangschildpadden zijn allen semi-aquatische soorten. De paring vindt plaats in het water, maar uiteindelijk worden de eieren op het land gelegd. Bij voorkeur leggen de vrouwtjes eieren in een nest op 11 - 12 cm diepte in de bodem van een oever met open, onbeschaduwde plekken zonder modderige grond en met enige bescherming van lage planten (Bringsøe, 2006). De broedtemperatuur in het nest bepaalt het geslacht van de nakomelingen, namelijk mannelijk bij 26 - 28°C en vrouwelijk bij 30 - 32°C (Bugter *et al.*, 2011). De incubatieperiode van de eieren is 8 - 12 weken bij de roodwangschildpad en 8 - 12 weken bij de geelbuik- en geelwangschildpad (Bugter *et al.*, 2011). In het oorspronkelijke verspreidingsgebied in Noord-Amerika begint de voorplantingsperiode in de lente wanneer het water tussen 8 en 10°C is (Bringsøe, 2006; Bugter *et al.*, 2011).
Tabel 6.1: Soort- en habitateigenschappen van de roodwang-, geelbuik-, en geelwangschildpad.

<table>
<thead>
<tr>
<th>Eigenschappen</th>
<th>Roodwangschildpad (Trachemys scripta elegans)</th>
<th>Geelbuikschildpad (Trachemys scripta scripta)</th>
<th>Geelwangschildpad (Trachemys scripta troostii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengte geslachtsrijp individu</td>
<td>Gemiddeld 30 cm</td>
<td>1 Gemiddeld 30 cm</td>
<td>1 Gemiddeld 20 cm</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>20 - 40 jaar</td>
<td>2 > 30 jaar</td>
<td>2 > 30 jaar</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paringstijd</td>
<td>Lente (april - juni)</td>
<td>3 Lente (april - juli)</td>
<td>2 Lente (april - juli)</td>
</tr>
<tr>
<td>Uitkomen jongen</td>
<td>Juni (na 55 - 80 dagen bij 22 - 30°C)</td>
<td>2 Na 8 - 12 weken</td>
<td>2 Na 8 - 12 weken</td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geslachtsrije leeftijd</td>
<td>Vanaf 2 - 5 jaar mannetjes, 5 - 8 jaar vrouwtjes</td>
<td>4 Vanaf 2 - 5 jaar mannetjes, 5 - 8 jaar vrouwtjes</td>
<td>4 Vanaf 2 - 5 jaar mannetjes, 5 - 8 jaar vrouwtjes</td>
</tr>
<tr>
<td>Aantal nakomelingen</td>
<td>Gemiddeld 6 - 11 (min - max: 2 - 30)</td>
<td>3 Gemiddeld 6 - 11 (min - max: 2 - 30)</td>
<td>3 Gemiddeld 6 - 11 (min - max: 2 - 30)</td>
</tr>
<tr>
<td>Overlevingskans</td>
<td>< 35%</td>
<td>11 < 35%</td>
<td>11 < 35%</td>
</tr>
<tr>
<td>Aantal legels per jaar</td>
<td>1 tot 3 (> 1 in warme klimaten)</td>
<td>3, 4 1 tot 3 (> 1 in warme klimaten)</td>
<td>3, 4 1 tot 3 (> 1 in warme klimaten)</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Dagactiviteit</td>
<td>2 Dagactiviteit</td>
<td>2 Dagactiviteit</td>
</tr>
<tr>
<td>Zichtbaarheid</td>
<td>Matig, bij verstoring duiken ze onder water</td>
<td>1 Matig, bij verstoring duiken ze onder water</td>
<td>1 Matig, bij verstoring duiken ze onder water</td>
</tr>
<tr>
<td>Voedselvoorkome</td>
<td>Omnivoor (vissen, weekdieren, waterplanten)</td>
<td>2 Omnivoor (vissen, weekdieren, waterplanten)</td>
<td>2 Omnivoor (vissen, weekdieren, waterplanten)</td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Lange levensduur, hoge overlevingcapaciteit adulten, omnivoor</td>
<td>2 Lange levensduur, hoge overlevingcapaciteit adulten, omnivoor</td>
<td>2 Lange levensduur, hoge overlevingcapaciteit adulten, omnivoor</td>
</tr>
<tr>
<td>Vestiging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Niet gevestigd, maar wel wijd verspreid aanwezig</td>
<td>2 Niet gevestigd, maar wel wijk verspreid aanwezig</td>
<td>2 Niet gevestigd, maar wel wijk verspreid aanwezig</td>
</tr>
<tr>
<td>Tolerantie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoutgehalte</td>
<td>Tolerereer brak water</td>
<td>2 NB</td>
<td>2 NB</td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Actief</td>
<td>Actief</td>
<td>Actief</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td>Water en land</td>
<td>Water en land</td>
<td>Water en land</td>
</tr>
<tr>
<td>Dispersielendheid</td>
<td>Maximaal 1,6 km (tijdens zoeken van nest door vrouwtje)</td>
<td>3 Maximaal 1,6 km (tijdens zoeken van nest door vrouwtje)</td>
<td>3 Maximaal 1,6 km (tijdens zoeken van nest door vrouwtje)</td>
</tr>
<tr>
<td>Predatoren van eieren</td>
<td>Knaagdieren</td>
<td>2 Knaagdieren, hagedissen</td>
<td>2 Knaagdieren, hagedissen</td>
</tr>
<tr>
<td>juvenielen</td>
<td>Vissen en roofvogels</td>
<td>2 Knaagdieren, visser, slangen, roofvogels</td>
<td>2 Knaagdieren, vissen, slangen, roofvogels</td>
</tr>
<tr>
<td>adulten</td>
<td>Vissen en roofvogels</td>
<td>2 Roofvogels</td>
<td>2 Roofvogels</td>
</tr>
<tr>
<td>Natuurlijk verspreidingsgebied</td>
<td>Langzaam stromende rivieren, sloten, moerassen, meren en plassen</td>
<td>2 Langzaam stromende rivieren, (uiterwaard) meerassen, ondiepe beken, meren en plassen</td>
<td>2 Langzaam stromende beken, uiterwaard, meren en plassen</td>
</tr>
<tr>
<td>Verspreidingsgebied in NL</td>
<td>Beken, laagveenmoeras, meren, plassen, sloten, venen, vijvers, weteringen</td>
<td>2, 8 Beken, plassen, sloten, vennen, vijvers</td>
<td>2, 9 Beken, plassen, sloten, slotgrachten, vennen, vijvers</td>
</tr>
<tr>
<td>Natura 2000 gebied</td>
<td>Gebieden met langzaam stromende waterluchten</td>
<td>Gebieden met langzaam stromende waterluchten</td>
<td>Gebieden met langzaam stromende waterluchten</td>
</tr>
<tr>
<td>Karakterisering habitats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mate van isolatie</td>
<td>Voornamelijk gesloten gebied, maar ook open verbinding</td>
<td>2, 8 Voornamelijk gesloten gebied, maar ook open verbinding</td>
<td>2, 8 Voornamelijk gesloten gebied, maar ook open verbinding</td>
</tr>
<tr>
<td>Stroomsnelheid water</td>
<td>Geen tot langzaam</td>
<td>2 Geen tot langzaam</td>
<td>2 Geen tot langzaam</td>
</tr>
<tr>
<td>Substraat</td>
<td>Zachte bodem met veel aquatische planten</td>
<td>2, 5-7 Zachte bodem met veel aquatische planten</td>
<td>2, 5-7 Zachte bodem met veel aquatische planten</td>
</tr>
</tbody>
</table>

* NB = niet bekend
Bij lagere temperaturen zijn de schildpadden inactief en verblijven ze meestal onderwater op de bodem van het waterlichaam en soms op het land onder boomstronken of in de bodem (Bugter et al., 2011). In warme klimaten kunnen de schildpadden meerdere legels produceren gedurende de lente, zomer en herfst. Juvenielen die pas in de herfst uitkomen, overwinteren in de regel in het nest waarna ze tijdens de warmere lenteperiode naar boven komen (Bugter et al., 2011).

In het begin van de lente gaan de exotische schildpadden overdag actief op zoek naar voedsel, zoals waterplanten en dieren (vissen, rivierkreeften, kikkervisjes, slakken, krekels, wormen, mossels en kadavers). Juveniele schildpadden eten relatief gezien minder plantenmateriaal dan de adulte individuen (Bugter et al., 2011). De rest van de dag verblijven de schildpadden in de zon en ’s nachts slapen ze op de waterbodem of rusten ze op kreupelhout of planten die drijven op het water (Bugter et al., 2011). De schildpadden zijn zeer alert en duiken bij verstoring snel onder water (RAVON, 2016).

De soorten hebben in hun oorspronkelijke verspreidingsgebied meerdere natuurlijke vijanden, zoals roofvogels, vissen en knaagdieren, maar het is onbekend of en door welke predatoren de exotische schildpad wordt gegeten in Nederland.

5.1.2 Habitat
Het oorspronkelijke verspreidingsgebied van de roodwang-, geelbuik-, en geelwangschildpad ligt in het (zuid)oosten van de Verenigde Staten en Centraal Amerika (Bringsøe, 2006; Ficetola et al., 2009; Bugter et al., 2011). De invasieve exoten zijn nog niet gevestigd in Nederland, maar zijn wel op diverse locaties aangetroffen zoals de Zuigerplasbos in Lelystad (Heemskerk & van Alebeek, 2015), watersystemen ten zuiden van Rotterdam (Goding, 2013), stadsparken in de randstad en de duinen van Walcheren (Vergeer & Sluijter, 2010). Van alle drie ondersoorten zijn honderden exemplaren door heel Nederland waargenomen in diverse zoetwatergebieden, waaronder beken, moerassen, meren, kleinere plassen, sloten, vennen en vijvers (Waarneming.nl, 2016a, b). Deze locaties bevinden zich voornamelijk nabij stedelijke en recreatieve gebieden (van Dijk et al., 2013). De drie ondersoorten hebben een voorkeur voor watersystemen met een zachte bodem, een overvloed aan waterplanten en plekken om te zonnen (Bugter et al., 2011). De roodwangsschildpad tolerereert ook brakke wateren (Bugter et al., 2011).

5.1.3 Verspreidingsmechanismen
In Nederland zijn de roodwang-, geelbuik-, en geelwangschildpad nog niet gevestigd aangezien zij zich niet in de natuur hebben voortgeplant, maar vele exemplaren zijn wel geïntroduceerd in de natuur. De voornaamste introductieroute is opzettelijke uitvoering van schildpadpoppen die als huisdier zijn gehouden (Bringsøe, 2006). De huidige temperatuur in Nederland is over het algemeen te laag voor succesvolle voortplanting, omdat bijvoorbeeld voor de eieren een incubatieperiode van minimaal acht weken nodig is bij hoge temperaturen (26 – 32 °C). Hierdoor wordt klimaatverandering gezien als de factor die bepaalt hoe succesvol een invasie van de exotische schildpadden zal zijn (Bugter et al., 2011). In de Nederlandse risicobeoordeling van exotische schildpadden is gesuggereerd dat voortplanting van de drie ondersoorten in Nederland vóór 2050 mogelijk is met het risico op een invasie op lange termijn als gevolg (Bugter et al., 2011).
Wereldwijd zijn fysieke en mechanische maatregelen uitgevoerd om de roodwangschildpad, geelbuik- en geelwangschildpad te elimineren of beheersen. De gerapporteerde maatregelen zijn gezamenlijk beschreven voor de drie exotische soorten. Dit omdat in sommige studies de ondersoorten niet van elkaar zijn onderscheiden, tevens zijn de soort- en habitat-eigenschappen van de drie ondersoorten vergelijkbaar waardoor verondersteld wordt dat eliminatie- en beheersmaatregelen op alle ondersoorten betrekking hebben. De effectiviteit van elke type maatregel op de behandelde locatie is weergegeven in Tabel 5.2. Hoe kansrijk de eliminatie- en beheersmaatregelen zijn voor het aanpakken van de invasieve exoten in Nederland is beschreven in §5.4.

Tabel 5.2: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de roodwang-, geelbuik- en geelwangschildpad.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referentie b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemisch</td>
<td>Behandelen eieren met PCBs</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>↓ populatieomvang</td>
</tr>
<tr>
<td>Fysiek</td>
<td>Droogleggen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>1, 2</td>
</tr>
<tr>
<td>Afschieten</td>
<td></td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>2, 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>2, 3</td>
</tr>
<tr>
<td>Handmatig eieren verwijderen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>4-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>4-6</td>
</tr>
<tr>
<td>Vangmethode - drijvende zonneplaatsvallen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>6, 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>6, 7</td>
</tr>
<tr>
<td>Mechanisch</td>
<td>Vangmethode - fuiken</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>6, 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>6, 8</td>
</tr>
<tr>
<td></td>
<td>Vangmethode - schepnet</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Vangmethode - sleepnetten</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>9</td>
</tr>
</tbody>
</table>

Legenda:

- Veldexperimenten / praktijkervaring
- Laboratorium / mesocosm experimenten
- Soort- en habitatkennis

<table>
<thead>
<tr>
<th>Kansrijk</th>
<th>Deels kansrijk</th>
<th>Niet kansrijk</th>
<th>Niet beschikbaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
</tbody>
</table>

Referenties: 1. (Cash & Holberton, 2005), 2. (Bugter et al., 2011), 3. (Martínez-Silvestre et al., 2011), 4. (Pérez-Santigosa, 2007), 5. (Bataller et al., 2008), 6. (Sancho Alcayde et al., 2015), 7. (Valdeón et al., 2010), 8. (Tucker & Lamer, 2008), 9. (Perry et al., 2007).

5.2.1 Chemisch

Blootstelling van schildpadeieren aan bepaalde chemische stoffen, zoals polychloorbifenylen (PCBs), kan leiden tot een geslachtsverandering bij nakomelingen van de roodwangschildpad. Eieren die
behandeld zijn met PCBs ontwikkelen zich tot vrouwelijke individuen bij een broedtemperatuur (26 - 28°C) die oorspronkelijk tot de differentiatie van mannelijke individuen leidt (Crews et al., 1995; Vandenbergh et al., 2001). Het gebruik van deze chemische stoffen is echter niet gerapporteerd als maatregel om exotische schildpadden te elimineren of beheersen. Aanvullend is de toepassing van PCBs is sinds 1985 in Nederland volledig verboden waardoor deze maatregel in de praktijk niet is toegestaan (UNEP, 2014).

5.2.2 Fysiek

Droogleggen
De effecten van het droogleggen van plassen op het gedrag van lettersierschildpadden is bestudeerd tijdens een veldexperiment in Bay Springs, Verenigde Staten (Cash & Holberton, 2005). In totaal trachten 15 van de 20 schildpadden zich te verplaatsen naar een ander gebied na het bereiken van een verlaagde waterdiepte van 30 cm en een minimale watertemperatuur van 30,8°C. Deze individuen werden vervolgens naar een val (Tomahawk® Thumb) geleid via een omheining van hekken. Het was echter niet duidelijk of de waterdaling of temperatuurstijging van het water dit gedrag initieerde (Cash & Holberton, 2005). In de Nederlandse risicobeoordeling van exotische schildpadden is gesuggereerd dat het droogleggen van het leefgebied en vervolgens het vangen van individuen een effectieve methode kan zijn om moerasschildpadden als de exotische roodwang-, geelwang- en geelbuikschildpad te beheersen (Bugter et al., 2011). Dit is echter niet onderbouwd met in studies gerapporteerde resultaten. Het droogleggen van een waterlichaam is alleen mogelijk bij relatief kleine en geïsoleerde watersystemen. Daarnaast dient rekening te worden gehouden met mogelijke negatieve neveneffecten op gewenste soorten in systemen met een hoge ecologische status (Bugter et al., 2011).

5.2.3 Mechanisch

Afschieten
In Spanje en Portugal zijn jachtgeweren gebruikt om populaties lettersierschildpadden te beperken (Sancho Alcayde et al., 2015). Het is een zeer selectieve methode om exotische schildpadden op afstanden tot 80 m te treffen (Martínez-Silvestre et al., 2011). In een studie met verschillende vangmethoden bleek het afschieten minder effectief en duurder te zijn dan het gebruik van een drijvende val in het water (Sancho Alcayde et al., 2015). De aanschaf van een geweer kostte €2549,- tegenover €110,- voor de drijvende val. Het aantal geëlimineerde individuen met een geweer is echter niet gerapporteerd.

In de Verenigde Staten is het afschieten van moerasschildpadden in plassen en meren ook niet effectief gebleken, waarschijnlijk vanwege het snelle reactievermogen van schildpadden om te schuilen bij het horen van geluid (Bugter et al., 2011). Hierdoor zijn na het afschieten van één individu de overige individuen moeilijker te lokaliseren. Het is van belang dat aan strenge veiligheidseisen wordt voldaan wanneer deze maatregel wordt uitgevoerd (Martínez-Silvestre et al., 2011).

Handmatig eieren verwijderen
In een driejarig project in Spanje en Portugal werden handmatig nesten van roodwang-, geelbuik- en geelwangsschildpadden opgespoord en verwijderd. Hiertoe zijn deskundigen ingezet die mogelijke nestplaatsen bezochten, speurhonden gebruikt die toegedekte eieren aangaven en een mobiel radarsysteem ingezet om de nesten te lokaliseren (Sancho Alcayde et al., 2015). Het slagingssucces van de van de maatregelen die tijdens dit project werden uitgevoerd zijn niet gerapporteerd. In een
andere veldstudie in Spanje zijn tijdens de voortplantingsperiode van de roodwangschildpad in een lagune meer dan 80 nesten handmatig opgegraven in 2006 (Pérez-Santiagosa, 2007; Martínez-Silvestre et al., 2011). Tussen 2006 en 2009 zijn in Valencia in totaal meer dan 8800 eieren uit 938 nesten handmatig verwijderd (Bataller et al., 2008; Martínez-Silvestre et al., 2011). Voor beide gevallen is het onduidelijk met welke regelmaat en hoeveel mankracht is ingezet en welk percentage van de populatie is verwijderd. Een voordeel van het handmatig verwijderen van eieren is het reduceren van de populatiegroei voordat individuen zijn volgroeid. Relatief grote gebieden worden bestreken bij het inzetten van een hond of radar. Een hond spoort echter alleen de meest recente nesten op en de radar geeft mogelijk valse positieve resultaten (Sancho Alcayde et al., 2015).

Vangstmethoden

Tot nu toe is het inzetten van vangstmiddelen de meest gebruikte methode om populaties van exotische schildpadden te beheersen. In 33 Spaanse (Valencia) en Portugese (Algarve) watergebieden werden tussen 2011 en 2013 in totaal 23.000 roodwang-, geelbuik- en geelwangschildpadden gevangen en / of geëlimineerd met behulp van 19 verschillende middelen, namelijk: 1) een fuik, 2) drie fuiken naast elkaar, 3) een kathedraalval, 4) een ‘Fesquet’ val bestaande uit een kooi met een schuin oplopende tunnel op de bodem, 5) een dubbele trechterval, 6) een drijvende dubbele trechterval, 7) een drijvende zonneplaatsval met een net eronder in het water, 8) een Valkooi van staal, 9) een lijn met hangende haken, 10) een vlot met een vangnet in het water dat omhoog wordt getild zodra een schildpad plaatsneemt, 11) een vast platform met een verstelbaar vangnet op het platform, 12) een plank met verplaatsbaar gaas eromheen, 13) een uitschuifbaar scheepnet, 14) een hengel, 15) een gooienet, 16) een jachtgeweer, 17) het lokaliseren van nesten door deskundigen met het blote oog, 18) speurhonden, of 19) een radar (Sancho Alcayde et al., 2015). In de meeste vallen is aas gebruikt, zoals vis of vlees, om de schildpadden te lokken. Figuur 5.2 toont een schematische weergave van de gebruikte middelen.

Deze 19 maatregelen werden uitgevoerd in meerdere habitats, betreffende natuurlijke eutrofe meren, lagunes, kalkhoudende oligo-mesotrofe wateren en kalkhoudende vennen (Lacomba, 2013b, a; Sancho Alcayde et al., 2015). In sommige watergebieden is de verspreiding van de exotische schildpadden gestopt en zijn tegelijkertijd populaties van de inheemse Moorse beekschildpad (*Mauremys leprosa*) en de Europese moerasschildpad (*Emys orbicularis*) hersteld. Dit project had een budget van 1,2 miljoen euro (Lacomba, 2013b, a).
Figuur 5.2: Verschillende middelen die zijn gebruikt voor de vangst van roodwang-, geelwang- en geelbuikschildpadden in Spanje en Portugal. De middelen zijn toegelicht in de tekst (afgeleid van Figuur 27 uit Sancho Alcayde et al., 2015).

Hieronder zijn de vangstmethoden toegelicht waarvoor de effectiviteit is gerapporteerd:

Drijvende zonneplaatsval

De meest effectieve, passieve vangstmaatregel van de bestrijdingsactie in de 33 Spaanse en Portugese watergebieden is de ‘drijvende zonneplaatsval’ met een onderwaternet en hellingen aan de zijkant (nr. 7 in Figuur 5.2) (Lacomba, 2013a; Sancho Alcayde et al., 2015). Tijdens het project werden gemiddeld 0,29 individuen/dag gevangen. Bij deze methode worden weinig andere soorten gevangen, omdat vooral schildpadden op het vlot kruipen om te zonnen. Daarnaast is deze maatregel gerapporteerd als een kosteneffectieve methode, waarbij de prijs van één val €110,- is.

Een val dat lijkt op de drijvende zonneplaatsval is ook effectief gebleken om exotische lettersierschildpadden te vangen in een gedeelte van de Arga rivier in Pamplona (Valdeón et al., 2010). Bij deze val, de zogenaamde ‘Aranzadi Turtle Trap’, zijn de drijvende plastic buizen bekleed met een boombast in plaats van een schuin talud (Figuur 5.3). In het midden drijft een klein stuk bast voor het comfort van de schildpadden die in het midden van de val terecht zijn gekomen. Hierdoor hebben ze minder behoefte om te ontsnappen. In totaal werden 7 individuen van de 10 aanwezige roodwang- en geelbuikschildpadden gevangen tijdens een periode van 5 maanden (Valdeón et al., 2010). Elke week werden de vallen gecontroleerd. Andere type vallen, zoals een platform van bast met een vangnet dat omhoog wordt getild en vallen met aas op de begroeiide oever hadden geen effect.
Figuur 5.3: Aranzadi Turtle Trap met links de val voordat deze in het water is geplaatst en rechts een gevangen lettersierschildpad (© Foto: Aitor Valdeón, uit Valdeón et al., 2010).

Fuik
Een tweede effectieve, passieve maatregel van de bestrijdingsactie in 33 Spaanse en Portugese watergebieden is het gebruik van de fuik (nr. 1 in Figuur 5.2) (Sancho Alcayde et al., 2015). Tijdens het project werden gemiddeld 0,27 individuen/dag gevangen. Fuiken zijn het beste inzetbaar voor het vangen van adulte schildpadden. Echter, het is een niet-selectieve maatregel waardoor mogelijk ook andere soorten met de fuik worden gevangen. Daarnaast moet om de 4 tot 7 dagen de fuik worden geleegd. De gebruikte fuiken in het project kosten €60,- tot €90,- per stuk.

In een studie naar de lichaamsontmont van roodwangschildpadden werden individuen in het Atchafalaya moerassysteem in de Verenigde Staten gevangen met behulp van met aas gevulde fuiken die tweemaal daags werden geleegd. Gedurende één zomermaand zijn met een onbekend aantal fuiken in totaal 289 exemplaren gevangen in 8 verschillende gebieden. De grootte van de aanwezige populaties is niet gerapporteerd, waardoor het vangstsucces onbekend is (Close & Seigel, 1997). In drie meren en de Illinois rivier in de Verenigde Staten werden ongeveer 55% van de gemerkte roodwangschildpadden weer teruggevangen met fuiken en het handmatig opsporen van nestende vrouwtjes tussen 1994 en 2006 (Tucker & Lamer, 2008). In Australische monitoringsprogramma’s is aangetoond dat fuiken minimaal vijf dagen moeten worden ingezet om betrouwbare meetgegevens te produceren (Burgin, 2007).

Schepnet
Een effectieve, actieve maatregel van de bestrijdingsactie in Spanje en Portugal is het gebruik van een schepnet met een uitschuifbare stok (nr. 13 in Figuur 5.2) (Sancho Alcayde et al., 2015). Hiermee werden gemiddeld 2,17 individuen/uur gevangen door personen met veel ervaring. Dit waren vooral juvéniele schildpadden die zich van paaggebieden naar andere gebieden verplaatsten en nog niet makkelijk het water in konden duiken. Een schepnet is ook effectief in situaties waarbij de dieren niet gemakkelijk kunnen ontsnappen, zoals in drooggelegde wateren. Het is een selectieve maatregel waarmee weinig andere soorten tegelijkertijd worden gevangen. De gebruikte schepnetten in het Spaanse en Portugese project kosten €30,- tot €50,- per stuk (Sancho Alcayde et al., 2015).

Sleepnet
In de Britse Maagdeneilanden zijn in 2003 lettersierschildpadden verwijderd uit een plas (< 100 m² en < 1 meter diepte) met behulp van sleepnetten. Deze vangstmethode was matig succesvol.
maatregel resulteerde in 12 adulte en 20 juveniele gevangen exemplaren, de hele populatie is echter niet uit het waterlichaam verwijderd (Perry et al., 2007).

5.3 Beheersmaatregelen voor indamming populaties

Specifieke maatregelen om secundaire verspreiding en vestiging vanuit bestaande populaties tot een minimum te beperken zijn niet gerapporteerd voor de roodwang-, geelbuik- en geelwangschildpadden. Deze soorten zijn in Nederland nog niet gevestigd, waardoor verspreiding vanuit voortplanting nog niet aanwezig is.

5.4 Kansrijke maatregelen voor Nederland

De drie ondersoorten van de lettersierschildpad (T. scripta), de roodwang-, geelbuik- en geelwangschildpad, hebben zich nog niet gevestigd maar zijn wel in verschillende watersystemen door heel Nederland waargenomen. In de gevonden literatuur zijn geen succesvolle eliminatemaatregelen gerapporteerd, maar zijn voornamelijk fysieke en mechanische maatregelen beschreven die bijdragen aan het verminderen van de populatieomvang van exotische schildpadden. Voor Nederland geldt echter dat de soort zich nog niet voortplant waardoor de huidige aantallen misschien toch te elimineren zijn met een combinatie van onderstaande maatregelen. Het droogleggen van een waterlichaam is alleen mogelijk bij relatief kleine en geïsoleerde watersystemen en is waarschijnlijk niet effectief als enkele maatregel. De kans op beperking van de populatieomvang of volledige eliminatie wordt verhoogd wanneer het in combinatie wordt uitgevoerd met een omheining en vallen en / of het wegvangen van blootgelegde individuen met schepnetten. De schildpadden verplaatsen zich namelijk naar een ander gebied zodra de omstandigheden ongunstig worden (laag waterniveau, hoge watertemperatuur). Het droogleggen van een waterlichaam is echter niet aanbevolen voor gebruik in gebieden met hoge natuurwaarden, omdat het negatieve gevolgen kan hebben op de aanwezige flora en fauna.

Vallen, zoals de drijvende zonneplaatsval met een onderwaternet, zijn bruikbaar om een populatie te beheersen, mits de vallen met regelmaat worden geleegd (minimaal elke week) en gedurende een langere periode worden gebruikt (maanden). De drijvende zonneplaatsval is gericht op soorten die zonnen op drijvende materialen in het water, zoals de roodwang-, geelbuik- en geelwangschildpad. Dit zorgt voor weinig bijvangst van andere soorten. De beste periode om deze vallen in te zetten is tijdens de lente en zomer, wanneer de exotische schildpadden het meest actief zijn (Bugter et al., 2011). Geschikte locaties zijn plaatsen met een zachte bodem in de buurt van waterplanten in stilstaande of langzaam stromende wateren en plassen, of in het ondiepe water van meren (Bugter et al., 2011).

Op nationale schaal kunnen drijvende zonneplaatsvallen worden ingezet om de populatieomvang van exotische schildpadden te beperken, maar volledige eliminatie door het inzetten van deze maatregel is onwaarschijnlijk omdat mogelijk niet alle schildpadden de val als zonneplaats verkiezen. Aanvullende maatregelen zijn nodig om een populatie compleet te verwijderen uit een waterlichaam. Een voorbeeld is het gebruik van een jachtgeweer om een enkele individu die zich moeilijk laat vangen van een grotere afstand te verwijderen. Hierbij mag geen risico ontstaan voor mensen en andere dieren. Andere vangstmethoden, zoals een fuik met aas, zijn mogelijk bruikbaar als aanvullende maatregel, maar hierbij zal de ongewenste bijvangst van andere soorten groter zijn omdat dit geen
soortspecifieke maatregel is. In de Nederlandse risicobeoordeling voor exotische schildpadden is de inschatting gemaakt dat vallen meerdere malen per dag moeten worden gecontroleerd in gebieden met veel schildpadden (minimale populatieomvang onbekend). Een voorstel werd gedaan om het wegvangen van muskusratten te combineren met het wegvangen van exotische schildpadden (Bugter et al., 2011). Het aantal vallen, de hoeveelheid mankracht en uiteindelijk de kosten van het elimineren van alle exotische schildpadden in Nederland hangt onder andere af van de hoeveelheid locaties, de grootte van schildpadpopulaties en de bereikbaarheid van de leefgebieden.

De kosten van uitgevoerde maatregelen om exotische schildpadden te elimineren of beheersen zijn in de regel niet gerapporteerd. In de Nederlandse risicobeoordeling van exotische schildpadden zijn de kosten van het elimineren van één populatie met vijf vallen gedurende twee weken in een relatief klein watergebied geschat op ongeveer €5.000,- (Bugter et al., 2011). Hierin zijn de kosten van de vallen, de mankracht en het transport meegerekend. Daarbij is niet aangegeven wat na vangst met de schildpadden gebeurt. Het is belangrijk dat de gevangen individuen op een geschikte manier worden afgevoerd en opgevangen of geëuthanaseerd.
6 Schaaldieren – Chinese wolhandkrab (*Eriocheir sinensis*), gevelkte Amerikaanse rivierkreeft (*Orconectes limosus*), geknobbelde Amerikaanse rivierkreeft (*Orconectes virilis*), Californische rivierkreeft (*Pacifastacus leniusculus*), rode Amerikaanse rivierkreeft (*Procambarus clarkii*), Marmerkreeft (*Procambarus sp.*)

6.1 Soort- en habitatbeschrijving

Overeenkomstige eigenschappen tussen soorten zijn gezamenlijk toegelicht. Daarnaast zijn de meest opvallende soortspecifieke eigenschappen toegelicht per invasieve exoot. De eigenschappen zijn samengevat in Tabel 6.1.

6.1.1 Levenswijze

De zes schaaldieren hebben meerdere gemeenschappelijke soorteigenschappen die invloed hebben op maatregelen voor het elimineren, beheersen of tot een minimum beperken van verdere verspreiding. Zo zoeken ze allen beschutting in holen, onder stenen of tussen vegetatie waardoor de individuen relatief moeilijk zichtbaar zijn. Rivierkreeften en de Chinese wolhandkrab zijn omnivoren die waterplanten begrazen en zich voeden met ongewervelden, algen en organisch materiaal (Nyström & Strand, 1996). De soorten kunnen zich allemaal over het land verspreiden, waardoor het mogelijk is dat zij barrières in het water ontwijken. De vrouwelijke exemplaren van de zoetwaterkreeften zetten gemiddeld honderden eieren per legsel af met één of meerdere cycli per jaar. Eén vrouwelijke Chinese wolhandkrab brengt tijdens een éénmalige voortplantingsperiode honderdduizenden nakomelingen voort. De vorming van nieuwe, vitale populaties is daarom mogelijk door één vrouwelijke rivierkreeft of wolhandkrab. Over het algemeen zijn de succesfactoren voor invasiviteit van rivierkreeften gerelateerd aan hun hoge vruchtbaarheid, het vertonen van agressie naar andere dieren, het graven van holten, hun omnivore etenpatroon en snelle groei (Holdich et al., 2014). Hieronder volgen soortspecifieke eigenschappen met betrekking tot de levenswijze.

De invasiviteit van de Chinese wolhandkrab wordt onder andere veroorzaakt door de aanwezigheid van veel geschikt voedsel, weinig competitie van andere soorten en de tolerantie voor vervuild water (Gollasch, 2011). Een opvallende soorteigenschap is de migratie van adulte individuen naar zee om te paren tijdens het najaar (Gollasch, 2011). Deze migratie kan enkele maanden duren waarbij individuen honderden kilometers afleggen. De krabben worden tijdens de trek geslachtsrijp (Gollasch, 2011). De vrouwelijke exemplaren lopen na de paring met bevruchte eitjes van estuariene naar mariene gebieden waar zij eieren leggen. De eieren worden enkele maanden door de vrouwtjes vastgehouden tot zij uitkomen in het voorjaar (Soes et al., 2007). De adulte individuen sterven en de larven ontwikkelen zich tot juveniele krabben die terug gaan naar zoetwater gebieden (Herborg et al., 2006). Temperatuur en zoutgehalte van het water zijn belangrijke factoren voor de ontwikkeling van
de larven, maar adulte krabben overleven watertemperaturen tussen 4 - 32°C en zoutgehaltes tussen 0 - 35‰ (Cohen & Weinstein, 2001; Bouma & Soes, 2010). In aanvulling op de stroomafwaartse najaarsmigratie, kan in het voorjaar en de vroege zomer massale stroomopwaartse dispersie van de krab voorkomen (Soes et al., 2007).

Figuur 6.1: A) Chinese wolhandkrab (© Foto: Saxifraga, Jan van der Straaten), B) gevlekte Amerikaanse rivierkreeft (© Foto: Wikimedia commons), C) geknobbelde Amerikaanse rivierkreeft (© Foto: Wikimedia commons), D) Californische rivierkreeft (© Foto: www.nobanis.org, Merike Linnamägi), E) rode Amerikaanse rivierkreeft (© Foto: Saxifraga, Rudmer Zwerver), F) marmerkreeft (© Foto: Wikimedia commons).

De gevlekte Amerikaanse rivierkreeft overleeft in eutrofe (nutriëntenrijke) wateren, bij lage temperaturen en bij droge condities (Holdich & Black, 2007). Deze eigenschappen dragen bij aan de invasiviteit van de zoetwaterkreeft. Een temperatuurtoename tijdens de winterperiode kan een vroege voortplanting initiëren (Van den Brink et al., 1988). Juvenielen die uitkomen tijdens de lente worden geslachtsrijp in de tweede zomer (Hamr, 2002; Soes & Koese, 2010). De soort kan voorkomen op het land, maar deze observaties zijn meestal gedaan na uitvoering van werkzaamheden, zoals baggeren of ontwateren, of na heftige regenval (Soes & Koese, 2010).
De **geknobbelde Amerikaanse rivierkreeft** migreert afhankelijk van het geslacht en het seizoen. In beken gaan bevruchte vrouwelijke individuen tijdens het reproductieseizoen (lente en zomer) naar de bovenloop toe om hun jongen af te zetten. Hierna migreren de kreeften weer stroomafwaarts (Roessink *et al.*, 2009). De migratiesnelheid is afhankelijk van de grootte van het individu en afstanden die hierbij worden afgelegd zijn onbekend. In de winter houden rivierkreeften zich op in diepere waterlagen om lage temperaturen te overleven (Roessink *et al.*, 2009). De invasieve exoot heeft een relatief hoge zuurstofverzadiging van het water nodig (7,5 – 10 mg/l) en is gevoelig voor verzuring van het water (Holdich *et al.*, 2006; Roessink *et al.*, 2009). Een pH lager dan 5,8 zorgt voor een lager reproductiesucces en slechtere flexibiliteit van het exoskelet (Roessink *et al.*, 2009). De geknobbelde Amerikaanse rivierkreeft vertoont kannibalisme, de soort voedt zich met lichaamsdelen van andere exemplaren (Davidson *et al.*, 2010).

De **Californische rivierkreeft** graait niet vaak holen in het oorspronkelijke verspreidingsgebied, echter in Europa is de soort wel bekend om zijn graafgedrag (Guan, 2010; Peay & Dunn, 2014).

De **rode Amerikaanse rivierkreeft** tolereert eutrofe wateren, lage zuurstofconcentraties en zoutgehaltes tot 10‰. Net als adulte individuen graven juvenielen eveneens holen in de oevers (Huner, 2002; Non-native Species Secretariat, 2011).

Aseksuele voortplanting is een unieke eigenschap van de **marmerkreeft**. Alleen vrouwelijke individuen bestaan en deze leggen onbevruchte eieren die zich ontwikkelen tot genetisch identieke nakomelingen (Scholtz *et al.*, 2003; Vogt, 2008; Chucholl *et al.*, 2012). De aanwezigheid van een enkele marmerkreeft kan daarom een nieuwe populatie vormen.

6.1.2 Habitat

Alle zes invasieve exoten komen voor in zoetwatergebieden die een open verbinding hebben met andere wateren. Deze watersystemen hebben een langzame of snelle stroming en een zachte of harde bodem als substraat. De kans is groot dat alle soorten in beschermd natuurgebieden zijn gevestigd, maar dit geldt vooral voor de wijdverspreide soorten als de Chinese wolhandkrab, rode Amerikaanse rivierkreeft en de gevlekte Amerikaanse rivierkreeft. Hieronder volgen soortspecifieke eigenschappen met betrekking tot de habitatkeuze.

<table>
<thead>
<tr>
<th>Eigenschappen</th>
<th>Chinese wolhandkrab (Eriocheir sinensis)</th>
<th>Gevlekte Amerikaanse rivierkreeft (Orconectes limosus)</th>
<th>Geknobbelde Amerikaanse rivierkreeft (Orconectes virilis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengte geslachtstrip individu</td>
<td>Gemiddeld 10 cm (rugschild)</td>
<td>Gemiddeld 2,5 - 3,5 cm</td>
<td>Gemiddeld 2,3 - 2,7 cm</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>2 - 5 jaar</td>
<td>> 4 jaar</td>
<td>4 jaar</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td>Winter (oktober - februari)</td>
<td>Mei - juni (afhankelijk van temperatuur)</td>
<td>Juli</td>
</tr>
<tr>
<td>Uitkomen jongen</td>
<td>Lente & herfst, soms ook winter (> 7 °C)</td>
<td>Lente & zomer (juli - september)</td>
<td>8</td>
</tr>
<tr>
<td>Geslacteurgelijkheid-indicatoren</td>
<td>Migratie is 's nachts</td>
<td>Dag en nacht</td>
<td>Dag en nacht</td>
</tr>
<tr>
<td>Soort</td>
<td>Slecht (zoekt beschutting in hol of onder vegetatie)</td>
<td>Slecht (in holen, onder rotsen of vegetatie)</td>
<td>8</td>
</tr>
<tr>
<td>Voedselvoorziening</td>
<td>Omnivoor</td>
<td>Omnivoor</td>
<td>Omnivoor</td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Veel voedsel aanwezig, weinig competitie, tolerert vervuilde water</td>
<td>Tolerert eutrofe wateren, lage temperatuur en droge condities</td>
<td>Tolerert lage temperatuur, relatief agressief</td>
</tr>
<tr>
<td>Vestiging</td>
<td>Wijdverspreid</td>
<td>Enkele lokale plekken in NL</td>
<td>2</td>
</tr>
<tr>
<td>Tolerantie</td>
<td>+ (natte graslanden: 35 dagen, holen bij droogte: 10 dagen)</td>
<td>+ (enkele weken)</td>
<td>-</td>
</tr>
<tr>
<td>Zout water</td>
<td>++ (ontwikkeling larven)</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Passief (larven) & actief (juveniel en adult)</td>
<td>8, 11</td>
<td>8</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td>Water</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Land</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Lucht</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td>Maximaal 18 km/dag (najaarstrek)</td>
<td>Algemeen: > 2 km/jaar</td>
<td>11</td>
</tr>
<tr>
<td>Struikmaatschappij</td>
<td>3, 6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Predatoren</td>
<td>Onder andere vogels, zoogdieren en roofvissen</td>
<td>Onder andere vogels, zoogdieren en roofvissen</td>
<td>22, 23</td>
</tr>
<tr>
<td>Natura 2000 gebied</td>
<td>Alle gebieden met waterlichamen</td>
<td>Alle gebieden met waterlichamen</td>
<td>11</td>
</tr>
<tr>
<td>Natuurlijke verspreidingsgebied</td>
<td>Rivieren, kanalen, meren, maritieme wateren, kustgebieden</td>
<td>Rivieren, grotere kanalen en meren</td>
<td>Meer, laagland rivieren, sloten</td>
</tr>
<tr>
<td>Verspreidingsgebied in NL</td>
<td>Rivieren en kustgebied</td>
<td>Vooral diepe plassen en meren, maar ook kanalen en rivieren</td>
<td>Plassen, meren, beken en rivieren</td>
</tr>
<tr>
<td>Vegetatizeringshabitats</td>
<td>Alle gebieden met waterlichamen</td>
<td>Rivieren, grotere kanalen en meren</td>
<td>Meer, laagland rivieren, sloten</td>
</tr>
<tr>
<td>Mate van isolatie</td>
<td>Open verbinding</td>
<td>Open en gesloten verbinding</td>
<td>Open en gesloten verbinding</td>
</tr>
<tr>
<td>Stroomsmaleid water</td>
<td>Langzaam tot snel</td>
<td>Langzaam tot snel</td>
<td>Langzaam tot snel</td>
</tr>
<tr>
<td>Substraat</td>
<td>Zacht en harde bodem</td>
<td>Zacht en harde bodem</td>
<td>Zacht en harde bodem</td>
</tr>
<tr>
<td>Mate begroeiing diep</td>
<td>Open en gesloten structuur (moerasgebied)</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Oppervlakte</td>
<td>Groot</td>
<td>Groot</td>
<td>Middelgroot</td>
</tr>
<tr>
<td>Eigenschappen</td>
<td>Californische rivierkreeft (Pacifastacus leniusculus[^a])</td>
<td>Rode Amerikaanse rivierkreeft (Procambarus clarkii[^a])</td>
<td>Marmerkreeft (Procambarus sp.[^a])</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Lengte geslachtsrijp indiviudu</td>
<td>Gemiddeld 6 - 9 cm</td>
<td>Gemiddeld 4,5 - 12,5 cm</td>
<td>Gemiddeld 4 cm</td>
</tr>
<tr>
<td>Maximaal leeftijd (in veld)</td>
<td>20 jaar</td>
<td>1 - 1,5 jaar</td>
<td>Mogelijk > 2 jaar</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paringstijd</td>
<td>Herzet (oktober)</td>
<td>Herzet, winter, lente</td>
<td>Geen bevurking nodig</td>
</tr>
<tr>
<td>Uitkomen jongen</td>
<td>Maart - juli (afhankelijk van temp.)</td>
<td>Gehele jaar (bij temp. 10 - 22°C)</td>
<td>Gehele jaar</td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td>1-3 jaar</td>
<td>Na enkele weken</td>
<td>6 - 7</td>
</tr>
<tr>
<td>Geslachtsrijpe leeftijd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eieren per legsel</td>
<td>200 - 400 (maximaal 500)</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>Legkels per jaar</td>
<td>1</td>
<td>2 of meer</td>
<td>25 - 35 weken</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Dag en nacht (voornamelijk)</td>
<td>Nacht</td>
<td></td>
</tr>
<tr>
<td>Zichtbaarheid</td>
<td>Slecht / matig (graaf holens)</td>
<td>Slecht / matig (graaf holens)</td>
<td>Matig (graaf soms holens)</td>
</tr>
<tr>
<td>Voedselvoorzetter</td>
<td>Omnivoor</td>
<td>Omnivoor</td>
<td>Omnivoor</td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Agressief, omnivoor, hoge vrachtabbaarheid</td>
<td>Agressief, toereelt vervuld water en lage zuurstofconcentratie, omnivoor</td>
<td>Onbevruchte voortplanting, omnivoor</td>
</tr>
<tr>
<td>Storings</td>
<td>Storings</td>
<td>Storings</td>
<td>Storings</td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Enkele lokale plekken in NL</td>
<td>2 Regionala</td>
<td>2 Enkele lokale plekken in NL</td>
</tr>
<tr>
<td>Tolerantie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droogval</td>
<td>++ (maanden in koele, vochtige omgeving)</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Zeef water</td>
<td>+ (komt voor in brak water)</td>
<td>+</td>
<td>8, 16 NB</td>
</tr>
<tr>
<td>minimaal benodigde pH</td>
<td>6,0</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Actief & passief (larven)</td>
<td>Actief & passief</td>
<td>Actief & passief</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Land</td>
<td>++ (ongebruikelijk, in NL nog niet geobserveerd)</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Lucht</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroomopwaarts</td>
<td>1 - 2 km/jaar</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Stroomafwaarts</td>
<td>> 1 - 2 km/jaar</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Predators</td>
<td>Onder andere vogels, zoogdieren en roofvissen</td>
<td>Onder andere vogels, zoogdieren en roofvissen</td>
<td>Onder andere vogels, zoogdieren en roofvissen</td>
</tr>
<tr>
<td>Natuurlijk verspreidingsgebied</td>
<td>Meren, beken en rivieren</td>
<td>Meerassen, rivieren, reservoirs, irrigatiesystemen, rijstvelden</td>
<td>Plassen, meren, beken en rivieren</td>
</tr>
<tr>
<td>Verspreidingsgebied in NL</td>
<td>Rivier en beek</td>
<td>Rivieren en beken</td>
<td>Kanaal</td>
</tr>
<tr>
<td>Natura 2000 gebied</td>
<td>Alle gebieden met waterlichamen</td>
<td>Alle gebieden met waterlichamen</td>
<td>Alle gebieden met waterlichamen</td>
</tr>
<tr>
<td>Karakterisering habitats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mate van isolatie</td>
<td>Open verbinding</td>
<td>Open verbinding</td>
<td>Open verbinding</td>
</tr>
<tr>
<td>Stoomsmelting water</td>
<td>Langzaam tot snel</td>
<td>Langzaam tot snel</td>
<td>Langzaam tot snel</td>
</tr>
<tr>
<td>Substraat</td>
<td>Zachte en harde bodem (stenen)</td>
<td>Zachte en harde bodem</td>
<td></td>
</tr>
<tr>
<td>Mate begroeving oever</td>
<td>Open en gesloten structuur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mate begroeving water</td>
<td>Gesloten (waterplanten in Oude Leij)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oppervlakte</td>
<td>NB</td>
<td></td>
<td>Klein</td>
</tr>
</tbody>
</table>

De **gevlekte Amerikaanse rivierkreeft** is wijdverspreid in Nederland en is gevestigd in rivieren, grotere kanalen en meren (Soes & Koese, 2010; Verbrugge et al., 2015). In Noord-Amerika komt de soort voor in grote rivieren, wijde stromen en meren met zachte bodems, troebel water en veel vegetatie. In Canada komt de soort voor in rivieren, stromen en meren met een hard substraat en matige waterstrooming. In Europa komt de soort voor in dezelfde habitatstypes, zoals koele en snelstromende wateren, maar heeft een voorkeur voor kalmere en diepere wateren zoals vijvers en meren. Deze wateren mogen zelfs vervuild en rijk aan organische stof zijn (Hamr, 2002; Holdich et al., 2006; Holdich & Black, 2007). De soort komt echter niet snel voor in ondiepe wateren en blijkt snel te worden weggeconcurreerd in habitats waar andere invasieve kreeften voorkomen, zoals de gestreepte, rode en geknobbelde Amerikaanse rivierkreeften (Soes & Koese, 2010).

De **geknobbelde Amerikaanse rivierkreeft** komt op enkele lokale plaatsen in Nederland voor, zoals in de Vinkeveense plassen en de wateren bij Kamerik in de provincie Utrecht (Roessink et al., 2009; Verbrugge et al., 2015). De habitatvoorkeur is relatief hetzelfde als die van de gevlekte Amerikaanse rivierkreeft, maar de soort lijkt een groter voordeel te hebben in ondiepe wateren (met veengrond), terwijl de gevlekte Amerikaanse rivierkreeft over het algemeen vaker voorkomt in diepere wateren (met zand en grind) (Soes & Koese, 2010). De soort kan zich over land verspreiden, maar komt desondanks weinig voor in droogvallende watergebieden (Holdich et al., 2006; Roessink et al., 2009).

De **Californische rivierkreeft** komt op enkele lokale plekken voor in Nederland (Verbrugge et al., 2015). In 2010 zijn twee populaties gemeld, namelijk één in de Oude Leij bij Tilburg en één in de Ruhenbergerbeek en Dinkel bij Enschede (Soes & Koese, 2010). De soort komt in Nederland voornamelijk voor in laagland beken (Soes & Koese, 2010).

De **rode Amerikaanse rivierkreeft** komt regionaal voor in Nederland, namelijk in West-Nederland en bij grotere steden langs de Maas, Rijn en IJssel (Koese & Soes, 2011; Leewis et al., 2013; Verbrugge et al., 2015). Deze soort heeft een groot aanpassingsvermogen waardoor hij zich vestigt in verschillende habitats, met een voorkeur voor ondiepe en dynamische (verstoorde) wateren met genoeg mogelijkheden om te schuilen (Gherardi, 2006; Soes & Koese, 2010). Kustgraslanden met zoetwater of brakwater sloten vallen hier ook onder (Huner, 2002; Non-native Species Secretariat, 2011).

De vestiging van de **marmerkreeft** is in Nederland slechts van één locatie bekend, namelijk bij Dordrecht in het kanaal Vlij, echter de actuele situatie met betrekking tot vestiging van deze soort is nog niet goed in beeld gebracht (Soes & Koese, 2010; Verbrugge et al., 2015). De marmerkreeft is in meerdere Europese watergebieden waargenomen, zowel in langzaam als snelstromende wateren, maar is voornamelijk gevestigd in plassen, natuurlijke meren en meren in voormalige grindgroeven (Chucholl et al., 2012). Meerdere keren zijn individuen op het land gesignaleerd (Chucholl et al., 2012).

Het habitat in het natuurlijke verspreidingsgebied is onbekend, aangezien onduidelijk is waar de soort vandaan komt (Holdich, 2011). Rivierkreeften met soortgelijke eigenschappen (zoals Procambarus alleni en Procambarus fallax), behalve met uitzondering de aseksuele voortplanting, zijn inheems in waterrijke natuurgebieden in Florida in de Verenigde Staten (Martin et al., 2010; Holdich, 2011). *P. alleni* prefereert dichte vegetatie (Dorn & Trexler, 2007; Vogt, 2008).
6.1.3 Verspreidingsmechanismen
In Nederland zijn de meest voorkomende introductieroutes van de Chinese wolhandkrab en de vijf invasieve rivierkreeften onbedoelde ontsnapping uit gevangenschap en natuurlijke verspreiding door open waterverbindingen met Duitsland en België, zoals rivieren en kanalen (Tabel 6.2). De soorten worden als huisdier in aquaria gehouden en in een enkel geval gebruikt voor de aquacultuur, zoals de Californische rivierkreeft (Verbrugge et al., 2015). Enkele soorten zijn vermoedelijk opzettelijk uitgezet in de natuur, bijvoorbeeld ter bevordering van de kreeften visserij of als gevolg van lozing door aquariumhouders. Transport van goederen levert twee introductieroutes op aangezien de invasieve exoten mogelijk als verstekeling in ballastwater van schepen voorkomen en als contaminant in levend aas dat wordt geïmporteerd en gebruikt voor de visserij. Op basis van deskundigenoordeel zijn ook potentiële introductieroutes van de schaaldieren in Tabel 6.2 opgenomen.

Tabel 6.2: Verschillende introductieroutes van de Chinese wolhandkrab (E. sinensis), gevlekte Amerikaanse rivierkreeft (O. limosus), geknobbelde Amerikaanse rivierkreeft (O. virilis), Californische rivierkreeft (P. leniusculus), rode Amerikaanse rivierkreeft (P. clarkii) en de marmerkreeft (Procambarus sp.) in Nederland.

<table>
<thead>
<tr>
<th>Introductieroute</th>
<th>E. sinensis</th>
<th>O. limosus</th>
<th>O. virilis</th>
<th>P. leniusculus</th>
<th>P. clarkii</th>
<th>Procambarus sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opzettelijk uitzetten</td>
<td>X</td>
<td>P</td>
<td>P</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Huisdieren in aquaria</td>
<td>P</td>
<td>X</td>
<td>X</td>
<td>P</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aquacultuur</td>
<td>X</td>
<td>NR</td>
<td>NR</td>
<td>X</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Contaminant in transportgoederen</td>
<td>P</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>P</td>
</tr>
<tr>
<td>Contaminant in import / gebruik levend aas</td>
<td>P</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>P</td>
<td>X</td>
</tr>
<tr>
<td>Verstekeling in transport</td>
<td>X</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ballastwater van schepen</td>
<td>X</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Zonder invloed mens</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>P</td>
<td>X</td>
</tr>
</tbody>
</table>

NR: Niet relevant (deskundigenoordeel: auteurs); P: Potentiële introductieroute (deskundigenoordeel: auteurs); X: De introductieroutes zijn het resultaat van een expertpanelbeoordeling van (potentiële) risico’s van invasieve exoten in Nederland (Verbrugge et al., 2015).

6.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang
Wereldwijd zijn meerdere biologische, chemische, fysieke en mechanische maatregelen uitgevoerd om invasieve rivierkreeften en de Chinese wolhandkrab te beheersen of elimineren. De effectiviteit van elke maatregel op de behandelde locatie is weergegeven per soort in Tabel 6.3. De meeste gerapporteerde eliminatie- en beheersmaatregelen zijn uitgevoerd in het veld of laboratorium voor de Chinese wolhandkrab, de Californische rivierkreeft en de rode Amerikaanse rivierkreeft. Voor de andere drie soorten is weinig tot niets bekend over het beperken van de populatieomvang (Tabel 6.3). Hoe kansrijk de eliminatie- en beheersmaatregelen zijn voor het aanpakken van de zes invasieve schaaldieren in Nederland is beschreven in §6.4.

6.2.1 Biologisch
Biologische bestrijding van rivierkreeften en krabben kan plaatsvinden door het inzetten van predatoren, ziekteverwekkers of gesteriliseerde individuen. Deze drie types biologische maatregelen zijn in deze paragraaf toegelicht.

Predatie
Het wegvangen door predatoren beïnvloedt direct de populatiegrootte van rivierkreeften en krabben. Vissen kunnen de populatiegrootte ook verminderen door de indirecte competitie met kreeften om voedsel en door de vermindere mogelijkheid voor kreeften om veilig voedsel te zoeken, waardoor ze verhongeren (Phillips et al., 2009; Aquiloni et al., 2010).
Tabel 6.3: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor een invasieve krab en vijf invasieve rivierkreeften.a

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Chinese wolhandkrab (CW)</th>
<th>Gevlekte Amerikaanse rivierkreeft (GV)</th>
<th>Geknobbelde Amerikaanse rivierkreeft (GK)</th>
<th>Rode Amerikaanse rivierkreeft (RA)</th>
<th>Californische rivierkreeft (C)</th>
<th>Marmerkreeft (M)</th>
<th>Referenties b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predatie</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Biologisch</td>
<td>Sterilisatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Sterilisatie</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Ziekteverwekkers</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Sterilisatie</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Chemisch</td>
<td>Biociden</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Biociden & zuurstof onttrekken aan water</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>e</td>
<td>e</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Lokken met feromonen</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Lokken met feromonen</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Fysiek</td>
<td>Barrières</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Barrières</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Fysiek</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Droogleggen</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Droogleggen</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Mechanisch</td>
<td>Elektrische schokken</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Elektrische schokken</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Handmatig oppakken en vissen</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Handmatig oppakken en vissen</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Vallen</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Vallen</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Vallen</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>Categorie</td>
<td>Maatregel</td>
<td>Doel</td>
<td>Chinese wolhandkrab (CW)</td>
<td>Gevlekte Amerikaanse rivierkreeft (GV)</td>
<td>Geknobbelde Amerikaanse rivierkreeft (GK)</td>
<td>Rode Amerikaanse rivierkreeft (RA)</td>
<td>Californische rivierkreeft (C)</td>
<td>Marmerkreeft (M)</td>
<td>Referenties b</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Vallen & handmatig vissen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB C: 17</td>
</tr>
<tr>
<td>Geïntegreerd</td>
<td>Droogleggen & biociden</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB C: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB C: 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>Vallen & predatie</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>RB: 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>RB: 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
</tbody>
</table>

a Legenda:

- Veldexperimenten / praktijkervaring
- Laboratorium / mesocosm experimenten
- Soort- en habitatkennis

<table>
<thead>
<tr>
<th>Kansrijk</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansrijk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deels kansrijk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niet kansrijk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niet beschikbaar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c Alleen op lokale schaal, de resultaten van monitoring zijn nog niet gerapporteerd.
Meerdere opportunistische dieren eten de Chinese wolhandkrab, zoals vogels, zoogdieren en roofvissen. De effecten hiervan op het beperken van een krabbenpopulatie zijn niet getoetst (Søes et al., 2007). Ondanks dat geen informatie is gerapporteerd voor Nederland over specialistische predatoren van de exotische krab, is in de baai van San Francisco bijvoorbeeld geen lokale predator bekend die zich hoofdzakelijk voedt met de Chinese wolhandkrab (Rudnick et al., 2000). Hierdoor is de kans op eliminatie van de wijd verspreide Chinese wolhandkrab door predatie klein.

Enkele experimentele studies zijn uitgevoerd met de rode Amerikaanse en Californische rivierkreeften om de effecten van predatie door verschillende vissen te testen. Een laboratoriumstudie suggereerde dat de Californische rivierkreeft meer kwetsbaar is voor aanvallen van de baars (Perca fluviatilis) dan de paling (Anguilla anguilla), omdat door deze vissen in een experiment respectievelijk 6 en 1 exemplaren werden gevangen (Blake & Hart, 1995). Veldexperimenten in mesocosms, omheinde gebieden en kleine plassen in Frankrijk toonden aan dat de snoek (Esox lucius) kleine tot grote individuen van de rode Amerikaanse en Californische rivierkreeft consumeerde (Neveu, 2001; Gherardi et al., 2011). Snoeken van 40 tot 50 cm aten zelfs adulte kreeften die langer dan 8 cm waren. De baars en snoekbaars (Stizostedion lucioperca) werden gezien als minder efficiënte predatoren dan de snoek, omdat zij alleen relatief kleine exemplaren aten (Neveu, 2001; Gherardi et al., 2011). De hoeveelheid geconsumeerde kreeften per vis is echter niet gekwantificeerd.

Een vierjarige veldstudie in een gesloten waterplas in zuidoost Frankrijk toonde aan dat de rode Amerikaanse rivierkreeft de meest belangrijke voedselbron was voor de paling. Zowel kleine als grote exemplaren werden gegeten (Musseau et al., 2015). Op basis van deze studie is gesuggereerd dat een hoge populatiedichtheid aan paling een rode Amerikaanse rivierkreeftpopulatie kan laten instorten, maar niet volledig kan elimineren (Musseau et al., 2015). Een laboratoriumexperiment toonde aan dat de roofvis voornamelijk op kleinere rivierkreeften en individuen met een zachte schaal consummeerde (Aquiloni et al., 2010). Daarnaast had de paling in een laboratorium studie een relatief lage consumptiesnelheid met ongeveer één rivierkreeft per vier dagen (Owen, 2001; Gherardi et al., 2011). Ten slotte zijn rivierkreeften goed aangepast om aanvallen van predatoren te ontwijken, bijvoorbeeld door te schuilen in holen (Blake & Hart, 1995; Roessink et al., 2009).

In twee studies is predatie door de paling gekoppeld aan het vangen van rode Amerikaanse rivierkreeften met vallen om de effectiviteit van beide maatregelen te verhogen. Bij het wegvangen met vallen worden voornamelijk adulte dieren verwijderd (Holdich et al., 1999; Hyatt, 2004). Predatie zou voornamelijk de jonge rivierkreeften die achterblijven moeten verminderen (Boerkamp et al., 2012). In de eerste studie redueerden 7000 kreeftenvallen en een onbekende hoeveelheid geïntroduceerde palingen en snoeken een populatie rode Amerikaanse rivierkreeften van 10.000 individuen tot minder dan 10% hiervan binnen 3 jaar in een Zwitsers meer van ongeveer 3 ha (Rumensee). Snoeken hadden geen duidelijk effect op de kreeften (Frutiger & Müller, 2002; Gherardi et al., 2011). Het is onbekend wat met de paling- en snoekstand is gebeurd na afloop van de maatregelen. In de tweede studie resulteerde een veldexperiment in gereguleerde sloten in Nederland met paling en de rode Amerikaanse rivierkreeft niet in een duidelijke afname van de kreeftenpopulatie (Figuur 6.2) (Boerkamp et al., 2012). De effectiviteit van predatie door paling op jonge kreeften kon niet worden bepaald, omdat de individuen waarschijnlijk al te groot waren voor consumptie door de ingezette paling (6 exemplaren per 100m²) (Boerkamp et al., 2012).

Boerkamp et al. (2012) hebben tevens een inschatting gemaakt van de kosten van het wegvangen van kreeften en uitzetten van paling voor een fictief poldergebied met 10 km watergang. In totaal werd €60.000,- gerekend voor merk-terugvangst onderzoek, het wegvangen van kreeften gedurende 3
maanden (2x per week), het uitzetten van 500 kg paling, het monitoren van de effecten gedurende 3 jaar en de begeleiding vanuit een ecologisch adviesbureau (Boerkamp et al., 2012). De uiteindelijke kosten zijn afhankelijk van lokale omstandigheden en het gedrag van de kreeften.

Figuur 6.2: Opstelling van gereguleerde sloten waarbij amfibieënschermen worden geplaatst tegen de ontsnapping van palingen en rivierkreeften (© Foto: Ivo Roessink) (Boerkamp et al., 2012).

Sterilisatie
Sterilisatie van mannelijke rivierkreeften is voorgesteld als biologische maatregel om de populatie-omvang te reduceren (Aquiloni et al., 2009; Gherardi et al., 2011). Deze methode bestaat uit het vangen of opkweken, bestralen en het vrijlaten van grote hoeveelheden gesteriliseerde mannelijke individuen in natuurlijke populaties om onvruchtbare eieren te produceren bij vrouwtjes (Aquiloni et al., 2009). Bij de vangst van kreeften uit natuurlijke populaties worden waarschijnlijk ook vrouwelijke exemplaren gevangen. Wanneer deze vrouwtjes niet worden teruggezet en de gesteriliseerde mannetjes wel, gaat de man-vrouw ratio omhoog wat mogelijk bijdraagt aan een hogere effectiviteit van de maatregel. Een laboratoriumexperiment toonde aan dat een bestralingsdosis van 20 Gy resulteerde in 40% steriele mannelijke rode Amerikaanse rivierkreeften (Aquiloni et al., 2009). Verwacht is echter dat deze hoeveelheid de populatie rode Amerikaanse rivierkreeften onvoldoende inperkt. De effectiviteit van sterilisatie op het reduceren van een populatie invasieve rivierkreeften in het veld is echter niet gerapporteerd.

Ziekteverwekkers
De Chinese wolhandkrab en de invasieve rivierkreeften en zijn vatbaar voor verschillende ziektes, veroorzaakt door parasitaire bacteriën, eencelligen, schimmels, wormen en zeepokken (Roessink et al., 2009);

Bacteriën en virusen
In een laboratoriumexperiment in de Verenigde Staten is de geknobbelde Amerikaanse rivierkreeft blootgesteld aan voer met bacteriën, rondwormen (nematoden) en het witte-vlekkenvirus (Whispovirus) die schadelijk zijn voor insecten en geleedpotigen (Davidson et al., 2010). In tegenstelling tot het voer met de bacteriën en rondwormen, resulteerde de inname van voer met het virus in sterfte van de kreeften. Na het eten van geïnfecteerde lichaamsdelen van soortgenoten overleed 100% van de juvenielen kreeften en 70% van de adulten kreeften gemiddeld binnen 15 dagen (Davidson et al., 2010). Aanvullende laboratoriumexperimenten suggereren dat het virus niet via water van besmette naar gezonde rivierkreeften is over te brengen. Daarnaast raakten andere ongewervelden, zoals vlokreeften, garnalen en muggen- en libellelarven, niet besmet. Pissebedden die wel besmet waren geraakt, overleefden de ziekte. Door de kannibalistische eigenschap van de
geknobbelde Amerikaanse rivierkreeft is gesuggereerd dat het loslaten van geïnfecteerde gastheren in het veld misschien bijdraagt aan de reductie van de soort (Davidson et al., 2010). Echter, dit is nog niet getest.

De rode Amerikaanse rivierkreeft en Chinese wolhandkrab zijn gevoelig voor Spiroplasma-infecties (bacteriën). Pogingen om een infectie van de wolhandkrab naar de rivierkreeft over te brengen waren onsuccesvol, suggererend dat verschillende Spiroplasma soorten in specifieke gastheren huist (Nunan et al., 2005; Wang et al., 2005; Bi et al., 2008; Heres & Lightner, 2010; Stebbing et al., 2014). Dit is gunstig wanneer de bacterie gebruikt zou worden om een specifieke soort te beheersen of elimineren. De effectiviteit van deze bacteriële infectie voor de overleving van populaties rivierkreeften en krabben is echter tot heden niet gerapporteerd.

Ééncellingen

Eencellige parasieten van de families Zoothamnium en Epistylis veroorzaken problemen bij de kieuwen en gewrichten van de Chinese wolhandkrab (Bouma & Soes, 2010). Microsporidia kunnen de conditie van geleedpotigen aantasten (Oi et al., 2001). Echter, weinig is bekend over de infectieroute van microsporidia bij rivierkreeften en krabben (Freeman et al., 2010). Het effect van de eencellige parasieten op de populatiegrootte van invasieve exoten en andere schaaldieren is eveneens onbekend.

Schimmels

De kreeftenpest veroorzaakt door de schimmel Aphanomyces astaci kan resulteren in 100% sterfte bij gevoelige soorten (Smith & Söderhäll, 1986). Deze ziekte is inheems in Noord-Amerika en tot nu toe lijken Amerikaanse rivierkreeften immuun te zijn (Swärdson et al., 1991; Roessink et al., 2009). In een laboratoriumexperiment heeft een schimmelinfectie door een andere schimmel (Fusarium spp.) geleid tot een onbekende sterfte van de Californische rivierkreeft (China, 1988; Edgerton et al., 2002; Freeman et al., 2010). Het gebruik van schimmels als ziekteverwekkers is niet geschikt als eliminatie- of beheersmaatregel, omdat fysieke schade aan de kreeften nodig is voor besmetting. Daarnaast is het niet gewenst als maatregel, omdat de schimmels ook andere niet-doelsoorten infecteren (Freeman et al., 2010).

Zeeopokken

De parasitaire zeeop P. gregarius vermindert de groeisnelheid van de Chinese wolhandkrab en tast de voortplantingsorganen aan. In een kweekvijver in China stierf meer dan 50% van de Chinese wolhandkrabben door P. gregarius (Li et al., 2011). Deze parasiet komt niet voor in Nederland, waardoor het de effectiviteit van deze parasiet als eliminatie- of beheersmaatregel in Nederlandse wateren onbekend is.

Conclusie biologische maatregel

Het gebruik van paling als predatoren in combinatie met kreeftenvallen heeft één succes geboekt in het beheersen van rode Amerikaanse rivierkreeften in een gesloten waterlichaam (Frutiger & Müller, 2002; Gherardi et al., 2011). Eliminatie van gevestigde invasieve rivierkreeften en de Chinese wolhandkrab door predatoren en eventueel in combinatie met vallen is niet gerapporteerd. Daarnaast is niets gerapporteerd over de invloed van vogels en zoogdieren op de afname van invasieve rivierkreeft- en krabpopulaties. Een neveneffect van het eenmalig inzetten van predatoren is mogelijk een toename van de populatiegroei door de invasieve kreeft of krab om de verliezen te compenseren. Dit kan plaatsvinden als meer ruimte in het habitat ontstaat nadat maar een gedeelte van de populatie wordt opgegeten (Rabeni, 1992; Roessink et al., 2009). Bij de continue aanwezigheid van meer
predatoren is de populatieomvang van rivierkreeften waarschijnlijk blijvend lager. Echter, beide opties zijn niet getest. Andere neveneffecten zijn dat roofvissen ook andere soorten eten (Stebbing et al., 2014) en dat bij open watersystemen de vissen naar andere gebieden kunnen zwemmen wat de effectiviteit van de maatregel omlaag brengt.

Ziekteverwekkers zijn vaak niet soortspecifiek, waardoor een grote kans is op besmetting van andere schaaldieren. Daarnaast zijn sommige ziekteverwekkers mogelijk nog niet in Nederland aanwezig. Het grondig testen van (neven)effecten van ziekteverwekkers in het laboratorium is nodig voordat deze biologische maatregel wordt gebruikt om de soorten te beheersen of elimineren (Gherardi et al., 2011).

Het steriliseren van mannelijke rivierkreeften is relatief duur, maar heeft geen nadelige neveneffecten op andere soorten en het milieu, omdat het een soortspecifieke maatregel is (Aquiloni et al., 2009). Risico’s zijn echter een verkorte levensduur en een verminderde competitiedrang van mannetjes en dus een onvermogen om te paren met vrouwtjes (Lance et al., 2000; Lux et al., 2002; Gherardi et al., 2011). Daarnaast wordt de effectiviteit van de maatregel beïnvloed door de verhouding tussen het aantal gesteriliseerde mannetjes en onaangetaste individuen in het veld.

6.2.2 Chemisch

Biociden

Bepaalde biociden beïnvloeden schaaldieren direct door het aantasten van lichaamsprocessen (Freeman et al., 2010). Eén studie heeft aangetoond dat DDT rond 1930 niet effectief was om de Chinese wolhandkrab te bestrijden, echter specifieke resultaten zijn onbekend (Panning, 1939; Leijzer et al., 2007). Verder zijn geen studies bekend waarbij biociden zijn gebruikt tegen de krab. Recente laboratoriumexperimenten toonden aan dat de pesticide Chemfish RegularTM na drie dagen 100% dodelijk was voor de geknobbelde Amerikaanse rivierkreeft wanneer een hoeveelheid met minimaal 50 mg/l rotenon is gebruikt (Recsetar & Bonar, 2013). Dit was tienmaal de voorgeschreven dosis. Het gebruik van dit pesticide in het veld is waarschijnlijk inefficiënter dan in aquaria. Sediment en de aanwezigheid van waterplanten vermindert de effectiviteit van rotenon, waardoor de dosis in het veld hoger moet zijn (Gilderhus et al., 1986; Recsetar & Bonar, 2013). Rotenon is momenteel niet toegelaten in Nederland als bestrijdingsmiddel, waardoor het werken met deze stof een ontheffing of vrijstelling van de Wet gewasmiddelenbescherming en biociden noodzakelijk is (UNEP, 2014; De Hoop et al., 2015).

De rode Amerikaanse rivierkreeft heeft een hoge gevoeligheid voor drie synthetische pyrethroïden (cypermetrine, celtamethrin en cyfluthrin), zoals is aangetoond in een toxicologisch laboratoriumexperiment (Morolli et al., 2006). In het veld hebben deze biociden een snelle afbraak en werken slecht in waterplant gedomineerde systemen waardoor aanvullende beheersmaatregelen nodig zijn (Holdich et al., 1999). Voor één veldsituatie is de effectiviteit van cypermetrine in combinatie
met een fysieke maatregel gerapporteerd. In een Noorse plas was een dubbele toediening van cypermetrine aan het water samen met het droogleggen van de plas een succesvolle eliminatiemaatregel voor de Californische rivierkreeft (Sandodden & Johnsen, 2010). Een monitoringprogramma moet het lange termijn succes (na minimaal één groeiseizoen) echter nog vaststellen (Gherardi et al., 2011). Daarnaast is cypermethrin momenteel niet toegestaan in Nederland als bestrijdingsmiddel, waardoor voor het werken met deze stof een ontheffing of vrijstelling van de Wet gewasmiddelenbescherming en biociden noodzakelijk is (UNEP, 2014; De Hoop et al., 2015). De Californische rivierkreeft is naast cypermetrine voor meer biociden gevoelig gebleken. In een laboratorium stierf 100% van een populatie Californische rivierkreeften door blootstelling aan één van de volgende middelen: 0,006 mg/l permethrin (insecticide, momenteel onder voorwaarden toegestaan als bestrijdingsmiddel in Nederland), 10 - 100 mg/l chloor, 100 mg/l niet-geïoniseerde ammoniak bij een pH 9, 500 mg/l natriumsulfiet voor het onttrekken van zuurstof en natriumhydroxide voor het bereiken van een pH 12 of hoger (Peay, 2001; UNEP, 2014). Deze middelen zijn niet getest op de andere invasieve rivierkreeften uit deze rapportage. Onder andere chloor en ammoniak zijn niet selectieve biociden die schadelijk zijn voor de meeste organismen in een waterlichaam en voor de menselijke gezondheid (Clearwater et al., 2008).

Biociden kunnen schaaldieren indirect beïnvloeden door het veranderen van de omgeving, zoals de pH of zuurstofconcentratie in het water (Freeman et al., 2010). In verschillende watertypes in Schotland zijn twee chemische middelen gecombineerd om direct en indirect de Californische rivierkreeft te beïnvloeden. Het zuurstofgehalte in het water werd gereduceerd met chemicaliën waarna het insecticide pyrethrum (Pyblast, dit middel is voor gebruik onder voorwaarden toegestaan in Nederland) werd toegevoegd aan het water en de oevers (Peay et al., 2006; UNEP, 2014). Vooraf werden de watergebieden geïsoleerd en vissen verwijderd. De sterfte van rivierkreeften was hoog, maar enkele individuen overleefden de behandeling. Na een extra behandeling met pyrethrum werden in de navolgende zomer op één van de drie locaties alsnog levende individuen gevonden (Peay et al., 2006; Freeman et al., 2010). Gedurende vijf jaar is het gebied gemonitord, met een onbekend resultaat. Het protocol uit Schotland is ook toegepast in een irrigatiesloot in Italië met aanvullend het besproeien van holen met pyrethrum. Dit veldexperiment toonde aan dat de populatiegrootte van de rode Amerikaanse rivierkreeft alleen significant afnam bij toedienen van de biocide aan water en niet bij het besproeien van de holen (Gherardi et al., 2011). Er is gekozen voor het werken met Pyblast omdat dit middel als meest kosteneffectieve en praktische biocide werd gezien. Andere voordelen waren weinig neveneffecten voor planten, zoogdieren en vogels, snelle afbraak in zonlicht en afwezigheid van gevaarlijke restanten bij gebruik van het middel. Pyblast is echter wel schadelijk voor andere schaaldieren, insecten en vissen (Peay et al., 2006).

Feromonen
Feromonen zijn signaalstoffen die worden gebruikt voor communicatie tussen individuen van een soort, bijvoorbeeld tijdens het paringsseizoen (Roessink et al., 2009). In twee studies zijn deze soortspecifieke chemische stoffen gebruikt als lokmiddel bij het wegvangen van invasieve rivierkreeften. In veldexperimenten met de Californische rivierkreeft werden met feromonen een gelijk aantal individuen gevangen als met lokvoer. Alleen mannelijke exemplaren werden aangetrokken door de feromonen en de maatregel werkte alleen tijdens het broedseizoen (Stebbing et al., 2003). Een experiment in een Italiaans drasland omvatte standaard vallen met levende vruchtbare mannelijke en vrouwelijke rode Amerikaanse rivierkreeften om andere exemplaren van de populatie te lokken met feromonen. Het gebruik van lokvoer resulteerde in meer gevangen individuen dan met feromonen. Het lokvoer trok tevens grotere individuen aan dan de feromonen. De
vrouwelijke kreeften reageerden niet op de mannelijke feromonen, waardoor slechts een deel van de populatie werd gevangen (Aquiloni & Gherardi, 2010; Gherardi et al., 2011).

Het effect van de vangstmethode met behulp van feromonen als lokmiddel is nog niet getest met de Chinese wolhandkrab. Mogelijk is dit lastig, omdat de vrouwelijke individuen geen feromonen afscheiden die op afstand waarnembaar zijn door mannelijke individuen. Het herkennen van partners gaat via fysiek contact, waarschijnlijk met behulp van een ‘contactferomoon’ (Herborg et al., 2006).

Conclusie
In laboratoria werden Californische en geknobbelde Amerikaanse rivierkreeften met succes geëlimineerd door blootstelling aan verschillende biociden. In geïsoleerde plassen is een combinatie van meerdere biociden een succesvolle beheersmaatregel op korte termijn. De effectiviteit op lange termijn is nog niet gerapporteerd. Veel biocides hebben als nadeel dat zij geen selectieve werking hebben gericht op invasieve rivierkreeften of krabben. Zo leidde gebruik van organofosfaten (pesticiden) tegen de rode Amerikaanse rivierkreeft in Spanje tot een verlies van vooral vogels (Holdich et al., 1999). Grootschalig gebruik van biociden in de praktijk is daarom onwenselijk. Om een hoog succes te behalen kunnen chemische maatregelen gecombineerd worden met het plaatsen van barrières en het droogleggen en / of afgraven van waterlichamen. Dit om te voorkomen dat rivierkreeften niet worden getroffen door de maatregelen wanneer zij zich ingraven of het water verlaten. Het is echter mogelijk dat het droogleggen van een waterlichaam bijdraagt aan een vertroebeling van het water, waardoor de biocide bindt aan bodempartikels en deze een verminderde werking heeft op de kreeften, zoals is gemeld voor rotenon (persoonlijke mededeling M. Brazier).

Het gebruik van feromonen als lokmiddel in kreeftenvallen is nog niet effectiever gebleken dan het gebruik van lokvoer. Het zuiveren en concentreren van de feromonen kan de efficiëntie van de vangstmaatregel mogelijk verhogen. Daarnaast zou het kunnen bijdragen aan de signalering van (nieuw gevestigde) populaties bij lage dichtheden of aan de monitoring van de effectiviteit van beheersmaatregelen (Stebbing et al., 2014). Het gebruik van feromonen is echter nog niet operationeel (Aquiloni & Gherardi, 2010; Gherardi et al., 2011).

6.2.3 Fysiek
Fysische veranderingen in de leefomgeving van invasieve rivierkreeften en krabben zijn aangebracht om populaties te beheersen of elimineren. Het doel van droogleggen en / of afgraven van geschikt habitat is het verminderen van de overlevingskans van individuen. Het aanleggen van barrières, zoals dammen en schermen, heeft als doel het beperken van de verspreiding vanuit bestaande populaties of vestiging op nieuwe locaties (Stebbing et al., 2014). In de literatuur is niets gerapporteerd over de effecten van fysische maatregelen op populaties van de gevlekte en geknobbelde Amerikaanse rivierkreeft en de marmerkreeft.

Afgraven
Een ingrijpende fysieke maatregel is het droogleggen van het watergebied en afgraven van de invasieve exoot en het habitat. In een plas in Engeland was het verwijderen van de Californische rivierkreeften en alle potentiële schuilplaatsen door het droogleggen en afgraven van de bodem onsuccesvol, omdat de kreeft kon ontsnappen naar de naastliggende beek. Van hieruit kon de soort de plas weer herkoloniseren (Peay, 2001). Het is dus van belang dat de omgeving aanvullend wordt afgezet met barrières. Daarnaast is het nodig om de plas te verdiepen tijdens het afgraven, omdat holen van de kreeft soms meters diep zijn (Peay, 2001).
Barrières
In Duitsland zijn roosters (‘trash racks’) en schermen (‘travelling screens’) gebruikt om de migratie van de Chinese wolhandkrab te beperken. Deze methode bleek het meest effectief te zijn bij locaties waar structuren zoals een dam of vistrap in de rivier aanwezig waren (Peters et al., 1933; Bouma & Soes, 2010).

Dammen in waterbassins en kanalen, sluizen, schermen, gegraven putten buiten het water en hekken in Engeland waren onsuccesvol in het elimineren van de Californische rivierkreeft en matig succesvol in het isoleren van de soort. Een dam in een waterbassin is alleen succesvol als barrière wanneer het bassin heel diep is, de dam steil en minimaal 10 meter hoog is en de afvloeiing van water naar de rivier alleen via een klokvormige overlaat of over de betonnen zijkant van de dam verloopt (Peay, 2001). De diepte van het bassin is niet gekwantificeerd. Een gegraven valput in een afvoerkanaal of afvloeingsgebied is potentieel geschikt als barrière omdat de dieren worden gevangen en niet kunnen ontsnappen. De effectiviteit van een speciaal ontwikkelde put voor rivierkreeften op het beperken van de populatieomvang is echter niet bekend (Figuur 6.3, zie Peay (2001)). Een barrière, waarvan de exacte constructie niet bekend is, kon niet voorkomen dat de Californische rivierkreeft zich binnen twee jaar stroomafwaarts verspreidde in de Buåa rivier in Zweden en Noorwegen (Johnsen et al., 2008; Gherardi et al., 2011).

Drie speciaal ontworpen dammen hebben succesvol de stroomopwaartse verspreiding van de rode Amerikaanse rivierkreeft voorkomen in een beek in Spanje (Dana et al., 2011; Stebbing et al., 2014). Alle dammen waren minder dan drie meter hoog en hadden in een V-vormige bovenkant en afschermdde randen (Figuur 6.4). Sinds het opstellen van de dammen in 2007 is de kreeftenpopulatie in de gevestigde stroomafwaartse gebieden nog groot, maar zijn de aantallen in stroomopwaartse

Figuur 6.3: Ontwerp van een valput om kolonisatie van stroomafwaartse watergangen door de Californische rivierkreeft te voorkomen (Peay, 2001).
gebieden van de dam verminderd tot onder de waarnemingslimiet (Dana et al., 2011). Deze bevindingen werden ook gedaan door andere onderzoekers (Kerby et al., 2005; Stebbing et al., 2014).

Figuur 6.4: Ontwerp van dammen om de stroomopwaartse verspreiding van invasieve rivierkreeften te beperken, met a) een V-vormige bovenkant, b) afgeschermd rand en c) een platte stenen bodem stroomafwaarts van de dam (uit Dana et al., 2011).

Laboratoriumexperimenten toonden aan dat de effectiviteit van een barrière in het water onder andere afhangt van de ruwheid van het materiaal, de hellingsgraad en stroomsnelheid van water naast de barrière (Figuur 6.5) (Frings et al., 2013). De resultaten suggereerden dat *Californische rivierkreeften* alle barrières passeren wanneer de stroomsnelheid van het water lager is dan de maximumsnelheid waar individuen tegenin kunnen zwemmen. Goede locaties om barrières te plaatsen zijn bestaande structuren zoals visladders naast dammen, waar de stroomsnelheid wordt gecontroleerd, het risico op sedimentatie laag is en regelmatig onderhoud wordt gepleegd (Frings et al., 2013).

Figuur 6.5: Proefopstelling om de effectiviteit van een barrière op de Californische rivierkreeft te testen (uit Frings et al., 2013).

Droogleggen
Het droogleggen van de rivier Misbourne in Engeland was een onsuccesvolle maatregel voor het beheersen en elimineren van de *Californische rivierkreeft*. Na enkele weken droogte werden individuen levend onder stenen gevonden (Perrow et al., 2007; Freeman et al., 2010). In Polen was het droogleggen van een plas met de Californische rivierkreeft eveneens onsuccesvol in het verwijderen van de soort, zelfs na wintertemperaturen van -20°C kwamen individuen in de navolgende lente weer tevoorschijn (Kozak & Policar, 2003).

Conclusie
Fysieke veranderingen in habitats door afgraven, droogleggen en / of aanbrengen van barrières zijn niet succesvol gebleken in het elimineren of beheersen van de Chinese wolhandkrab en de invasieve rivierkreeften. Eén uitzondering is gerapporteerd in een beek waar drie dammen succesvol de stroomopwaartse verspreiding van de rode Amerikaanse rivierkreeft via water tegenhielden. Dammen zijn echter alleen effectief als de kreeften en krabben geen mogelijkheid hebben om zich via land alsnog te verspreiden. Daarnaast hebben dammen als neveneffect dat ze bijvoorbeeld migratieroutes van vissen afsluiten.
Over het algemeen dragen het graaf- en verspreidingsgedrag van invasieve rivierkreeften en krabben bij aan het overleven van droge perioden of het vinden van andere geschikte habitats via land en water. Het bestrijden van de Chinese wolkhandkrab via het wegvangen met barrières en het gebruik van valkuilen zal alleen mogelijk zijn bij locaties met een sterke stroming of op andere plaatsen waar de krabben gedwongen worden om het water te verlaten en over land verder te gaan.

6.2.4 Mechanisch
Mechanische eliminatie- en beheersmaatregelen voor de Chinese wolkhandkrab en de invasieve rivierkreeften zijn uitgevoerd met elektrisch geleidbare matten, met middelen die continue handmatige bediening vereisen, zoals vissen met elektrodes of scheppen, en met verschillende vallen. De meest voorkomende vallen zijn fiuken en valkuilen waarbij soms gebruik wordt gemaakt van geleiders (barrières) om de dieren naar de vallen te leiden. Weinig informatie is gerapporteerd over het gebruik van vallen voor het wegvangen van invasieve rivierkreeften en de Chinese wolkhandkrab door de commerciële visserij in Nederland. Daarnaast zijn weinig tot geen mechanische maatregelen gerapporteerd voor de gevlekte en rode Amerikaanse rivierkreeft en de marmerkreeft.

Elektrische schokken
In Duitsland zijn in de jaren 1930-1940 elektrische matten op de bodem van de rivier geïnstalleerd om door middel van 30 à 40 schokken per minuut de Chinese wolkhandkrab te elimineren. Het voltage is niet gerapporteerd. Deze maatregel was niet succesvol, aangezien weinig krabben stierven. Andere nadeLEN van deze maatregel zijn de hoge energiekosten, lage functionaliteit in zoet water door slechtere geleiding van stroom en de mogelijke gevoeligheid van vissen voor elektriciteit (Kamps, 1937; McEnnulty et al., 2001; Bouma & Sos, 2010). In Engeland zijn met behulp van elektrode tape recent elektrische schokken (1600 volt) toegediend aan een ondiepe, vegetatieloze en steenachtige beek met daarin een populatie van de Californische rivierkreeft (Figuur 6.6). Na 308 minuten stierf minimaal 77% van de kreeftenpopulatie. Individuen korter dan 30 mm waren gevoeliger dan grotere exemplaren. Een deel van de populatie overleefde in de stenige oevers (Peay et al., 2015). Het gebruik van elektrische schokken in kleine watergangen is een niet-selectieve beheersmethode van invasieve rivierkreeften. Gesuggereerd werd dat een periodieke behandeling van stroomafwaarts gelegen locaties dicht bij een fysieke barrière de populatieomvang laag kan houden, zodat stroomopwaartse dispersie wordt verminderd (Peay et al., 2015).

Figuur 6.6: Veldexperiment met apparatuur voor het toedienen van elektrische schokken aan een beek (uit Peay et al., 2015).
Handmatig oppakken en vissen
Het handmatig wegvangen van de geknobbelde Amerikaanse rivierkreeft met elektrodes was niet succesvol tijdens een veldstudie in een rivier en twee beken in Arizona, Verenigde Staten (Rogowski et al., 2013). Het was onmogelijk om succesvol de kreeften te verdoven of aan te trekken, zoals bij vissen wel mogelijk is. Daarnaast verstopten kreeften zich in schuilplaatsen. Andere nadelen zijn dat het elektrisch vissen duur is in vergelijking met het uitzetten van vallen en een goede scholing is nodig om schadelijke neveneffecten bij andere soorten te voorkomen (Rogowski et al., 2013). Het succes van vangen met elektrisch visgerei, schepnetten en de hand was afhankelijk van de helderheid van het water. Bij hoge troebelheid waren alle middelen onsuccesvol in het vangen van de geknobbelde Amerikaanse rivierkreeft (Rogowski et al., 2013). Een andere studie rapporteerde ook weinig tot geen effect op de populatiegrootte van de Californische rivierkreeft bij het gebruik van handmatig zoeken en sleepnetten (Peay, 2001).

Vissen met elektrodes is nog niet succesvol gebleken in het beheersen of elimineren van rivierkreeften en krabben. Om de effectiviteit te verhogen is gesuggereerd om ‘s nachts te vissen en om een niet-pulserende constante stroom methode te gebruiken. Echter, deze maatregelen zijn nog niet in het veld getest, waardoor de meest effectieve hoeveelheid stroom onbekend is (Westman & Pursiainen, 1978; Roessink et al., 2009; Stebbing et al., 2014).

Vallen

In de jaren ‘30 is tevens voorgesteld om de krabben in Nederland te vangen met een ‘dichtzetvisserij’ en randafscherming om het overklimmen door krabben te voorkomen (zie Figuur 6.7 voor een voorbeeld). Dan zou de geschatte vangst meer dan 30% van de passerende geslachtsrijpe individuen kunnen bedragen (Kamps, 1937). Een nadeel van deze maatregel is echter de arbeidsintensiviteit door het handmatig moeten neerlaten en ophalen van het middennet (onder andere voor scheepvaart). Daarnaast belemmert het de trek van vissen. Een voorgestelde oplossing is het maken van een goot die veel lager bij de bodem ligt (Kamps, 1937). Het is onbekend of deze methodes recentelijk effectief zijn toegepast als beheersmaatregel van de Chinese wolhandkrab.

In de Verenigde Staten leverde het gebruik van een omlegging en valkuil in een kleine beek tijdens de stroomafwaartse migratie binnen 6 weken een grote vangst op van 11.000 Chinese wolhandkrabben (Chinese Mitten Crab Working Group, 2003; Bouma & Soes, 2010). Echter, niets is gerapporteerd over het succes van de vangst ten opzichte van de totale krabbenpopulatie. In Spanje werden 24 nylon fuiken gebruikt om tussen 2001 en 2008 de Chinese wolhandkrab te vangen in de riviermond van de Guadalquivir rivier. De fuiken van 6 meter lang werden loodrecht op de oevers geplaatst op een diepte van 2 - 5 meter. De fuiken werden om de dag geleegd om schade aan de nylon netten door de krabben te voorkomen en de ongewenste bijvangstvrij te laten. De meeste krabben werden gevangen tussen oktober en april. Over de jaren heen werd de hoeveelheid gevangen krabben per net lager (van 0,04 krabben/net/dag naar 0,006 krabben/net/dag), maar het was onduidelijk of dit door de beheersmaatregel kwam of door een combinatie van andere willekeurige factoren (Garcia-de-Lomas et al., 2010).

Een kreeftenval van polypropyleen plastic is gebruikt om de gevlekte Amerikaanse rivierkreeft te vangen in een geïsoleerd meer in Engeland (Holdich & Black, 2007). Voornamelijk mannelijke en relatief grote individuen (langer dan 39 mm) zijn gevangen. Een jaar na uitvoering van de beheersmaatregel indiceerden meer gevangen rivierkreeften op een groei van de populatie. Het gebruik van de plastic vallen was dus niet effectief voor het beperken van de populatiegrootte van de gevlekte Amerikaanse rivierkreeft ondanks het verwijderen van individuen gedurende het jaar (Holdich & Black, 2007). De gevlekte Amerikaanse rivierkreeften die in industriële koelingsinstallaties aan de Rijn en Maas terecht kwamen, zijn gebruikt om fluctuaties in populatieomvang te monitoren. Het aantal gevangen exemplaren nam toe met een toenemende watertemperatuur. Tijdens het koudere seizoen werden meer mannelijke dan vrouwelijke individuen gevangen (Van den Brink et al., 1988).

Een laboratorium en veldstudie in de Verenigde Staten toonden aan dat de herfst de meest effectieve tijd is om de geknobbeld Amerikaanse rivierkreeft te vangen met een stalen fuik, scheppetten, elektrodes en met de hand (Rogowski et al., 2013). In deze periode planten de kreeften zich voort en zijn ze nog actief voordat de koudere, inactieve periode aanbreekt. Deze studie heeft de effectiviteit van de vangstmethoden op het beheersen of elimineren van de soort niet getest (Rogowski et al., 2013).
In Engeland zijn meerdere vallen (herhaaldelijk) in het veld toegepast om de **Californische rivierkreeft** te beheersen of elimineren, zoals plastic vallen, kleinmazige vallen en schuilplaatsvallen (Peay, 2001). Alle maatregelen resulteerden in weinig tot geen beperking van de totale populatieomvang, omdat de gebruikte vallen voornamelijk een klein deel van de grotere, actieve individuen (3 - 7 cm) vingen. In beken in Leicestershire en Essex in Engeland was het wegvangen van Californische rivierkreeften aan de randen van de gevestigde populatie onsuccesvol in het tegengaan van secundaire verspreiding (Sibley, 2000; Wright & Williams, 2000; Holdich et al., 2014).

Het intensief vangen met meerdere kreeftenvallen gedurende een lange periode was op enkele locaties wel een succesvolle beheersmaatregel tegen de Californische rivierkreeft. In delen van zijrivieren van de Thames en de Lark rivier resulteerde respectievelijk het wegvangen van enkele duizenden individuen en 70% van de kreeftenpopulatie in een herstel van de oevres en vispopulaties (West, 2011; Moorhouse et al., 2014). In de Clyde rivier in Schotland nam de vangst met kreeftvallen van totaal 10.265 individuen in 2001 - 2002 af naar 5335 individuen in 2006 - 2007 (Reeve, 2004; Freeman et al., 2010). Een combinatie van meerdere mechanische maatregelen, namelijk kreeftenvallen, handmatig verwijderen van kunstmatige schuilplaatsen en vissen met elektrodes, resulteerde tussen 2005 en 2009 in 31.374 gevangen Californische rivierkreeften in de Riofrío rivier in Spanje (Dana et al., 2010). Een daling in de dagelijkse vangst suggereerde een afname in de populatieomvang. Na beëindiging van de maatregelen op deze locaties zijn echter geen langetermijnEffecten gerapporteerd.

Wanneer het waterlichaam een open verbinding heeft met andere wateren of wanneer niet alle individuen zijn geëlimineerd kan de populatieomvang weer toenemen. Zo werden in Schotland in tien weken tijd meer dan 650.000 Californische rivierkreeften verwijderd uit Loch Ken met behulp van vallen (Ribbens & Graham, 2009; Holdich et al., 2014). Deze operatie was echter onsuccesvol in het elimineren van de hele populatie, mogelijk vanwege de open verbinding van het gebied met twee rivieren. In een Engelse plas waren 900 nachten nodig om de Californische rivierkreeftpopulation met vallen te reduceren van 4000 naar 1500 individuen. Echter, na het stopzetten van deze maatregel herstelde de populatie zich binnen enkele voortplantingssseizoenen (Rogers et al., 1997; Holdich et al., 1999). In de Oude Leij ter hoogte van De Kaaispoel in Noord-Brabant werden bijna 6000 Californische rivierkreeften gevangen door het toepassen van korven in de beek. Een jaar na deze maatregel had de populatie zich echter weer hersteld (Spijkers & van Wielink, 2012).

Commerciële visserij

Het effect van de intensivering en gericht inzetten van de commerciële visserij op de populatiegrootte van de invasieve rivierkreeften en de Chinese wolhandkrab is niet getest in Nederland. Schietfuiken (dubbele visfuik met lange rechte vleugel) en grote fuiken zijn mogelijk bruikbare middelen voor de gerichte vangst van de krab (Leijzer et al., 2008). Echter, hierbij vindt ook bijvangst plaats, met name van vissen. Het is onbekend of het wegvisseren van de krabben een costeneffectieve maatregel is voor het verminderen van nadelige ecologische gevolgen (Engelhaupt, 2009). Daarnaast zal bepaald moeten worden of het consumeren van de soort wel gewenst is voor de volksgezondheid. In de Thames in Engeland en de rivieren Lek en Rijn in Nederland is in 2009 onderzoek verricht naar de hoeveelheid opgehoeppte toxische stoffen in de krabben. Een volwassen persoon zou ongeveer vier porties krab van 16 g uit de Thames mogen eten per week en drie porties uit Nederlandse rivieren voordat de toelaatbare dagelijkse inname van dioxines en PCB’s wordt overschreden (Clark et al., 2009).
Conclusie
Over het algemeen zijn mechanische maatregelen niet kansrijk in het elimineren en matig kansrijk in het beheersen van populaties invasieve rivierkreeften en Chinese wolhandkrab (Tabel 6.3). In sommige gebieden zijn grote aantallen kreeften en krabben weggevangen, maar bleef een restpopulatie achter. Monitoring ontbrak in de meeste gevallen na beëindiging van de maatregelen waardoor langetermijneffecten niet zijn gerapporteerd. Daarnaast zijn weinig tot geen mechanische maatregelen gerapporteerd voor de gevlekte en rode Amerikaanse rivierkreeft en de marmerkreeft. De grootte van een geslachtsrijpe marmerkreeft is vergelijkbaar met de gevlekte en geknobbelde Amerikaanse rivierkreeften waardoor mogelijk dezelfde type vallen toepasbaar zijn. Echter, voor deze laatste soorten zijn gerapporteerde eliminatie- en beheersmaatregelen eveneens schaars.

De effectiviteit van mechanische vangstmiddelen hangt af van meerdere factoren, zoals:

1. mate van gebiedsisolatie: In een gebied met een open verbinding naar andere wateren is de kans op herkolonisatie erg groot;
2. watertemperatuur en seizoen: Het aantal gevangen exemplaren is hoger tijdens warme perioden en het broedseizoen, omdat individen dan actiever worden;
3. intensiteit van de maatregel: Hoe langer de maatregel wordt uitgevoerd met veel vangstmiddelen, hoe groter de kans is op een hogere vangst. Kosten kunnen hoog oplopen, afhankelijk van de benodigde materialen en mankracht;
4. helderheid van het water: voornamelijk bij het handmatig oppakken en wegvissen is helder water nodig.

Voordelen van het gebruik van vallen zijn dat geen specialistische opleiding nodig is voor het plaatsen en legen van de vallen en de vallen bruikbaar zijn bij het monitoren van effecten van beheersmaatregelen op hoge dichtheden rivierkreeften (Stebbing et al., 2014). Daarnaast is aangetoond dat het beheersen van Californische rivierkreeften met vallen kan bijdragen aan een toename van het totale aantal schaaldieren op de bodem (Moorhouse et al., 2014). Nadelen van vallen zijn de hoge arbeidsintensiteit, de bijvangst van andere soorten, het ontsnappen van rivierkreeften uit volle vallen en dat vooral grotere exemplaren worden gevangen (Kamps, 1937; Roessink et al., 2009; Stebbing et al., 2014). Onder die grotere exemplaren vallen potentieel eindragende vrouwjes, echter ook agressieve mannetjes die druk uitoefenen op de populatie. Door het wegvangen van deze mannetjes kan een deel van de juvenielen probleemloos opgroeien, waardoor de populatie mogelijk niet efficiënt genoeg afneemt (Holdich et al., 1999; Roessink et al., 2009; Moorhouse & Macdonald, 2011).

6.2.5 Systeemgericht
Systeemgerichte maatregelen, waarbij habitats weerbaarder worden gemaakt voor schade door invasieve exoten, zijn niet gerapporteerd voor de Chinese wolhandkrab en de vijf invasieve rivierkreeften. Realisatie van habitatverbetering voor roofvissen als de paling en snoek die prederen op schaaldieren, is vooralsnog bij een suggestie gebleven (Verbrugge et al., 2015). Een reductie van nutriëntenconcentraties en een toename van de helderheid van het water zou mogelijk bijdragen aan betere leefomstandigheden voor roofvissen. Het wegvangen van invasieve rivierkreeften met vallen resulteerde eenmalig in een verbeterd habitat, omdat onder de oevers minder werden begraven door de kreeften (Moorhouse et al., 2014). Volledige verwijdering van gevestigde invasieve schaaldieren door predatoren en vallen is waarschijnlijk lastig (zie §6.2.1).
6.3 Beheersmaatregelen voor indamming populaties

Verschillende barrières zijn gebruikt om de migratie van de Chinese wolhandkrab, de rode Amerikaanse rivierkreeft en de Californische rivierkreeft te beperken: netten, roosters, schermen, dammen, valkuilen en hekken. Daarnaast is geprobeerd om de secundaire verspreiding van Californische rivierkreeften tegen te gaan door het wegvangen van individuen aan de randen van de gevestigde populatie in beken in Engeland (Sibley, 2000; Wright & Williams, 2000; Holdich et al., 2014). Deze mechanische maatregel en de fysieke veranderingen in habitats door het aanbrengen van barrières zijn niet 100% succesvol gebleken in het beheersen van de invasieve schaaldieren en het voorkomen van verdere verspreiding. Eén uitzondering is gerapporteerd in een Spaanse beek waar drie dammen succesvol de stroomopwaartse verspreiding van de rode Amerikaanse rivierkreeft tegenhielden (Dana et al., 2011).

Het succes van barrières als beheersmaatregel voor de indamming van populaties hangt onder andere af van:

1. Mate van gebiedsisolatie: het migratie- en dispersiegedrag van invasieve rivierkreeften en krabben via land en water draagt bij aan het vinden van andere geschikte habitats, waardoor de afstand tot andere geschikte habitats van belang is;
2. Oppervlakte en diepte van het watergebied: hoe groter het gebied is waar de invasieve schaaldier is gevestigd, hoe moeilijker en duurder het plaatsen van een geschikte barrière is;
3. Stroomsnelheid van het water: wanneer de stroomsnelheid lager is dan de maximumsnelheid waar rivierkreeften tegenin kunnen zwemmen, dan komen de dieren over barrières heen.

Barrières beïnvloeden wel de verspreidingsrichting van kreeften en krabben, waardoor de efficiëntie van vangstmethodes als valkuilen en fuiken kan toenemen. Gesuggereerde locaties om barrières te plaatsen zijn bestaande structuren zoals visladders naast dammen, waar de stroomsnelheid wordt gecontroleerd, het risico op sedimentatie laag is en regelmatig onderhoud wordt gepleegd (Frings et al., 2013). Echter, het volledig voorkomen van verspreiding en vestiging van de invasieve rivierkreeften en krabben vanuit bestaande populaties is zeer moeilijk.

6.4 Potentieel kansrijke maatregelen voor Nederland

De Chinese wolhandkrab, de gevlekte Amerikaanse rivierkreeft en de rode Amerikaanse rivierkreeft zijn wijdverspreid, wat de eliminatie van de soorten de totale populaties Nederland onmogelijk maakt. De geknobbelde Amerikaanse rivierkreeft, de Californische rivierkreeft en de marmerkreeft zijn op enkele lokale plekken gevestigd in Nederland, zoals in een meer, kanaal, beken en sloten. Bijna al deze gebieden hebben een open verbinding met andere wateren, waardoor het beheersen en elimineren van de kreeftpopulaties wordt bemoeilijkt. Vóór het uitvoeren van maatregelen is isolatie van de locaties gewenst om secundaire verspreiding van invasieve schaaldieren naar andere gebieden en kolonisatie vanuit andere gebieden tot een minimum te beperken. Het isoleren van populaties met behulp van barrières is complex, omdat het succes afhangt van meerdere factoren zoals de grootte en diepte van het gebied, de stroomsnelheid van het water en de mogelijkheid van ontsnapping via land. Slechts één succesvolle barrière is gerapporteerd, namelijk het aanleggen van drie dammen in een Spaanse beek die de stroomopwaartse verspreiding van de rode Amerikaanse rivierkreeft verhinderden.
Elimineren

Het elimineren van invasieve schaaldieren in Nederland is op lokaal en nationaal niveau moeilijk te realiseren. Indien na aanvullend onderzoek de neveneffecten laag genoeg worden bevonden, moeten de eliminatiemaatregelen en benodigde middelen vóór uitvoering worden afgestemd op de Nederlandse wet- en regelgeving.

Beheersen
Enkele succesvolle beheersmaatregelen zijn gerapporteerd waarbij meerdere maatregelen werden gecombineerd: twee biociden, een biocide met het droogleggen van de plas en predatie door paling met het wegvangen met vallen. Biociden reduceerden het zuurstofgehalte van een geïsoleerd water in Schotland, waarna de Californische rivierkreeft via het water werd blootgesteld aan pyrethrum. Na twee behandelingen met het insecticide werden de volgende zomer op sommige locaties geen rivierkreeften teruggevonden en op andere locaties wel. De toediening van cypermetrine in een Noorse plas was effectief in het elimineren en dus ook beheersen van een populatie Californische rivierkreeften. Voor beide doeleinden is het gebruik van biociden in de praktijk ongewenst, omdat de effectiviteit op korte en lange termijn in het veld onduidelijk is en nadelige neveneffecten voor andere soorten heel aannemelijk zijn.

In een Zwitserse meer verminderden geïntroduceerde roofvissen (paling en snoek) en duizenden kreeftenvallen een populatie rode Amerikaanse rivierkreeften binnen 3 jaar tot één tiende van de populatie. In Nederland kunnen onder andere paling, snoek, snoekbaars, baars en meerval prederen op rivierkreeften. Het inzetten van alleen predatie heeft waarschijnlijk te weinig invloed op lokaal en nationaal niveau, omdat de roofvissen mogelijk een voorkeur vertonen voor individuen van kleiner formaat of met zachte schalen. Predatie zal alleen in combinatie met andere maatregelen, zoals het uitzetten van kreeftvallen die met name grotere individuen wegvangen, succesvol zijn in geïsoleerde wateren. Het regelmatig legen van de vallen is echter arbeidsintensief en zal een lange periode moeten voortduren om het grootste deel van de populatie weg te vangen. Soes en Koese (2010) suggereerden
dat kreeftenvangst samen kan gaan met muskusrattenvangst in Nederland, echter door het verschil in populatiedichtheden tussen deze soorten is waarschijnlijk een andere vangintensiteit vereist voor kreeften. Daarnaast zal afstemming nodig zijn met de wet- en regelgeving over het omgaan met de bijvangst van rivierkreeften (De Hoop et al., 2015).

In de meeste gerapporteerde studies met eliminatie- en beheersmaatregelen ontbreken gegevens over langetermijneffecten op de populatieomvang en de gemaakte kosten. De beheerskosten van de vijf invasieve rivierkreeften en de Chinese wolhandkrab werden door experts geschat tussen €100.000,- en €1.000.000,- op jaarbasis in Nederland (Verbrugge et al., 2015). In Schotland werd per 5 maanden een geschatte £250.000,- uitgegeven om de Californische rivierkreeft te bestrijden (Gherardi et al., 2011).
7 Terrestrische plant – Kudzu (Pueraria lobata)

7.1 Soort- en habitatbeschrijving

De kudzu (Pueraria lobata) is een overblijvende semi-houtachtige wingerd behorende tot de peulvruchten (Bailey, 1939). Het geslacht Pueraria heeft drie ondersoorten van kudzu (Pueraria montana). Pueraria montana variant lobata (Willd.) is als enige invasief en wordt hier bedoeld met kudzu (Britton et al., 2002). De soort staat vermeld op de Unielijst van EU-verordening 1143/2014, maar heeft zich nog niet permanent in Nederland gevestigd (Verbrugge et al., 2015). Hieronder worden de levenswijze, kenmerken van de habitat- en verspreidingsmechanismen van de kudzu toegelicht. De relevante eigenschappen voor het beheer zijn samengevat in Tabel 7.1.

Figuur 7.1: Kudzu (Pueraria lobata) (© Foto: Wikimedia commons).

7.1.1 Levenswijze

De kudzu is een klimplant. De bladeren staan afwisselend en zijn samengesteld uit drie ovaal tot hartvormige blaadjes van ongeveer 9 cm. De plant kan zich geslachtelijk voortplanten middels zaden uit nectar producerende bloemen of vegetatief middels uitlopers en wortelstokken. De harde zaden zijn omhuld door een boon en komen zelfs na meerdere jaren nog uit (dormantie) (Bailey, 1939). Een enkele wortelkroon produceert tot 30 uitlopers die in alle richtingen groeien. De bovengrondse uitlopers vormen weer nieuwe wortelkronen welke uitgroeien tot volledige planten. Op warme dagen groeien de uitlopers tot 30 cm (Miller, 1996). Daarbij worden door de plant meerdere ondergrondse wortelstokken gevormd waardoor eveneens de vegetatieve reproductie toeneemt (Alderman & Alderman, 2001). De wortels hebben een lengte van 90 tot 240 cm, een diameter van 15 tot 30 cm en

Tabel 7.1: Soort- en habitateigenschappen van kudzu.

<table>
<thead>
<tr>
<th>Eigenschappen</th>
<th>Kudzu (Pueraria lobata)</th>
<th>Referenties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichtbehoefte</td>
<td>Hoog (wel een korte daglicht plant)</td>
<td>1</td>
</tr>
<tr>
<td>Maximale leeftijd (veld)</td>
<td>Overblijvende plant</td>
<td>5</td>
</tr>
<tr>
<td>Droogteter tolerantie</td>
<td>Groot</td>
<td>14</td>
</tr>
<tr>
<td>Schaduw tolerantie</td>
<td>Matig</td>
<td>6</td>
</tr>
<tr>
<td>Temperaturop limitum</td>
<td>20-30 °C</td>
<td>8</td>
</tr>
<tr>
<td>Neerslagoptimum</td>
<td>1000 mm</td>
<td>11</td>
</tr>
<tr>
<td>Nutriënten behoefte</td>
<td>Laag</td>
<td>14</td>
</tr>
<tr>
<td>Bodemvoorkeur</td>
<td>Zand, leem of klei</td>
<td>10, 14</td>
</tr>
<tr>
<td>Reproductie capaciteit</td>
<td>Zaden en vegetatief</td>
<td>8</td>
</tr>
<tr>
<td>Voortplanting</td>
<td>Juni-oktober</td>
<td>15</td>
</tr>
<tr>
<td>Groeiseizoen</td>
<td>> 2 meter per week, op warme dagen 30 cm per dag</td>
<td>2, 7</td>
</tr>
<tr>
<td>Bijzonderheden</td>
<td>Stikstof fixatie, remedie tegen bodemerosie</td>
<td>5</td>
</tr>
<tr>
<td>Succesfactoren popieligroei</td>
<td>Zaden en vegetatieve voortplanting, snelle groei, productie van opslagwortels</td>
<td>1, 2, 3, 9</td>
</tr>
</tbody>
</table>

Habitat

De kudzu groeit het beste in goed gedraineerde, verstoorde of geërodeerde systemen op een zandige tot lemen bodem (Council, 2003). De plant tolereert zowel vochtige perioden met minimaal 1000 mm neerslag per jaar als langdurige droge perioden, maar groeit echter slecht in volledig natte systemen (wetlands) of op vast gesteente (Europese Commissie, 2014). De plant vereist zonrijke condities en groeit nauwelijks onder schaduwrijke condities. De plant heeft geen voorkeur voor de zuurgraad (pH) van de bodem en komt voor in een breed spectrum habitattypen, maar wordt vooral waargenomen op weilanden, bosranden, droge (rivier)oevers, op en langs infrastructuren en op andere kunstmatige systemen zoals tuinen, verlaten landbouwgronden en braakliggende terreinen (Miller, 1996; Zhang & Wang, 1999).

Verspreidingsmechanismen

De kudzu is inheems en wijdverspreid in China, Indochina, Japan, Maleisië, Oceanië en het Indische subcontinent (Maesen, 1985). De invasieve variant van kudzu (de variëteit *P. lobata*) komt oorspronkelijk uit China, Korea en Japan. De soort bewust geïntroduceerd en gevestigd in Zuid-Amerika, Australië, Noord-Amerika en Europa (voornamelijk Zwitserland en Italië) via handel of verstrekking vanuit de overheid. In de Verenigde Staten vormt de soort momenteel overlast door zijn snelle verspreiding (Britton *et al.*, 2002; Sun *et al.*, 2006). Hier is de soort in 1876 voor het eerst geïntroduceerd als tuinplant, maar de wijde verspreiding is pas in 1930 begonnen nadat het planten...
van de kudzu actief is gepromoot ten behoeve van het voorkomen of opheffen van erosie en de productie van veevoer (Tabor & Susott, 1941; McKee & Stephens, 1948; Sun et al., 2006).

Het klimaat waar deze soort in de Verenigde Staten het meest invasief is (nat en warm) komt grotendeels overeen met het zuiden van Europa. Toch wordt in Zwitserland verwacht dat de soort niet in grote mate invasief wordt omdat de soort slechts op kleine schaal is geïntroduceerd, daar geen verspreiding via zaden plaatsvindt en de populaties vaak in een gecontroleerde omgeving staan (Gigon et al., 2014). Echter in Italië heeft de plant zich acht jaar na zijn introductie uitgebreid over een gebied van 3000 m² en komt daar in monocultuur voor (Commissie, 2015).

De soort wordt in het buitenland verhandeld voor de tuinbouw (ten behoeve van tuininrichting) en landbouw (voornamelijk ten behoeve van veevoer, erosiepreventie en stikstofvastlegging). De soort kan ook in Nederland verwijderen als de plant geïntroduceerd wordt voor de land- en tuinbouw (Commissie, 2015; Verbrugge et al., 2015).

7.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang

Voor de kudzu zijn vooral in de Verenigde Staten verschillende eliminatie- en beheersmaatregelen uitgevoerd en in de wetenschappelijke literatuur gerapporteerd (Tabel 7.2). Deze maatregelen worden hieronder per categorie toegelicht. Voor elke maatregel geldt dat de gekozen werkwijze afhankelijk is van de lokale omstandigheden (onder andere de grootte van het aangetaste gebied, aanwezigheid van andere vegetatie, toegankelijkheid van het gebied en toekomstplannen voor het gebied) en dat de maatregel gedurende langere tijd (vaak meer dan 10 jaar) uitgevoerd moet worden om succesvol te zijn en te blijven (Everest et al., 1999). Hoe kansrijk de eliminatie- en beheersmaatregelen zijn voor het aanpakken van de invasieve plant in Nederland is beschreven in §7.4.
Tabel 7.2: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de kudzu. a

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referenties b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologisch</td>
<td>Grazing</td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td>6, 7, 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>6, 7, 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parasitaire insecten</td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td>1, 8, 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>1, 8, 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pathogenen</td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td>1, 2, 10, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>1, 2, 10, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemisch</td>
<td>Herbiciden</td>
<td>Eliminatie</td>
<td></td>
<td>2, 5, 13, 14, 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td>2, 5, 13, 14, 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbiciden en herplanting</td>
<td>Eliminatie</td>
<td></td>
<td>13, 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td>13, 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fysiek</td>
<td>Verbranden c</td>
<td>Eliminatie</td>
<td></td>
<td>5, 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td>5, 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maaie of ploegen c</td>
<td>Eliminatie</td>
<td></td>
<td>13, 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td>13, 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solarisatie</td>
<td>Eliminatie</td>
<td></td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Legenda:

<table>
<thead>
<tr>
<th></th>
<th>Veldexperimenten / praktijkervaring</th>
<th>Laboratorium / mesocosm experimenten</th>
<th>Soort- en habitatkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansrijk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deels kansrijk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niet kansrijk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niet beschikbaar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c Deze maatregelen vereisen een combinatie met een andere maatregel (vaak een herbicide).

7.2.1 Biologisch

Grazers of ziekteverwekkers kunnen als biologische eliminatie- of beheersmaatregel dienen voor het verminderen van de populatieomvang van de kudzu. Voor begrazing is met name gebruik gemaakt van vee, zoals geiten en varkens. Ziekteverwekkers zijn parasitaire insecten die de plant aanvreten en pathogenen, zoals schimmels en bacteriën, die de plant aantasten.

Begrazing

Frequente verwijdering van de bovengrondse biomassa van de kudzu zal uiteindelijk resulteren in sterfte door uitputting (Everest et al., 1999). Deze methode kan worden gerealiseerd met een begrazingsregime met bijvoorbeeld geiten of koeien. Bij begrazing is het van belang dat klimmende ranken worden gekapt zodat de planten bereikbaar zijn voor de grazers (Miller & Edwards, 1983). Begrazing gedurende drie tot vier opeenvolgende jaren kan de kudzu tot meer dan 80% verwijderen.
Alle herbivoren zullen foerageren op kudzu maar het inzetten van vee is het meest effectief (Miller, 1996). De begrazing van kudzu is het meest effectief in de maanden augustus en september en is gemakkelijk uit te voeren (Mount, 1994). De benodigdheden zijn een kudde, een hekwerk om de kudde in de te begrazen velden te houden, een waterbron en aanvullend voedsel om het vee gezond te houden (Miller, 1996). In de Verenigde Staten zijn de terreinen waarop kudzu groeit vaak ruig waardoor vooral wordt gekozen voor begrazing met geiten. De geiten zijn, evenals varkens, effectiever in het bestrijden van kudzu dan andere soorten omdat zij actief de wortels uitgraven en eten (Miller & Edwards, 1983). Een twee jaar durende studie op een terrein van 1,2 ha toonde aan dat de kudzuopstand door begrazing met een hoge dichtheid geiten (15 geiten/ha) van mei tot oktober het eerste jaar met 65% afnam en het tweede jaar met 80 – 85%. Dit heeft het van belang dat de begrazing aanvullend nog één tot drie jaar wordt ingezet omdat anders de opslagcapaciteit van de wortels niet volledig wordt aangetast door begrazing en de exoot dan nog steeds uitlopers kan produceren (Mount, 1994).

Na begrazing is het mogelijk om eventueel uitlopende kudzuplanten puntsgewijs (individueel) te behandelen met herbiciden (Miller, 1996). Wanneer kudzu succesvol is verwijderd wordt vaak een invasie van andere ongewenste plantensoorten waargenomen. In de Verenigde Staten zijn dit vaak de Amerikaanse trompetbloem en ambrosia. Bestrijding van beide planten is gemakkelijk met het toepassen van herbiciden (Mount, 1994).

Ziekteverwekkers

Parasitaire insecten

In het oorspronkelijke habitat van kudzu veroorzaakt de plant geen overlast. Dit heeft voornamelijk te maken met de aanwezigheid van diverse insecten en pathogenen waar de kudzu kwetsbaar voor is. Sun et al. (2006) onderzochten welke insecten en pathogenen toepasbaar zijn als biologische bestrijder op locaties waar de kudzu overlast veroorzaakt. Hiervoor zijn verschillende soorten insecten geschikt waaronder de boktor Paraleprodera diophthalma. Zaad consumerende insecten zijn in gebieden met invasieve populaties vaak niet effectief voor de bestrijding van de kudzu, omdat de soort zich daar vooral vegetatief vermeerdert en geslachtelijke voortplanting middels zaden nauwelijks succesvol is (Sun et al., 2006).

In de Verenigde Staten nam door stimulering van insectenvraat gedurende vier weken de boven- en ondergrondse biomassa van de kudzu met respectievelijk 40 en 47% af vergeleken met controle planten (Frye & Hough-Goldstein, 2013). De planten produceerden significant minder primaire uitlopers en de uitlopers waren korter in vergelijking met de controle planten. In een natuurlijke situatie verminderen kortere uitlopers het vermogen om te klimmen waardoor de plant meer met andere soorten moet competeren voor licht. Insectenvraat verlaagt dus effectief het welzijn van de plant. Insecten bestrijding verlaagt de voortplanting en het concurreren vermogen van de plant (Frye & Hough-Goldstein, 2013). Deze effecten kunnen echter deels teniet worden gedaan doordat de plant compenseert voor insectenvraat. Hierdoor is de inzet van herbivoren voor meerdere opeenvolgende jaren nodig om planten effectief te bestrijden (Myers et al., 1988).

Ter voorkoming van ongewenste neveneffecten van een biologische bestrijder is voorafgaand aan de introductie daarvan uitgebreid onderzoek nodig naar zijn gastheer. Wanneer een bestrijder niet gastheerspecifiek is, kunnen ook andere plantensoorten worden aangetast, zoals soja welke nauwverwant is met de kudzu (Sun et al., 2006). Voor de bladetende kever Gonioctena tredecimmaculata, behorend tot de bladhaantjes, is deze studie al uitgevoerd. Hierbij is onder
laboratoriumcondities in de Verenigde Staten aangetoond dat de soort niet alleen graast op kudzu maar ook op vele andere gewassen welke van economisch belang zijn zoals soja en bospinda. De keversoort is niet gastheerspecifiek en daarom niet bruikbaar om in te zetten als biologische bestrijder voor de kudzu in de Verenigde Staten (Frye et al., 2008).

Pathogenen (bacteriën en schimmels)

Naast insecten zijn er ook verschillende pathogenen welke mogelijk inzetbaar zijn voor de bestrijding van kudzu. Zo wordt de kudzu in zijn natuurlijke verspreidingsgebied aangetast door de roest Synchytrium minutum puerariae (Sun et al., 2006) en de schimmel Colletotrichum gloeosporioides (Farris & Reilly, 2000). De bacterie Pseudomonas syringae pv. phaseolicola veroorzaakt de vetvlekkenziekte bij de kudzu. Na enten van zaailingen met deze bacterie in een gecontroleerde omgeving trad hoge sterfte op, echter in veldstudies onder droge condities had het aanbrengen van de bacterie geen effect (Zidack & Backman, 1996).

De schimmel Myrothecium verrucaria is ontwikkeld tot bioherbicide tegen de kudzu (Weaver & Lyn, 2007). Een bioherbicide wordt in tegenstelling tot een biobestrijder direct in het weefselsysteem van de plant gebracht, vergelijkbaar met het toedienen van een chemisch bestrijdingsmiddel (Hallett, 2005). M. verrucaria veroorzaakt volledige sterfte bij jonge kudzu planten en necrose bij oudere planten (Boyette et al., 2001; Boyette et al., 2002). In een tweejarig veldexperiment is aangetoond dat de schimmel 95 tot 100% de planten elimineert binnen 14 dagen na behandeling van de uitlopers. De behandeling werkte significant beter bij temperaturen van 25 – 40˚C dan bij 10 – 20˚C (Boyette et al., 2000). In de Verenigde Staten tast M. verrucaria ook sommige andere uitheemse onkruiden aan, echter de inheemse vegetatie blijft gespaard (Walker & Tilley, 1997). Voor het effectief toepassen van de schimmel zijn, in tegenstelling tot de behandeling met herbiciden (zie § 7.2.2), geen vochtige milieucondities nodig (Boyette et al., 2001; Boyette et al., 2002). Een nadeel van M. verrucaria is dat de pathogeen verschillende mycotoxinen kan ontwikkelen welke schadelijk zijn voor onder andere zoogdieren. Deze toxines worden echter niet in de behandelde kudzuplanten gevormd (Abbas et al., 2001; Abbas et al., 2002; Quimby et al., 2003) maar voorzichtigheid tijdens de applicatie van bioherbiciden is noodzakelijk (Quimby et al., 2003).

Het is mogelijk om de toepassing van een bioherbicide te combineren met chemische herbiciden voor de succesvolle bestrijding van de kudzu. Hierbij is het van belang dat een applicatiemethode voor het chemische middel wordt gekozen waarbij de sporen van de schimmel vitaal blijven. Voor herbiciden met de werkzame stoffen aminopyralid en metsulfuron is aangetoond dat de schimmel hiervoor tolerant is (Weaver & Lyn, 2007).

7.2.2 Chemisch

Het gebruik van herbiciden is de enige gerapporteerde chemische maatregel voor het elimineren- of beheersen van de kudzu. Deze maatregel is met name toegepast in de Verenigde Staten, soms in combinatie met verbranden van het bovengrondse plantenmateriaal of herplanting van andere terrestrische planten.

Herbiciden

Om de kudzu succesvol met herbiciden te elimineren is het van belang dat de volgende stappen voorafgaand aan de bestrijding worden uitgevoerd:

1. bepaal het oppervlakte en de eigenschappen van de te bestrijden standplaats van de kudzu. Maak hierbij onderscheid tussen open velden, gebieden nabij oppervlaktewater, woonwijken,
(productie)bos en ruigten. Hieruit kunnen de beperkingen per locatie worden bepaald, zoals de vervuiling van watergangen of onbereikbaarheid van het terrein. Ook moet de leeftijd van de kudzuplant worden geschat, omdat oudere kudzuplanten diepe wortels hebben welke moeilijk te bestrijden zijn. De leeftijd is te schatten door te kijken of de wortelkronen een diameter groter dan 5 cm hebben. Als dit zo is zijn de planten “oud” en zijn meer herbiciden en behandelingen nodig om de exoot uit te roeien (Miller, 1996);

2. behandel de locatie voor door klimmende ranken weg te kappen. Tevens kan het noodzakelijk zijn om delen van het terrein gericht af te branden of te laten begrazen door vee. Hierdoor worden kleine planten gedood waardoor het terrein toegankelijker is. Tevens komen wortels bloot te liggen waardoor het mogelijk is herbiciden gericht aan te brengen. De beste tijd om te verbranden is in februari en maart wanneer de dode kudzu bladeren als brandstof dienen (Miller, 1996);

3. selecteer de meest geschikte herbiciden voor de betreffende locatie. De meeste herbiciden vernietigen alleen de bladeren en uitlopers van de kudzu. De herbiciden Tordon 101 Mixture (een mix van 2,4-dichloofenoxyazijnzuur en picloram) en Tordon K (picloram) zijn het meest effectief gebleken in studies waarbij het gebruik van 25 verschillende herbiciden op de kudzu zijn getest (Miller, 1986, 1988; Nelson, 1990). In de Europese Unie zijn beide werkzame stoffen opgenomen in de lijst van pesticiden die in de lidstaten zijn toegelaten. 2,4-dichloofenoxyazijnzuur is volgens deze lijst in Nederland toegestaan als bestrijdingsmiddel, voor picloram geldt dit niet waardoor voor het werken met deze stof een ontheffing of vrijstelling van de Wet gewasmiddelenbescherming en biociden noodzakelijk is (Commissie, 2008b; UNEP, 2014; De Hoop et al., 2015). Op jonge opstanden van de kudzu moet 9,5 l Tordon 101 of 4,8 l Tordon K/ha worden gebruikt. Voor oude opstanden is een dubbele hoeveelheid Tordon 101 nodig, maar voor Tordon K blijft de dosis hetzelfde. Toediening van de herbiciden is het meest effectief wanneer dit in het groeiseizoen (vanaf juni) wordt uitgevoerd. Beide herbiciden worden op de plant gesproeid waarna de middelen met (regen)water afspoelen en zo de wortels van de kudzu bereiken. Hierdoor is het nodig om na toediening binnen 2 tot 5 dagen te beregenen.

Tordon 101 en K zijn geschikt voor het compleet uitroeien van de kudzu, waar andere herbiciden (zoals Veteran 720 en RoundUp) alleen de bovengrondse delen en niet de wortels van de plant bestrijden (Miller, 1996; Thomas, 2000). Echter, Tordon 101 en K leiden ook tot ongewenste neveneffecten. De herbiciden hebben een hoge wateroplosbaarheid en vormen daardoor een groot gevaar voor het oppervlakte- en grondwater (Berisford et al., 2006). Tevens hebben de herbiciden een hoog risico op doorvergiftiging en zijn veel gewassen en natuurlijke vegetaties gevoelig voor de werkzame stoffen (Miller, 1996). Voor het werken nabij watergangen of op locaties met een hoge grondwaterstand kan daarom beter gekozen worden voor de herbicide Veteran 720 (werkzame stoffen 2,4-dichloofenoxyazijnzuur en dimethylamine) welke minder oplosbaar in water is. De gebruiksvoorschriften van dit herbicide zijn 19 l/ha voor jonge opstanden en 28,5 l/ha voor oude opstanden van kudzu. Voor dit herbicide is geen beregening nodig maar de toediening moet wel op of nabij de wortels gebeuren. De beste tijd voor opbrengen van dit middel is augustus voor locaties nabij woonwijken, natuurgebieden en akkers kan het beste RoundUp of aminopyralid (aanbrengen volgens verpakking) worden gebruikt omdat deze stoffen beter werkzaam zijn bij een puntgewijze behandeling (Miller, 1996; Weaver & Lyn, 2007);

4. pas alle herbiciden volgens de gebruiksaanwijzing toe. De geschatte kosten voor het toedienen van een herbicide is 70 tot 140 euro per 0,4 ha (Everest et al., 1999). De hierboven beschreven
hoeveelheden zijn richtlijnen uit de Verenigde Staten. Concentraties en toepassingen kunnen verschillen voor Nederland. Zorg dat de planten compleet worden bedekt met herbiciden door middel van sproeien met bijvoorbeeld handpompen of gespecialiseerde voertuigen (Miller, 1996);

5. herhaal de behandeling indien nodig. Uit eerdere bestrijding van kudzu is gebleken dat kudzu tot 10 jaar na de eerste behandeling kan terugkomen. Meestal voldoen 1 tot 2 volledige besproeiingen met herbiciden in verschillende groeiseizoenen, waarbij voor jonge opstanden de tweede toediening in het derde jaar moet worden verricht. Voor het elimineren van de kudzu dient deze behandeling te worden gevolgd door enkele jaren lokaal aanbrengen van herbiciden (Miller, 1996; Everest et al., 1999).

Voor een effectieve eliminatie van de kudzu is doortastendheid noodzakelijk. Elke plant moet volledig worden verwijderd omdat anders weer snel hergroei vanuit overgebleven planten plaatsvindt en de populatie niet wordt ingedamd (Everest et al., 1999; Sun et al., 2006).

Herbiciden gecombineerd met herplanting
Aanvullend op bovenstaande werkwijze kan het toepassen van herbiciden gecombineerd worden met de herplanting van gewenste vegetatie op de vrijgekomen grond (Miller, 1996; Harrington et al., 2003). Hierdoor wordt voorkomen dat de kudzu zich opnieuw in grote getalen (invasief) vestigt. In de herfst na de laatste behandeling met herbiciden kan het terrein eerst worden afgebrand om de kudzu biomass volledig te verwijderen en vervolgens aangeplant met gewenste soorten zoals grassen (Harrington et al., 2003). De grassen voorkomen bodemerosie en zijn relatief ongevoelig voor de herbicide Tordon (Miller, 1996). Tevens is het mogelijk om dennen te planten om hervestiging van kudzu na de behandeling met herbiciden te vertragen. Een voorbeeld is casus waarbij de den Pinus taeda, die tolerant is voor de herbiciden die worden gebruikt voor de bestrijding van de kudzu (Edwards & Gonzalez, 1986; Michael, 1986) is geplant. Na het planten van 4 zaailingen van P. taeda per m² is twee jaar na een driemalige herbicide (onder andere clopyralid en metsulfuron) behandeling een 33% reductie in hervestiging van kudzu gerealiseerd. Daarbij kan een hoge dichtheid van de dennen voorkomen dat de bomen overgroeid worden met kudzu door lichtlimitatie. Bij een eventuele vestiging in Nederland is het van belang dat onderzocht wordt welke inheemse (dennen)soorten toepasbaar zijn voor deze maatregel. De herbicide behandeling en het planten van dennen heeft de kudzu echter niet volledig geëlimineerd waardoor op langere termijn alleen het herstel van kudzu is vertraagd, de plant zal wanneer hij voldoende licht tot zijn beschikking krijgt onherroepelijk opnieuw invasief worden (Harrington et al., 2003).

7.2.3 Fysiek

Verbranden
Het mogelijk om met kudzu overgroeide terreinen te verbranden (zie §7.2.2). Het verbranden moet in de late winter gebeuren zodat andere soorten hier het minst last van hebben en de grond niet te lang onbegroeid blijft zodat erosie wordt beperkt. De eventueel aanwezige zaden van de kudzu verliezen echter door het verbranden hun harde coating waardoor ze ontkiemen. Daarom resulteert alleen een combinatie van verbranden en het gebruik van herbiciden in de volledige eliminatie van kudzu (Everest et al., 1999).
7.2.4 Mechanisch

Mechanische maatregelen voor het elimineren- of beheersen van de kudzu zijn gericht op het maaien van planten, het omploegen van de bodem of het ongeschikt maken van de bodem middels afdekking door folie (solarisatie).

Maaien of ploegen
Maaien of ploegen zijn methoden om de kudzu te verzwakken, toegankelijk te maken voor andere bestrijdingsmethoden of om snelle uitbreiding van de plant te voorkomen (Miller, 1996; Everest et al., 1999). Om de exoot effectief en blijvend te elimineren is echter meestal een combinatie met andere maatregelen (bijvoorbeeld herbiciden) nodig (Miller, 1996). Het maaien of ploegen moet geschieden gedurende het groeiseizoen en het restmateriaal moet zorgvuldig worden afgevoerd om verspreiding en uitgroei van de kudzu te voorkomen (Ball et al., 1979; Miller & Edwards, 1983). Er moet rekening worden gehouden met het feit dat de bodem door mechanische verstoringen kwetsbaarder wordt voor erosie en invasies van exoten waardoor ook kudzu weer snel terrein kan winnen als de soort nog in de directe omgeving aanwezig is (Weaver & Lyn, 2007).

Solarisatie
Solarisatie is een thermische methode welke de bodem ongeschikt maakt voor plantengroei door opwarming via zonlicht (Katan & DeVay, 1991). Het uitvoeren van deze methode hoeft niet gecombineerd te worden met herbiciden of andere maatregelen. Voor solarisatie worden de kudzuopstanden tijdens het groeiseizoen afgedekt met een plastic zeil (Adams et al., 2010).

Een veldstudie naar de effectiviteit van deze methode toonde aan dat kudzu goed te bestrijden is door middel van solarisatie (Newton et al., 2008). Het afdekken van een terrein met kudzu werd gedurende twee jaar tijdens het groeiseizoen uitgevoerd (mei – oktober). Hierbij is gekozen voor een UV-werende, doorzichtige polyethyleen folie omdat deze niet snel wordt afgebroken door zonlicht en meer interne warmte opwekt dan zwarte folie. De kleiige leembodem was geërodeerd en de plantenopslag was 0,5 tot 1,5 m hoog. Het terrein van 1,2 ha was verdeeld in vier vlakken met een andere werkwijze in ieder vlak: 1) het hele groeiseizoen afgedekt met folie, 2) afwisselend één week afgedekt door folie en daarna één week onbedekt, 3) één week afgedekt en de daaropvolgende twee weken niet en 4) één week afgedekt en vier weken onafgedekt. Aanvullend zijn meerdere nabijgelegen onbehandelde vlakken onderzocht. Alle behandelingen resulteerden in een mortaliteit van 97% van de wortelkronen na de toepassing in twee groeiseizoenen. In de controlevlakken was sprake van een natuurlijke mortaliteit van 2%. Hierbij moet wel worden vermeld dat de hoge mortaliteit alleen wordt bereikt bij uitvoering van de maatregelen in twee opvolgende jaren. Tijdens het derde groeiseizoen werd de kudzuopslag opnieuw beoordeeld en werd geen hergroei van de plant waargenomen. De behandelde vlakken werden wel gekoloniseerd door kruipende kudzuplanten vanuit de controlevlakken. Dit betekent dat het afdekken van alle kudzu nodig is om eliminatie van de plant te verwezenlijken (Newton et al., 2008).

Aanvullend was de bodemgesteldheid van de gesolariseerde vlakken onderzocht. Hieruit bleek dat bodems met de langere behandelingstijden (zoals bij vlak 3 en 4) vitaler waren omdat zij beter nutriënten vasthouden en lagere nitraat-stikstof ratio’s hebben. Alle behandelingen resulteerden in een lagere natriumn- en calciumbeschikbaarheid van de bodem maar een hogere kalium- en mangaanconcentratie in vergelijking met de controle waardes (Newton et al., 2008). Het volgen van een minder intensief afdekkingsregime is daarom gewenst (Adams et al., 2010).
Het vierwekelijkse interval (vlak 4) was het meest kostenefficiënt omdat minder folie nodig is dan de andere behandelingen. Het folie kon immers rouleren over het terrein. De materiaalkosten bij een behandeling zoals in vlak 4 bedragen circa 1050 euro/ha vergeleken met circa 5250 euro/ha bij complete afdekking gedurende het gehele groeiseizoen. Echter uitvoeringskosten zijn hoger aangezien meer mankracht nodig is om het zeil meerdere malen te plaatsen en te verwijderen. Het uitvoeren van afdekking is geen kosteneffectieve methode om grote opslagen van de kudzu te elimineren. De methode is wel zeer kosteneffectief op lokaal niveau (Newton et al., 2008).

7.3 Beheersmaatregelen voor indamming populaties

Momenteel zijn geen populaties van de kudzu in het wild aanwezig in Nederland (Verbrugge et al., 2015). De plant is eerder gekweekt door de Hortus Botanicus in Amsterdam (Gouwenberg & Lindhout, 2011). De soort kan in Nederland worden verspreid door verwildering vanuit botanische en particuliere tuinen (Verbrugge et al., 2015). Na de inwerkingtreding van de Unielijst mag de kudzu echter niet meer opzettelijk gehouden en gekweekt worden en moet de plant na een jaar gecontroleerd afgevoerd zijn (Europese Commissie, 2014).

Het is van belang om snel op te treden wanneer de kudzu in Nederland in het wild wordt waargenomen. Effecten van een definitieve vestiging als invasieve exoot zijn moeilijk vooraf in te schatten. Wanneer de soort op locaties zijn maximale dichtheid heeft bereikt, zijn veranderingen in het ecosysteem naar verwachting irreversibel en permanent (Verbrugge et al., 2015).

7.4 Potentieel kansrijke maatregelen voor Nederland

Voor het elimineren en beheersen van de kudzu zijn verschillende maatregelen onderzocht (§ 7.2). Hiervoor geldt dat elke maatregel zijn meerwaarde en beperkingen heeft afhankelijk van de situatie. Maatregelen zoals begrazen, herplanten van vegetatie, verbranden, maaien en ploegen beheersen de kudzu enigszins maar volledige eliminatie van wordt hiermee niet bereikt. Het resultaat van deze toepassing is dat kudzu zich blijft uitbreiden waardoor de maatregel niet effectief is. Deze maatregelen hebben ook effecten op de inheemse flora en fauna en zijn daarom voor veel gebieden niet aan te raden (Nelson, 1990; Harrington et al., 2003; Sun et al., 2006). Door deze limitaties is het werken met een ziekteverwekker (parasitaire insect of schimmel) of herbicide bijna onvermijdelijk (Miller, 2006). Voor het toepassen van biologische bestrijding is eerst nog gericht onderzoek noodzakelijk naar ongewenste neveneffecten op inheemse soorten, waardoor deze maatregelen momenteel nog niet inzetbaar zijn in de Nederlandse praktijk (Sun et al., 2006).

Chemische herbiciden worden vaak toegepast voor de bestrijding van kudzu en de effecten daarvan zijn goed onderzocht. Voor het gebruik van chemische bestrijdingsmiddelen zijn diverse protocollen opgesteld. Dit maakt toepassing van deze maatregel in Nederland kansrijk op zowel lokale als nationale schaal. Hiervoor moet worden nagegaan of de desbetreffende behandeling is toegelaten in Nederland of dat hiervoor eerst ontheffingen van de gewasbeschermingswet nodig zijn (De Hoop et al., 2015). Bij bestrijding op kleine schaal voldoet het lokaal aanbrengen van de gekozen herbicide op individuele planten, op grote schaal moet vlakdekking met de herbicide worden gespoten. In beide gevallen geldt dat de behandeling in opvolgende jaren meerdere malen moet worden herhaald totdat de kudzu volledig is geëlimineerd. Wel moet, zoals altijd bij het gebruik van herbiciden, rekening worden gehouden met de ongewenste neveneffecten van het middel. Zo is het mogelijk dat de
inheemse vegetatie of het ecosysteem wordt aangetast door de herbicide (Carson, 1962; Cope, 1966; Pearson & Ortega, 2009).

Solarisatie van de kudzu is kansrijk wanneer de terreinen waar de plant voorkomt niet te groot zijn (maximaal enkele hectares). De goedkoopste optie hiervoor is een volledig seizoen afdekken of toepassing van een roulatiesysteem. Een voordeel is dat deze maatregel weinig schade aan het ecosysteem veroorzaakt.
8 Vis – Blauwband (*Psuedorasbora parva*)

8.1 Soort- en habitatbeschrijving

Figuur 8.1: Blauwband (*Pseudorasbora parva*) (© Foto: Wikimedia commons).

8.1.1 Levenswijze

De blauwband is een zilvergrijze vis met een donkerblauwe streep over de gehele mediaan van het lichaam. De band is vooral bij juveniele individuen en vrouwtjes goed zichtbaar. In de paaitijd krijgen de mannetjes een violette kop en een staalblauwe kleur, de vrouwtjes krijgen een gele kop met witgele flanken. De vis heeft een torpedo-vormig lichaam dat bij volwassen mannetjes gemiddeld 10 cm in lengte is (Spikmans & Leuven, 2010). De vrouwtjes zijn kleiner, hebben kortere vinnen en minder schubbenrijen dan mannetjes (Gozlan *et al.*, 2010). De blauwband is een omnivoor met een opportunistische voedselstrategie (Banarescu, 1999; Xie *et al.*, 2000; Pollux & Korosi, 2006). De vis eet vooral plankton, benthische organismen (zoals muggenlarven) maar ook plantaardig materiaal, algen, vis- en insectenlarven, slakken en mosselkreeftjes. Juveniele vissen eten vooral dierlijk en plantaardig plankton maar ook watervlooien (Banarescu, 1999).

De soort is met een jaar volwassen en geslachtsrijp (Zhang *et al.*, 1998; Rosecchi *et al.*, 2001). Beide geslachten vertonen broedzorg waarbij het mannetje waakt over het vrouwtje en het legsel (Maekawa *et al.*, 1996; Britton *et al.*, 2007). Het legsel wordt afgezet op vegetatie en aantallen variëren van 121
tot 7124 eieren per seizoen (met een gemiddelde van 3000 eieren per legsel en 1 tot 3 legsels per jaar) (Zhang et al., 1998; Adrović & Skenderović, 2007; Yan & Chen, 2009; Záhorská & Kováč, 2009). In het natuurlijke verspreidingsgebied plant de soort zich voort tussen april en augustus maar dit kan variëren op andere locaties. Deze plasticiteit, het veranderen van zijn voortplantingstijd, zorgt er voor dat de blauwband zich na introductie snel kan uitbreiden (Yan & Chen, 2009; Gozlan et al., 2010). Voor de voortplanting is de blauwband afhankelijk van wateren bij rivieren zoals poelen, plassen en strangen die met hun hogere watertemperatuur en geringere stroomsnelheid tijdens de zomer een geschikt voortplantingsbiotoop bieden (Crombaghs et al., 2000). In Nederland vindt de paai vermoedelijk pas vanaf juni plaats waardoor de paaiperiode korter is dan in het natuurlijke verspreidingsgebied van de vis (Banarescu, 1999; Spikmans & Leuven, 2010). De blauwband is bestand tegen extreme omstandigheden zoals droogval en vervuiling (Banarescu, 1999; Lemmens et al., 2015).

Tabel 8.1: Soort- en habitat eigenschappen van de blauwband.

<table>
<thead>
<tr>
<th>Eigenschappen</th>
<th>Blauwband (Pseudorasbora parva)</th>
<th>Referenties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengte geslachtrijp individu</td>
<td>> 36 mm</td>
<td>5</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>3 - 4 jaar</td>
<td>2, 5</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paringstijd</td>
<td>Juli (in Nederland)</td>
<td>1</td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geslachtrijke leeftijd</td>
<td>Vanaf 1 jaar</td>
<td>2, 5</td>
</tr>
<tr>
<td>Aantal jongen per legsel</td>
<td>Gemiddeld 3000 eieren</td>
<td>6</td>
</tr>
<tr>
<td>Uitkomen van de eieren</td>
<td>10 dagen</td>
<td>7</td>
</tr>
<tr>
<td>Aantal legsels per jaar</td>
<td>1 - 3</td>
<td>5</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Beide</td>
<td>8</td>
</tr>
<tr>
<td>Vangbaarheid</td>
<td>Makkelijk</td>
<td>11</td>
</tr>
<tr>
<td>Voedselvoorkoor</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Succesfactoren voor invasiviteit</td>
<td>Opportunistische leefwijze: omnivoor, snelle generatiewisseling, meerdere broedsels per jaar, broedzorg</td>
<td>1-4</td>
</tr>
<tr>
<td>Vestiging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Enkele kempopulaties in Nederland, met name langs de grote rivieren</td>
<td>12</td>
</tr>
<tr>
<td>Territoriaal</td>
<td>Ja</td>
<td>7, 9</td>
</tr>
<tr>
<td>Groott territorium</td>
<td>NB b</td>
<td></td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Actief</td>
<td>9</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td>Water</td>
<td>1</td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Dispersieafstand</td>
<td>Gemiddeld 25 km per generatie</td>
<td>9</td>
</tr>
<tr>
<td>Predatoren</td>
<td>Vissen (zoals snoek) en vogels</td>
<td>13, 14</td>
</tr>
</tbody>
</table>

Soort

Habitat

NB = Niet bekend.
8.1.2 Habitat
De blauwband komt in zijn natuurlijke leefgebied voor in stromende en stilstaande wateren. Hogere populatiedichtheden worden echter bereikt in stilstaande wateren. Vermoedelijk doordat het voedselaanbod op de locaties hoger is en omdat op deze locaties meer schuilplaatsen zijn (Banarescu, 1999; Pinder et al., 2005; Pollux & Korosi, 2006; Beyer et al., 2007). In gebieden waar de soort is geïntroduceerd, vertoont de blauwband weinig voorkeur in habitat. Zo is de soort naast rivieren, beken en plassen eveneens te vinden in waterreservoirs, drainagekanalen, sloten en vennen (Janković & Karapetkova, 1992; Rosecchi et al., 1993; Adamek & Siddiqui, 1997; Hliwa et al., 2002; Spikmans & Leuven, 2010). Hierbij fungeert de hoofdstroom van de rivier voornamelijk als verspreidingsweg naar deze watertypen (Crombaghs et al., 2000; Pollux & Korosi, 2006). In Nederland komt de blauwband in verschillende watertypen voor, waaronder kleine plassen, langzaam stromende wateren, beken en wateren gebonden aan het rivierengebied (Spikmans & Leuven, 2010).

8.1.3 Verspreidingsmechanismen
De blauwband heeft zijn natuurlijke verspreiding in Japan, China, Korea en de wateren van de Amoer rivier in Rusland en China (Banarescu, 1999; Britton & Brazier, 2006). Vermoedelijk is de kolonisatie van Europa door de blauwband minder dan 40 jaar geleden begonnen in Roemenië (Gozlan et al., 2010). Lozingen van water van viskwekerijen langs de Donau zijn verantwoordelijk geweest voor de verspreiding van de soort in westelijke richting van de rivier (Bănărescu 1999). In 1992 is de soort voor het eerst ontdekt in Nederland, namelijk in de monding van de Aalsbeek in Limburg. De soort is vermoedelijk geïntroduceerd vanuit de afwatering vanuit het Duitse gedeelte van de Rijn of vanuit herhaalde, al dan niet opzettelijke, uitzettingen van de soort (bijvoorbeeld vanuit forellenkwekerijen) (Lenders, 1993; Crombaghs et al., 2000). Een andere mogelijke route is de eerder genoemde introductie vanuit gecontamineerd materiaal van viskwekerijen (Verbrugge et al., 2015).

8.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang
Slechts enkele eliminatie- en beheersmaatregelen zijn in de literatuur gerapporteerd voor de blauwband (Tabel 8.2). De uitvoering van maatregelen tegen de blauwband dienen bij voorkeur in een vroeg stadium te gebeuren wanneer de omvang en/of verspreiding van de populatie nog beperkt is (Verbrugge et al., 2015). Bestrijding is alleen zinvol wanneer er geen kans op herkolonisatie is en het probleem zich lokaal of in een geïsoleerd waterlichaam voordoet (Spikmans & Leuven, 2010). De gerapporteerde eliminatie- en beheersmaatregelen zijn per categorie toegelicht.
Tabel 8.2: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de blauwband.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referenties b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologisch</td>
<td>Predatie</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemisch</td>
<td>Feromonen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>7-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pisciciden</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>3-6</td>
</tr>
<tr>
<td>Fysiek</td>
<td>Schermen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>4, 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanisch</td>
<td>Droogleggen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>4, 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vangen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>1, 7, 10, 11</td>
</tr>
<tr>
<td>Systeemgericht</td>
<td>Weerbaarder maken habitat</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>7</td>
</tr>
<tr>
<td>Tolereren</td>
<td>Niets doen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>↓ verspreiding</td>
<td>10</td>
</tr>
</tbody>
</table>

Legenda:

- Veldexperimenten / praktijkervaring
- Laboratorium / mesocosm experimenten
- Soort- en habitatkennis

<table>
<thead>
<tr>
<th>Kansrijk</th>
<th>Deels kansrijk</th>
<th>Niet kansrijk</th>
<th>Niet beschikbaar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.2.1 Biologisch

Predatoren

Het uitzetten van predatoren voor het beheersen van geïsoleerde blauwbandpopulaties is mogelijk. Deze aanpak is verschillende malen uitgevoerd waarbij inheemse vissoorten, zoals baars en snoek, zijn uitgezet (Davies & Britton, 2015; Lemmens et al., 2015). In een veldonderzoek in Engeland zijn 10 baarzen (210 – 325 mm) uitgezet in april 2006. Het effect van de maatregel op de afname van de aanwezige blauwbandpopulatie is niet onderzocht. Na terugvangst van de baarzen bleek echter dat het weefsel (gemeten door stabiele isotopen analyse) van deze vissen voornamelijk was opgebouwd uit blauwbandmateriaal. Daarom zijn in een tweede experiment (mesocosmstudie) 20 baarzen (100 – 140 mm) uitgezet om te bepalen of predatie door baarzen de omvang van een blauwbandpopulatie significant vermindert. Hieruit bleek dat vooral individuen kleiner dan 60 mm in grote getalen afnamen (Davies & Britton, 2015). Echter, na het succesvol verlagen van de omvang heeft de populatie een compensatiereactie laten zien, veroorzaakt door het opheffen van dichtheidsafhankelijke regulatiemechanismen (Wydoski & Wiley, 1999). De reproductiecapaciteit van de blauwband
versnelde en de overlevingskans verhoogde (door een afgenomen concurrentiedruk), waardoor populatierestabilisatie optreedt en de maatregel minder effectief was dan in eerste instantie werd gedacht (Davies & Britton, 2015).

In een veldexperiment in Midden-Limburg, België, zijn snoeken uitgezet om het aantal blauwbanden in vijvers te reduceren (Lemmens et al., 2015). Het experiment is begonnen met het droogleggen van vijvers en het weghalen van alle aanwezige vissen. Kort nadat de vijvers opnieuw zijn gevuld met water werden weer blauwbanden gesignaleerd, ondanks dat maatregelen waren getroffen tegen de inlaat van vissen. Vervolgens zijn aan de vijvers vissen toegevoegd met een biomassa van 10 kg/ha in een combinatie van snoek (juvenielen van 6 weken oud, 150/ha) en plantetende vissen zoals ruisvoorn en karpers. Controlevijvers ontvingen alleen de herbivore vissen. Uiteindelijk was het aantal blauwbanden 34 keer zo laag in vijvers met snoek dan in vijvers zonder snoek. Het inzetten van snoek als predator is daarmee effectief gebleken voor het beheersen van de blauwband. In de studie is tevens gesuggereerd dat de snoek wellicht een succesvolle introductie van de blauwband kan verhinderen (Lemmens et al., 2015).

Voor het inzetten van predatoren als biocontrole is het van belang dat vooraf wordt bepaald of de uitgezette predatoren ongewenste schade toebrengen aan andere soorten of het ecosysteem (Eby et al., 2006; Davies & Britton, 2015). Uiteindelijk is volledige eliminatie met het inzetten van predatoren niet behaald, maar is de maatregel wel bruikbaar gebleken bij het beheersen van blauwbandpopulaties in geïsoleerde waterlichamen (Davies & Britton, 2015; Lemmens et al., 2015).

8.2.2 Chemisch

Feromonen
Uit eerder onderzoek is gebleken dat het mogelijk is om feromonen te gebruiken voor het beheersen van invasieve vispopulaties (Britton et al., 2011a). Vissen reageren middels ontwikkelings-, endocriene- of gedragsveranderingen sterk op aanwezige feromonen uit drie groepen; 1) anti-predator signalen, 2) sociale signalen en 3) voortplantingssignalen (Sorensen & Stacey, 2004; Burnard et al., 2008; Gozlan et al., 2010). Kunstmatig ontwikkelde feromonen wekken ook deze reacties bij vissen op. Uit eerdere studies naar feromoonsignalen bij vissen is gebleken dat de blauwband bij het gebruik van predatorsignalen bij de uitloop van een waterlichaam de waterloop niet meer doorkruist, waardoor de verspreiding van blauwband wordt verhinderd (Britton et al., 2011a). Succesvolle Amerikaanse beheersprogramma’s van de zeeprik toonden dat het gebruik van feromonen voortplanting-mechanismen verstoort zonder de rest van de vis te schaden (Christie & Goddard, 2003; Sorensen & Stacey, 2004). De combinatie van feromonen met andere methoden kan mogelijk de efficiëntie van angst verhogen of migratie verstoren (Twohey et al., 2003; Sorensen & Stacey, 2004; Li et al., 2008; Gozlan et al., 2010). Tot op heden is echter niet onderzocht welke feromonen bruikbaar zijn om de blauwband te beheersen.

Pisciciden
Chemische bestrijdingsmiddelen zijn meerdere malen gebruikt om de blauwband te bestrijden (Britton & Brazier, 2006). Hierbij is vooral gebruik gemaakt van rotenon, een natuurlijk voorkomend keton dat de zuurstofopname via de kieuwen verhindert (Lockett, 1998; Finlayson et al., 2000; Ling, 2003). Rotenon is zeer effectief gebleken in het elimineren van een hoge dichtheid blauwband in kleine geïsoleerde wateren in Engeland (Meadows, 1973; Allen et al., 2006; Britton & Brazier, 2006). In 2005 zijn visvijvers met blauwbandpopulaties tweemaal gedurende 24 uur behandeld met PW Rotenone (0,125 mg/l per 4 uur met 2,5% rotenon werkzame stof en 2,5% piperonylbutoxide
Het wegvangen van de blauwband met netten, elektrische bevissing en droogleggen was niet mogelijk vanwege de aanwezigheid van te kleine individuen (12 - 70 mm) en het draineren van de wateren was geen optie aangezien nabij de visvijver natuurlijk oppervlakte water aanwezig is waardoor een risico op het ‘besmetten’ van dit water met blauwband bestond. Voorafgaand aan de behandeling de piscicide zijn inheemse vissen weggevangen. Het middel is in het water gebracht met een doseringsapparaat (Oxyjet©) vanaf een boot en met een gifspuit in ondiepere delen. Ongeveer 30 minuten na de behandeling zijn de eerste stervende vissen waargenomen, na 60 minuten de eerste dode vissen. Het middel was zeer effectief tegen blauwband maar de behandeling werd twee weken later herhaald omdat een aantal vissen nog leefden. Na deze tweede behandeling zijn geen levende vissen meer geobserveerd en was de dichtheid van blauwband van 6.1 individuen/m² naar volledig afwezig gegaan. Anderhalve maand na de laatste behandeling zijn de weggevangen inheemse vissen teruggezet. Ook na het uitzetten van deze vissen is na bemonstering geen blauwband meer waargenomen. Monitoring moet tot drie jaar na de maatregel worden uitgevoerd om vast te stellen dat deze volledig effectief is geweest (Britton & Brazier, 2006).

De maatregel in Engeland is toegepast voordat de blauwband eieren afzette, omdat deze relatief ongevoelig zijn voor rotenon. De toxiciteit van rotenon verschilt per vissoort en de afbreektijd van de stof in water is afhankelijk van de omgevingsfactoren zoals temperatuur, pH, diepte, het oplossend vermogen van de waterlichaam, lichtinval en nutriënten gehalte (Meadows, 1973; Ling, 2003; Allen et al., 2006; Britton & Brazier, 2006). Waterplanten kunnen de werking verstoten door bij te dragen aan slechte menging van het middel en het bieden van een schuilplaats voor de vissen (Almquist, 1959; Wheeler, 1998). Hierdoor is het van belang dat de juiste concentratie voor de soort per situatie wordt bepaald (Allen et al., 2006).

Het gebruik van rotenon is niet soortspecifiek. Vissen maar ook andere soortgroepen zoals dansmuggen (Chironomidae) ondervinden schade door het middel (Knapp & Matthews, 1998; Rayner & Creese, 2006; Li et al., 2008; Britton et al., 2010). In Nederland is het gebruik van rotenon wettelijk niet toegestaan, waardoor een ontheffing of vrijstelling van de Wet gewasmiddelenbescherming en biociden nodig is (commissie, 2008a; UNEP, 2014; De Hoop et al., 2015). Indien een ontheffing of vrijstelling wordt verleend, is het van belang dat het middel alleen wordt toegepast in een omgeving met een lage natuurwaarde (Sato et al., 2010). Rotenon kan worden ingezet om de verspreiding van blauwband naar rivieren tot een minimum te beperken, maar is niet toe te passen in rivieren zelf door uitspoeling en verdunning van het middel (Britton et al., 2008).

Het gebruik van pisciciden is kostbaar ondanks dat rotenon gemiddeld maar 25 euro/l kost. De totale kosten voor het uitvoeren van de volledige maatregel zijn ongeveer 2,5 euro/m². De hoge kosten ontstaan doordat de bepaling van de juiste behandelstrategie en het geschikt maken van de waterlichamen voor de behandeling noodzakelijk zijn (Britton & Brazier, 2006). Deze kosten stijgen met de groter worden van de locatie die behandeld moet worden (Britton et al., 2008). Dit kan resulteren in het feit dat de kosten hoog oplopen terwijl de maatregel weinig effectief blijkt te zijn. Bijvoorbeeld wanneer het uitroeien moeilijk is doordat het te behandelen gebied te groot is voor een goede menging van het middel of wanneer herintroductie in het behandelde water door blauwband in de nabije jaren niet uit te sluiten is (Britton et al., 2011a).

In plaats van het behandelen van de totale wateroppervlakte met een bestrijdingsmiddel kan ook worden gewerkt met vergiftigd aas (Gehrke, 2001; Britton et al., 2011a). Hiervoor is eerder ook rotenon gebruikt. Echter, deze methode is in Australië niet effectief gebleken omdat vooral andere vissoorten dan de te bestrijden karpers van het aas aten. In een aquariumopstelling bleek dat
blauwband gevoelig was voor vergiftigd aas maar alleen als zij minimaal 30 minuten van het aas konden eten. Een nadeel hiervan is dat de consumptie door niet-doelsoorten ook stijgt. Concluderend is vergiftigd aas potentieel inzetbaar voor de beheersing van blauwband nadat meer onderzoek naar de toepassing en effectiviteit is uitgevoerd (Gehrke, 2001).

8.2.3 Fysiek

Barrières
Het plaatsen van kunstmatige barrières kan de verspreiding van de blauwband vanuit gevestigde populaties mogelijk tot een minimum te beperken (Britton et al., 2011a). Tot op heden zijn barrières vooral in Noord-Amerika veelvuldig toepast om de verspreiding van Aziaanse karpers te verhinderen. Voorbeelden zijn visgeleidingsroutes (zoals kunstmatige waterstromen die vissen om gemalen heen leiden), elektrische barrières en het plaatsen van schermen (Chick & Pegg, 2001; Kolar et al., 2005; Taylor et al., 2005; Britton & Brazier, 2006). Een nadeel van het plaatsen van dergelijke barrières is dat de migratie van inheemse vissoorten ook wordt tegengehouden (Britton et al., 2011a).

Vooralsnog is alleen de plaatsing van kunststof schermen in het water toegepast als barrière voor de blauwband (Britton et al., 2011a). De schermen zijn geplaatst op in- en uitlaatplaatsen van water in onder andere poelen en uiterwaarden in Engeland. Daarbij bleek het onmogelijk om vissen van alle levensstadia tegen te houden, omdat individuen kleiner dan 20 mm door de mazen van het net pasten en zich tevens passief verplaatsen over en door gaten van het scherm (‘uitspoelen’) (Britton & Brazier, 2006).

8.2.4 Mechanisch

Droogleggen
Een maatregel voor het elimineren en / of beheersen van de blauwband is het droogleggen van waterlichamen waarin de soort aanwezig is (Britton et al., 2011a). Hiervoor is hydrologische kennis over het betreffende waterlichaam nodig, bijvoorbeeld over de aanwezigheid van ondergrondse waterbronnen en in- of afwateringskanalen, omdat dit de drooglegging kan verhinderen. Eventuele connecties van het waterlichaam met andere watergangen moeten worden afgesloten. Tevens moet een goede locatie voor het afgevoerde water worden gezocht om het risico van secundaire verspreiding van de blauwband te beperken. Wanneer het water, inclusief blauwband, niet kan worden overgepompt in een ander reservoir is het van belang om de aanwezige blauwbanden te elimineren (Britton et al., 2008).

Het droogleggen van het waterlichaam kan met mechanische pompen. Een net kan eventueel vissen opvangen voordat het water in het nieuwe reservoir wordt gepompt. Mogelijk is afgraving van de overblijvende sliblaag nodig om achterblijvende individuen te verwijderen. Hierna moet de bodem een periode drogen waardoor de maatregel bij voorkeur wordt uitgevoerd in een periode met weinig regenval (Britton et al., 2008).

Ongeveer een maand na het droogleggen van het waterlichaam kan de bodem worden gesteriliseerd om overlevende vissen te elimineren. In een veldexperiment in Engeland is hiervoor ongebluste kalk (300 g/m²) gebruikt waardoor de pH van het sediment steeg van 6.8 naar een dodelijke pH van 12.1 voor alle vislevenstadien. Hierna vulden de waterlichamen zich op natuurlijke wijze met regen-, grond- en / of kwelwater. Het droogleggen en steriliseren van de bodem was effectief voor de eliminatie van blauwband. Na ongeveer zes maanden waren de pH-vaarden hersteld tot een normale
niveau en werden de afgekoppelde watersystemen weer aangesloten. De kosten van deze maatregel zijn hoog (9,5 euro/m²) en wordt voornamelijk veroorzaakt door de inzet van veel mankracht en zwaar materieel (Britton et al., 2008).

Vangen
Een andere mechanische maatregel om uitheemse invasieve vissen te verwijderen, is vangst middels elektrovissen, fuiken en netten (Britton et al., 2011a):

Elektrovissen
De kans op detectie van de blauwband, en daarmee indirect de effectiviteit van elektrovissen, is laag

Een experimentele studie toonde een lagere kans op detectie van de blauwband bij het gebruik van elektrovissen dan bij vallen met aas. Pas bij een dichtheid van 5 individuen/m² was de kans 95% bij elektrovissen, terwijl met vallen al bij dichtheden boven de 0,5 individuen/m² een 100% kans op detectie was (Britton et al., 2011b). Voor het bepalen van aanwezigheid van blauwband kan een puntsgewijze bemonstering worden uitgevoerd (Copp & Garner, 1995; Beyer et al., 2007; Britton et al., 2011b). Voor het vangen van zoveel mogelijk blauwbanden kan een constante spanning (ongeveer 2 minuten per 100 m²) worden gebruikt (Wheeler, 1998). Deze methode is echter minder effectief dan vangst middels fuiken of netten, aangezien elektrovissen veel vals negatieve data geeft waarbij de vis wel aanwezig is maar niet is gedetecteerd (Britton et al., 2011b).

Fuiken
Voor het vangen van blauwbanden kan een fuik met een framelengte van 107 cm, een diameter van 27,5 cm en een maaswijdte van 2 cm worden gebruikt. De ingangen zitten aan beide kopsekanen met een diameter van 6,5 cm (Britton et al., 2011b; Davies & Britton, 2015). Het plaatsen van visfuiken is een effectieve methode voor het aantonen van de aanwezigheid van een soort in een waterlichaam. Wanneer visfuiken worden voorzien van aas, zoals visvoer uit de hengelsport, zijn zij effectiever dan zonder aas. De effectiviteit voor het detecteren van blauwband met van aas voorziene fuiken is 100% wanneer de dichtheid van blauwband hoger is dan 0,5 individuen/m². Het realiseren van een significante afname in de populatiegrootte met fuiken is echter niet haalbaar, omdat de inspanningen voor het vangen van alle blauwbanden onrealistisch hoog zijn (Britton et al., 2011b).

Netten
Het vangen van grote vissen is effectief met een sleepnet van 50 m met een maaswijdte van 2,5 mm (Britton et al., 2007). Echter, blauwbanden kleiner dan 110 mm worden niet volledig verwijderd omdat zij door openingen onder het net door zwemmen (Knapp & Matthews, 1998; Neilson et al., 2004). In Engeland is een populatie blauwbanden echter met 99,5% afgenomen door zesmaal blauwbanden te vangen met een sleepnet van 20 meter en een maaswijdte van 2,5 mm. Waarschijnlijk zijn deze hoge vangstaantallen behaald door het feit dat het waterlichaam zeer klein (0,3 ha) en ondiep (1,5 m) was (Britton et al., 2010).

Concluderend, de vangst met netten is effectief voor het verlagen van de populatiegrootte, maar het zal blauwbandpopulaties nooit volledig elimineren. De vangst met fuiken of elektrodes is nauwelijks effectief. Kleine vissen (< 110 mm) laten zich meestal niet vangen en de vissen kunnen in veel gevallen snel herkoloniseren door een compensatiereactie waarbij voortplanting van de soort tijdelijk is verhoogd om grote verliezen te overkomen (Wydoski & Wiley, 1999; Ludgate & Closs, 2003). De gevangen vissen worden geëuthanaseerd of overgeplaatst naar een andere locatie (Britton et al., 2008). Bij het vangen van vissen worden neveneffecten op andere soorten tot een minimum beperkt.
aangezien de het terugzetten van bijvangst van niet-doelsoorten mogelijk is (Knapp & Matthews, 1998).

8.2.5 **Systeemgericht en weerbaarder maken habitats**
De succesvolle invasie van waterlichamen door exotische vissoorten is onder andere het gevolg van ecosystemsdegradatie. Deze degradatie komt voor uit verstoringen waardoor ‘ruimte’ ontstaat voor de invasieve soort (Britton et al., 2011a). Voorbeelden van deze verstoringen zijn kanalisatie van rivierensystemen, het verwijden van houtachtige structuren uit het water en het verhogen van de turbiditeit, bijvoorbeeld door een toename van nutriënten waardoor ondergedoken waterplanten verdwijnen (Gehrke, 2001; Clavero et al., 2004; Hickley et al., 2004; Nicol et al., 2004; Mesquita et al., 2006; Almeida et al., 2009). Wanneer verstoringen niet optreden of opgeheven worden, bijvoorbeeld door het verbeteren van de waterkwaliteit, kan het systeem in zijn oorspronkelijke staat terugkomen waardoor invasies worden belemmerd of verminderd (Nicol et al., 2004). Hierdoor hoeven getroffen maatregelen niet altijd direct gericht te zijn op de invasieve soort maar kan een indirecte aanpak, zoals het ecosysteemherstel, een goed alternatief zijn (Britton et al., 2011a). Hoe toepasbaar dit in de praktijk is voor de blauwband is niet onderzocht. Door het gebrek aan informatie is deze maatregel nog niet concreet en is een systeemgerichte aanpak momenteel nog niet toepasbaar.

8.2.6 **Tolereren**
In een meer in Engeland is gekozen voor het tolereren van de blauwband (Britton et al., 2010). Het meer heeft een geïsoleerde ligging waardoor natuurlijke verspreiding naar andere gebieden moeilijk optreedt. Beschermde (vis)soorten zijn niet in het meer aanwezig en het meer is afgesloten van activiteiten voor het publiek, zoals hengelsport, waardoor de kans op menselijke verspreiding van blauwbanden naar overige wateren nihil is. Door deze gegevens is de kans op problemen veroorzaakt door de aanwezige blauwbandpopulatie als laag beschouwd. Daarnaast was het elimineren van blauwbanden op deze locatie niet wenselijk vanwege hoge kosten in relatie tot het beperkte succes van de eliminatie. Uiteindelijk is gekozen om de blauwbanden op deze locatie te tolereren.

8.3 **Beheersmaatregelen voor indamming populaties**
De blauwband is op meerdere plekken in Nederland aanwezig, waardoor het van belang is om, naast het voorkomen van nieuwe introducties, verdere verspreiding uit deze populaties tot een minimum te beperken. Het is aan te raden om kleine, lokale populaties in geïsoleerde wateren met risico op verspreiding te verwijderen om secundaire verspreiding te voorkomen (Verbrugge et al., 2015). Verwijdering van deze populaties kan het beste geschieden door het gebruik van het chemische middel rotenon (§8.2.2) of het droogleggen van het waterlichaam (§8.2.4). Per situatie is maatwerk vereist voor een effectieve aanpak. Maatregelen voor het tot een minimum beperken van verdere verspreiding en vestiging vanuit bestaande blauwband-populaties in grotere waterlichamen, zoals in delen van een rivier, zijn niet gerapporteerd.

8.4 **Kansrijke maatregelen voor Nederland**
Het bestrijden van gevestigde blauwbandpopulaties brengt veel moeilijkheden met zich mee (Britton et al., 2011a). Dit geldt met name voor grote populaties in niet-geïsoleerde wateren. Totale eliminatie in Nederland is door de verspreiding van de blauwband in riviersystemen niet mogelijk (Verbrugge et al., 2015). Wanneer de soort gevestigd is in kleine, geïsoleerde wateren met risico op secundaire verspreiding is eliminatie van de populaties aan te raden. De meest kosteneffectieve oplossing hiervoor is het gebruik van het chemische middel rotenon (§8.2.2). Een andere effectieve oplossing is
het droogleggen en steriliseren van het waterlichaam met ongebluste kalk (§8.2.4), echter deze maatregel is zeer arbeidsintensief en daardoor kostbaarder dan het inzetten van bestrijdingsmiddelen. Voor alle maatregelen geldt dat zij moeten worden aangepast aan de omgeving en de functies in het systeem, zoals de hydrologie (Britton et al., 2008). Zowel het gebruik van rotenon als het droogleggen hebben ongewenste neveneffecten op het ecosysteem en andere soorten.

9 Vogel – Heilige ibis (*Threskiornis aethiopicus*)

9.1 Soort- en habitatbeschrijving

![image](image.jpg)

Figuur 9.1: Heilige ibis (*Threskiornis aethiopicus*) (© Foto: Wikimedia commons).

9.1.1 Levenswijze

Tabel 9.1: Soort- en habitat-eigenschappen van de heilige ibis.

<table>
<thead>
<tr>
<th>Eigenschappen</th>
<th>Heilige ibis (Threskiornis aethiopicus)</th>
<th>Referenties *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht geslachtsrijp individu</td>
<td>Gemiddeld 1,5 kg</td>
<td>2</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>21 jaar</td>
<td>2</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paringstijd</td>
<td>Begin van de lente</td>
<td>4</td>
</tr>
<tr>
<td>Broedduur</td>
<td>28 - 29 dagen</td>
<td>2</td>
</tr>
<tr>
<td>Duur tot uitvliegen jongen</td>
<td>35 - 40 na uitkomen</td>
<td>2</td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geslachtsrijpe leeftijd</td>
<td>Vanaf 5 - 6 jaar</td>
<td>2</td>
</tr>
<tr>
<td>Aantal eieren per legsel</td>
<td>2 - 3</td>
<td>4</td>
</tr>
<tr>
<td>Aantal uitvliegers per legsel</td>
<td>Gemiddeld 1,5</td>
<td>4</td>
</tr>
<tr>
<td>Aantal legseis per jaar</td>
<td>1-3</td>
<td>2</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Dag</td>
<td>4</td>
</tr>
<tr>
<td>Zichtbaarheid</td>
<td>Zichtbaar</td>
<td>1, 4</td>
</tr>
<tr>
<td>Voedselvoorkeur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Snelle dispersie, grote verspreiding en koloniebroeder</td>
<td>1</td>
</tr>
<tr>
<td>Vestiging in NL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Lokaal, enkele individuen op enkele plekken</td>
<td>6</td>
</tr>
<tr>
<td>Territoriaal</td>
<td>Nee</td>
<td>1</td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Actieve</td>
<td>5</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td>Lucht</td>
<td>2</td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td>> 30 km per dag</td>
<td>5</td>
</tr>
<tr>
<td>Dispersieafstand</td>
<td>> 100 km per seizoen (in oorspronkelijk verspreidingsgebied)</td>
<td>2, 5</td>
</tr>
<tr>
<td>Predatoren</td>
<td>Roofvogels</td>
<td>3</td>
</tr>
<tr>
<td>Ziektes en pathogenen</td>
<td>Vogelcholera</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natuurlijk verspreidingsgebied</td>
<td>Weiden en waterrijke gebieden</td>
<td>2</td>
</tr>
<tr>
<td>Potentieel verspreidingsgebied NL</td>
<td>Alle buitengebieden nabij oppervlaktewater</td>
<td>1</td>
</tr>
<tr>
<td>Natura 2000 gebied</td>
<td>Alle gebieden</td>
<td>1</td>
</tr>
</tbody>
</table>

9.1.2 Habitat

De heilige ibis komt voor in diverse biotopen nabij oppervlaktewater en wordt vooral in groepen waargenomen in weilanden, andere landbouwgronden en waterrijke gebieden zoals lagunes, getijdegebieden en eilanden nabij de kust (Hoyo *et al.*, 1992; Robert *et al.*, 2013). In Frankrijk en Nederland wordt de soort vooral waargenomen in weilanden met of zonder vee, op stortplaatsen, in moerassen en rietvegetaties (Clergeau & Yésou, 2006; Smits *et al.*, 2010). De soort foerageert in groepen tot op meer dan 30 km afstand van de kolonie (Brown *et al.*, 1982). In Europa bestaan de broedplaatsen voornamelijk uit opstanden van bomen (zoals cipressen en wilgen) die vaak op een, al dan niet kunstmatig, eiland staan (Robert *et al.*, 2013). Hieruit blijkt dat de soort buiten zijn
oorspronkelijke verspreidingsgebied een veel bredere ecologische niche heeft waardoor voorspelling van de toekomstige vestiging moeilijk is (persoonlijke mededeling D. Strubbe in (Robert et al., 2013)).

9.1.3 Verspreidingsmechanismen
De heilige ibis is ten zuiden van de Sahara in Afrika een veelvoorkomende vogel (Hoyo et al., 1992). De soort kan binnen Afrika enkele honderden kilometers migreren tussen zijn leefgebieden en broedkolonies, maar honkvaste populaties worden ook waargenomen (Brown et al., 1982; Hoyo et al., 1992). De soort is, al dan niet als broedvogel, aanwezig in België, Frankrijk, Italië, Nederland en Spanje. Het grootste aantal individuen is aanwezig in Frankrijk. De populaties in Europa zijn voortgekomen uit ontsnapte individuen uit (privé)collecties, zoals dierentuinen en volières (Clergeau et al., 2005; Clergeau & Yésou, 2006; Smits et al., 2010; Robert et al., 2013).

In Frankrijk volgt de soort voor zijn verspreiding de rivier Loire waarbij nieuwe kolonies op een afstand van 70 km van bekende vestigingsplaatsen zijn gevormd (Clergeau & Yésou, 2006). De meeste vogels zijn in het wild geïntroduceerd vanuit een dierentuin in het zuiden van Bretagne waar in 1990 150 paren werden gehouden en vanuit een safari park in de regio Sigean. Adulten zijn vrij vliegend gehouden en jongen zijn niet op tijd vleugellam gemaakt waardoor zij konden ontsnappen en zich in nabij gelegen waterrijke gebieden vestigden. In 2003 zijn voor het eerste broedende heilige ibissen in Frankrijk waargenomen. Momenteel zijn er kolonies met 1400 tot 1800 broedparen (Robert et al., 2013).

In Nederland is de soort al tientallen jaren met stijgende aantallen aanwezig waarbij incidenteel ook broedende vogels worden gemeld (Berg & Bosman, 1999; Hustings et al., 2008). In 2009 waren er 4 – 5 broedparen bekend (Smits et al., 2010). Succesvolle voortplanting is waargenomen op meerdere locaties in Zuid-Holland, op de grens van Noord-Brabant en Limburg (meerdere achtereenvolgende jaren), in de provincie Utrecht en in Overijssel (Data van Dijk in (Smits et al., 2010; Brouns, 2015; Vogelbescherming, 2016). De soort is in Nederland vooral geïntroduceerd vanuit ontsnapping uit het Vogelpak Avifauna in Alpen aan den Rijn waar de vogels voorheen vrij mochten vliegen (Smits et al., 2010). Tevens komen ontsnapte individuen vanuit andere landen naar Nederland (data M. Klemann in (Robert et al., 2013)). In Nederland is de broedpopulatie met een geschatte 12,6% in 9 jaar (tussen 2001 en 2009) toegenomen (Smits et al., 2010). Dit wordt waarschijnlijk veroorzaakt door voldoende beschikbaarheid over wintervoedsel aangezien de soort in de winter veel wordt bijgevoerd door mensen (Robert et al., 2013).

Verwacht wordt dat de soort zich in de toekomst verder over Europa uitbreidt omdat verschillende beschikbare niches nog niet zijn bezet (Robert et al., 2013).

9.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang
De heilige ibis is in de meeste landen buiten zijn natuurlijke verspreidingsgebied een recent gevestigde exoot en daarom zijn nog slechts enkele eliminatie- en beheersmaatregelen uitgevoerd en in de wetenschappelijke literatuur geëvalueerd (Tabel 9.2). De beschikbare maatregelen zijn hieronder per categorie toegelicht. De meest kosteneffectieve maatregel is het verhinderen van introductie van de soort en voorkomen van verwildering en ontsnapping van in gevangenschap gehouden exemplaren (Robert et al., 2013).
Tabel 9.2: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de heilige ibis.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referenties b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologisch</td>
<td>Steriliseren eieren</td>
<td>Eliminatie</td>
<td>1-5</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Mechanisch</td>
<td>Afschot</td>
<td>Eliminatie</td>
<td>1, 6</td>
<td>1, 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vangen</td>
<td>Eliminatie</td>
<td>1, 7</td>
<td>1, 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Systeemgericht</td>
<td>Aanpassen habitat</td>
<td>Eliminatie</td>
<td>8, 9</td>
<td>8, 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Gecombineerd</td>
<td>Steriliseren eieren & afschot of vangen</td>
<td>Eliminatie</td>
<td>10, 11</td>
<td>10, 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
</tbody>
</table>

Legenda:

<table>
<thead>
<tr>
<th>Kansrijk</th>
<th>Veldexperimenten / praktijkervaring</th>
<th>Laboratorium / mesocosm experimenten</th>
<th>Soort- en habitatkennis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansrijk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deels kansrijk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niet kansrijk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niet beschikbaar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.1 Biologisch

Steriliseren embryo’s

Bij het doden van embryo’s van de heilige ibis wordt voorkomen dat de eieren uitkomen zodat de voortplanting zich niet succesvol is. Deze methode is arbeidsintensief maar voorkomt verstoring van kwetsbare (natuur)gebieden. Bij het steriliseren is het belang dat vroeg in het broedseizoen gezocht wordt naar eieren om te voorkomen dat de eieren al zijn uitgekomen (Smits et al., 2010). Het steriliseren van eieren van de heilige ibis kan op verschillende manieren en moet in alle gevallen door professionals gebeuren:

1. eieren schudden / inprikken. Door het handmatig schudden of inprikken met een naald van de eieren sterft het embryo en zal het ei niet uitkomen (Sluis, 2016). De ouders blijven gedurende een aantal weken broeden waardoor zij minder, of niet meer, aan een nieuwe leg beginnen (Martin et al., 2007);

2. eieren wegnemen en vervangen. De eieren worden geraapt en vervolgens vervangen door enkele kunsteieren. In Frankrijk zijn eerder succesvol eieren van de heilige ibissen geraapt (data van Pierre Yésou (ONCFS) in (Smits et al., 2010)). Bij het vervangen van de eieren wordt gebruik gemaakt van een plastic ei gevuld met zand (Sluis, 2016). Bij het vervangen van de eieren blijven de ouders doorbroeden; bij het wegnemen van de eieren beginnen de vogels meestal snel weer aan een nieuw legsel (Martin et al., 2007);
3. eieren behandelen met olie (besproeien of onderdompelen). Wanneer eieren met een minerale olie behandeld worden gaan de embryo’s dood door de toxiciteit van de aromatische koolwaterstoffen uit de olie (Lewis & Malecki, 1984; Hoffman, 1990). Deze methode is veel ingezet bij populatiebeheer van meeuwen (Blokker & Hamilton, 1989; Christens & Blokker, 1991). De effectiviteit van de methode is ook onderzocht voor de Australische witte ibis (Threskiornis molucca). Dit is een plaagdier in Australië omdat de soort daar de luchtvaart in gevaar brengt en veelvuldig foerageert op huishoudelijk afval in stedelijk gebieden (Martin et al., 2007). De Australische witte ibis verschilt ecologisch en genetisch weinig van de heilige ibis waardoor de effectiviteit van de maatregel vergelijkbaar is tussen beide soorten (Robert et al., 2013). De eieren van de Australische witte ibis zijn afzonderlijk besproeid met 5 ml koolzaadolie om het uitkomen van de eieren te verhinderen. In een veldstudie bleek dat na het eenmalig besproeien van de eieren, onafhankelijk van het stadium van het ei, 98% niet uitkwam. Daarbij bleven 30% van de adulten de eieren bebroeden tot 54 dagen langer dan de normale broedperiode. Hierdoor wordt niet alleen het uitkomen van de eieren voorkomen maar wordt tevens niet of later aan een tweede legsel begonnen (Martin et al., 2007).

In Nederland is momenteel het doden van vogelembryo’s verboden op grond van de Flora- en Faunawet. Het steriliseren van eieren is een arbeidsintensieve en kostbare maatregel en daardoor enkel mogelijk op lokale schaal. Nesten zijn soms moeilijk te bereiken en wanneer een broedsel mislukt, is het mogelijk dat het volwassen paar een nest op een andere locatie maakt en hiermee de overlast verspreid (Sluis, 2016).

9.2.2 Mechanisch

Afschot
Het afschieten van de vogels moet worden uitgevoerd door professionals zoals jagers van wildbeheereenheden. Elke vrij vliegende vogel kan worden geschoten. Hierbij kunnen uit polystyreen gemaakte ibissen worden gebruikt voor als lokkenmiddel. Bij het afschieten van de vogels mogen andere (gevoelige) soorten, zoals lepelaars of reigers, niet worden verstoord. Afschot is een relatief effectieve methode om de populatieomvang snel te beperken. In het zuiden van Frankrijk is een populatie van circa 300 vogels door afschot afgenomen tot 20 à 30 vogels (data van Pierre Yésou (ONCFS) in (Smits et al., 2010)). De laatste vogels zijn echter moeilijk te schieten omdat deze zich verplaatsten naar locaties waar afschot verboden is, zoals beschermd natuurgebieden of stadsparken (Dubois, 2007). Vanuit deze restpopulaties is het mogelijk dat de aantallen door voortplanting weer toenemen. In dergelijke gevallen is het noodzakelijk dat alle overgebleven vogels op een andere manier worden bestreden (Smits et al., 2010).

Vangen
Naast het afschieten van de heilige ibis is er ook de mogelijkheid om de soort levend te vangen. Dit kan met behulp van een lokmiddel dat de vogels verdooft zodat ze gemakkelijk te vangen zijn (Smits et al., 2010). Het lokmiddel dat hiervoor wordt gebruikt, is het verdovingsmiddel alpha-chloraline met een concentratie van < 2,5%. Door het plaatsen van de vogels in een warme, donkere omgeving komen zij uit de verdoving. De effectiviteit van het voeren gaat omhoog wanneer de vogels 3 tot 5 dagen wennen aan het voeren (zonder het verdovingsmiddel). Op de laatste dag van de gewenningsperiode wordt het verdovingsmiddel toegevoegd en kan de hoeveelheid voer met de helft worden verlaagd zodat de vogels meer interesse hebben in het geplaatste voer. De voederplekken moeten binnen de huidige foerageerlocaties van de vogels gelegen zijn. De comateuze vogels worden verzameld met een interval van 30 – 60 minuten nadat de eerste vogel verduivingssymptomen heeft.
laten zien. Wanneer andere soorten van het verdovingsmiddel eten is het van belang dat deze worden verzameld en tijdelijk in een kist worden gelegd om bij te komen. Hiermee wordt voorkomen dat zij sterven aan koude- of hittestress. Daarnaast mogen huisdieren en vee het middel niet eten en mogen de comateuze vogels niet worden beschadigen (New Zealand Pesticides Board, 1977). In Frankrijk zijn met behulp van deze maatregel 100 vogels uit een populatie van circa 300 individuen gevangen (Smits et al., 2010). Na het vangen is het mogelijk om de vogels in gevangenschap te houden (door deze bijvoorbeeld in dierenparken te plaatsen) of humaan te euthanaseren door de verdoofde vogels in de vriezer te leggen (New Zealand Pesticides Board, 1977).

In 2009 zijn door Avifauna vangacties georganiseerd, omdat de Nederlandse populatie heilige ibissen voornamelijk is ontstaan door uit het vogelpark ontsnapte dieren. De vogels zijn gevangen nadat zij in de winter terugkeerden om te foerageren bij Avifauna. De heilige ibissen aten in dit geval vooral mee met de Chileense flamingo’s. Voor deze vogels wordt in de winter een koepeltent opgezet (10 m lang en 4 meter breed) zodat de flamingo’s er voor kunnen kiezen om vorstvrij te staan. De tent is aan de voorkant open en het voedsel bevindt zich in de tent. De gearriveerde heilige ibissen liepen met de flamingo’s mee te tent in. Nadat een aantal heilige ibissen zich in de tent bevonden, werd deze gesloten door een valconstructie. De dieren zijn eenvoudig met een net uit de tent weggevangen en vervolgens getransporteerd naar andere Europese dierentuinen met een gesloten volière (persoonlijke mededeling Joost Lammers, Vogelpark Avifauna).

9.2.3 Systeemgericht

Aanpassen van het habitat
Het aanpassen van het habitat kan leiden tot de aanwezigheid van minder vogels (Wright et al., 1968). Voor de heilige ibis kan het habitat onaantrekkelijk worden gemaakt door het waterpeil in moerassen en wetlands te verhogen of het gras niet te maaien zodat deze te hoog wordt voor de vogels. Hierdoor zullen de vogels waarschijnlijk op zoek gaan naar een andere locatie. Een vliegveld in Zuid-Afrika biedt hiervoor een praktijkvoorbeeld. In het verleden had het vliegverkeer veel overlast van soorten zoals de heilige ibis, nijlgans en hadena-ibis. Het vliegveld was aantrekkelijk voor vogels vanwege het goed onderhouden lage gras (maximaal 15 cm) en de afwezigheid van mensen. Door minder intensief te maaien werd het gras 40 cm hoog. Hierdoor is, samen met het afschieten van een aantal ibissen, de populatie hadena-ibissen met 90% gedaald. Het nadeel van deze maatregel is dat dit de populatieomvang van heilige ibissen niet verlaagt. De vogels gaan namelijk op zoek naar een andere locatie, waardoor de problemen zich verplaatsen (Froneman, 2000).

Het reduceren van het voedselaanbod is eveneens een effectieve methode om vogels van een locatie te verjagen (Wright et al., 1968). Echter, deze aanpassing is voor een generalist zoals de heilige ibis moeilijk tot niet realisierbaar in natuurgebieden met voldoende voedsel. Bij toepassing van systeemgerichte maatregelen in natuurgebieden moet in alle gevallen worden voorkomen dat ongewenste effecten voor andere soorten optreden.

9.2.4 Gecombineerde maatregelen

Eieren steriliseren in combinatie met afschot of vangen
Zowel het steriliseren van eieren als afschot en vangen zijn veel gebruikte maatregelen voor het beheersen van heilige ibis populaties. Iedere methode afzonderlijk zal echter niet resulteren in volledige eliminatie. Door combinatie van sterilisatie van de eieren en afschot of vangst van de volwassen individuen is volledige eliminatie mogelijk wel te bereiken. In Frankrijk is het combineren
van de maatregelen (eieren steriliseren en vangen individuen) zeer effectief gebleken; een populatie bestaande uit 1400 – 1800 broedparen is terug gebracht tot 670 broedparen in drie jaar tijd (Dubois, 2012). Gesuggereerd werd dat uitvoering van deze aanpak gedurende een aantal jaar effectief genoeg is om de volledige populatie heilige ibissen te elimineren (Dubois, 2012; Robert et al., 2013).

9.3 Beheersmaatregelen voor indamming populaties

Voor Nederland geldt dat de heilige ibis op twee manieren kan worden geïntroduceerd; 1) vanuit ontsnappingsen uit dierenparken of privécollecties en 2) via natuurlijke verspreiding vanuit andere landen (Smits et al., 2010; Verbrugge et al., 2015). Ongeserveerd zijn te voorkomen door zorg te dragen voor goede opsluiting en goede observatie of verzorging van de dieren (Bomford, 2008). Aanvullend zijn risico’s op het ontstaan van schade door vestiging van de soort mogelijk te reduceren door bijvoorbeeld een laag aantal dieren te houden, het aantal locaties te beperken, het steriliseren van de vogels, het op tijd vleugellam maken van de vogels en / of het adequaat reageren wanneer individuen daadwerkelijk zijn ontsnapt (Bomford, 2008). Om dit te realiseren is voorlichting nodig en moet worden voldaan aan de eisen van de EU-verordening 1143/2014 (Smits et al., 2010; Europese Commissie, 2014). Zo is gebleken dat de heilige ibis vooral is geïntroduceerd vanuit dierenparken die vrij vliegende populaties hielden. Goede communicatie en handhaving kunnen ervoor zorgen dat ontsnappings minder vaak voorkomen.

9.4 Kansrijke maatregelen voor Nederland

De heilige ibis is een herkenbare soort en is gemakkelijk te bestrijden. Bij bejaging door professionals is het van belang dat verstoring van overige fauna en beschermd natuurgebieden zoveel mogelijk wordt voorkomen. Met een snelle respons na de eerste signalering kunnen individuen eenvoudig worden geëlimineerd (Herring & Gawlik, 2008; Smits et al., 2010; Verbrugge et al., 2015). Daarnaast is goede communicatie over de noodzaak van eliminatiemaatregelen belangrijk, aangezien de soort geliefd is bij specifieke groepen, zoals toeristen en vogelaars (Clergeau et al., 2005; Smits et al., 2010). Deze groepen kunnen het elimineren en beheersen vertragen of tegenhouden (Bomford & O'Brien, 1995; Robert et al., 2013).

Bij het elimineren en / of beheersen van de heilige ibis is het van belang dat aan de volgende voorwaarden wordt voldaan (Smits et al., 2010):

1. het aantal verwijderde dieren is groter dan de populatietoename door voortplanting;
2. het voorkomen van ontsnapping vanuit dierenparken en privécollecties;
3. het verwijderen van alle voortplantende individuen (voornamelijk bij eliminatie).

Voor volledige eliminatie moet voor alle populaties van de heilige ibis worden voldaan aan alle drie de voorwaarden. Volledige eliminatie is meer kosteneffectief - naast het verhinderen van introductie - dan beheersing van de soort, aangezien bij beheersing de kosten steeds terugkeren (Bomford & O'Brien, 1995; Robert et al., 2013).

De meest kansrijke aanpak voor volledige eliminatie in Nederland is het afschieten of terugvangen van heilige ibissen in combinatie met het vernietigen van eieren. Beide methoden vullen elkaar, aangezien de behandeling van eieren kan plaatsvinden op locaties waar afschot verboden is en vogels geschoten worden waar nesten niet toegankelijk zijn. Daarbij moet wel rekening worden gehouden met het feit dat volledige eliminatie bemoeilijkt wordt door de ontoegankelijkheid van
gebieden waar de vogel zich bevindt en mogelijke verspreiding vanuit bejaagde kolonies (Smits et al., 2010). Tevens is het van belang dat andere soorten (vooral in een gemengde kolonie) geen schade en hinder ondervinden van de getroffen maatregelen (Robert et al., 2013).

Het beperken van de populatie tot een omvang waarbij de heilige ibis geen significante schade aan ecosystemen veroorzaakt, is nodig wanneer volledige eliminatie onmogelijk is (Smits et al., 2010). Een acceptabele populatieomvang verschilt tussen Frankrijk en de Verenigde Staten. In Frankrijk worden namelijk populaties tot enkele honderden individuen getolereerd, terwijl de doelstelling voor de Everglades in Florida volledige eliminatie is.
10 Zoogdier – Muntjak (*Muntiacus reevesi*)

10.1 Soort- en habitatbeschrijving

![Figuur 10.1: Muntjak (*Muntiacus reevesi*) (© Foto: Wikimedia commons).](image)

10.1.1 Levenswijze

De oorspronkelijk vanuit Azië afkomstige muntjak leidt een verscholen leven in dicht begroeide vegetaties (Smith-Jones, 2004; Twisk, 2010). Het voedsel van de muntjak bestaat vooral uit bladeren, boomschors, vruchten en noten en wordt in het voorjaar aangevuld met grassen en kruiden (Dansie, 2013; Leewis, 2013). De soort is een ‘browser’ wat vergelijkbaar is met het grazen op bijvoorbeeld gras maar dan op een hoger staande vegetatie (TheDeerInitiative, 2008). De aanwezigheid van drinkwater is niet noodzakelijk, omdat de soort water onttrekt uit voedsel. Incidenteel worden muntjaks bij droogte en hoge temperaturen drinkend waargenomen (Chapman *et al.*, 1987; Smith-Jones, 2004). De soort heeft een solitaire levenswijze en wordt daarom meestal individueel

Tabel 10.1: Soort- en habitatieegenschappen van de muntjak.

<table>
<thead>
<tr>
<th>Eigenschap</th>
<th>Muntiacus reevesi</th>
<th>Referenties a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht geslachtsrijp individu</td>
<td>Gemiddeld > 10 kg</td>
<td>2</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>10 jaar (maximaal 14 jaar)</td>
<td>2</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paringstijd</td>
<td>Jaar rond</td>
<td>2</td>
</tr>
<tr>
<td>Draagtijd</td>
<td>7 maanden</td>
<td>2</td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geslachtsrije leeftijd</td>
<td>7 maanden</td>
<td>2</td>
</tr>
<tr>
<td>Aantal jongen per worp</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Aantal worpen per jaar</td>
<td>Gemiddeld 1,7 (elke 7 maanden 1 jong)</td>
<td>2</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Dag en nacht</td>
<td>2</td>
</tr>
<tr>
<td>Zichtbaarheid</td>
<td>Slecht, soort is schuw</td>
<td>1, 2</td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Snelle reproductie, verscholen levenswijze, browser-eetwijze</td>
<td>5, 7</td>
</tr>
<tr>
<td>Vestiging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Geen, incidentele waarnemingen</td>
<td>6</td>
</tr>
<tr>
<td>Territoriaal</td>
<td>Ja (beide geslachten)</td>
<td>2</td>
</tr>
<tr>
<td>Grootte territorium</td>
<td>Relatief klein (enkele ha)</td>
<td>2</td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Actieve verspreiding</td>
<td>2</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td>Land</td>
<td>2, 7</td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td>Snel</td>
<td>2</td>
</tr>
<tr>
<td>Dispersieafstand</td>
<td>Tot 4 km per levensduur, soms meer afhankelijk van beschikbaar habitat</td>
<td>4</td>
</tr>
<tr>
<td>Predatoren in Nederland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volwassenen</td>
<td>Geen</td>
<td>3</td>
</tr>
<tr>
<td>Kalfjes</td>
<td>Vossen, katten en dassen</td>
<td>3</td>
</tr>
<tr>
<td>Habitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natuurlijk verspreidingsgebied</td>
<td>Ondergroei van gemengde en loofbossen met dichte en gevarieerde begroeiing</td>
<td>1</td>
</tr>
<tr>
<td>Potentieel verspreidingsgebied NL</td>
<td>Brabant / De Veluwe</td>
<td>5</td>
</tr>
<tr>
<td>Natura 2000 gebied</td>
<td>De Veluwe (incidentele meldingen)</td>
<td>5</td>
</tr>
</tbody>
</table>

10.1.2 Habitat

Elk type bos met een dichte ondergroei is geschikt habitat voor de muntjak. De soort prefereert echter braambegroeiingen met een gevarieerde bodemflora. Naaldhoutaanplant is met name geschikt habitat wanneer de bomen nog jong en kort en gemakkelijk te begrazen zijn (Chapman et al., 1987; Smith-Jones, 2004). De muntjak verlaat de dichte vegetatie alleen ’s nachts met als doel foerageren (Twisk et al., 2010). De soort kan in de nabijheid van mensen leven zonder dat deze wordt opgemerkt. De muntjak past zich snel echter aan en wordt in Engeland in toenemende mate waargenomen in stedelijk gebied en randzones daarvan. In vlucht kan de muntjak op grote snelheid alleen korte afstanden afleggen waardoor nabije dichtbegroeide vegetatie van belang is om te ontsnappen (TheDeerInitiative, 2008).

10.1.3 Verspreidingsmechanismen

De muntjak heeft zijn natuurlijke verspreiding in het oosten van China en in Taiwan (Smith-Jones, 2004). In de 19e eeuw zijn muntjaks ingevoerd in Engeland, waarna de soort zich vestigde in Zuid-Engeland (Mitchell-Jones, 1999). Sinds eind 20e en begin 21e eeuw worden incidenteel muntjaks waargenomen in Nederland (Hollander, 2013, 2015). De soort heeft zich (vermoedelijk) nog niet definitief in Nederland gevestigd, aangezien er nog geen aanwijzingen zijn voor voortplanting in het wild (Hollander, 2013). De dieren worden mogelijk via meerdere routes in Nederland geïntroduceerd:
1. opzettelijk uitzetten ten behoeve van de jacht;
2. ontsnapping uit gevangenschap vanuit dierentuinen;
3. ontsnapping uit gevangenschap vanuit particulieren die het dier houden als huisdier;
4. zonder invloed van de mens: door grensoverschrijdende natuurlijke verspreiding vanuit Vlaanderen.

10.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang

Slechts enkele eliminatie- en beheersmaatregelen zijn in de literatuur gerapporteerd voor het aanpakken van de muntjak (Tabel 10.2). De maatregelen zijn per categorie toegelicht.

10.2.1 Chemisch

Afwerende middelen

1. de opwekking van angst. Urine van predatoren scheidt een zwavelachtige geur af en wordt door de muntjak geïnterpreteerd als de aanwezigheid van een predator;
2. geconditioneerde vermijding. Bepaalde voedselgeuren zijn kenmerkend voor vegetatie welke bij de muntjak zorgen voor het opwekken van misselijkheid of ziekte;
3. het veroorzaken van pijn. Bepaalde stoffen, zoals ammonia, zijn na het aanbrengen op bijvoorbeeld bladeren van planten irriterend voor ogen en luchtwegen van de muntjak;

Experimentele studies toonden aan dat het gebruik van zwavelachtige geuren die angst opwekken het meest effectief hertachtige, waaronder de muntjak, afweert (Nolte et al., 1994; Nolte, 1998; Wagner & Nolte, 2001). Het toepassen van deze methode zorgt voor significant minder vraat door muntjaks aan de zaailingen dan wanneer deze onbehandeld blijven (Wagner & Nolte, 2001). Deze methode is echter alleen bruikbaar voor het voorkomen van vraat aan de met afwerende middelen behandelde planten (Wagner & Nolte, 2001). Het is de verwachting dat het gebruik van deze middelen in de praktijk er toe leidt dat de dieren op zoek gaan naar onbehandelde planten waardoor het probleem zich verplaatst. Ondanks dat het toepassen van afwerende middelen matig effectief is voor het voorkomen van vraat van planten zijn vanwege een gebrek aan gerapporteerde informatie en uitgevoerde studies geen conclusies te trekken over het succes van de maatregel voor het beperken van muntjakpopulaties. Aanvullend is de methode alleen toe te passen op een lokale schaal (percelen).
Tabel 10.2: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de muntjak a

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referenties b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemisch</td>
<td>Biociden</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Fysiek</td>
<td>Barrières</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elektrische barrières</td>
<td>Eliminatie</td>
<td>NB</td>
<td>NB</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Mechanisch</td>
<td>Afschot</td>
<td>Eliminatie</td>
<td>1, 3-5, 9</td>
<td>1, 3-5, 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zoeken en vangen</td>
<td>Eliminatie</td>
<td>1, 7</td>
<td>1, 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Systeemgericht</td>
<td>Faciliteren predatoren</td>
<td>Eliminatie</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
</tbody>
</table>

a Legenda:

- Kansrijk
- Deels kansrijk
- Niet kansrijk
- Niet beschikbaar

10.2.2 Fysiek

Elektrische barrières

Om te voorkomen dat muntjaks een gebied betreden of verlaten kan ook gebruik worden gemaakt van een elektrische barrière, zoals schrikdraad. Een veldstudie toonde aan dat percelen met jonge aanplant van bomen significant minder door de soort worden begraasd als daarom heen elektrische barrières zijn aangebracht (Cooke & Lakhani, 1996). De hiervoor gebruikte opstelling van de barrière bestonden uit vijf draden waarvan de hoogste 90 – 95 cm boven de grond is geplaatst. De spanning op de draden werd opgewerkt middels 9 volt DC batterijen welke pulsen geven tot 5000 volt.

De effectiviteit van de barrière wordt aanzienlijk lager als geen of onvoldoende onderhoud plaatsvindt. Stroom kan verloren gaan wanneer vegetatie tegen de draad groeit (Cooke & Lakhani, 1996). De effectiviteit van de barrière kan worden verhoogd door het gebruik van een hogere elektrische spanning en / of het plaatsen van meerdere schrikdraden boven elkaar (Pepper et al., 1992; Cooke & Lakhani, 1996). Ook deze maatregel is alleen op lokale schaal toe te passen en zorgt niet voor een eliminatie of afname van de populatie.
Hekken
Het plaatsen van hekken kan gebiedsbetreding door de muntjak voorkomen om aanwezige planten te beschermen of het kan de soort insluiten om verdere verspreiding te voorkomen. Uit praktijkervaringen is echter gebleken dat het verhinderen van gebiedsbetreding vaak onmogelijk is, omdat de soort na verloop van tijd via kleine gaten in het hek kan binnenkomen (Cooke, 2003). Deze maatregel is mogelijk succesvoller in het tegenhouden van de soort wanneer het hek vanaf de grond minimaal 1,5 meter hoog is, met mazen van maximaal 10 x 10 cm en regelmatig wordt onderhouden (Smith-Jones, 2004; Hollander, 2013). Nadelijk is dat de maatregel alleen op lokale schaal kosteneffectief is toe te passen. Bovendien is hiermee alleen de aanwezigheid van de soort in het desbetreffende perceel voorkomen of behouden wordt. De maatregel is niet geschikt voor het elimineren of beheren van de populatie.

10.2.3 Mechanisch
Afschot
De meest toegepaste eliminatie- en beheersmaatregel van de muntjak is afschot (Smith-Jones, 2004; TheDeerInitiative, 2008; Casaer et al., 2015). Hierbij kan het beste gebruik worden gemaakt van sluipjacht of afschot vanuit jachthutten (TheDeerInitiative, 2008). Bij sluipjacht worden de muntjaks beslopen en gericht afgeschoten. Drijfjacht op hertachtige is in Nederland verboden (NJV, 2016).
Afschot heeft met name in de vestigingsfase met lage dichtheden het meeste effect en kan leiden tot volledige eliminatie. Lokaal afschot in wildbeheereenheden vereist in principe geen extra kosten (Hollander, 2013).

Het afschieten van muntjaks is niet eenvoudig. De dieren zijn zelfs in open gebieden moeilijk te zien door hun verscholen levenswijze. Daarnaast zijn ze erg bewegelijk waardoor het aanleggen van een gericht schot moeilijk is (TheDeerInitiative, 2008). De succeskans van afschot wordt vergroot wanneer de schutter kennis heeft van de populatiegrootte, het gedrag (routine) van het dier en de omgeving waar de populatie zich bevindt (Mayle, 1996; TheDeerInitiative, 2008; Hollander, 2013). Door het gebruik van lokvoedsel, zoals appels of wortels, kan de schietafstand tot minder dan 100 meter worden gereduceerd. Jaar rond zijn de optimale condities voor de jacht vroeg in de morgen en laat in de avond. Hierbij zijn meerdere jagers gewenst om vluchtende dieren te schieten (TheDeerInitiative, 2008). Voor het schieten van de soort wordt aangeraden een kogel met voldoende impact te kiezen en op het schouderblad van de muntjak te mikken (mondelinge mededeling J. Dick 2015 in (Casaer et al., 2015)). Het is niet humaan om zwangere of zogende dieren af te schieten. Gelet op de voortplantingscyclus van de muntjak is de kans echter groot dat vrouwtjes zwanger zijn of zogen. Indien toch wordt gekozen voor afschot van zogende vrouwtjes en jongen hierdoor zijn gevucht, is te verwachten dat de wezen waarschijnlijk binnen enkele minuten bij hun geschoten moeder terugkomen waarna eveneens afschot mogelijk is (Smith-Jones, 2004; TheDeerInitiative, 2008).

De benodigde afschot om overbevolking en schade van de soort te voorkomen verschilt per gerapporteerde studie. The Deer Initiative (2008) stelt dat 30% van de populatie moeten worden geschoten om de populatie stabiel te houden. Om de groei van de populatie (productiviteit) te stoppen is eliminatie van 53% van de populatie nodig (Wäber et al., 2013). In Vlaanderen worden twee mogelijke strategieën onderscheiden voor het beheersen van de muntjak:
1. zwaartepuntbejaging, waarbij een permanente jachtdruk op een kleine schaal wordt uitgevoerd. In het kader van snelle schadevermijding is de bijkomende verjaging van muntjaks uit het gebied een bijkomend voordeel;
2. Intervaljacht, waarbij in een groter gebied tegelijkertijd jachtacties worden uitgevoerd die dan worden afgewisseld met periodes van rust waarbij geen afschot plaatsvindt. Deze strategie zorgt ervoor dat geen muntjaks uit het gebied worden verjaagd en dat de efficiëntie wordt gemaximaliseerd, omdat de dieren geen schuwheid ontwikkelen door een permanente jachtdruk (Tolon et al., 2009; Laundré et al., 2010; Casaer et al., 2015).

Cooke & Lakhani (1996) geven aan dat 90% reductie nodig is om significant negatieve effecten op flora uit te sluiten. De afschot van zulke grote hoeveelheden zijn nog niet uitgevoerd of geëvalueerd. De haalbaarheid hiervan is daarom niet te beoordelen. Muntjaks hebben de eigenschap om de populatiegrootte snel te herstellen na intensief afschot. Als een populatie eenmaal onder controle is, wordt geadviseerd jaarlijks een gemiddelde hoeveelheid afschot te plegen in plaats van incidenteel hoge aantallen te elimineren om snelle toenames te voorkomen (TheDeerInitiative, 2008). Het is van belang dat tweemaal zoveel vrouwtjes als mannetjes worden afgeschoten aangezien het verlies van mannetjes minder snel tot gereduceerde voortplanting leidt.

Het succes van afschot wordt in de praktijk vaak te hoog geschat wanneer de dichtheid van de muntjak in een gebied afneemt. Een dalende populatiegrootte komt meestal niet alleen direct door afschot, maar ook indirect door vluchtgedrag na verstorend of bejaging (McIntosh et al., 1995; Wäber et al., 2013). Dit resulteert in een groter verspreidingsgebied van de invasieve soort wat de eliminatie bemoeilijkt en op termijn een grotere inzet van mensen en middelen vergt. Het is daarom van belang dat doelen niet alleen worden afgesteld op populatieomvang maar ook op andere demografische factoren zoals verspreidingspatronen. De keuze voor een tijd- en kostenefficiënte maatregel over het volledige gebied waar de muntjak zich bevindt, is belangrijk in het kader van uitroeingsacties. Het combineren van meerdere maatregelen kan hiervoor vaak vereist. Methodes die minder verstoring teweeg brengen en daardoor het risico beperken dat dieren de bestrijding ontlopen door gewenning, kunnen hierbij voordelen bieden (Scheppers & Casaer, 2012; Casaer et al., 2015).

Afschot is op lokale en nationale schaal bruikbaar als eliminatie- of beheersmaatregel voor het beperken van de schade van de muntjak in Nederland (Tabel 10.2). Hierbij is het van belang om eerst de verspreiding goed in kaart te brengen om het aantal af te schieten dieren te bepalen. Daarnaast is het van belang dat de betrokken jagers voldoende kennis hebben van het gedrag van de muntjak (McIntosh et al., 1995; Smith-Jones, 2004; Wäber et al., 2013). Afschot heeft zijn effectiviteit voor het beheersen van muntjakpopulaties bewezen echter de effectiviteit van volledige eliminatie is moeilijk aan te tonen door schuil- en vluchtgedrag van de soort (McIntosh et al., 1995; Fuller & Gill, 2001; Cooke, 2003; Smith-Jones, 2004; TheDeerInitiative, 2008; Wäber et al., 2013). Hierdoor is afschot in Tabel 10.2 voor het beheersen van de populatie als ‘hoog succesvol’ beoordeeld maar voor volledige eliminatie als ‘matig kansrijk’.

Vangen
Het vangen van de muntjak met behulp van verdovingspijlen en / of netten of vangstkooien kan bijdragen aan het elimineren of beperken van de populatie (Cooper & 1986; Chapman et al., 1987). Het vangen heeft met name tijdens de vestigingsfase met lage dichtheden het meeste effect en kan dan leiden tot volledige eliminatie (Hollander, 2013). Echter, deze maatregel is in de praktijk nog niet toegepast voor het elimineren en beheersen van muntjakpopulaties waardoor de effectiviteit nog onbekend is.
Netten
Bij het vangen met netten worden nylonnetten (maaswijdte 10 x 10 cm) bevestigd aan stokken die in de grond zijn geplaatst. Hierbij kan een U-, H-, L- of T-vorm van het net worden aangehouden. De onderzijde van het net ligt deels op de grond en wordt niet te strak gespannen. Hierdoor raken dieren in het net verstrikt en is de kans op ontsnappingen door de weerstand van het net kleiner. Het is van belang dat een gevangen dier het net gemakkelijk lostrekt van de stokken om verwondingen te voorkomen. De spanlijnen van het net moeten wel stevig worden vastgemaakt aan een boom of iets dergelijks om het wegslepen of beschadigen van het net te voorkomen. Wanneer gebruik wordt gemaakt van meerdere netten moeten openingen tussen de netten worden vermeden (Casaer et al., 2015).

Het is mogelijk om de muntjaks naar de netten te leiden door het inzetten van drijvers. Het gebruik van honden wordt afgeraden omdat zij het risico op ongevallen met de muntjaks vergroten. Het perceel waar de muntjaks zich bevinden, worden bij voorkeur twee- tot driemaal doordreven (heen en terug) totdat alle dieren gevangen zijn. Vaker drijven is niet effectief, omdat de dieren na drie drijfacties het net weten te vermijden. Bij het drijven moet om de 25 meter een persoon staan die de muntjak uit het net haalt en in bedwang houdt tot de plaatsing in de kooi of euthanasie (Casaer et al., 2015).

Een probleem bij het toepassen van deze vangen met netten in de praktijk is dat de soort snel gestrest of zelfs gewond raakt. Daarnaast moeten gevangen individuen in een speciaal voor de soort geassembleerde kist worden vervoerd (Chapman et al., 1987) en is herplaatsing van de dieren in Nederland verboden in het kader van de Flora- en Faunawet. Als geen opvang beschikbaar is, moeten gevangen exemplaren uiteindelijk alsnog worden gedood. Dit maakt de maatregel, ondanks dat deze zowel klein- als grootschalig is toe te passen, inefficiënt en kostbaar voor toepassing in Nederland.

Vangkooien
Het is mogelijk om de muntjak te vangen middels het plaatsen van kooien. In het verleden hebben vangkooien voor zwijnen ook muntjaks gevangen (Ward, 2013). Als lokvoer kan de plant klimop worden gebruikt. Voor de controle op gevangen individuen kan het beste gebruik worden gemaakt van cameravallen. De valdeuren moeten vanaf een afstand worden gesloten om het ontsnappen van geschrokken dieren te voorkomen (Casaer et al., 2015).

10.2.4 Systeemgericht en weerbaarder maken habitats
Kalfjes van de muntjak worden gepredeerd door vossen, katten en dassen (Harris et al., 1995). Vossenafschot vermindert de potentiële predatie van kalfjes, zodat muntjakpopulaties mogelijk sneller groeien (Hollander, 2013). Wanneer de vossenafschot wordt afgeschaft of als afschotquota’s worden verlaagd, zullen meer kalfjes worden gepredeerd. Deze maatregel is echter nog niet als eliminatie- en / of beheersmaatregel toegepast en geëvalueerd waardoor het succes ervan alleen nog op theoretische basis is beoordeeld. Tevens zijn bij het toepassen van deze maatregel effecten te verwachten op de
overige flora en fauna, doordat met een toename van de vossenstand ook een toename van predatie op andere prooidiersoorten volgt.

10.3 Beheersmaatregelen voor indamming populaties

Voor zover bekend heeft de muntjak zich nog niet gevestigd in Nederland en zijn momenteel geen voortplantende populaties aanwezig. Dit geldt waarschijnlijk ook voor de omliggende landen België en Duitsland (Hollander, 2013). Vanuit Nederland kan dus geen verspreiding optreden dan hij niet is gevestigd in Nederland. De Faunabeheerorganisatie van Noord-Brabant vermoedt wel dat enkele individers binnenkomen vanuit België (persoonlijke mededeling Erik Koffeman in Hollander, 2013). Het risico van vestiging van een populatie vanuit deze individers uit België is daarom aanwezig. Daarom is het van belang dat snel wordt opgetreden en voortplanting van muntjaks in Nederland een feit is. Als de invasieve exoot zich definitief vestigt en een maximale dichtheid heeft bereikt, zijn veranderingen in het ecosysteem naar verwachting irreversibel en permanent (Verbrugge et al., 2015). Om vestiging van de muntjak te voorkomen kunnen aanwezige individers worden verwijderd door afschot (§ 10.2.3). Daarnaast zullen de verschillende introductieroutes moeten worden aangepakt om toekomstige binnenkomst van individers van de muntjak te voorkomen.

10.4 Kansrijke maatregelen voor Nederland

Voor de beschreven chemische, fysieke, mechanische en systeemgerichte maatregelen geldt dat de effectiviteit en kostenefficiëntie voor het beheersen en / of elimineren van de muntjak tot heden niet zijn gerapporteerd. Afschot is potentieel geschikt voor het voorkomen van vesting van grensoverschrijdende of ontsnapte individers van de muntjak in Nederland. Deze maatregel is namelijk niet alleen doeltreffend, maar waarschijnlijk ook tegen lage kosten uitvoerbaar en snel toepasbaar door jagers van wildbeheer en dieren. Hierbij is het van belang dat rekening wordt gehouden met de geldende wet- en regelgeving bij het afschieten van de soort en dat monitoring wordt uitgevoerd vóór en na toepassing van de maatregel. Op grond van de regeling Schadebestrijding en beheer dieren, mogen Gedeputeerde Staten van de provincie de soort aanwijzen voor het beperken van populatieomvang. Tot nu toe is deze aanwijzing alleen voor de Provincie Noord-Brabant verricht. In Noord-Brabant mag de muntjak worden afgeschoten met een kogelgeweer (vanaf 0,22 inch of 5,6 mm kogels) of een hagelgeweer (12, 16, 20 schots).

Het vangen met netten is eveneens een maatregel die kan worden ingezet voor de eliminatie of beheersing van de muntjak. Hiervoor geldt echter dat de muntjaks zich op een perceel moeten bevinden dat gemakkelijk wordt doorkruist met drijvers. Daarnaast is een omheining van het perceel nodig (bijvoorbeeld het plaatsen van hekken) om alle dieren in het gebied te houden. De effectiviteit van deze maatregel op het beperken van de populatieomvang is nog niet getest. Tevens ontbreken in de meeste gerapporteerde studies met eliminatie- en beheersmaatregelen gegevens over langetermijn-effecten op de populatieomvang en de gemaakte kosten.
11 Zoogdier – Wasbeer (*Procyon lotor*)

11.1 Soort- en habitatbeschrijving

De wasbeer (*Procyon lotor*, raccoon) is een roofdier uit de familie van de kleine beren (Figuur 11.1). Kenmerkend voor de wasbeer is het zwarte masker op de wangen en rondom de ogen, waarmee de soort zich onderscheidt van de wasbeerhond. De soort staat vermeld op de Unielijst van EU-verordening 1143/2014, echter de soort heeft zich nog niet in permanent in Nederland gevestigd. Navolgend wordt de levenswijze, het kenmerkende habitat en de verspreidingsmechanismen van de wasbeer toegelicht. De eigenschappen van de soort zijn samengevat in Tabel 11.1.

Figuur 11.1: Wasbeer (© Foto: Wikimedia commons).

11.1.1 Levenswijze

De wasbeer is van oorsprong een Noord-Amerikaanse soort behorend tot de familie van kleine beren (Procyonidae). Het zijn goede zwemmers en klimmers waarbij handig gebruik wordt gemaakt van klauwen met een afzonderlijk beweegbare duim. De wasbeer is een alleseter waarbij onder andere kleine zoogdieren (muizen), insecten, slakken, amfibieën, kreeften, mosselen, vissen, regenwormen, vruchten, granen en maïs worden gegeten. De soort vestigt zich geregeld in steden waarbij de soort gebruik leeft van voedsel uit vuilnisbakken, vogelvoederplaatsen en eieren uit vogelnesten. Wasberen zijn schemer- en nachtactief en houden in de winter een winterrust welke wordt onderbroken voor de paring in februari – maart (Lammertsma, 2008). Wasberen komen – indien aanwezig – frequent in contact met mensen en huisdieren, dit veroorzaakt een hoge potentie voor de overdracht van infectieziekten zoals rabiës en ringworm (Rosatte, 1988).
Tabel 11.1: Soort- en habitat eigenschappen van de wasbeer.

<table>
<thead>
<tr>
<th>Eigenschappen</th>
<th>Wasbeer (Procyon lotor)</th>
<th>Referenties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht geslachtsrijp individu</td>
<td>Gemiddeld 10 kg</td>
<td>3</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>10 jaar</td>
<td>2</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paringstijd</td>
<td>Februari en maart</td>
<td>2, 3</td>
</tr>
<tr>
<td>Draagtijd</td>
<td>Gemiddeld 64 dagen</td>
<td>2, 3</td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geslachtsrijpe leeftijd</td>
<td>Vanaf 1 jaar</td>
<td>3</td>
</tr>
<tr>
<td>Aantal jongen per worp</td>
<td>2 tot 4, zelden 5</td>
<td>2</td>
</tr>
<tr>
<td>Aantal worpen per jaar</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Nacht actief</td>
<td>1, 2, 5</td>
</tr>
<tr>
<td>Zichtbaarheid</td>
<td>Alleen ’s nachts</td>
<td>5</td>
</tr>
<tr>
<td>Voedselvoorkeur</td>
<td>Omnivoor</td>
<td></td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Snelle voortplanting en opportunistische levenswijze</td>
<td>2, 6</td>
</tr>
<tr>
<td>Vestiging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Geen, enkele individuen in Nederland</td>
<td>2</td>
</tr>
<tr>
<td>Territoriaal</td>
<td>Ja</td>
<td>8</td>
</tr>
<tr>
<td>Grootte territorium</td>
<td>1 tot 1700 ha in natuurgebieden, ongeveer 5 ha in stedelijk gebied</td>
<td>1, 5, 10</td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Actieve verspreiding</td>
<td>2</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td>Land en water</td>
<td>2, 5, 7</td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td>10 km/jaar</td>
<td>11</td>
</tr>
<tr>
<td>Dispersieafstand</td>
<td>Gemiddeld 45 km en maximaal > 200km</td>
<td>2, 9</td>
</tr>
<tr>
<td>Predatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noord-Amerika</td>
<td>Bruine- en zwarte beer, wolf, coyote en lynx</td>
<td>2</td>
</tr>
<tr>
<td>Europa</td>
<td>Wolf, lynx, oehoe en vos (vooral jonge wasberen)</td>
<td>2</td>
</tr>
<tr>
<td>Habitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natuurlijk verspreidingsgebied</td>
<td>Bossen en steden, zolang water in de buurt is</td>
<td>2, 12-14</td>
</tr>
<tr>
<td>Potentieel verspreidingsgebied NL</td>
<td>Heel Nederland met uitzondering van open, grootschalige landbouwgebieden, industrieterreinen en uniforme naaldbossen</td>
<td>2, 5, 11</td>
</tr>
<tr>
<td>Natura 2000 gebied</td>
<td>Alle</td>
<td>11</td>
</tr>
</tbody>
</table>

11.1.2 Habitat

11.1.3 Verspreidingsmechanismen

De wasbeer is vanuit Noord-Amerika verspreid over verschillende continenten waarbij de vestiging van de soort zich vooral in vooral naar voorgedaan in Alaska, de Antillen, Japan en Europa (Frantz *et al.*, 2005; Schrader, 2005; Agetsuma, 2007; Helgen *et al.*, 2008). Na de eerste opzettelijke introductie in Duitsland tussen 1927 en 1934 heeft de soort zich succesvol verspreid in meerdere Europese landen
waaronder Polen en de Tsjechische republiek (Bartoszewicz et al., 2008; Canova & Rossi, 2009). De soort is tevens geïntroduceerd in Zweden, Engeland, Noorwegen en Denemarken door ontsnapping of vrijlating uit fokkerijen, dierenparken en particulier bezit (Kauhala, 1996).

In Nederland worden individuen meerdere malen per jaar waargenomen, echter er is geen indicatie van definitieve vestiging van de soort (Lammertsma, 2008; Waarneming.nl, 2016d). Mogelijke introductieroutes van de soort zijn verspreiding vanuit Duitsland of de ontsnapping / vrijlating vanuit gevangenschap (huisdieren) (Verbrugge et al., 2015). Door de aanwezigheid van vitale populaties in Duitsland wordt verwacht dat de wasbeer zich in de toekomst definitief zal vestigen in Nederland zonder effectieve eliminatie- en beheersmaatregelen (Lammertsma, 2008).

11.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang

Slechts enkele eliminatie- en beheersmaatregelen zijn in de literatuur gerapporteerd voor het aanpakken van de wasbeer (Tabel 11.2). De maatregelen zijn per categorie toegelicht. Hierbij moet in acht worden genomen dat het lokaal uitsterven van diersoorten meestal een gevolg is van overexploitatie (vangst, jacht) of toevallige omstandigheden (weersomstandigheden, brand, uitbraak van ziekten) en zelden het resultaat van een gerichte eliminatiemaatregel. Uit verschillende studies is gebleken dat populaties veel gevoeliger zijn voor manipulatie van hun habitat (bijvoorbeeld door het verminderen van beschikbare voedselbronnen) dan voor manipulatie van de aantallen (Caughley, 1977; Stuyck, 2002).

11.2.1 Chemisch

Afwerende middelen

Ter voorkoming van vraat aan bijvoorbeeld eieren van vogels of vegetatie kan een bittere stof worden gebruikt, zoals 17 α-ethinyl estradiol. Deze stof wordt door wasberen geconditioneerd vermeden door de associatie met ziekteverwekkend voedsel. Bij een studie waarbij vraat aan de eieren is gescroond, werden gemiddeld 96% van de onbehandelde eieren geconsumeerd door wasberen. Van eieren die behandeld zijn met de bittere stof is na verloop van tijd (de conditioneringsperiode) slechts 5% geconsumeerd (Nicolaus et al., 1989). Dit maakt de methode in de studie een succesvolle methode om schade door wasberen te voorkomen. Echter, het onderzoek is niet uitgevoerd met als doel het elimineren en / of beheersen van wasberen. Het is daarom niet mogelijk conclusies te trekken over het succes van de maatregel voor het beperken van wasbeerpopulaties. Aanvullend is de methode alleen toe te passen op een lokale schaal (percelen).

Anticonceptiemiddelen

Het is mogelijk om de voortplanting van zoogdieren te reguleren door het toedienen van anticonceptiemiddelen. Er zijn verschillende middelen op de markt zoals hormonen, hormoonagonisten en immucontraceptiemiddelen welke allen zijn gericht op het verhinderen van de voortplanting. De middelen kunnen bij de wasbeer worden toegediend door implantaten, oraal of door handmatig inspuiten al dan niet op afstand met behulp van een blaaspip, gaspijpl, gastool of geweer. Het oraal toedienen is de minst arbeidsintensieve optie, maar heeft als risico dat doseringen niet juist zijn (Lammertsma, 2008). Alle anticonceptiemiddelen met uitzondering van immucontraceptie, dienen herhaaldelijk te worden toegediend. Het is van belang dat anticonceptieprogramma’s aangepast worden aan de populatiedynamiek. Voor soorten die zich snel voortplanten, waaronder de wasbeer, dient 90% van de populatie behandeld te worden (Garrott, 1991). De toepassingen van anticonceptiemiddelen, waarbij alleen hormonen zijn getest, zijn bij wasberen tot heden niet effectief.
gebleken (Kirkpatrick & Frank, 2005). Daarbij gelden voor het gebruik van hormonen de risico’s dat andere diersoorten, waaronder de mens, via het milieu belast worden met de hormonen, met effecten op de reproductie tot gevolg (Petrovic et al., 2002; Guillette & Moore, 2006).

Tabel 11.2: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de wasbeer.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referenties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afwerende middelen</td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Chemisch</td>
<td>Anticonceptie</td>
<td>Eliminatie</td>
<td></td>
<td>7</td>
<td>7, 10</td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verlagen voedselbeschikbaarheid</td>
<td>Eliminatie</td>
<td></td>
<td>11, 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>11, 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>Fysiek</td>
<td>Landschappelijke barrières</td>
<td>Eliminatie</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afschot</td>
<td>Eliminatie</td>
<td></td>
<td>6, 8, 13-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>6, 8, 13-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zoeken & vangen</td>
<td>Eliminatie</td>
<td></td>
<td>1-5, 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ populatieomvang</td>
<td>1-5, 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminatie</td>
<td>↓ verspreiding</td>
<td>NB</td>
<td>NB</td>
<td></td>
</tr>
</tbody>
</table>

Legenda:
- Veldexperimenten / praktijkervaring
- Laboratorium / mesocosm experiments
- Soort- en habitatkennis
- Kansrijk
- Deels kansrijk
- Niet kansrijk
- Niet beschikbaar
- NB

11.2.2 Fysiek

Barrières

Het plaatsen van hekken of schrikdraad voor het beheersen of elimineren van wasberen is naar verwachting niet effectief. De wasbeer is zeer behendig en kan deze omheiningen gemakkelijk ontzien of overwinnen (Lammertsma, 2008). Uit computersimulaties en veldstudies is gebleken dat landschappelijke barrières wel een effect hebben op de verspreiding van wasbeerpopulaties. Zo verlaagt de aanwezigheid van een grote rivier de verspreidingskans naar de andere zijde van de wasbeer met 50% in Noord-Amerika. Dit effect is mogelijk ook waar te nemen bij bergen en valleien (Rees et al., 2008). De verspreiding van wasberen van Duitsland naar Nederland verloopt waarschijnlijk voornamelijk via rivierdalen, maar naar verwachting vormen deze geen effectieve barrière tegen de verspreiding van wasberen (Verbrugge et al., 2015). De Nederlandse rivieren zijn kleiner / smaller in verhouding tot Noord-Amerikaanse rivieren en hebben veel infrastructurele verbindingen zoals bruggen en tunnels.
Verlagen voedselbeschikbaarheid
Wasberen zijn vaak in of in de nabijheid van steden te vinden. Uit onderzoek naar de feces van wasberen bij stedelijk gebied is gebleken dat er resten van 46 plantensoorten in de uitwerpselen zaten waaronder druiven, mais en watermeloen uit huishoudelijk afval. Bij het doorzoeken van afval krijgen de wasberen ook een aanzienlijke hoeveelheid oneetbaar materiaal binnen zoals plastic (Hoffmann & Gottschang, 1977). Dit lijkt de wasberen niet te schaden; wasberen die in de stad leven hebben een betere fysieke conditie wat hoogstwaarschijnlijk te wijten is aan een onuitputtelijke bron van antropogevoedsel. Het verlagen van de beschikbaarheid van deze voedselbron is mogelijk een belangrijke beheersmaatregel voor wasbeerpopulaties in stedelijke gebieden (Prange & Gehrt, 2004). Minder voedsel leidt naar verwachting tot een lagere draagkracht voor wasbeerpopulaties en daardoor mogelijk tot een verlaging in dichtheid en voortplanting van de soort. Studies naar het toepassen van deze maatregel zijn tot heden niet uitgevoerd, waardoor geen uitspraken zijn gedaan over de effectiviteit in de praktijk (Gehrt, 2004).

11.2.3 Mechanisch

Afschot
Het elimineren en beheersen van wasberenpopulaties is mogelijk door middel van afschot. Studies laten zien dat wasberen afschot in één seizoen van het jaar niet resulteert in een blijvende afname van de populatie (Chamberlain et al., 1999; Asano et al., 2003). Dit suggereert een hoger succes van afschot wanneer de populaties jaar rond bejaagd worden. Echter uit een andere studie is gebleken wanneer 20 tot 40% van de populatie in de zomer wordt afgeschoten dit wel degelijk leidt tot een blijvende afname van de wasberenpopulatie (Clark, 1990). In het Duitse grensgebied Nordrhein-Westfalen wordt al enkele jaren populatiebeheer van de wasbeer uitgevoerd. Recente statistieken tonen dat tijdens het jachtseizoen ten minste 11075 individuen zijn gevangen in de periode 2012 – 2013 en 8725 individuen in 2013 – 2014 (NRW-Umweltministerium, 2014). Deze maatregel had nog geen duidelijke invloed op de totale omvang van de wasbeerpopulatie. Over het algemeen is nog geen consensus over de effectiviteit van afschot.

Het bejagen van wasberen is niet eenvoudig. De dieren zijn moeilijk te zien vanwege hun nachtactiviteit, een voerplek is vereist (lokjacht), ze zijn niet honkvast (meerdere dagrustplaatsen) en bevinden zich vaak nabij stedelijk gebied waar niet mag worden geschoten (Lammertsma, 2008). In Nederland is jagen verboden in een straal van 200 meter rond plaatsen waar voer of aas ligt om wild te lokken (RVO, 2016). Het toestaan van de lokjacht, het gebruiken van nachtkijkers en het toepassen van een geluidsdeemer verhoogt de effectiviteit van de jacht en verlaagt de bijkomende verstoring voor de omgeving (Engeman et al., 2003).

Vangen
Het vangen van wasberen is een methode die in Noord-Amerika wordt toegepast om overlast door wasberen te bestrijden (Chamberlain et al., 2002; Smith & Engeman, 2002). Hierbij worden soortspecifieke vangstkooien gebruikt die zijn gemaakt van draadzijzer waardoor het sluitingsmechanisme zich in een gescheiden voerbox bevindt (Michler, 2006). Bijvangst treedt hierdoor zelden op, omdat alleen de wasbeer bij het lokvoer – vis, jam of pindakaas – kan komen (Lammertsma, 2008). De wasberen kunnen het hele jaar worden gevangen op locaties met geschikt habitat, of incidenteel worden gevangen bij een hogere dichtheid (Chamberlain et al., 2002). Wanneer een val na twee weken geen wasbeer heeft ingesloten, gebeurt dit vermoedelijk niet meer. De val kan in dit geval worden verwijderd of verplaatst (Garcia et al., 2012).
Het vangen van wasberen heeft een hoog succes waarbij tot 100% van de aanwezige wasberen met meerdere vangstrondes kan worden weggevangen (Smith & Engeman, 2002; Gehrt, 2004; Garmestani & Percival, 2005). Na de vangst kan de wasbeer worden herplaatst of geëuthanaseerd. Bij herplaatsing in landelijk gebied moet dit gebeuren op een ruime afstand van de vangstlocatie (Smith & Engeman, 2002). Wasberen die zich in de stad hebben laten vangen keren vaak terug naar de (dichtstbijzijnde) stad (Gehrt, 2004). Het is niet duidelijk of dit komt doordat de uitgezette wasbeer uit het landelijke gebied wordt verjaagd door soortgenoten of dat de soort wordt aangetrokken door de mogelijkheden van de stad (Mosillo et al., 1999). Daarbij kan het verplaatsen van wasberen nadelig zijn voor andere soorten en mensen. Zo kunnen ziekten sneller worden verspreid of vormen de vrijgelaten dieren al snel een nieuwe plaag (Mosillo et al., 1999).

De maatregelen vangst en afschot kunnen gezamenlijk worden toegepast om een hogere effectiviteit te behalen. Het is namelijk mogelijk om de gevangen wasberen – eventueel na sterilisatie – te voorzien van een zender met als doel het lokaliseren van soortgenoten (Garcia et al., 2012). Na het lokaliseren kunnen de wasberen worden afgeschoten.

11.3 Beheersmaatregelen voor indamming populaties

Momenteel zijn naar verwachting geen voortplantende populaties van de wasbeer aanwezig in Nederland (Lammertsma, 2008). Dit geldt ook voor België, maar niet voor Duitsland. Verspreiding van de wasbeer vanuit Duitsland naar Nederland is zeer aannemelijk. De verspreiding naar Nederland lijkt te verlopen via rivierdalen van de Overijsselse Vecht, Rijn, Swalm, Roer en de Geul (Lammertsma, 2008; Verbrugge et al., 2015). De vraag is in welk tempo dit plaatsvindt, omdat het onduidelijk is of de vestiging het gevolg zal zijn van ontsnapping of vrijlating uit gevangenschap of van natuurlijke dispersie. Ontsnapping of vrijlating van de wasbeer kan het natuurlijke kolonisatieproces versnellen. Hierdoor is tevens niet aan te geven waar de soort zich eerst in Nederland zal vestigen (Verbrugge et al., 2015).

Beheersmaatregelen voor het tot een minimum beperken van secundaire verspreiding en vestiging vanuit bestaande populaties zijn moeilijk vast te stellen. Het is van belang dat snel wordt opgetreden voordat voortplanting van wasberen in Nederland een feit is. Wanneer de soort zich permanent heeft gevestigd is dit naar verwachting moeilijk omkeerbaar (Carter et al., 2009). Het volledig voorkomen van vestiging is moeilijk maar maatregelen tegen de wasbeer kunnen de snelheid van vestiging wel vertragen. Zo kan het tiental dieren dat momenteel in de vrije natuur loopt gevangen of afgeschoten worden (Verbrugge et al., 2015).

11.4 Potentieel kansrijke maatregelen voor Nederland

Afschot is potentieel geschikt voor het voorkomen van permanente vestiging van de wasbeer in Nederland. Deze maatregel is echter niet altijd efficiënt gebleken en kan voor veel maatschappelijke onrust zorgen (Verbrugge et al., 2015). Daarbij zijn meerdere zaken van belang, zoals rekening houden met de geldende wet- en regelgeving bij afschot in en nabij stedelijk gebied, goede communicatie met omwonenden en monitoring voor en na toepassing van de maatregel.

De meest kansrijke maatregel voor het elimineren en / of beheersen van wasbeerpopulaties in Nederland is de vangst van individuen. Deze maatregel is relatief weinig arbeidsintensief en kan mogelijk worden gecombineerd met de vangst van beverratten (Verbrugge et al., 2015). Daarbij is
vangen relatief goedkoop, waarbij kosten beperkt zijn tot het aanschaffen van vangkooien, het uitzetten en legen van de kooien en het euthanaseren van de vangst door dierenartsen. De wasberen kunnen uit het zicht van de bevolking worden geëuthanaseerd en het habitat blijft bij deze maatregel intact. Een nadeel van deze maatregel – wat ook voor de andere maatregelen geldt – is dat rekening moet worden gehouden met terugkerende kosten en vangstinspanningen vanwege instroom van wasberen vanuit Duitsland (Lammertsma, 2008; Verbrugge et al., 2015).

Gelet op de grote populatieomvang van de wasbeer in aangrenzende delen van Duitsland en onvoldoende effect van eliminatie- en beheersmaatregelen is de verwachting dat volledige eliminatie van de soort in dit land niet haalbaar is. In dat geval zal Duitsland conform de regelgeving in de EU-verordening afdoende maatregelen moeten nemen om de verspreiding naar andere lidstaten te voorkomen (Europese Commissie, 2014). Verwacht wordt dat ook dergelijke maatregelen niet 100% effectief zijn. Daarom zal monitoring van grensoverschrijdende verspreiding en snelle uitroeiing op langere termijn noodzakelijk blijven om permanente vestiging van de wasbeer in Nederland te voorkomen.
12 Zoogdier – Siberische grondeekhoorn (*Tamias sibericus*)

12.1 Soort- en habitatbeschrijving

Figuur 12.1: Siberische grondeekhoorn (*Tamias sibiricus*) (© Foto: Wikimedia commons).

12.1.1 Levenswijze

De Siberische grondeekhoorn is een solitair en dagactief knaagdier. De soort maakt zijn nest in holen in de bodem en foerageert zowel op de grond als in bomen waarbij de grond geprefereerd wordt (Marmet *et al.*, 2011). De soort heeft een veelzijdig dieet wat bestaat uit vruchten en zaden van bomen, struiken en kruidachtige planten, maar ook bladeren, bloemen, knoppen en kleine dieren zoals insecten (Kawamichi, 1999). De soort heeft knobbelkiezen, een aanpassing aan een opportunistic eetwijze (Dijkstra & Dekker, 2008).

De Siberische grondeekhoorn houdt een winterslaap. Onder Nederlandse klimaatomstandigheden kan de soort van begin november tot begin maart in winterslaap zijn (Verbeylen, 2003). Onder warmere milieucondities gaan de dieren niet in winterslaap. Voor de overwintering legt de soort
voedselvoorraden aan welke worden verstopt in het nest en op andere plaatsen in de grond (Peeters, 2013). Tijdens de winterslaap zijn er afwisselend slaap- en actieve fasen, waarbij tijdens de actieve fasen het gehamsterde voedsel wordt aangesproken (Kawamichi, 1999).

Tabel 12.1: Soort- en habitat eigenschappen van de Siberische grondeekhoorn (*Tamias sibiricus*).

<table>
<thead>
<tr>
<th>Eigenschap</th>
<th>Siberische grondeekhoorn (Tamias sibiricus)</th>
<th>Referenties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht geslachtsrijp individu</td>
<td>Gemiddeld 100 g</td>
<td>1</td>
</tr>
<tr>
<td>Maximale leeftijd (in veld)</td>
<td>7 jaar</td>
<td>5</td>
</tr>
<tr>
<td>Voortplantingsperiode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paringstijd</td>
<td>April (indien 2 worpen per jaar ook in augustus)</td>
<td>1</td>
</tr>
<tr>
<td>Draagtijd</td>
<td>35 - 40 dagen</td>
<td>1</td>
</tr>
<tr>
<td>Reproductiecapaciteit indicatoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geslachtsrijpe leeftijd</td>
<td>8 - 11 maanden</td>
<td>1</td>
</tr>
<tr>
<td>Aantal jongen per worp</td>
<td>3 - 6</td>
<td>4</td>
</tr>
<tr>
<td>Aantal worpen per jaar</td>
<td>1 - 2 (afhankelijk van voedselaanbod)</td>
<td>1</td>
</tr>
<tr>
<td>Dag / nacht activiteit</td>
<td>Dagactief</td>
<td>1</td>
</tr>
<tr>
<td>Zichtbaarheid</td>
<td>Goed</td>
<td>3</td>
</tr>
<tr>
<td>Voedselvoorkeur</td>
<td>Omnivoor (vruchten, zaden, bladeren, bloemen, knoppen, insecten)</td>
<td>7</td>
</tr>
<tr>
<td>Succesfactoren voor populatiegroei</td>
<td>Opportunistische levenswijze en snelle voortplanting</td>
<td>3-6</td>
</tr>
<tr>
<td>Vestiging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omvang vestiging</td>
<td>Regionaal, enkele populaties in Nederland</td>
<td>3</td>
</tr>
<tr>
<td>Territoriaal</td>
<td>Nee</td>
<td>7</td>
</tr>
<tr>
<td>Passieve / actieve verspreiding</td>
<td>Land</td>
<td>1-3</td>
</tr>
<tr>
<td>Verspreidingsmedium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersiesnelheid</td>
<td>Gemiddeld 480 m/jaar</td>
<td>2</td>
</tr>
<tr>
<td>Dispersieafstand</td>
<td>Gemiddeld 933 meter van geboorte tot dood</td>
<td>2</td>
</tr>
<tr>
<td>Predatoren</td>
<td>Natuurlijk verspreidingsgebied: slang, vos, wezel, hermelijn, uil en beer.</td>
<td>3</td>
</tr>
<tr>
<td>Territorialen</td>
<td>Nederland: marterachtigen, vos en roofvogels</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habitat</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Natuurlijk verspreidingsgebied</td>
<td>Naald-, loof- en gemengde bossen</td>
<td>3</td>
</tr>
<tr>
<td>Verspreidingsgebied in NL</td>
<td>Alle bossen (met name op de hogere zandgronden)</td>
<td>3</td>
</tr>
<tr>
<td>Natura 2000 gebied</td>
<td>Alle gebieden met habitattypen naald-, loof- en gemengd bos</td>
<td>3</td>
</tr>
</tbody>
</table>

12.1.2 Habitat

De Siberische grondeekhoorn leeft in zowel naald-, loof- als gemengde bossen. Omdat de soort voornamelijk in holen in de grond woont, zijn in Nederland met name de bossen op de hogere zandgronden geschikt (Peeters, 2013). Leefgebieden zijn tot vier hectare groot en de dichtheden van de exotische grondeekhoorn in hun oorspronkelijke leefgebied varieert van laag in de vroege zomer tot hoger op het eind van de zomer met een gemiddelde van 4,5 per territorium (circa 2,1 ha) (Forstmeier & Weiss, 2004). Individuen van de soort slapen, brengen hun jongen groot en schuilen voor predatoren en slecht weer in hun nesten in de bodem. Incidenteel wordt gebruik gemaakt van boomholten – gedurende twee tot acht dagen tijdens de zomerperiode – maar nooit voor de voorplanting of overwintering (Kawamichi, 1989).

12.1.3 Verspreidingsmechanismen

De Siberische grondeekhoorn komt oorspronkelijk voor in de Aziatische taigazone van noordwest Rusland tot in Japan en het zuidoosten van Azië (Peeters, 2013). In verschillende West-Europese landen zijn individuen ontsnapt of uitgezet met als resultaat vestiging van de soort in Nederland, Duitsland, België, Italië, Zwitserland, Oostenrijk en Frankrijk (Long, 2003; Verbeylen, 2003; Peeters, 2013). In Nederland komen naar verwachting tien uitheemse eekhoorn soorten voor die als huisdier zijn gehouden of verhandeld en vervolgens zijn ontsnapt of bewust uitgezet. Sinds 1988 is
alleen voor de Siberische grondeekhoorn sprake van levensvatbare populaties in het wild. Van boomeekhoorns is bekend dat al relatief kleine aantallen (minder dan 20 exemplaren) levensvatbare populaties kunnen vormen (Palmer et al., 2007). Waarschijnlijk geldt dit ook voor de Siberische grondeekhoorn. De uitbreiding van het areaal bezet leefgebied verloopt echter langzaam (Verbeylen, 2003).

Ondanks dat de dieren levensvatbare populaties vormen in België en Duitsland wordt verondersteld dat de soort alleen in Nederland is geïntroduceerd door ontsnapping of bewuste uitzetting van huisdieren en niet door grensoverschrijdende verspreiding (Verbrugge et al., 2015). Bij ontsnapingen of uitzettingen in het voorjaar of herfst heeft de soort waarschijnlijk de hoogste kans om te overleven en zich voor te bereiden op perioden van voedselschaarste. Wanneer de ontsnapping plaatsvindt in de zomer is het vestigings succes vermoedelijk laag door de afwezigheid van voldoende voedsel (Lange et al., 1994). Een laag vestigings succes geldt ook voor ontsnapingen in de winter door een afwezigheid van een aangelegde voedselvoorraad. Echter ontsnapping in een stedelijke omgeving kan de kans op overleven vergroten door de wintervoedering die in veel tuinen plaatsvindt (Dijkstra & Dekker, 2008).

12.2 Eliminatie- en beheersmaatregelen voor beperking van de populatieomvang

De maatregelen (Tabel 12.2) voor het elimineren of beheersen van de Siberische grondeekhoorn en andere (grond)eekhoorns zijn per categorie toegelicht. Voor het elimineren en beheersen van Siberische grondeekhoorns zijn in de wetenschappelijke literatuur nog geen maatregelen gerapporteerd, met uitzondering van het vangen van individuen. Daarom is gekozen om maatregelen die zijn toegepast op andere (grond)eekhoornsoorten op te nemen in de lijst. Bij deze maatregelen staat vermeld voor welke soort de maatregel is toegepast (veelal de Californische grondeekhoorn, Spermophilus beecheyi, daar deze soort in Noord-Amerika een plaag dier is en daar actief wordt bestreden) en al dan niet kansrijk is voor de Siberische grondeekhoorn.

Tabel 12.2: Beschikbaarheid kennis en de mate van succes op lokale- en nationale schaal van eliminatie- en beheersmaatregelen die zijn gerapporteerd voor de Siberische grondeekhoorn.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maatregel</th>
<th>Doel</th>
<th>Lokaal</th>
<th>Nationaal</th>
<th>Referenties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Anticonceptiemiddelen</td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Rodenticiden</td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Vergassen</td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Fysiek</td>
<td>Verwijderen van nesten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td>3, 4, 7, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>3, 4, 7, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanisch</td>
<td>Vangen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eliminatie</td>
<td></td>
<td></td>
<td>3, 4, 7, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ populatieomvang</td>
<td></td>
<td></td>
<td>3, 4, 7, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ verspreiding</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anticonceptiemiddelen
Het toepassen van anticonceptiemiddelen kan worden ingezet wanneer het doden van eekhoorns of het gebruiken van gif niet gewenst is. In een teststudie zijn Californische grondeekhoorns geïnjecteerd met een Gonadotropin-Releasing hormone (GnRH) immunocontraceptie vaccin (immunisatie) (Nash et al., 2004). Dit vaccin zorgt ervoor dat het GnRH wordt stilgelegd waardoor de voortplantingsorganen niet werken door reductie in de progesteron concentratie en de loopsheid uitblijft (Fagerstone, 2002) en is eerder succesvol toegepast in onder andere ratten (Awoniyi, 1994; Miller et al., 1997). Voorafgaand aan de injectie moeten de eekhoorns worden gevangen (§12.2.2.) en visueel gemerkt (bijvoorbeeld met oorlabels) om te voorkomen dat dieren meerdere keren worden behandeld. In de studie werden de eekhoorns eenmalig geïnjecteerd en de reproductiecapaciteit werd gedurende twee voortplantingseizoenen gemeten. Immunisatie van eekhoorns verlaagde het aantal vrouwelijke voortplantende eekhoorns met gemiddeld 91% in het eerste jaar en 96% in het daarop volgende jaar (waarnemingen op basis van het aantal lacterende vrouwtjes). Bij gemiddeld 35% van de mannetjes werd de zaadproductie van testikels stilgelegd gedurende het eerste jaar en 89% gedurende het tweede jaar. Het verschil in effectiviteit van werking bij de mannetjes is te verklaren doordat het middel gedurende een aantal maanden op de al ontwikkelde testis van de mannetjes moet inwerken voordat de immunisatie effectief is. In het eerste jaar werden 9% minder jongen en in het tweede jaar 66% minder jongen geboren in vergelijking met de controlegroep (waarbij placebo injecties gebruikt zijn). Uit de studie is gebleken dat het immuniseren van Californische grondeekhoorns zeer effectief is voor het beheersen van hun populatie (Nash et al., 2004). Er is niet onderzocht welk percentage eekhoorns moeten worden behandeld om de productie van de populatieomvang blijvend te verlagen maar naar verwachting is deze 80%. Ook is niet duidelijk of het effect van immunisatie na twee jaar afneemt en dan herhaling van de behandeling nodig is (Nash et al., 2004).

Het succes van deze methode voor de bestrijding van Siberische grondeekhoorns is nog niet onderzocht. De verwachting is dat de voortplantingsfysiologie van de Californische en Siberische grondeekhoorn voldoende overeenkomt en de methode zeer waarschijnlijk ook effectief zal zijn voor de Siberische grondeekhoorn. Voorafgaand aan een eventueel vaccinatieprogramma is onderzoek vereist naar de exacte dosering van het vaccin voor de Siberische grondeekhoorn (Miller et al., 1997). De methode is zeer kostbaar en arbeidsintensief, specifieke waarden zien hierover niet gerapporteerd. Dit wordt onder andere veroorzaakt door het feit dat de vangst van de dieren noodzakelijk is met het risico van terugvangst van al injecteerde dieren (te zien aan de visuele markering) (Nash et al., 2004).
Rodenticiden
Gif tegen kiaagdieren kan inzet worden voor de eliminatie of beheersing van de Siberische grondeekhoorn (Hooven, 1966; Marsh, 1994; Makundi et al., 1999). In Noord-Amerika zijn meerdere bestrijdingsmiddelen beschikbaar voor het bestrijden van de Californische grondeekhoorn, zoals een acute giftige stof waarbij het individu gelijk sterft na inname (zinkfosfide) en twee chronische antistollingsmiddelen (diphacinone en chlorophacinone) (Marsh, 1994). Al deze bestrijdingsmiddelen zijn momenteel niet toegestaan in Nederland waardoor voor het werken met deze stof een ontheffing of vrijstelling van de Wet gewasmiddelenbescherming en biociden noodzakelijk is (Europese Commissie, 2014; UNEP, 2014; De Hoop et al., 2015).

Ondanks dat de werking van zinkfosfide niet altijd effectief is gebleken voor het doden van de grondeekhoorns wordt deze stof veelvuldig in Noord-Amerika toegepast ter bestrijding van de soort. Zinkfosfide is goedkoop en de toediening is gemakkelijk. Door toepassing na een gewenningsperiode van voeren zonder de giftige stof (pre-baiting) wordt de uiteindelijke opname door de eekhoorns, en daarmee de effectiviteit van het middel, vergroot. Pre-baiting voorkomt niet alleen het ‘voorzichtig’ eten van het gif waardoor het dier wellicht alleen ziek wordt in plaats van sterft maar ook het uiteindelijk vermijden van het gif waardoor de effectiviteit van het gif verlaagd wordt. Het gif kan handmatig worden uitgestrooid bij de ingang van nesten (Marsh, 1994).

De twee chronische antistollingsmiddelen werden in Noord-Amerika al een lange tijd ingezet voor de bestrijding van grondeekhooorns (Clark, 1978). De kiaagdieren moeten gedurende langere tijd (meer dan een week) van het gif eten om te sterven. Een voordeel hiervan is dat de eekhoorns niet acuut ziek worden van het middel waardoor geen vermijding van het gif optreedt. Omdat de dieren meerdere malen moeten eten van het gif is de toepassing kostbaarder, arbeidsintensiever en anders dan bij zinkfosfide. Voederhuisjes met de giftige stof gemengd door kiaagdierenvoedsel worden geplaatst nabij de nesten van de grondeekhoorns. Het gif moet net zo lang worden bijgevuld tot alle eekhoorns verdwenen zijn.

Het toepassen van gif is zeer effectief, want populaties worden volledig geëlimineerd en het kan vestiging door nieuwe individuen verhinderen (Hooven, 1966; Marsh, 1994). De beschreven bestrijdingsmiddelen zijn ontwikkeld voor meerdere soorten kiaagdieren en worden zoals genoemd ook toegepast op de Californische grondeekhoorn. Aanvullend zijn op de Nederlandse markt diverse andere bestrijdingsmiddelen verkrijgbaar, zoals ‘ratten-of muizengif’. Een nadeel van het toepassen van gif is een ongewenst neveneffect op andere knaagdierpopulaties en de mogelijkheid van doorvergiftiging in de voedselketen (Coeurdassier et al.; Sánchez-Barbudo et al., 2012; Elliott et al., 2016).

Vergassens
worden gesloten om ontsnapping van het gas en de dieren te voorkomen. Een hoge bodem- en luchtvochtigheid dragen bij aan de effectiviteit van de methode. Het is van belang om na drie dagen bij de behandelde nesten te gaan kijken of eventuele overlevende dieren zich hebben uitgegraven. Indien dit het geval is moeten de holen opnieuw worden behandeld (Marsh, 1994).

Het toepassen van gas is een kostbare en arbeidsintensieve methode. De hoogste effectiviteit wordt bereikt met vergassing van de nesten net na de winterslaap en voor het werpen van de jongen. De toepassing van gas vereist invloed van specialisten. Daarnaast is er een risico voor neveneffecten, zoals het doden van andere – ondergrondse holbewonende – zoogdiersoorten (Marsh, 1994).

12.2.2 Fysiek

Verwijderen van nesten
Wanneer Californische grondeekhoorns actief uit hun verspreidingsgebied zijn verdreven – al dan niet door eliminatie – vindt snel rekolonisatie plaats indien nog bronpopulaties in de directe omgeving aanwezig zijn en wordt daardoor het effect van de uitgevoerde maatregelen teniet gedaan (Stroud, 1982). Dit proces wordt gefaciliteerd door ondergrondse netwerken van gangen tussen nesten van de Californische grondeekhoorns. Het vernietigen van deze gangenstelsels resulteerde in Noord-Amerika in een rekolonisatiereductie van 85%. Hierbij is wel van belang dat het gehele netwerk van gangen wordt vernietigd. Beperkte omwoeling van de bodem of afdichten van ingangen is niet effectief genoeg (Gilson & Salmon, 1990).

De Siberische grondeekhoorn is, in tegenstelling tot de Californische grondeekhoorn, een solitaire soort welke geen groot ondergronds netwerk maakt (Dijkstra & Dekker, 2008). Of het vernietigen van de nesten van de Siberische grondeekhoorn na het toepassen van eliminatie- of beheersmaatregelen effectief rekolonisatie van de soort tegen gaat is niet bekend. De verwachting is dat de soort snel een vervangend nest creëert.

12.2.3 Mechanisch

Vangen
Een veel gebruikte methode voor het elimineren of beheersen van (grond)eekhoornpopulaties is het wegvangen van individuen (Hooven, 1966; Dijkstra & Dekker, 2008; Marmet et al., 2011; Marmet et al., 2012) (Bertolino & Genovesi, 2003) (grijze eekhoorn), (Dijkstra, 2013) (Pallas’ eekhoorn). Het vangen vindt plaats met speciale vangkooien (bijvoorbeeld 8 x 8 x 26 cm, H.B. Sherman Traps). De maatregel is het meest effectief wanneer deze wordt uitgevoerd direct na de winterslaap voordat de jongen worden geboren (Marsh, 1994). De vangkooien kunnen geplaatst worden in een vooraf bepaald raster of op locaties waar de Siberische grondeekhoorn veel wordt waargenomen. De vallen worden in de ochtend op scherp gezet en vier keer per dag gecontroleerd op vangst. In de avond worden de vallen gesloten zodat voorkomen wordt dat gevangen dieren lang in de val zitten en daardoor hoge stress ervaren. Pindakaas is geschikt lokvoer (Marmet et al., 2011) en eventueel kan vooraf worden gevoerd voor gewenning (pre-baiting). Deze gewenningsperiode kan de vangst met meer dan 50% verhogen (Hooven, 1966). Na vangst van de Siberische grondeekhoorn kan deze in het veld geëuthanaseerd worden onder begeleiding van een dierenarts (Bertolino & Genovesi, 2003) of gesteriliseerd worden (§12.2.1). Het is van belang om eventuele ongewenste bijvangst, zoals de rode eekhoorn, vrij te laten.
Een studie in Italië (Bertolino & Genovesi, 2003) laat zien dat het protocol voor het vangen van de beverrat (middels het gebruik van beverrat vallen) (Gosling et al., 1988) succesvol is toe te passen voor het vangen van de grijze eekhoorn. Tijdens het uitvoeren van twee vangrondes werd meer dan 50% van de geschatte totale populatie weggevangen. Verwacht werd dat de totale populatie is weg te vangen door meer vangrondes. Dergelijke succesvolle resultaten zijn ook behaald bij het wegvangen van de Pallas’ eekhoorn in Nederland. Voor deze soort geldt dat na twee vangstperiodes van 10 maanden de populatie nagenoeg geheel is weggevangen. In dit geval werden de vangstlocaties aangewezen op basis van meldingen van waarnemingen van de Pallas’ eekhoorn waarna 2 tot 5 vallen per locatie zijn ingezet om de eekhoorns te vangen (Dijkstra, 2013).

Verwacht wordt dat de hierboven beschreven vangstmethoden ook kansrijk zijn voor het vangen van de Siberische grondeekhoorn, aangezien de grijze eekhoorn, de Pallas’ eekhoorn en de Siberische grondeekhoorn dezelfde foerageerwijze hebben (Dijkstra & Dekker, 2008; Dijkstra, 2013; Lurz et al., 2013) en zich zo op dezelfde manier laten lokken.

12.3 Beheersmaatregelen voor indamming populaties

Geen van de gerapporteerde eliminatie- en beheersmaatregelen voor de Siberische grondeekhoorn zijn toegepast voor indamming van de soort. Naar verwachting is de kans op secundaire verspreiding of nieuwe vestiging van de Siberische grondeekhoorn in Nederland zeer groot. Dit risico bestaat zowel door de nieuwe introductie van individuen als door voortplanting en verspreiding van de al aanwezige Siberische grondeekhoorns (Dijkstra & Dekker, 2008; Verbrugge et al., 2015). Om dit te voorkomen is het wellicht gewenst om de huidig aanwezige Siberische grondeekhoorns in Nederland te vangen en te steriliseren of euthanaseren.

12.4 Potentieel kansrijke maatregelen voor Nederland

Een kansrijke maatregel voor Nederland is het snel en volledig wegvangen van de Siberische grondeekhoorn. Het gebruik van bestrijdingsmiddelen of het vergassen van holen, is kostbaar, arbeidsintensief en brengt nadelige effecten op andere soorten in het ecosysteem en milieureontreiniging met zich mee. Het verwijderen van de nesten van de Siberische grondeekhoorn is niet effectief genoeg voor het beheersen of elimineren van de soort aangezien de soort gemakkelijk een ander nest zoekt of maakt.

Het vangen van (grond)eekhoorns is een vaak toegepaste methode die goed is geëvalueerd (§12.2.3). Hiervoor geldt dat de maatregel meer effectief is wanneer wordt gewerkt met een voedergewenningsperiode (pre-baiting). Na vangst van de eekhoorns is de mogelijkheid om de individuen te doden onder begeleiding van een dierenarts of te steriliseren en vrij te laten. Euthanaseren is hierbij een goedkopere oplossing dan steriliseren. Bij het steriliseren moeten de dieren gemarked worden, omdat anders sprake is van herhaling van kosten wanneer dieren meerdere malen worden gevangen. Het snel reageren op de aanwezigheid van de soort verhoogt de effectiviteit van de gekozen maatregel (Bertolino & Genovesi, 2005).
13 Conclusies en aanbevelingen

13.1 Beschikbaarheid wetenschappelijke informatie over beheer

Voor 17 invasieve exoten van EU-belang zijn kansrijke maatregelen voor het elimineren en beheersen van populaties in Nederland opgesteld op basis van beschikbare wetenschappelijke gegevens in de internationale literatuur. De meeste informatie over eliminatie- en beheersmaatregelen is beschikbaar voor de Amerikaanse brulkikker en Californische rivierkreeft (Tabel 13.1). Voor de Aziatische hoornaar, gevlekte Amerikaanse rivierkreeft, geknobbelde Amerikaanse rivierkreeft en marmerkreeft is nauwelijks informatie beschikbaar. Over het algemeen zijn de meeste maatregelen gericht op het biologisch, chemisch of mechanisch elimineren of beheersen voor het beperken van de populatieomvang. Voor 7 soorten zijn één of twee fysieke maatregelen gerapporteerd ter voorkoming of het tot een minimum beperken van vestiging en secundaire verspreiding vanuit bestaande populaties (indamming). Systeemgerichte maatregelen zijn alleen gerapporteerd voor de Amerikaanse brulkikker, blauwband en muntjak.

Tabel 13.1: Totaal aantal gerapporteerde eliminatie- en beheersmaatregelen voor 17 invasieve exoten van EU-belang.

<table>
<thead>
<tr>
<th>Wetenschappelijke soortnaam</th>
<th>Nederlandse soortnaam</th>
<th>Soortgroep</th>
<th>Aantal gerapporteerde maatregelen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rana catesbeiana</td>
<td>Amerikaanse brulkikker</td>
<td>Amfibie</td>
<td>11</td>
</tr>
<tr>
<td>Vespa velutina</td>
<td>Aziatische hoornaar</td>
<td>Insect</td>
<td>4</td>
</tr>
<tr>
<td>Trachemys scripta elegans</td>
<td>Roodwangschildpad</td>
<td>Reptiel</td>
<td>6</td>
</tr>
<tr>
<td>Trachemys scripta scripta</td>
<td>Geelbuikschildpad</td>
<td>Reptiel</td>
<td>6</td>
</tr>
<tr>
<td>Trachemys scripta troostii</td>
<td>Geelwangschildpad</td>
<td>Reptiel</td>
<td>6</td>
</tr>
<tr>
<td>Eriocheir sinensis</td>
<td>Chinese wolhandkrab</td>
<td>Schaaldier</td>
<td>7</td>
</tr>
<tr>
<td>Orconectes limosus</td>
<td>Gevlekte Amerikaanse rivierkreeft</td>
<td>Schaaldier</td>
<td>1</td>
</tr>
<tr>
<td>Orconectes virilis</td>
<td>Geknobbelde Amerikaanse rivierkreeft</td>
<td>Schaaldier</td>
<td>4</td>
</tr>
<tr>
<td>Pacifastacus leniusculus</td>
<td>Californische rivierkreeft</td>
<td>Schaaldier</td>
<td>13</td>
</tr>
<tr>
<td>Procambarus clarkii</td>
<td>Rode Amerikaanse rivierkreeft</td>
<td>Schaaldier</td>
<td>7</td>
</tr>
<tr>
<td>Procambarus sp.</td>
<td>Marmerkreeft</td>
<td>Schaaldier</td>
<td>0</td>
</tr>
<tr>
<td>Pueraria lobata</td>
<td>Kudzu</td>
<td>Terrestrische plant</td>
<td>8</td>
</tr>
<tr>
<td>Pseudorasbora parva</td>
<td>Blauwband</td>
<td>Vis</td>
<td>8</td>
</tr>
<tr>
<td>Threskiornis aethiopicus</td>
<td>Heilige ibis</td>
<td>Vogel</td>
<td>5</td>
</tr>
<tr>
<td>Muntiacus reevesi</td>
<td>Muntjak</td>
<td>Zoogdier</td>
<td>6</td>
</tr>
<tr>
<td>Procyon lotor</td>
<td>Wasbeer</td>
<td>Zoogdier</td>
<td>6</td>
</tr>
<tr>
<td>Tamias sibiricus</td>
<td>Siberische grondeekhoorn</td>
<td>Zoogdier</td>
<td>5</td>
</tr>
</tbody>
</table>

13.2 Kansrijke maatregelen voor Nederland

Slechts enkele van alle gerapporteerde maatregelen zijn kansrijk voor het elimineren en / of beheersen van de 17 invasieve exoten van EU-belang in Nederland (Tabel 13.2). Weinig maatregelen resulteren in de eliminatie van populaties; dergelijke zijn soms wel kansrijk voor het populatiebeheer van invasieve exoten. Daarnaast is eliminatie van invasieve exoten die wijdverspreid of regionaal zijn gevestigd in Nederland onwaarschijnlijk vanwege de omvang van de benodigde inspanning en kosten of bijzondere kenmerken van deze soorten of hun habitat waardoor maatregelen onvoldoende effectief zijn. Dit geldt bijvoorbeeld voor de Chinese wolhandkrab, gevlekte Amerikaanse rivierkreeft, rode Amerikaanse rivierkreeft en de blauwband.
<table>
<thead>
<tr>
<th>Wetenschappelijke soortnaam</th>
<th>Nederlandse soortnaam</th>
<th>Van toepassing op</th>
<th>Maatregel</th>
<th>Opmerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rana catesbeiana</td>
<td>Amerikaanse brulkikker</td>
<td>Adulten (enkele individuen)</td>
<td>Afschot, vallen</td>
<td>Eliminatie zeer moeilijk / niet kansrijk; Maatregelen voor deze toepassing bij voorkeur combineren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adulten (vitale populatie)</td>
<td>Afschot, droogleggen, vallen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larven (enkele individuen)</td>
<td>Fuiken</td>
<td>Eliminatie zeer moeilijk / niet kansrijk; Maatregelen voor deze toepassing bij voorkeur combineren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larven (vitale populatie)</td>
<td>Fuiken</td>
<td></td>
</tr>
</tbody>
</table>

| Vespa velutina | Azatische hoornaar | Nesten | Biociden, handmatig verwijderen, verbranden | |

Trachemys scripta elegans	Roodwangschildpad			
Trachemys scripta scripta	Geelwangschildpad	Juvenielen en adulten	Drijvende zonneplaatsvallen met afschot of fuiken	Maatregelen voor deze toepassing bij voorkeur combineren
Trachemys scripta troostii	Geelwangschildpad			

Eriocheir sinensis	Chinese wolhandkrab			
Orconectes limosus	Gevlekte Amerikaanse rivierkreeft	Alle soorten	Geen	Eliminatie niet kansrijk; Beheers maatregelen weinig of niet effectief
Orconectes virilis	Geknobbelde Amerikaanse rivierkreeft			
Pacifastacus leniusculus	Californische rivierkreeft			
Procambarus clarkii	Rode Amerikaanse rivierkreeft			
Procambarus sp.	Marmerkreeft			

| *Puertas lobata* | Kudzu | Enkele individuen | Herbicide | Puntsgewijs op individuele plant aanbrengen; Eliminatie zeer moeilijk / niet kansrijk |
| | | Vlak dekkend | Herbicide | |

| *Pseudorasbora parva* | Blauwband | Alle stadia | Droogleggen met steriliseren, pisciciden | Eliminatie zeer moeilijk / niet kansrijk; Maatregelen in de regel niet blijvend effectief |

| *Threskiornis aethiopicus* | Heilige ibis | Juvenielen en adulten | Afschot, vangen | Maatregelen voor deze toepassing bij voorkeur combineren met vernietigen van embryo’s |
| | | Embryo’s | Vernietigen eieren | Maatregelen voor deze toepassing bij voorkeur combineren met afschot / vangen adulten |

| *Muntiacus reevesi* | Muntjak | Allen | Afschot, vangnetten | Afschot is effectiever |
| *Procyon lotor* | Wasbeer | Allen | Afschot, vangkooien | Vangen is effectiever |

| *Tamias sibericus* | Siberische grondeekhoorn | Allen | Vangkooien | |

13.3 Maatwerk per situatie

De toepasbaarheid en kosteneffectiviteit van de beschreven maatregelen zijn in Nederlandse context afhankelijk van meerdere randvoorwaarden. In deze studie zijn de kosten, maatschappelijke acceptatie en juridische belemmeringen van maatregelen niet geanalyseerd (vallen buiten de opdrachtverlening). Daarnaast bepalen ook andere factoren of een maatregel passend en effectief is in een specifieke situatie, zoals de gebiedskenmerken (isolatie- en grootte van het gebied), toelating van bestrijdingsmiddelen, eventuele neveneffecten op biodiversiteit, milieugevolgen en duurzaamheid van de toegepaste maatregel (onderscheid in effectiviteit op korte en lange termijn). Voor iedere situatie is maatwerk nodig om de meest kansrijke (combinatie van) maatregel(en) te selecteren. De voorliggende rapportage levert daartoe de beschikbare wetenschappelijke informatie voor de selectie van geschikte maatregelen voor de beheerplannen van invasieve exoten in Nederland.
13.4 Eenduidige terminologie

In de EU-verordening 1143/2014 zijn de doelen voor het beheer van wijdverspreide invasieve exoten niet kwantitatief vastgelegd. Zo is bijvoorbeeld niet gespecificeerd wanneer door beheersmaatregelen gevolgen voor biodiversiteit, ecosysteemdiensten, menselijke gezondheid of de economie tot een minimum zijn beperkt of evenredig zijn met de gevolgen voor milieu dan wel afgestemd op de specifieke omstandigheden van Nederland. Daarom is het momenteel niet mogelijk om te beoordelen of dergelijke doelen met de beschreven kansrijke maatregelen kunnen worden bereikt.

13.5 Benodigde kennisontwikkeling

Uit de literatuurstudie blijkt dat voor meerdere soorten geen onderzoek naar de effectiviteit van eliminatie- en beheersmaatregelen is uitgevoerd of daarover niet of onvoldoende is gerapporteerd. Dit geldt bijvoorbeeld voor de wasbeer, Siberische grondeekhoorn, Aziatische hoornaar en de marmerkreeft. Door deze kennisbeperkingen wordt de keuze van in Nederland toepasbare en effectieve en maatregelen bemoeilijkt. Voorbeelden van kennisbeperkingen zijn dat niet bekend is welke kosten zijn verbonden aan maatregelen, gedurende welke tijd een beheersmaatregel effectief is en in welke mate de gestelde doelen in de EU-verordening worden bereikt. Daarnaast is meer aandacht vereist voor de monitoring van langetermijn effecten van eliminatie- en beheersmaatregelen.
14 Dankwoord

Onze dank gaat uit naar de Nederlandse Voedsel- en Warenautoriteit (NVWA) voor financiering van het voorliggende onderzoek (PM d.d. 24 september 2015) en Ir. W. Lammers (Coördinator Team Invasieve Exoten, Bureau Risicobeoordeling en Onderzoeksprogrammering, NVWA) voor de prettige samenwerking tijdens de uitvoering van dit project.
15 Referenties

Monceau, K., O. Bonnard & D. Thiéry (2013a) Relationship between the age of *Vespa velutina* workers and their defensive behaviour established from colonies maintained in the laboratory. *Insectes sociaux*, 60 (4), 437-444.

Waarneming.nl (2016a) Geelbuikschildpad - *Trachemys scripta scripta*. Geraadpleegd op 27 juni 2016 van http://waarneming.nl/soort/stats/26632?tab=&id=&user=0&area=0&year=0&month=0&sex=0&k%5B%5D= 0.

Appendix 1

Tabel A1: Voorbeeld van de resultaten van zoekopdracht naar literatuur met maatregelen tegen invasieve schaaldieren.

<table>
<thead>
<tr>
<th>Zoekmachine</th>
<th>Selector</th>
<th>Zoekttermen</th>
<th>Datum</th>
<th>Hits</th>
<th>Bekeken hits</th>
<th>Nieuwe downloads</th>
<th>Onbeschikbaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Scholar</td>
<td>Met alle woorden</td>
<td>Eriocheir sinensis uitroeien, uitroeien, bestrijden, bestrijding, beheren, beheer, preventie, maatregel, risicobeoordeling</td>
<td>16-03-2016</td>
<td>47</td>
<td>30</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Met tenminste 1 van de woorden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Scholar</td>
<td>Met alle woorden</td>
<td>Eriocheir sinensis management</td>
<td>16-03-2016</td>
<td>4160</td>
<td>30</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Met tenminste 1 van de woorden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web of Science</td>
<td>Topic</td>
<td>Eriocheir sinensis AND eradication*</td>
<td>16-03-2016</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Topic</td>
<td>Eriocheir sinensis AND control measure</td>
<td>16-03-2016</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Topic</td>
<td>Eriocheir sinensis AND prevent*</td>
<td>16-03-2016</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totaal</td>
<td></td>
<td>4243</td>
<td>96</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Google Scholar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Web of Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totaal</td>
<td></td>
<td>4509</td>
<td>73</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zoekmachine</th>
<th>Selector</th>
<th>Zoekttermen</th>
<th>Datum</th>
<th>Hits</th>
<th>Bekeken hits</th>
<th>Nieuwe downloads</th>
<th>Onbeschikbaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Scholar</td>
<td>Met alle woorden</td>
<td>Orconectes limosus uitroeien, uitroeien, bestrijden, bestrijding, beheren, beheer, preventie, maatregel, risicobeoordeling</td>
<td>16-03-2016</td>
<td>36</td>
<td>36 (19 nieuwe)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Met tenminste 1 van de woorden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Scholar</td>
<td>Met alle woorden</td>
<td>Orconectes limosus management</td>
<td>16-03-2016</td>
<td>4460</td>
<td>30</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Met tenminste 1 van de woorden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web of Science</td>
<td>Topic</td>
<td>Orconectes limosus AND eradication*</td>
<td>16-03-2016</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Topic</td>
<td>Orconectes limosus AND control measure</td>
<td>16-03-2016</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Topic</td>
<td>Orconectes limosus AND prevent*</td>
<td>16-03-2016</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totaal</td>
<td></td>
<td>4509</td>
<td>73</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Zoekmachine</td>
<td>Selecteren</td>
<td>Zoektermen</td>
<td>Datum</td>
<td>Hits</td>
<td>Bekeken hits</td>
<td>Nieuwe downloads</td>
<td>Onbeschikbaar</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Google Scholar</td>
<td>Met alle woorden</td>
<td>Orconectes virilis uitroeien, uitroeiing, bestrijden, beheersen, beheer, preventie, maatregel, risicobeoordeling</td>
<td>17-03-2016</td>
<td>17</td>
<td>17 (2 nieuwe)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Google Scholar</td>
<td>Met tenminste 1 van de woorden</td>
<td>Orconectes virilis management control, eradication, prevention</td>
<td>17-03-2016</td>
<td>3240</td>
<td>30 (18 nieuwe)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Web of Science</td>
<td>Topic</td>
<td>Orconectes virilis AND eradication*</td>
<td>17-03-2016</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Topic</td>
<td>Orconectes virilis AND control*</td>
<td>17-03-2016</td>
<td>66</td>
<td>30</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Orconectes virilis AND prevent*</td>
<td>17-03-2016</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td>3336</td>
<td>90</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zoekmachine</th>
<th>Selecteren</th>
<th>Zoektermen</th>
<th>Datum</th>
<th>Hits</th>
<th>Bekeken hits</th>
<th>Nieuwe downloads</th>
<th>Onbeschikbaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Scholar</td>
<td>Met alle woorden</td>
<td>Pacifastacus leniusculus uitroeien, uitroeiing, bestrijden, beheersen, beheer, preventie, maatregel, risicobeoordeling</td>
<td>14-03-2016</td>
<td>20</td>
<td>20</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Google Scholar</td>
<td>Met tenminste 1 van de woorden</td>
<td>Pacifastacus leniusculus management control, eradication, prevention</td>
<td>14-03-2016</td>
<td>3870</td>
<td>30</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Web of Science</td>
<td>Topic</td>
<td>Pacifastacus leniusculus AND eradication*</td>
<td>14-03-2016</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Topic</td>
<td>Pacifastacus leniusculus AND control measure</td>
<td>16-03-2016</td>
<td>23</td>
<td>23</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Pacifastacus leniusculus AND prevent*</td>
<td>16-03-2016</td>
<td>38</td>
<td>38</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td>3959</td>
<td>119</td>
<td>26</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zoekmachine</th>
<th>Selecteren</th>
<th>Zoektermen</th>
<th>Datum</th>
<th>Hits</th>
<th>Bekeken hits</th>
<th>Nieuwe downloads</th>
<th>Onbeschikbaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Scholar</td>
<td>Met alle woorden</td>
<td>Procambarus clarkii uitroeien, uitroeiing, bestrijden, beheersen, beheer, preventie, maatregel, risicobeoordeling</td>
<td>17-03-2016</td>
<td>32</td>
<td>32 (12 nieuwe)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Google Scholar</td>
<td>Met tenminste 1 van de woorden</td>
<td>Procambarus clarkii management control, eradication, prevention</td>
<td>17-03-2016</td>
<td>7190</td>
<td>30 (25 nieuwe)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Web of Science</td>
<td>Topic</td>
<td>Procambarus clarkii AND eradication*</td>
<td>17-03-2016</td>
<td>18</td>
<td>18</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Topic</td>
<td>Procambarus clarkii AND control measure</td>
<td>17-03-2016</td>
<td>68</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Procambarus clarkii AND prevent*</td>
<td>17-03-2016</td>
<td>85</td>
<td>30</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td>7393</td>
<td>135</td>
<td>14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Search Engine</td>
<td>Query</td>
<td>Keywords</td>
<td>Date</td>
<td>Results</td>
<td>New</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Google Scholar</td>
<td>Met alle woorden</td>
<td>Procambarus sp.</td>
<td>17-03-2016</td>
<td>19</td>
<td>19 (6 nieuwe)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Google Scholar</td>
<td>Met tenminste 1 van de woorden</td>
<td>uitroeien, uitroeiing, bestrijden, bestrijding, beheersen, beheren, beheer, preventie, maatregel, risicobeoordeling</td>
<td>17-03-2016</td>
<td>3250</td>
<td>30 (23 nieuwe)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Web of Science</td>
<td>Topic</td>
<td>Procambarus sp. AND eradication</td>
<td>17-03-2016</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Web of Science</td>
<td>Topic</td>
<td>Procambarus sp. AND control</td>
<td>17-03-2016</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Web of Science</td>
<td>Topic</td>
<td>Procambarus sp. AND prevent</td>
<td>17-03-2016</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>3285</td>
<td>65</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>